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Abstract

This paper introduces a novel optimal flow control problem that seeks to convey a spec-

ified amount of fluid to each of the nodes of an acyclic digraph with a single source node,

while minimizing the total amount of fluid inducted into the network. Two factors com-

plicating the aforementioned task are (i) the presence of nodes with uncontrollable routing

of the traversing flow and (ii) a set of precedence constraints regarding the satisfaction of

the nodal fluid requirements. It is shown that the considered problem can be naturally

formulated as a continuous-time optimal control problem that can be reduced to a hybrid

optimal control problem with controlled switching. This property subsequently enables the

solution of the considered problem through a Mixed Integer Programming formulation. Ad-

ditional results in the paper establish the NP-hardness of the considered problem, highlight

its affinity to some well known scheduling problems, and offer guidelines that can alleviate

the increased problem complexity.

∗This work was partially supported by the NSF grant CMMI-0619978.



1 Introduction

Networks and network flows have been a powerful modeling abstraction for a very broad array of

applications. Hence, for instance, water, oil, gas, power, telecommunication and data networks

are important elements in our contemporary technological infrastructure that present naturally

the structure and the topological properties of a network. But network flows can also abstract

more complex and maybe less tangible activity, allowing us to talk about production and

distribution networks, workflow networks, and financial networks. More generally, a network

abstraction can provide an effective representation of the existing dependencies among a set of

entities, while the flow conveyed through the network can represent some sort of activity among

these entities that is observant to the expressed dependencies.

From a methodological standpoint, the investigation of network flow problems can be clas-

sified to those addressing static network flows and those addressing flows with more dynamic

attributes. Static network flow problems assume a time-invariant structure for the studied net-

work and consider the flow taking place through it at an equilibrium or “steady state” mode.

As a result, time is not an explicit parameter in the context of static network flow problems,

and the flow traversing the different arcs of the network is perceived as a “lump sum” of mate-

rial transferred through these arcs in an instant manner. The resulting class of problems falls

into the broader area of combinatorial optimization, and their study has led to very strong

analytical results and powerful algorithms. An excellent comprehensive exposition of the rel-

evant theory can be found in [1]. On the other hand, dynamic network flow problems allow

for time dependency for some of the network attributes, and they also consider explicitly the

flow rates materialized at different parts of the network. Therefore, this class of network flow

problems are more appropriate for investigating the transient behavior of the networks, and

they can be perceived as real-time control problems that seek the shaping of this behavior in

order to support certain performance objectives. But the increased representational capabil-

ity of dynamic network flow problems comes with an increase of the relevant computational

cost. In particular, while most of the classical static network flow problems admit algorithms

of polynomial complexity with respect to the size of the underlying network, the majority of

dynamic network flow problems are NP-hard. In fact, for many dynamic flow problems formu-

lated in continuous time, even the effective computation of a solution can be a challenge, and,

in practice, these problems can be addressed only through some ad hoc discretization of time.
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An introductory exposition to the theory of dynamic network flow problems and its intricacies

can be found in [2], while [3, 4, 5] offer additional surveys of the area in terms of analytical

results and applications.

The particular dynamic network flow problem we consider in this work is defined by the

following attributes: (i) The underlying network has an acyclic structure with a single source

node. (ii) Flow enters the network from the source node, at a constant rate of one unit of flow

per unit of time, and exits the network from its terminal nodes. Furthermore, there is no fluid

concentration at any of the nodes of the network. (iii) The routing of the flow at certain nodes

of the network is controllable, i.e., at each of these nodes, the allocation of the total incoming

flow to the arcs emanating from them is decided by an applied control policy and it varies

over time based on some representation of the network “state”. On the other hand, the flow

allocation taking place in the remaining nodes is uncontrollable, i.e., the incoming flow to these

nodes is distributed to the arcs emanating from them according to an externally determined

pattern that is fixed over time. (iv) Every node presents a fluid requirement , i.e., a certain

(possibly zero) amount of fluid that must be traversed through it. Furthermore, there is a set

of precedence constraints that must be observed during the satisfaction of these requirements.

