

Dimensionality Reduction for Stationary Time Series via Stochastic Nonconvex Optimization

Background

Consider the following stochastic optimization problem, min $\mathbb{E}_{Z \sim \mathcal{D}}[f(u, Z)]$ subject to $u \in \mathcal{U}$,

- f is a loss function (possibly **nonconvex**);
- Z is the random sample;
- \mathcal{D} is the underlying data distribution;
- \mathcal{U} is a feasible set (possibly **nonconvex**).

Consider n samples $\{z_1, ..., z_n\}$ from \mathcal{D} , we have

$$\mathbb{E}[f(u,z)] = \frac{1}{n} \sum_{i=1}^{n} f(u,z_i).$$

For differentiable f, stochastic gradient descent (SGD) takes

$$u_{k+1} = \Pi_{\mathcal{U}}[u_k - \eta \nabla_u f(u_k, z_k)],$$

- η is the step size parameter;
- $\nabla_u f(u_k, z_k)$ is an **unbiased** stochastic gradient for approximating $\nabla_u \mathbb{E}_{Z \sim \mathcal{D}} f(u_k, Z)$, i.e.,

 $\mathbb{E}_{z_k} \nabla_u f(u_k, z_k) = \nabla_u \mathbb{E}_{Z \sim \mathcal{D}} f(u_k, Z);$

• $\Pi_{\mathcal{U}}$ is a projection operator onto the feasible set \mathcal{U} .

Challenges:

- Data dependency \implies Biased stochastic gradient;
- Nonconvex $f, \mathcal{U} \implies$ Complicated landscapes.

Streaming PCA Problem

A simple but fundamental problem for time series data:

- $U^* \in \operatorname{argmin} \operatorname{Trace}(U^\top \Sigma U)$ subject to $U^\top U = I_r$,
- $U \in \mathbb{R}^{m \times r}$ aims to recover r leading eigenvectors;
- Σ is the covariance matrix of the stationary distribution.

Time series ► Biased estimation due to data dependency: $\mathbb{E}[z_k z_k^\top U_k | U_k] \neq \Sigma U_k;$

Nonconvexity Solution space is rotational-invariant:

 $U \iff QU$ for any orthogonal matrix $Q \in \mathbb{R}^{r \times r}$.

Our Approaches:

- \triangleright Downsampling \Longrightarrow Data dependency;
- \triangleright Principle Angle \Longrightarrow Rotational invariance.

Minshuo Chen^{*}, Lin F. Yang^{\$}, Mengdi Wang^{\$}, Tuo Zhao^{*} *Georgia Tech ^{\$}Princeton University

Downsampled Oja's Algorithm

Lemma 1. For time series $\{z_k\}$ with covariance matrix Σ ,

- $\{z_k\}_{k=1}^{\infty}$ is Markov, geometrically ergodic with parameter ρ , and sub-Gaussian;
- The stationary distribution has zero mean.

 \implies Given a pre-specified accuracy τ , there exists h = $O\left(\kappa_{\rho}\log\frac{1}{\tau}\right)$ such that

 $\mathbb{E}\left[z_{h+k}z_{h+k}^{\top} \middle| z_k\right] = \Sigma + E\Sigma \quad \text{with } \|E\|_2 \leq \tau.$

Motivate us to chunk up the time series:

 $(z_1, z_2, \ldots, z_h), (z_{h+1}, \ldots, z_{2h}), \ldots, (z_{2bh+1}, \ldots, z_{2(b+1)h})$

Downsampled Oja's Algorithm for Streaming PCA

Input: data points z_k , block size h, step size η . **Init**: set U_1 with orthonormal columns; set $s \leftarrow 1$ **Repeat**: Take sample z_{sh} , and set $X_s \leftarrow z_{sh} z_{sh}^{+}$; $U_{s+1} \leftarrow \Pi_{\mathsf{Orth}}(U_s + \eta X_s U_s);$ $s \leftarrow s + 1;$ **Until** Convergence. Output: U_s .

