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Background Downsampled Oja’s Algorithm Convergence Analysis — Intuition Experiments

Consider the following stochastic optimization problem, Lemma 1. For time series {z;.} with covariance matrix %, Consider Taylor expansion of downsampled Oja’s algorithm: Simulated Data. Gaussian VAR model,

m&n Ez~p|f(u,Z)] subjecttouell, o {21172 is Markov, geometrically ergodic with parame- Usgr =Us +1 (1 — USUST) XUs +0°Ws. Ze+1 = Az + g,

ter p, and sub-Gaussian, Define principle angle 72, = ||Usv;||3 for i = 1,...,m. with 2 € R'® and ||AJ|, < 1 to guarantee stationarity.

e ODE Approximation: > We aim to recover the first 3 largest eigenvalues of the
%;2,8+1 — %:2,3 covariance matrix X of the stationary distribution.

e f is a loss function (possibly nonconvex);
e [ he stationary distribution has zero mean.
e / is the random sample;

—> Given a pre-specified accuracy T, there exists h = Discrete: " = FisVis +O). L
e D is the underlying data distribution; O (,log l) such that 0y b o,
T weakly H n — 0 Lo U h
e [{ is a feasible set (possibly nonconvex). T : 20 ' s N ey
(possibly ) E | 2nikiyn|2| = S+ EX with |E|ls < Continuous:  dv?  —  b2di : AN
. 1 1 * = 0.6 ' - \
Consider n samples {z1, ..., z,} from D, we have _ _ _ - | g : g
{21, 20} > Motivate us to chunk up the time series: Analogous_ to _Law 02f Large Number, n.ot reliable! SP , :
| e SDE Approximation (v;, = O(n) for some i € {1,...,r}): | SN\ N
o . . ‘ - 5 0.2 S N N e e
Elf(u,z)] = - Z f(u, z). (21, 22, -« < 2R (2h 11, - R, . . . (226511, - - - 2260000 Decompose principle angle as %‘2,3 — 772]-:1 is oo . |
7:: 1 i 1 ] Number of Samples x10° : l Nuliber of Sanfplos ' % 10°
. . . . Downsampled Oja’s Algorithm for Streaming PCA . is+1 — Gij . . . . .
For differentiable f, stochastic gradient descent (SGD) takes prec M sont” _ 5 Discrete: Cijis+1 — Gijis = FiisGijs+0O(Mm). Solution trajectories Different block sizes
Input: data points zj, block size h, step size 7. V1 00— " SR
k1 = Hylur — NV f (uk, 21)], Init: set U; with orthonormal columns; " ﬂ 0 00 —;ﬁox;(;:j;ﬂi}igiﬁﬂq ol —;Siigjiz‘ZEZii*
< the st . . set s + 1. weakly Y ;| ﬂ ,. o 10, Heration
® 7 IS the step size parameter; _ . g
77 p p Repeat' ConthOUS: dC’LJ — K’LJCZ]dt _l_ szdBt 2 300+ —dio
: . : . T . E =y
e V.f(ug,zr) is an unbiased stochastic gradient for ap- 'I(}ake sameIe Zsf{]' and ;?tli(s S RshZgp Randomness Returns % 20/ A % 30
» » " < —I— , : 20
proximating VuEz~p f(uk, Z), i-e., S ils X 1.Orth( = T 1%sUs) Analogous to Central Limit Theorem! > / \ 1o}
' NI/ i | e [
Ezk vuf(ulm Zk) p— quZNDf(uky Z)’ Until Convergence- -0.04 -003 -0.02 -0.01 ’ ;)C” 0.0l 0.02 003 004 503 002 001 | ;)C 0.01 0.02 0.03
Output: U,. . 'l D T
e IL, is a projection operator onto the feasible set /. 5 Convergence Analysis Three Stages Distribution of (33 Distribution of 4o
Assumption 1. There exists an eigengap in the covariance e We can clearly distinguish three stages:
Challenges: Principle Angle Based Landscape matrix ¥, i.e, A\ > - > X > Apgg > - > Ay, > 0.
BeS; o | | . 1 1 0(n) e Trade-off between sample efficiency and convergence
e Data dependency — Biased stochastic gradient; Principle Angle: Given two matrices U € R tand V € Stage 1. Escaping from Saddle property:

R™*"2 with orthonormal columns, where 1 < r; < ry, < m,
the principle angle between U and V is defined as,

e Nonconvex f,U{ — Complicated landscapes. Points: We need asymptotically,

e Estimated distributions of (33 and (49 over 100 runs

O(U,V) = diag [cos_1 (al(UTV)) ..., cos 1 (arl(UTV))} , S, = log(K +1) v@ S%%_m?ﬂ - roughly follow Gaussian distributions.
tage 1: Divergent O-U process

N(Ar — Ary1)

2 Real Data. Air Quality dataset with 9358 instances of con-
iterations to escape from a saddle 1=

. | centrations of 9 different gases in a heavily polluted area.
A simple but fundamental problem for time series data: 5 . point. | > We aim to estimate the first 2 principle components.
— Z i UiU; Stage 2. Traverse between Station- ; . . .
U* € argmin — Trace(UT XU) subject to UTU = I, — 5 > We project each data point onto the leading and the second
U

Streaming PCA Problem Landscape of Steaming PCA: Eigenvalue decomposition

ary Points: We need asymptotically, ] _ o
2 A2 Ak, 2 principle components.

with \; and v; being eigenvalue and eigenvector, respectively. 1 1
e U € R™*" aims to recover r leading eigenvectors; i) log 52 @ Stage 2: Deterministic traverse
T

e Y is the covariance matrix of the stationary distribution. Stationary Point iterations to reach the neighborhood
span(U) = span(vg,, - - .,vq,.) with A, = {a1,...,a.} C{1,...,m}

Time series » Biased estimation due to data dependency: = |lcos O, V) |lp € {0, ..., 7} with V; = [vn,..., /]

of the global optima.
Stage 3. Convergence to Global Op-
E-ZkszUk]Uk] £ YUy / tima: We need asymptotically, 2 2 2,
' Global Optimum Saddle Point (Global Maximum) 8 Ctre 3 C .
age 3: Convergent O-U process

/
Nonconvexity » Solution space is rotational-invariant: span(U) = span(Via,) with A- =11,...,7})  |span(U) = span(V.a,) with A # {1,...,7} S log K
= Jlcos O(U, V)| = 7 — |leos O(U, V;) [ < 7 N Ar — Ari1)
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U <= QU for any orthogonal matrix Q € R"*".

|te rat|ons to conve rge to an €- .. Convergence 10 5 0 5 10 15 10 -5 0 5 10 15 10 -5 0 5 10 15
optimal solution.
Our Approaches: 0 e h = 1 — some distortion in the circled area;

V1 ol %%H

. . ) . o (Ar—XApg1)e : : . ..
> Downsampling =— W, S p— Choosing 1 < ~—%77~==, the total sample complexity is e h =3, h =5 = quite similar to Batch;

> Principle Angle — Rotationat-invariance. ——— - W
: : c s N = (514 52+ S3)h < rGm rGm

e(Ar — Ary1) e(Ar — Ary1)

e As h increases to 30 or 60 = obvious distortion in the
circled area again.
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