

On Generalization Bounds of a Family of Recurrent Neural Networks

Minshuo Chen *, Xingguo Li[†], Tuo Zhao* *Georgia Tech [†]Princeton University

Background

Vanilla RNNs iteratively compute $h_{i,t}$ and $y_{i,t}$ in a seq2seq classification problem,

$$h_{i,t} = \sigma_h \left(U h_{i,t-1} + W x_{i,t} \right), \quad \text{and} \quad y_{i,t} = \sigma_y \left(V h_{i,t} \right),$$

- $(x_{i,t}, z_{i,t})_{t=1}^T$ is a sequence of data points. $z_{i,t} \in \{1, \dots, K\}$ is the class label.
- σ_y and σ_h are activation operators.
- $h_{i,t}$ is the hidden state with $h_{i,0} = 0$. $y_{i,t}$ is the output signal.
- ullet U, V, and W are weight matrices.

For a new testing sequence $(x_t, z_t)_{t=1}^T$, we predict the label sequence using

$$\widetilde{z}_t = \operatorname{argmax}_j[y_t]_j, \quad \text{for all } t = 1, \dots, T.$$

Questions:

- RNNs suffer from significant curse of dimensionality?
- Advantages of MGU and LSTM over vanilla RNNs?

Problem Setup

Assumption 1 (Bounded Input). $||x_{i,t}||_2 \leq B_x$ for all i, t.

Assumption 2 (Bounded Spectral Norm). $||U||_2 \le B_U$, $||V||_2 \le B_V$, and $||W||_2 \le B_W$.

Assumption 3 (Lipschitz Activation). σ_h and σ_y are **1**-Lipschitz with $\sigma_h(0) = \sigma_y(0) = 0$ and $\max_x \sigma_h(x) \leq b$.

Assumption 4 (Bounded $\ell_{2,1}$ Norm). $||U||_{2,1} \leq M_U$, $||V||_{2,1} \leq M_V$, and $||W||_{2,1} \leq M_W$.

Assumption 5 (Bounded Frobenius Norm). $||U||_F \leq B_{U,F}$, $||V||_F \leq B_{V,F}$, and $||W||_F \leq B_{W,F}$.

We denote

- Function Class: $\mathcal{F}_t = \{f_t : X_t \mapsto y_t\}$,
- Margin: $\mathcal{M}(f_t(X_t), z_t) = [f_t(X_t)]_{z_t} \max_{j \neq z_t} [f_t(X_t)]_j$,
- Ramp Risk: $\widehat{\mathcal{R}}_{\gamma}(f_t) = \frac{1}{m} \sum_{i=1}^{m} \ell_{\gamma} \left(-\mathcal{M}(f_t(X_{i,t}), z_{i,t}) \right)$, where ℓ_{γ} is the Ramp Loss with margin value γ .

Generalization Bound of Vanilla RNNs

We define Model Complexity of vanilla RNNs as

Complexity = $d \times \Pi$.

- d is the square root of **Number of Parameters**.
- $\Pi = B_V \min \left\{ b \sqrt{d}, B_x B_W \sum_{i=0}^{t-1} B_U^i \right\}$ is the Sum of Spectral Norm Products.

Our generalization bound is stated in terms of complexity, **Theorem 1.**

- Activation operators σ_h and σ_y are given, and Assumptions 1–3 hold;
- $S = \{(x_{i,t}, z_{i,t})_{t=1}^T, i = 1, \dots, m\}$ are drawn i.i.d. from any underlying data distribution.

 \implies with probability at least $1-\delta$ over S,

$$\mathbb{P}\left(\widetilde{z}_t \neq z_t\right) - \widehat{\mathcal{R}}_{\gamma}(f_t) \leq \widetilde{O}\left(\frac{\textit{Complexity}}{\sqrt{m}\gamma} + \sqrt{\frac{\log \frac{1}{\delta}}{m}}\right),$$

holds for any margin value $\gamma > 0$ and every $f_t \in \mathcal{F}_t$.