In particular, the satisfaction of the posed requirement at a certain node cannot be initiated

until the fluid requirement at some other node(s) has been fully satisfied. In order to concretize

the exposition of our results, and also for reasons relating to the application that motivated

this problem and that are further discussed below, in the rest of this work we shall consider the

particular precedence constraint that stipulates that the satisfaction of the fluid requirement of

a certain node cannot be initiated until the fluid requirements of all of its children have been

satisfied. The problem objective is to synthesize a routing policy for the controllable nodes that

minimizes the total amount of fluid that must be induced in the network in order to satisfy

all the nodal fluid requirements. For the needs of the modeling approach pursued in the later

parts of this document, it is also important to realize that, under the problem Assumption (ii),

the aforestated objective is equivalent to the objective that seeks to satisfy all the nodal fluid

requirements in minimum time.

Obviously, the problem described in the previous paragraph admits a natural, straightfor-

ward interpretation in material flow networks. But the primary motivation of this problem in

the context of our work comes from the need to provide a deterministic relaxation for a discrete

(token) routing problem that takes place in a repetitive manner on an acyclic stochastic digraph.
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Indeed, the last 15-20 years have seen an extensive use of dynamic network flow problems as

pertinent approximations for discrete stochastic scheduling and routing problems. This class of

problems is typically known as the (deterministic) “fluid” relaxations of their discrete stochastic

counterparts, and their modeling and analytical power derives from the following two facts: (i)

In many cases, the study of the abstracting fluid model can resolve important properties of the

original stochastic network [6, 7]. (ii) Optimized solutions for problems formulated on the fluid

model can lead to efficient solutions for the corresponding problems formulated on the original

stochastic network [8, 9, 10, 11]. On the other hand, many of the flow control problems defined

in the context of the abstracting fluid networks can be quite challenging themselves, giving rise

to some very interesting optimal control problems [12, 13]. The recent publication of [14] offers

an excellent treatment of the role of fluid models in the control of complex stochastic networks,

and it defines the state-of-art in this area.

The particular fluid relaxation that is studied in this paper has been motivated by some

of our past work that seeks to determine an optimal disassembly policy for products that are

processed at the emerging remanufacturing facilities. The intention is to maximize the expected

value that is retrieved from each such product unit and re-introduced in the corresponding

supply chain, while disposing in an systematic and environmentally friendly manner whatever

material remains from this re-processing. In principle, this problem can be formulated as a

stochastic dynamic programming (DP) problem on the underlying disassembly graph, where

the state of the decision making process is determined by the set of the currently extracted items

and their quality status. The latter also determines the set of possible actions that are available

for the disposition of the obtained items. But the probability distributions that determine

the quality of the extracted items, and eventually govern the dynamics of the disassembly

process, typically are not known a priori.1 Hence, the optimal disassembly policy must be

determined through techniques of incremental, real-time dynamic programming (also known

as “reinforcement learning”). The relevant modeling of the optimal disassembly problem as a

reinforcement learning problem and the application of the Q-learning algorithm on it can be

found in [15]. However, in [16] it was also shown that by being defined on an acyclic state

space, the reinforcement learning problem corresponding to the optimal disassembly problem is

amenable to customized learning algorithms of PAC (Probably Approximately Correct) nature,
1These distributions are determined by the consumer behavior with respect to the considered product, which

is an uncontrollable and unobservable part of the entire process.
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with stronger convergence and performance guarantees than Q-learning. This new class of

algorithms seek to learn the optimal policy by performing an adequate sampling of the outcomes

of each of the actions that are available at each decision node. In particular, the amount of

sampling that must be performed at each node is determined so that an actual optimal action

will be selected with a certain probability. However, the sampling at a certain node can be

performed only after the selected action at each of its children nodes has been determined,

and therefore, the sampling process employed by the algorithms of [16] presents a precedence

structure2 that is similar to the precedence structure discussed in the above description of

the network flow problem to be considered in this work. The implementation of the resulting

sampling process is further complicated by the fact that the set of disassembly states – or the

decision nodes – that are materialized during the processing of any single product unit is not

fully controllable, since it is affected by the randomness in the quality of the items that are

extracted during the performed disassembly steps. Hence, it is possible that the disassembly of

a certain product unit does not contribute to the sampling effort, because the extracted artifacts

might correspond to decision nodes that are already sufficiently sampled. When combined with

the precedence requirements to be observed by the applied sampling process, this last effect

gives rise to an interesting stochastic scheduling / routing problem that seeks the satisfaction

of the entire set of the posed sampling requirements in a way that observes the aforestated

precedence constraints, and minimizes, in expectation, the number of product units that must

be disassembled in the process. The detailed formulation and a thorough study of this problem

is presented in [17].