Principle Angle Based Landscape

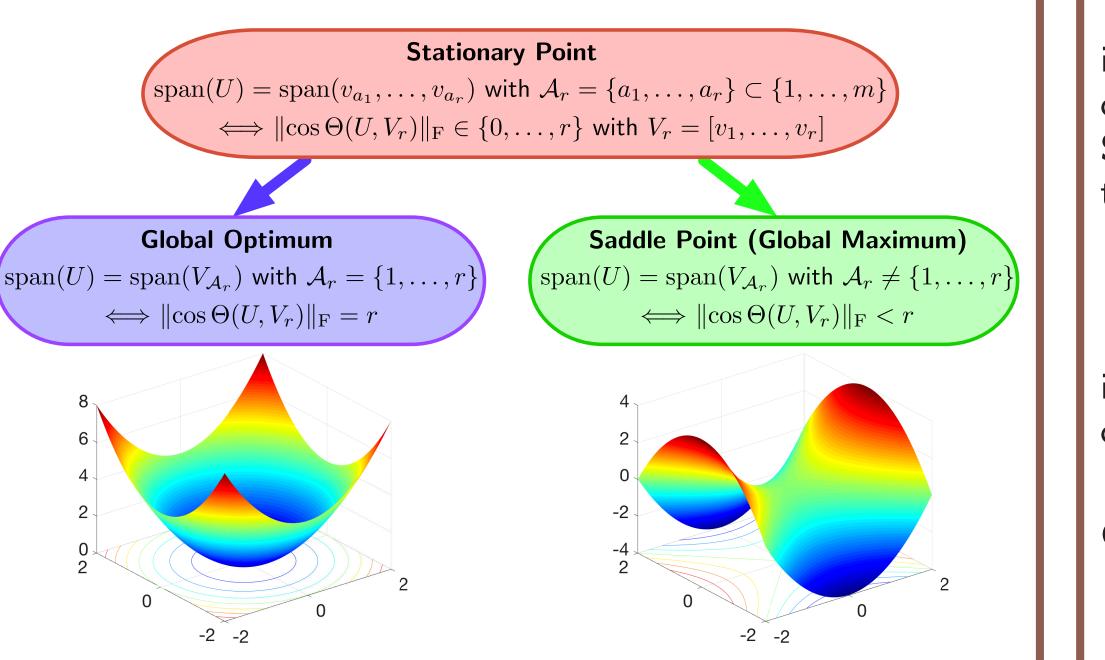
Principle Angle: Given two matrices $U \in \mathbb{R}^{m \times r_1}$ and $V \in$ $\mathbb{R}^{m \times r_2}$ with orthonormal columns, where $1 \leq r_1 \leq r_2 \leq m$, the principle angle between U and V is defined as,

 $\Theta(U,V) = \operatorname{diag}\left[\cos^{-1}\left(\sigma_1(U^{\top}V)\right), \dots, \cos^{-1}\left(\sigma_{r_1}(U^{\top}V)\right)\right].$

Landscape of Steaming PCA: Eigenvalue decomposition

$$\Sigma = \sum_{i=1}^{m} \lambda_i v_i v_i^{\mathsf{T}}$$

with λ_i and v_i being eigenvalue and eigenvector, respectively.



Consider Taylor expansion of downsampled Oja's algorithm:

Convergence Analysis — Three Stages

Assumption 1. There exists an eigengap in the covariance matrix Σ , i.e., $\lambda_1 \geq \cdots \geq \lambda_r > \lambda_{r+1} \geq \cdots \geq \lambda_m > 0$.

Stage 1. Escaping from Saddle Points: We need asymptotically,

point.

iterations to reach the neighborhood of the global optima. **Stage 3**. Convergence to Global Optima: We need asymptotically,

iterations to converge to an ϵ optimal solution.