Differentiate the bound in 3 scenarios:

- $B_U < 1$, the bound is $\widetilde{O}\left(\frac{d}{\sqrt{m}\gamma}\right)^{\gamma}$
- $B_U=1$, the bound is $\widetilde{O}\left(\frac{dt}{\sqrt{m}\gamma}\right)$ Polynomial in d,t.
- $B_U > 1$, the bound is $\widetilde{O}\left(\frac{\sqrt{d^3t}}{\sqrt{m}\gamma}\right)$

Complexity of Vanilla RNNs does not suffer from significant curse of dimensionality!

Compared to the generalization bound in [4],

$$\widetilde{O}\left(\frac{dt^2B_WB_V\max\{1,B_U^t\}}{\sqrt{m}\gamma}\right)$$

our bound is **tighter** in all 3 scenarios.

Refined Generalization Bounds

Let $S_{2,1} = M_U + M_V + M_W$ and $S_F = B_{U,F} + B_{W,F} + B_{V,F}$.

Assumptions 1 - 4 hold:

$$\mathbb{P}\left(\widetilde{z}_t \neq z_t\right) - \widehat{\mathcal{R}}_{\gamma}(f_t) \leq \widetilde{O}\left(\frac{tS_{2,1}\sum_{i=0}^{t-1}B_U^i}{\sqrt{m}\gamma}\right). \tag{1}$$

• Assumptions 1 - 3 and 5 hold:

$$\mathbb{P}\left(\widetilde{z}_{t} \neq z_{t}\right) - \widehat{\mathcal{R}}_{\gamma}(f_{t}) \leq \widetilde{O}\left(\frac{\Pi S_{\mathsf{F}} \sum_{i=0}^{t-1} B_{U}^{i} \sqrt{d \ln\left(d\right)}}{\sqrt{m}\gamma}\right). \tag{2}$$

- Bound (1) adapts the matrix covering lemma in [1].
- Bound (2) adapts the PAC-Bayes approach in [3].

Comparison among Generalization Bounds

We compare different generalization bounds:

	Theorem 1	Bound (1)	Bound (2)
$B_U < 1$	$\widetilde{O}\left(\frac{d}{\sqrt{m}\gamma}\right)$	$\widetilde{O}\left(\frac{tS_{2,1}}{\sqrt{m}\gamma}\right)$	$\widetilde{O}\left(rac{\sqrt{d}S_{ extsf{F}}}{\sqrt{m}\gamma} ight)$
$B_U = 1$	$\widetilde{O}\left(\frac{dt}{\sqrt{m}\gamma}\right)$	$\widetilde{O}\left(\frac{t^2S_{2,1}}{\sqrt{m}\gamma}\right)$	$\widetilde{O}\left(rac{dtS_{\mathbf{F}}}{\sqrt{m}\gamma} ight)$
$B_U > 1$	$\widetilde{O}\left(rac{\sqrt{d^3t}}{\sqrt{m}\gamma} ight)$	$\widetilde{O}\left(\frac{tB_U^tS_{2,1}}{\sqrt{m}\gamma}\right)$	$\widetilde{O}\left(\frac{dB_U^t S_{F}}{\sqrt{m}\gamma}\right)$

Equivalent relation between matrix norms:

$$||\cdot||_2 \le ||\cdot||_{2,1} \le \sqrt{d}||\cdot||_{\mathsf{F}} \le d||\cdot||_2$$

Compared to Theorem 1,

- Bound (2) is better, if $B_U < 1$.
- Bound (1) is better, if $tS_{2,1} < d$ and $B_U \le 1$.
- Theorem 1 is better, if $B_U > 1$.