In the light of the above discussion, the main objectives and contributions of this work are as

follows: First, it provides a complete, natural formulation of the dynamic flow control problem

described above as a continuous-time optimal control problem. Second, it establishes that the

initial formulation can be recast as a hybrid optimal control problem with controlled switching

[18] and it exploits this finding in order to develop an effective solution approach to the problem

that takes the form of a mixed integer programming (MIP) formulation [19]. Finally, the last

part of the paper provides a complexity analysis of the problem, establishing its NP-hardness

[20] and offering additional guidelines that can alleviate this increased complexity. In addition,

this last part of the work highlights the affinity of the considered problem to some well known

scheduling problems in the literature.
2or a sampling schedule
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2 Problem definition and formulation

Problem definition A general description of the optimal flow control problem considered in

this work is as follows: We are given a network, modeled by an acyclic, connected digraph G =

(V,E), where V and E denote respectively the sets of the graph nodes and edges. Furthermore,

V is partitioned to two node classes, V c and V u. The sets of source and leaf nodes of graph G

are respectively denoted by •V and V •, and it is further assumed that •V = {v0}.3 In addition,

in the following, E•(v) denotes the set of edges emanating from node v, •E(v) denotes the set

of edges leading to node v, and •E•(v) denotes the entire set of edges incident on v. Finally,

v• denotes the set of the immediate successors of node v, i.e., v• collects all the terminating

nodes of the edges e ∈ E•(v). A fluid is pumped into this network through its source node

v0, at a constant rate of one unit of fluid per unit of time. Flow reaching a node v ∈ V u is

distributed to its outgoing edges according to an uncontrollable and time invariant distribution

dv =< dv(e), e ∈ E•(v) >. On the other hand, the distribution of the flow reaching a node

v ∈ V c to its emanating edges is controllable and it can be varied over time. Finally, each

node v ∈ V has a fluid requirement F̄ (v) associated with it, and it is also stipulated that node

v can begin accumulating the incoming flow in order to fulfill its requirement F̄ (v) only after

all of its successor nodes in graph G, v′ ∈ V , have fulfilled their own requirements, F̄ (v′). A

node v that can proceed to the accumulation of its fluid requirement, F̄ (v), is characterized

as activated . An activated node is further characterized as completed , when the accumulated

amount of fluid reaches the designated level F̄ (v). The control problem considered in this work

is the determination of a possibly time-varying routing policy for nodes v ∈ V c, that will enable

the completion of all the nodal requirements F̄ (v), v ∈ V , in minimal time (or equivalently,

while pumping the minimal amount of fluid into the network).

Example An example problem instance is presented in Figure 1. In the depicted digraph,

uncontrollable nodes are represented by black circles. The nodal fluid requirements are reported

by the numbers in bold, on the right side of each node, and the distributions characterizing

the routing pattern at the uncontrollable nodes are reported by the numbers on the left of the

edges emanating from these nodes.4

3The assumption |•V | = 1 can also be satisfied for problem instances with |•V | > 1 through the addition of

a new dummy node; the details are left to the reader.
4We also notice that when the network of Figure 1 is perceived in the context of the stochastic DP problem

that motivated this work, the controllable (white) nodes correspond to decision nodes, and the arcs emanating
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Figure 1: An example problem instance

Problem formulation as a continuous-time optimal control problem The considered

problem can be naturally formulated as a continuous-time optimal control problem. In this

modeling framework, the key “decision variables” are the functionals fe(t), t ∈ [0,∞), defining

a flow profile for each edge e ∈ E. We shall also use the functionals Fv(t), t ∈ [0,∞), to denote

the evolution of the fluid accumulation at node v ∈ V , and the notation I{H} to represent the

indicator variable defined by some predicate H. Then, the considered problem can be succinctly

expressed as follows:

min
∫ ∞

0
I{Fv0 (t)≤F̄ (v0)}dt (1)

s.t. ∑
e∈E•(v0)

fe(t) = 1.0 (2)