Convergence Analysis — Intuition

$$U_{s+1} = U_s + \eta \left(I - U_s U_s^\top \right) X_s U_s + \eta^2 W_s.$$

Define principle angle $\gamma_{i,s}^2 = ||U_s v_i||_2^2$ for $i = 1, \ldots, m$. • **ODE** Approximation:

Discrete:
$$\frac{\gamma_{i,s+1}^2 - \gamma_{i,s}^2}{\eta} = \mathcal{F}_{i,s}\gamma_{i,s}^2 + O(\eta)$$

Continuous: $d\gamma_i^2 = b_i \gamma_i^2 dt$.

Analogous to Law of Large Number, not reliable! • **SDE** Approximation $(\gamma_{i,s}^2 = O(\eta) \text{ for some } i \in \{1, \dots, r\})$: Decompose principle angle as $\gamma_{i,s}^2 = \eta \sum_{j=1}^r \zeta_{ij,s}^2$.

Discrete:
$$\frac{\zeta_{ij,s+1} - \zeta_{ij,s}}{\sqrt{\eta}} = \mathcal{F}_{ij,s}\zeta_{ij,s} + O(\eta)$$

weakly $\Downarrow \eta \to 0$

Continuous: $d\zeta_{ij} = K_{ij}\zeta_{ij}dt + G_{ij}dB_t$.

Randomness Returns. Analogous to Central Limit Theorem!

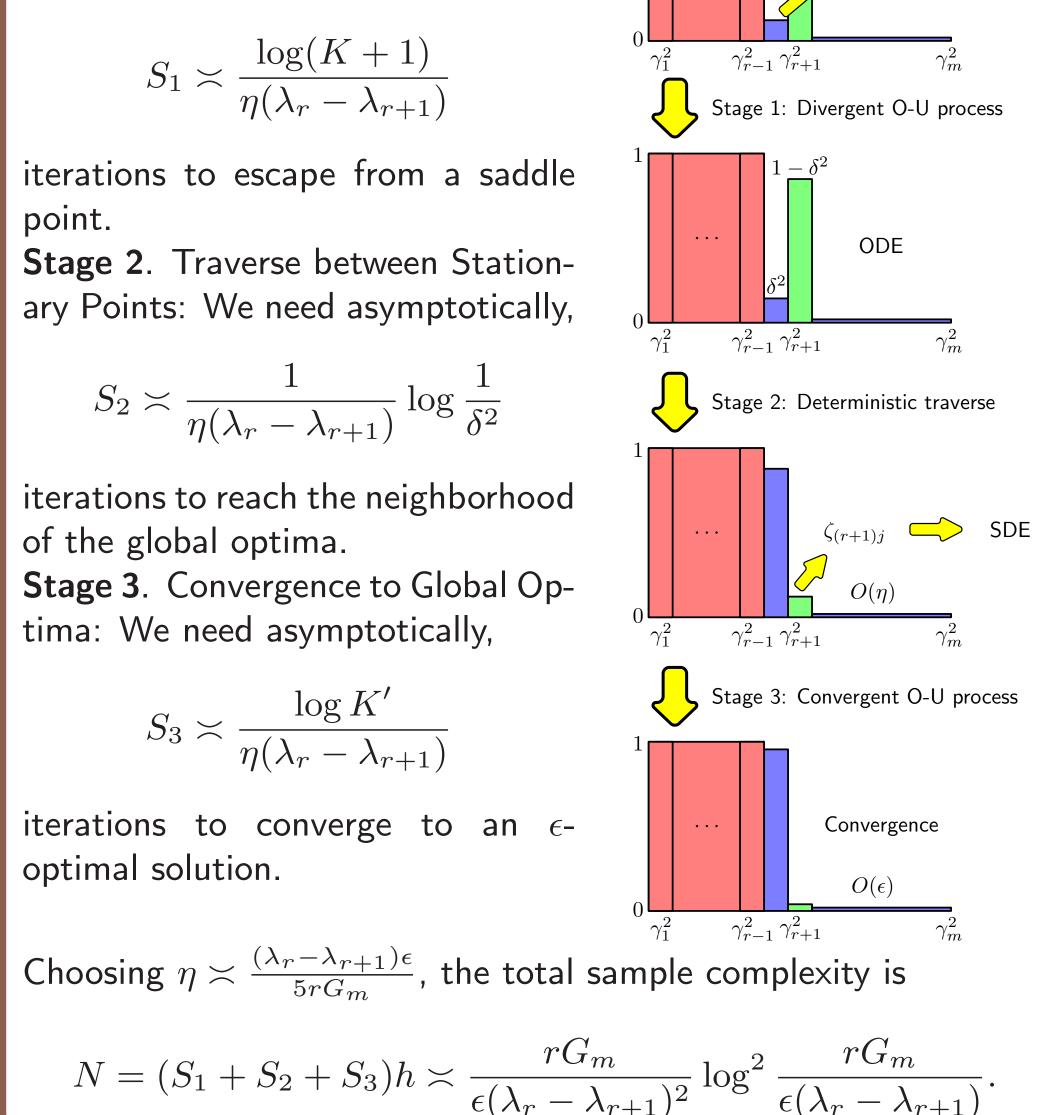
$$S_1 \asymp \frac{\log(K+1)}{\eta(\lambda_r - \lambda_{r+1})}$$