Proof Sketch

(I) PAC-learning Bound [2]

$$\mathbb{P}(\widetilde{z}_t \neq z_t) - \widehat{\mathcal{R}}_{\gamma}(f_t) \leq \Re_S(\mathcal{F}_{\gamma,t}) + 3\sqrt{\frac{\log \frac{2}{\delta}}{2m}}.$$

- (II) Key Observation: Neural Networks are bi-Lipschitz. Consider $y=\sigma(Wx)$ with σ 1-Lipschitz.
 - Given matrices W and W', we have $\|y-y'\|_2 = \|\sigma(Wx)-\sigma(W'x)\|_2 \leq \|x\|_2\|W-W'\|_{\mathsf{F}}.$
 - Given inputs x and x', we have

$$||y - y'||_2 = ||\sigma(Wx) - \sigma(Wx')||_2 \le ||W||_2 ||x - x'||_2.$$

Vanilla RNNs are multilayer networks.

Lemma 2. Under Assumptions 1–3, given input $(x_t)_{t=1}^T$ and for any integer $t \leq T$, $||y_t||_2$ is Lipschitz in U, V and W, i.e.,

$$\|y_t - y_t'\|_2 \le L_{U,t} \|U - U'\|_{\mathbf{F}} + L_{V,t} \|V - V'\|_{\mathbf{F}} + L_{W,t} \|W - W'\|_{\mathbf{F}},$$

where $L_{U,t}, L_{V,t}$, and $L_{W,t}$ are coefficients.

Implication of Lemma 2:

- Coverings on weight matrices imply a covering on \mathcal{F}_t .
- (III) Standard Machinery
 - Volume ratio (separates d) \Longrightarrow bound \Longrightarrow Covering number.
 - Covering number + Dudley's integral $\stackrel{\mathsf{bound}}{\Longrightarrow} \mathfrak{R}_S(\mathcal{F}_{\gamma,t}).$

Extensions to MGU and LSTM

The MGU RNNs are the simplest gated RNNs, which take,

$$r_t = \sigma(W_r x_t + U_r h_{t-1}), \widetilde{h}_t = \sigma_h (W_h x_t + U_h (r_t \odot h_{t-1})),$$

$$h_t = (1 - r_t) \odot h_{t-1} + r_t \odot \widetilde{h}_t, \qquad y_t = \sigma_y (V h_t).$$

The LSTM RNNs are more complicated, which take,

 $c_t = g_t \odot c_{t-1} + r_t \odot \widetilde{c}_t,$

$$g_t = \sigma(W_g x_t + U_g h_{t-1}), \qquad r_t = \sigma(W_r x_t + U_r h_{t-1}),$$

 $o_t = \sigma(W_o x_t + U_o h_{t-1}), \qquad \widetilde{c}_t = \sigma_c (W_c x_t + U_c h_{t-1})$

 $h_t = o_t \odot \tanh(c_t).$

MGU and LSTM introduce extra decaying factors on B_U .

- MGU: $B_U \Longrightarrow \|1 r_t\|_{\infty} + B_{U_h} \|r_t\|_{\infty}^2$.
- LSTM: $B_U \Longrightarrow \|g_t\|_{\infty} + B_{U_c} \|r_t\|_{\infty} \|o_t\|_{\infty}$.

Under proper normalization, the generalization bounds of MGU and LSTM RNNs are **less dependent** on d and t.

MGU and LSTM RNNs potentially **reduce** the dependence on d and t in generalization.

References

- [1] P. L. Bartlett, D. J. Foster, and M. J. Telgarsky. Spectrally-normalized margin bounds for neural networks. In *Advances in Neural Information Processing Systems*, pages 6241–6250, 2017.
- [2] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning. MIT press, 2012.
- [3] B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Srebro. A pac-bayesian approach to spectrally-normalized margin bounds for neural networks. arXiv preprint arXiv:1707.09564, 2017.
- [4] J. Zhang, Q. Lei, and I. S. Dhillon. Stabilizing gradients for deep neural networks via efficient svd parameterization. arXiv preprint arXiv:1803.09327, 2018.