∀v ∈ V c\(V • ∪• V ), ∀t ∈ [0,∞),
∑

e∈E•(v)

fe(t) =
∑

e′∈•E(v)

fe′(t) (3)

∀v ∈ V u\V •, ∀e ∈ E•(v), ∀t ∈ [0,∞), fe(t) = dv(e) ·
∑

e′∈•E(v)

fe′(t) (4)

∀v ∈ V, ∀t ∈ [0,∞), Fv(t) =
∫ t

0
(

∑
e∈•E(v)

fe(τ)) · I{∀v′∈v•, Fv′ (t)≥F̄ (v′)}dτ (5)

from them are the available decisions. On the other hand, the uncontrollable (black) nodes model the impact of

the randomness that might determine the outcome of some of the applied decisions. Obviously, in the context

of such an interpretation of the considered problem and its flow dynamics, uncontrollable nodes should have a

zero fluid requirement (since the sampling process takes place only at the decision nodes).

7



∀e ∈ E, ∀t ∈ [0,∞), fe(t) ≥ 0 (6)

Constraint 2 in the above formulation expresses the finiteness of the ingress capacity of the

considered network and establishes the equivalence between the cumulative amount of fluid

entering this network and the passage of time. Constraints 3 and 4 impose a flow balance

requirement for the set of nodes V \(•V ∪ V •), with Constraint 4 further communicating the

uncontrollable nature of the flow routing that takes place at nodes in V u. Constraint 5 char-

acterizes the accumulation of the fluid passing through the different nodes v ∈ V towards the

satisfaction of the corresponding nodal fluid requirements, and it ensures that the dynamics of

this accumulation are in agreement with the precedence constraint defined in the introductory

section. In particular, the presence of the indicator function I{∀v′∈v•,Fv′ (t)≥F̄ (v′)} in the integral

of Equation 5 ensures that any amount of fluid passing through node v will be accounted to-

wards the satisfaction of the corresponding fluid requirement, only if the fluid requirements for

all the successor nodes of v have been fully satisfied. Finally, the problem objective function

seeks the completion of all the nodal fluid requirements in minimal time (or in the light of

Constraint 2, with a minimal amount of fluid induced into the network).

Reformulating the considered problem as a hybrid optimal control problem with

controlled switching While the formulation of Equations 1-6 offers a succinct characterization

of the considered problem, it is very cumbersome from a computational standpoint. However,

next we present a structural property that will enable its transformation to a mixed integer

program and will render it solvable through “off-the-shelf” optimization software [19]. The

essence of this property is that the restriction of the original problem to flows < fe(t), e ∈ E, t ∈

[0,∞) > that maintain a constant distribution at all nodes v ∈ V between two consecutive

completions of some nodal fluid requirements, does not compromise the optimality of the derived

solution. This result can be stated and proven as follows:

Proposition 1 Let < fe(t), e ∈ E; Fv(t), v ∈ V ; t ∈ [0,∞) > denote a feasible solution for

the formulation of Equations 1-6, and consider a time interval [t1, t2] such that

∀v ∈ V, I{Fv(t1)<F̄ (v)} = I{Fv(t2)<F̄ (v)} (7)

Then, there exists a solution < f ′e(t), e ∈ E; F ′v(t), v ∈ V ; t ∈ [0,∞) > such that

∀e ∈ E, ∀t ∈ [t1, t2], f ′e(t) = ce (8)
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and ∫ ∞
0

I{F ′v0
(t)≤F̄ (v0)}dt =

∫ ∞
0

I{Fv0 (t)≤F̄ (v0)}dt (9)

Proof: Consider the flow < f ′e(t), e ∈ E; t ∈ [0,∞) > that is defined by flow f as follows:

∀e ∈ E, f ′e(t) =

 1
t2−t1

∫ t2
t1
fe(τ)dτ , if t ∈ [t1, t2]

fe(t), otherwise
(10)