iterations to escape from a saddle

Stage 2. Traverse between Stationary Points: We need asymptotically,

$$\approx \frac{1}{\eta(\lambda_r - \lambda_{r+1})} \log \frac{1}{\delta^2}$$

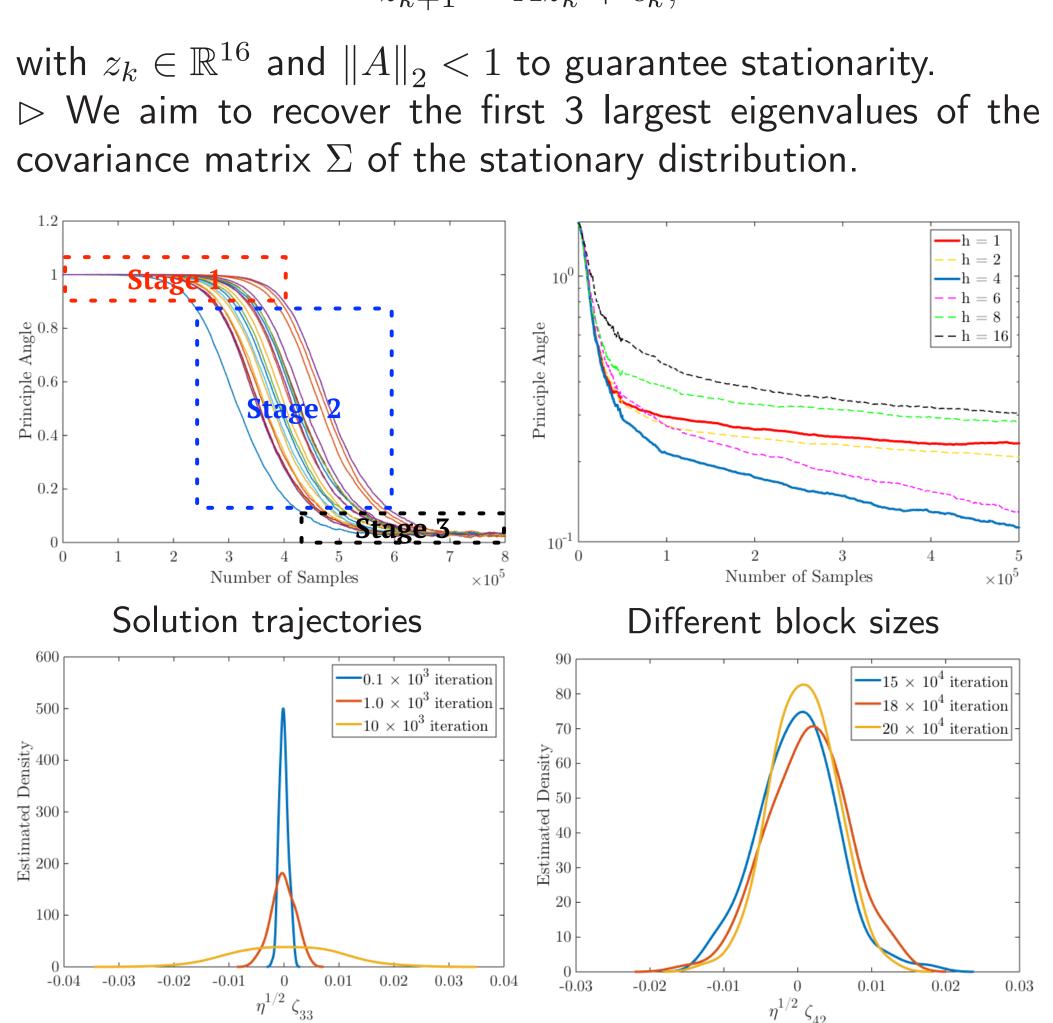
$$S_3 \asymp \frac{\log K'}{\eta(\lambda_r - \lambda_{r+1})}$$



