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Background
Consider the following stochastic optimization problem,

min
u

EZ∼D[f(u, Z)] subject to u ∈ U ,

• f is a loss function (possibly nonconvex);

• Z is the random sample;

• D is the underlying data distribution;

• U is a feasible set (possibly nonconvex).

Consider n samples {z1, ..., zn} from D, we have

E[f(u, z)] =
1

n

n∑
i=1

f(u, zi).

For differentiable f , stochastic gradient descent (SGD) takes

uk+1 = ΠU [uk − η∇uf(uk, zk)],

• η is the step size parameter;

• ∇uf(uk, zk) is an unbiased stochastic gradient for ap-
proximating ∇uEZ∼Df(uk, Z), i.e.,

Ezk∇uf(uk, zk) = ∇uEZ∼Df(uk, Z);

• ΠU is a projection operator onto the feasible set U .

Challenges:
• Data dependency =⇒ Biased stochastic gradient;

• Nonconvex f,U =⇒ Complicated landscapes.

Streaming PCA Problem
A simple but fundamental problem for time series data:

U∗ ∈ argmin
U

− Trace(U>ΣU) subject to U>U = Ir,

• U ∈ Rm×r aims to recover r leading eigenvectors;

• Σ is the covariance matrix of the stationary distribution.

Time series I Biased estimation due to data dependency:

E[zkz
>
k Uk|Uk] 6= ΣUk;

Nonconvexity I Solution space is rotational-invariant:

U ⇐⇒ QU for any orthogonal matrix Q ∈ Rr×r.

Our Approaches:
B Downsampling =⇒((((((((

Data dependency;

B Principle Angle =⇒(((((((((
Rotational invariance.

Downsampled Oja’s Algorithm
Lemma 1. For time series {zk} with covariance matrix Σ,

• {zk}∞k=1 is Markov, geometrically ergodic with parame-
ter ρ, and sub-Gaussian;

• The stationary distribution has zero mean.

=⇒ Given a pre-specified accuracy τ , there exists h =
O
(
κρlog 1

τ
log 1

τlog 1
τ

)
such that

E
[
zh+kz

>
h+k

∣∣∣zk] = Σ + EΣ with ‖E‖2 ≤ τ.

I Motivate us to chunk up the time series:

z1, z2, . . . ,zh, zh+1, . . . , z2h, . . . , z2bh+1, . . . , z2(b+1)h.

Downsampled Oja’s Algorithm for Streaming PCA
Input: data points zk, block size h, step size η.
Init: set U1 with orthonormal columns;
set s← 1.

Repeat:
Take sample zsh, and set Xs ← zshz

>
sh;

Us+1 ← ΠOrth(Us + ηXsUs);
s← s+ 1;

Until Convergence.
Output: Us.

Principle Angle Based Landscape
Principle Angle: Given two matrices U ∈ Rm×r1 and V ∈
Rm×r2 with orthonormal columns, where 1 ≤ r1 ≤ r2 ≤ m,
the principle angle between U and V is defined as,

Θ(U, V ) = diag
[
cos−1

(
σ1(U>V )

)
, . . . , cos−1

(
σr1(U>V )

)]
.

Landscape of Steaming PCA: Eigenvalue decomposition

Σ =

m∑
i=1

λiviv
>
i

with λi and vi being eigenvalue and eigenvector, respectively.

Global Optimum

Stationary Point

Saddle Point (Global Maximum)

span(U) = span(va1 , . . . , var ) with Ar = {a1, . . . , ar} ⊂ {1, . . . ,m}
⇐⇒ ‖cosΘ(U, Vr)‖F ∈ {0, . . . , r} with Vr = [v1, . . . , vr]

span(U) = span(VAr ) with Ar = {1, . . . , r}
⇐⇒ ‖cosΘ(U, Vr)‖F = r

span(U) = span(VAr ) with Ar != {1, . . . , r}
⇐⇒ ‖cosΘ(U, Vr)‖F < r

Convergence Analysis — Intuition
Consider Taylor expansion of downsampled Oja’s algorithm:

Us+1 = Us + η
(
I − UsU>s

)
XsUs + η2Ws.

Define principle angle γ2i,s = ‖Usvi‖22 for i = 1, . . . ,m.
• ODE Approximation:

Discrete:
γ2i,s+1 − γ2i,s

η
= Fi,sγ2i,s +O(η).

weakly
ww� η → 0

Continuous: dγ2i = biγ
2
i dt.

Analogous to Law of Large Number, not reliable!
• SDE Approximation (γ2i,s = O(η) for some i ∈ {1, . . . , r}):
Decompose principle angle as γ2i,s = η

∑r
j=1 ζ

2
ij,s.

Discrete:
ζij,s+1 − ζij,s√

η
= Fij,sζij,s +O(η).

weakly
ww� η → 0

Continuous: dζij = Kijζijdt+GijdBt.

Randomness Returns.
Analogous to Central Limit Theorem!

Convergence Analysis — Three Stages
Assumption 1. There exists an eigengap in the covariance
matrix Σ, i.e., λ1 ≥ · · · ≥ λr > λr+1 ≥ · · · ≥ λm > 0.

Stage 1. Escaping from Saddle
Points: We need asymptotically,

S1 � log(K + 1)

η(λr − λr+1)

iterations to escape from a saddle
point.
Stage 2. Traverse between Station-
ary Points: We need asymptotically,

S2 � 1

η(λr − λr+1)
log

1

δ2

iterations to reach the neighborhood
of the global optima.
Stage 3. Convergence to Global Op-
tima: We need asymptotically,

S3 � logK′

η(λr − λr+1)

iterations to converge to an ε-
optimal solution.
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Convergence

Stage 2: Deterministic traverse

Stage 1: Divergent O-U process

Stage 3: Convergent O-U process

ζ(r+1)j

1−O(η)

Choosing η � (λr−λr+1)ε

5rGm
, the total sample complexity is

N = (S1 + S2 + S3)h � rGm
ε(λr − λr+1)2

log2
rGm

ε(λr − λr+1)
.

Experiments
Simulated Data. Gaussian VAR model,

zk+1 = Azk + εk,

with zk ∈ R16 and ‖A‖2 < 1 to guarantee stationarity.
B We aim to recover the first 3 largest eigenvalues of the
covariance matrix Σ of the stationary distribution.

Stage 1

Stage 2

Stage 3

Solution trajectories Different block sizes

Distribution of ζ33 Distribution of ζ42

• We can clearly distinguish three stages;

• Trade-off between sample efficiency and convergence
property;

• Estimated distributions of ζ33 and ζ42 over 100 runs
roughly follow Gaussian distributions.

Real Data. Air Quality dataset with 9358 instances of con-
centrations of 9 different gases in a heavily polluted area.
B We aim to estimate the first 2 principle components.
B We project each data point onto the leading and the second
principle components.

h = 1 h = 5 h = 10

h = 30 h = 60 Batch

• h = 1 =⇒ some distortion in the circled area;

• h = 3, h = 5 =⇒ quite similar to Batch;

• As h increases to 30 or 60 =⇒ obvious distortion in the
circled area again.