Clearly, the flow f ′ defined by Equation 10 satisfies the condition of Equation 8 and it also

satisfies Constraint 6. Furthermore, the definition of f ′, together with the linearity of the

integral, imply that f ′ is also feasible with respect to Constraints 2-4. Next we consider the

fluid accumulations < F ′v(t), v ∈ V, t ∈ [t,∞) >, that are induced by f ′ through the integral

of Equation 5, and we establish that

∀t ∈ {t1, t2}, ∀v ∈ V, F ′v(t) = Fv(t) (11)

The validity of Equation 11 for t = t1 follows immediately from the definitions of f ′ and F ′

(c.f., Equations 10 and 5). The validity of Equation 11 for t = t2 can be established inductively

as follows: First consider the set of leaf nodes and notice that for any such node v ∈ V •,

I{∀v′∈v•, Fv′ (t)≥F̄ (v′)} = 1, ∀t ∈ [0,∞), since these nodes have no successors. Hence,

∀v ∈ V •, F ′v(t2) =

F ′v(t1) +
∫ t2

t1

∑
e∈•E(v)

f ′e(τ)dτ =

Fv(t1) +
∫ t2

t1

[
∑

e∈•E(v)

1
t2 − t1

∫ t2

t1

fe(s)ds]dτ =

Fv(t1) +
1

t2 − t1

∫ t2

t1

dτ

∫ t2

t1

∑
e∈•E(v)

fe(s)ds =

Fv(t1) +
∫ t2

t1

∑
e∈•E(v)

fe(s)ds =

Fv(t2) (12)

For the inductive step, consider a node v ∈ V \V •, and suppose that

∀v′ ∈ v•, F ′v′(t2) = Fv′(t2) (13)
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Then, if there exists a node v′ ∈ v• with F ′v′(t2) = Fv′(t2) < F̄ (v′), Constraint 5 implies that

F ′v(t2) = Fv(t2) = 0 (14)

In the opposite case, F ′v′(t2) = Fv′(t2) ≥ F̄ (v′), ∀v′ ∈ v•, which combined with Equation 7 and

the established validity of Equation 11 for t = t1, further implies that

∀t ∈ [t1, t2], I{∀v′∈v•, F ′
v′ (t)≥F̄ (v′)} =

I{∀v′∈v•, Fv′ (t)≥F̄ (v′)} = 1 (15)

But then, the equality of F ′v(t2) and Fv(t2) can be established through a computation similar

to that presented in Equation 12. Finally, Equation 9 follows from the definition of f ′ (c.f.

Equation 10) and the application of Equations 7 and 11 to node v0. �

Proposition 1 implies that we can restrict the search for an optimal control law into the class

of control laws that allow for a switch of the applied routing scheme only at the time points

corresponding to the completion of some nodal fluid requirement. A more technical restatement

of this result is that the original problem is reduced to a hybrid optimal control problem with

controlled switching [18] where the control “modes” are defined by the completion status of the

fluid requirements that are posed by the different nodes. A complete, formal characterization

of the hybrid automaton that defines the aforementioned hybrid optimal control problem would

be of a rather pedantic nature, and therefore, it is omitted. Instead, in the next section we

capitalize upon the structure that is implied by this hybrid automaton, in order to motivate

and introduce an alternative MIP formulation for the considered problem.

3 A MIP formulation for the considered problem

As indicated in the previous section, the search for an optimal control law for the considered

flow control problem can be restricted to the class of control laws that allow for a switch of the

applied routing scheme only at the time points corresponding to the completion of some nodal

fluid requirement. In order to model the flow dynamics generated by this restricted class of

control laws, we define the set of “control modes”, V, that contains all the possible partitions of

the node set V , that satisfy the following two requirements: (i) They split V into two subsets,

one containing the nodes that have their flow requirements completed, and its complement.