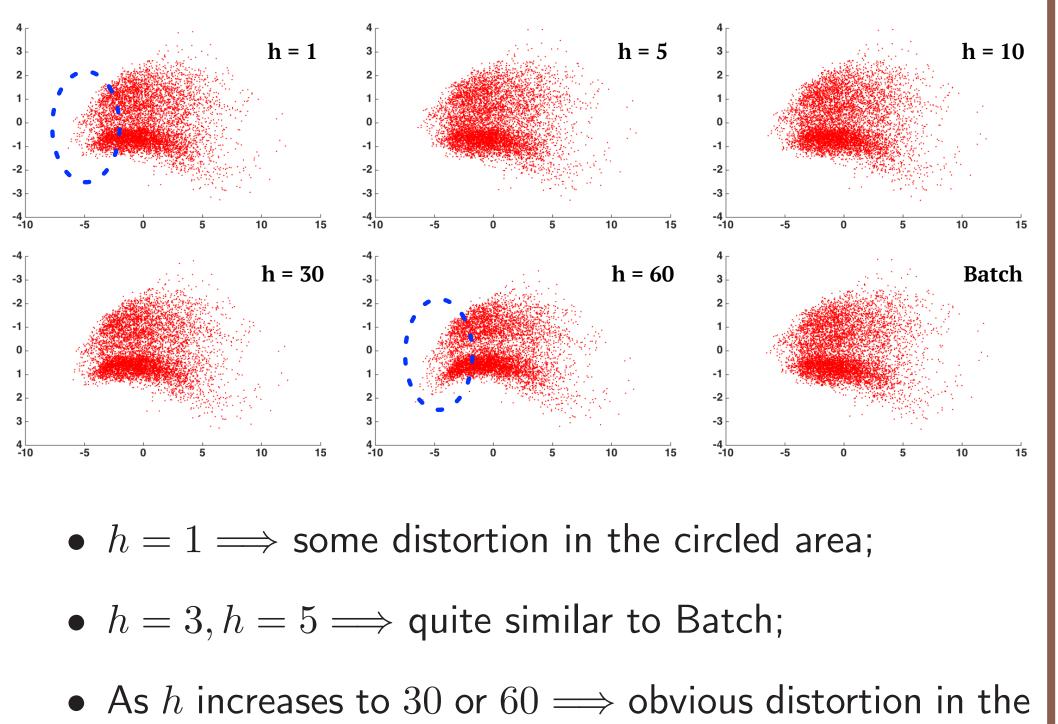
 ζ_{rj} \longrightarrow SDE

Experiments

Simulated Data. Gaussian VAR model,



- property;



 $z_{k+1} = A z_k + \epsilon_k,$

Distribution of ζ_{33}

Distribution of ζ_{42}

• We can clearly distinguish three stages;

• Trade-off between sample efficiency and convergence

• Estimated distributions of ζ_{33} and ζ_{42} over 100 runs roughly follow Gaussian distributions.

Real Data. Air Quality dataset with 9358 instances of concentrations of 9 different gases in a heavily polluted area. \triangleright We aim to estimate the first 2 principle components. > We project each data point onto the leading and the second principle components.

circled area again.