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Background

Vanilla RNNs iteratively compute h;; and y;; in a seq2seq
classification problem,

hi,t — Op (th',t—l =+ Wqu;,t) , and Yi,t — Oy (th',t) :

o (14, zi,t)thl Is a sequence of data points.
ziv €{1,..., K} is the class label.

e 0, and oy, are activation operators.

e h; is the hidden state with h; o = 0.
y; ¢ Is the output signal.

e U, V,and W are weight matrices.

For a new testing sequence (azt,zt)le, we predict the label
sequence using

zy = argmax;|y];, forallt=1,...,T.
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Building Block

Questions:

e RNNs suffer from significant curse of dimensionality?
e Advantages of MGU and LSTM over vanilla RNNs?

Problem Setup

Assumption 1 (Bounded Input). ||z; |2 < B, for all i,t.

Assumption 2 (Bounded Spectral Norm). ||U|ls < By,
IVll2 < By, and |[W]|2 < Bw.

Assumption 3 (Lipschitz Activation). o, and o, are 1-
Lipschitz with 0;,(0) = 0,(0) = 0 and max, op(x) < b.

Assumption 4 (Bounded /57 Norm). ||U|21 < My,
Vo1 < My, and |Wlla1 < My .

Assumption 5 (Bounded Frobenius Norm). ||U||r < By r,
IV|r < Bvr, and |W||r < Bw.fr.

We denote
e Function Class: F; = {f; : X; — y:},
o Margin: M(f:(X:),2:t) = [ft(X¢)]|2, — maxz., [ fi(Xe)];,

o Ramp Risk: R, (fi) = 7 331, by (=M (fulXir), 2i0)).
where /., is the Ramp Loss with margin value ~.
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Generalization Bound of Vanilla RNNs

We define Model Complexity of vanilla RNNs as

Complexity = d x II.
e d is the square root of Number of Parameters.

o 1l = By min {bV/d, B,Bw X\_g Bi; } is the Sum of
Spectral Norm Products.

Our generalization bound is stated in terms of complexity,

Theorem 1.

e Activation operators o, and o, are given, and Assump-
tions 1-3 hold,;

o S = {(:Ez-,t, Zit)ie1,t=1,... ,m} are drawn i.i.d. from
any underlying data distribution.

—> with probability at least 1 — d over S,

N ~ ~ ( Complexit log +
P(Zt#zt)Rv(ft)<O( A 5)»

ey m
holds for any margin value v > 0 and every f; € F;.

Differentiate the bound in 3 scenarios:

e By < 1, the bound is O ﬁ

e By =1, the bound is O \/dmtv

e By > 1, the bound is O \/—Vfi

Polynomial in d, t.

Complexity of Vanilla RNNs does not suffer from

significant curse of dimensionality!

Compared to the generalization bound in [4],

5 (dtQBvamaX{l,B%] >
Vmy |

our bound is tighter in all 3 scenarios.

Refined Generalization Bounds

Let S2 1 = My + My + Mw and Sf = By r+ Bwr + By r.
e Assumptions 1 - 4 hold:

= L y_ B ~ 7552,122;33%]
P (z # 2t) Rv(ft)SO( N ) (1)

e Assumptions 1 - 3 and 5 hold:

[LS Y-i—o Biry/d1n (d) )
Vmy |

e Bound (1) adapts the matrix covering lemma in [1].

P(Z # 2) — Ry(f) < 5(

e Bound (2) adapts the PAC-Bayes approach in [3].
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Extensions to MGU and LSTM
The MGU RNNs are the simplest gated RNNs, which take,

re = o(Wexs + Urht—l),ﬁlt = op (Whaxy + Up(ry © ht—l))}

Comparison among Generalization Bounds

We compare different generalization bounds:

Theorem 1 | Bound (1) Bound (2) he = (1=10) © hy 1 474 © hy, Yy = 0y (V).

() | o(z) o) | «oogeanions N

0 () | 0(G) | o(4) N

w1 0() [o (%) [o(% L
Equivalent relation between matrix norms: * // > hy

-l < |-l < V|| - |lE < d|] - |2

The LSTM RNNs are more complicated, which take,
gt = U(Wgﬂft T Ught—l)a re = U(Wrﬂﬁt =+ Urht—l)a
O = O-(Woajt il Uoht—l)a (Et — O¢ (cht =+ Ucht—l)Ja
Ct :thCt—l —|—7“t@5t, ht :0t®tanh(ct).

Compared to Theorem 1,
e Bound (2) is better, if By < 1.
e Bound (1) is better, if tS21 < d and By < 1.
e Theorem 1 is better, if By > 1.

Proof Sketch
(1) PAC-learning Bound [2]

log %

o2m

P(Z # 21) — Ry(fr) < | Rs(Fya) + 3

(1) Key Observation: Neural Networks are bi-Lipschitz.
Consider y = o(Wx) with o 1-Lipschitz.

e Given matrices W and W', we have MGU and LSTM introduce extra decaying factors on By .

2
ly=y'llz = llo(Wa) —o(W'a)|2 < |z[2|W — W] e MGU: By = |1 —7¢[[ + Bu, Il

e Given inputs x and z’, we have o LSTM: By = ||9t|loc + Bu. |7t [lot] -

ly = yll2 = lloWz) —o(Wa')|lz < [W]|z[lz — 2|2

Under proper normalization, the generalization bounds of
MGU and LSTM RNNs are less dependent on d and ¢.

Vanilla RNNs are multilayer networks.

MGU and LSTM RNNs potentially reduce the

Lemma 2. Under A tions 1-3, gi nput I d . .
mm raer AssLmptions given input (), an dependence on d and ¢ in generalization.

for any integert < T, ||y;||2 is Lipschitz in U, V and W, i.e.,

e |y <L | =0 || b L[V =V | b Lo, | =

F’
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