(ii) The completions indicated at each mode are consistent with the precedence constraints
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Figure 2: The control modes and interconnecting transitions of the graph G corresponding to

the example problem instance of Figure 1

expressed by Equation 5. A systematic enumeration of the mode set V can be obtained by

a search process that starts from the initial control mode ν0, where all nodes have their fluid

requirements uncovered, and subsequently, it reaches out to the remaining control modes by

flagging one node at a time as completed, while observing the precedence constraints that are

imposed by the structure of graph G. The resulting graph G = (V, E) has an acyclic structure,

in which the different modes are layered according to their number of completed nodes; for

further reference, we shall characterize these layers of G as L0, L1, . . . , L|V |−1. The mode graph

G corresponding to the problem instance of Figure 1 is depicted in Figure 2.

Given the mode graph G defined in the previous paragraph, any solution belonging to the

restricted space of control laws characterized at the beginning of this section, can be effectively

represented by the following two elements: (i) a directed path from the source to the sink node

of G, and (ii) the nodal fluid accumulations that take place at each visited mode. In order to

characterize the aforementioned paths of G, we introduce the binary variables δν , ν ∈ V, and

we stipulate that δν = 1 iff mode ν belongs on the path followed by the considered solution.

Obviously, the pricing of the variables δν , ν ∈ V, must be restricted by an additional set of

constraints, which will ensure that they express meaningful paths from the source to the sink
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node of graph G. Letting •ν denote the immediate predecessors of any mode ν ∈ V, such a

constraint set can be structured as follows:

∀i ∈ {0, 1, . . . , |V | − 1},
∑
ν∈Li

δν = 1 (16)

∀ν ∈ V\{ν0}, δν ≤
∑
ν′∈•ν

δν′ (17)

∀ν ∈ V, δν ∈ {0, 1} (18)

The validity of the above constraint set can be established by noticing that the combination

of Constraints 16 and 18 expresses the fact that any path from the source to the sink mode of

G has exactly one node belonging to each of the layers of G, while Constraint 17 enforces the

path feasibility with respect to the connectivity of G.

In order to characterize all the nodal fluid accumulations that can take place at any given

mode ν ∈ V, we proceed as follows: First, we introduce the set of auxiliary variables {Xν
e },

which denote the total amount of fluid conveyed through the edges e ∈ E during the network

sojourn in the considered control mode. Clearly, {Xν
e , e ∈ E}must satisfy the following balance

constraints:

∀v ∈ V c\(V • ∪• V ),
∑

e∈E•(v)

Xν
e =

∑
e′∈•E(v)

Xν
e′ (19)

∀v ∈ V u\V •, ∀e ∈ E•, Xν
e = dv(e) ·

∑
e′∈•E(v)

Xν
e′ (20)

∀e ∈ E, Xν
e ≥ 0 (21)

Second, we introduce the variables {∆F νv } that denote the total amount of fluid accumulated

at an activated node v during the network sojourn in the considered control mode. This new

set of variables must satisfy the following constraints:

∀ non-activated or completed node v in ν, ∆F νv = 0 (22)

and

∀ activated but uncompleted node v in ν, ∆F νv =


∑

e′∈•E(v)X
ν
e′ , if v 6= v0∑

e′∈E(v)• X
ν
e′ , otherwise

(23)

In order to complete the characterization of the space of the control laws considered by the

proposed formulation, we must also link the pricing of the variables δν , ν ∈ V, to the pricing
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of the variables Xν
e , e ∈ E, ν ∈ V, that define the fluid accumulations at the different control

modes. For this, consider a pricing of the variables δν , ν ∈ V, according to any pattern that

satisfies Constraints 16–18. Then, it should be clear from the above discussion, that any control

law which is in agreement with this pricing, will engage only control modes ν with δν = 1.

Control modes ν with δν = 0 will not contribute anything to the required fluid accumulations.

In the light of Equations 19–21, this effect is communicated in the proposed formulation by

setting

∀ν ∈ V,
∑

e∈E•(v0)

Xν
e ≤ δν ·Mν (24)

The parameter Mν appearing in the above equation is of the, so called, “big-M” type, and

it must be adequately large to avoid any unintentional / artificial constraining of the left hand

side of Equation 24, in the case that δν = 1. In the considered problem context, a pertinent

value for Mν is provided by the combined fluid requirement of all the nodes that are activated

but not completed in mode ν.

Equations 16–24 provide a complete characterization of the entire set of flows presenting the

structure that was identified by Proposition 1. It remains to express the constraints arising by

the nodal fluid requirements and the objective function that measures the performance of any

such satisficing flow. The constraints imposing the satisfcation of the nodal fluid requirements

can be succinctly expressed as follows:

∀v ∈ V,
∑
ν∈V

∆F νv = F̄ (v) (25)

On the other hand, the stated objective of minimizing the overall fluid losses can be ex-

pressed by setting the formulation objective to:

min
∑
ν∈V

∑
e∈E•(v0)

Xν
e (26)

The following theorem summarizes all the above discussion, by providing a formal statement

for the validity of the MIP formulation of Equations 16–26 as a generator for an optimal control

law for the flow control problem under consideration. It also articulates the construction of the

optimal flow control law that is implied by the obtained optimal solution to the MIP formulation.

Finally, we notice that the notation •e, that is used in the statement of the following result,

implies the starting node for edge e.
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Theorem 1 Consider the MIP formulation defined by Equations 16–26 and let Xν∗
e , e ∈

E, ν ∈ V, denote the cumulative modal flows established by its optimal solution. Also, consider

the flow functionals fe(t), e ∈ E, t ∈ [0,∞), that are obtained from < Xν∗
e , e ∈ E, ν ∈ V >

by setting ∀e ∈ E,

fe(t) =

∑
ν∈Li

Xν∗
e∑

e′∈E•(•e)
∑

ν∈Li
Xν∗
e′

(27)

if there exists an i ∈ {0, 1, . . . , |V |−1} such that
∑i−1

j=0

∑
ν∈Lj

∑
e′∈E•(v0)X

ν∗
e′ ≤ t <

∑i
j=0

∑
ν∈Lj∑

e′∈E•(v0)X
ν∗
e′ , and

fe(t) = 0 (28)

otherwise. Then, < fe(t), e ∈ E, t ∈ [0,∞) > constitutes an optimal flow for the original

formulation of Equations 1–6. Furthermore,∫ ∞
0

I{Fv0 (t)≤F̄ (v0)}dt =
∑
ν∈V

∑
e∈E•(v0)

Xν∗
e (29)

�

Example: When applied to the example problem instance of Figure 1, by means of the

mode graph depicted in Figure 2, the aforementioned MIP formulation returned a solution

that employed the mode sequence < ν0, ν2, ν4, ν8, ν13, ν19, ν24, ν29, ν33, ν35 > (c.f. Figure 2).

Furthermore, modes ν13, ν24, and ν33 in this sequence were used just as transitional modes

and they involved no fluid accumulation.5 The cumulative flow conveyed through the different

graph edges at each of the remaining modes is reported in Table I. It can be easily checked that

the solution is consistent with the nodal fluid requirements communicated in Figure 1, and that

the total volume of fluid induced in the network is equal to 27 units. Finally, we mention for

completeness that the compilation and solution of the MIP formulation through CPLEX took

0.2 secs.

4 Complexity considerations

The MIP formulation developed in the previous section provides an effective methodology for

the solution of the optimal flow control problem considered in this work. However, when
5An explanation of this effect can be found in the discussion provided at the end of the following section.
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Table 1: The optimal solution of the MIP formulation for the example problem instance of

Figure 1

ν 0 2 4 8 19 29 35

Xν
1 1.3889 12.8968 4.2857 1.4286 3.00

Xν
2 2.00 2.00

Xν
3 0.9722 9.0278 3.00 1.00 2.10

Xν
4 0.4167 3.8690 1.2857 0.4286 0.90

Xν
5 0.9722 9.0278 3.00

Xν
6 1.00 2.10

Xν
7 2.00

Xν
8 2.00

Xν
9 0.3889 3.6111 1.20

Xν
10 0.5833 5.4167 1.80

Xν
11 1.00

Xν
12 1.00

Xν
13 2.00

viewed from the standpoint of its computational efficiency, this approach can be restricted

by the general fact that the solution of MIP formulations requires a computational effort that

grows exponentially with respect to the number of the involved variables [20]. In the considered

case, things are further complicated by the fact that the number of variables and constraints

involved in the MIP formulation of Section 3 are themselves exponentially related to the size of

the elements that define the original problem. More specifically, as revealed by Equations 16–

25, many of the variables and the constraints appearing in the proposed MIP formulation are

determined by the structure of the modal graph G, and it is easy to see that, in the worst case,

the number of modes in G, |V|, will be equal to 2(|V |−1), where |V | is the number of nodes of

the problem-defining graph G. Motivated by these remarks, in this section we take a closer

look at the computational complexity of the original problem, defined by Equations 1–6. Along

these lines, the key result of this section is that the decision version of the considered optimal

flow control problem is NP-complete [20], a finding that renders the considered optimization

problem itself NP-hard, and excludes the possibility of developing very efficient algorithms
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for it. Nevertheless, the last part of the section provides some additional remarks that can

alleviate the increased complexity of the proposed MIP formulation, by taking advantage of

some further structure that might be present in the problem defining graph G and its nodal

fluid requirements.

Establishing the NP-hardness of the considered problem In order to study the

computational complexity of the considered optimal control problem, we work with its decision

version, which is defined as follows: Given the problem defining graph G and a set of nodal fluid

requirements associated with its nodes v ∈ V , does there exist a set of flow profiles < fe(t), e ∈

E, t ∈ [0,∞) > that satisfies all the nodal fluid requirements in time less than or equal to some

given constant Γ (or, equivalently, with the total flow injected into the graph not exceeding Γ)?

The next theorem establishes that this new problem version is NP complete [20].

Theorem 2 The decision version of the optimal flow control problem considered in this work

is NP-complete.

Proof: The result of Theorem 2 will be obtained by providing a polynomial reduction to

the considered problem of another scheduling problem that is known to be NP-complete. This

scheduling problem is described as follows: We are given two processors, P1 and P2, and n

tasks, T1, T2, . . . , Tn, that must be executed by means of the two processors. More specifically,

each task Tj , j = 1, . . . , n, corresponds to a certain workload, Wj , and it can be executed either

on processor P1 or processor P2. However, each processor executes each of the given tasks with

a different speed that depends on, both, the task and the processor. In the following, we shall

use the notation Rij , i = 1, 2, j = 1, . . . , n, to denote the processing speed of task Tj when

executed by processor Pi. Furthermore, without loss of generality, in the following we shall

assume that Wi and Rij have been scaled so that Rij < 1. Obviously, the amount of time that

takes to execute task Ti on processor Pi, under the assumption that processor Pi is completely

dedicated to the processing of task Tj , is equal to tij = Wj/Rij . In addition, it is assumed

that the execution of any task on any of the two processors can be preempted and tasks can be

reassigned to processors in order to complete their remaining workload. A last problem feature

is that the set of tasks {Ti, i = 1, . . . , n} is organized into “chains”, i.e., a partial order where

every task has at most one predecessor and at most one successor. The question to be resolved

is whether there exists a schedule for executing the n tasks on the two processors such that
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Immediate Immediate

Task Predecessor Successor Wj R1j R2j

1 - 2 2 0.9 0.5

2 1 - 3 0.8 0.6

3 - - 1 0.5 0.4

Table 2: An example instance of the scheduling problem considered in the proof of Theorem 2

the total time that is needed to complete the execution of all the tasks6 is no more than a

given constant C. According to [21], this problem is NP-complete. Table 2 provides a concrete

instance of this scheduling problem which involves three tasks, T1, T2 and T3, organized into

two chains. The task workloads Wi and the relevant processing speeds Rij are also reported in

the provided table.

Next we show that, given an instance of the aforementioned scheduling problem, we can

construct an instance of the decision problem considered in Theorem 2 such that (a) any

solution for each of these two problems can be translated to a solution for the other problem,

and (b) the ratio of the corresponding objective values for any such solution pair is equal to a

constant. We start with the specification of the acyclic graph G. G is built from a modification

of the chains that express the task precedence constraints in the original scheduling problem,

which are further augmented with two additional nodes: (i) node v0 that constitutes the single

“source” node of the graph, and (ii) node vd that represents a “dumping” node that absorbs the

parts of the induced flow that correspond to processor idleness and inefficiencies in the original

scheduling context. The “source” node v0 is connected to the rest of the network through a

number of subnets that represent all the possible allocations of the two processors, P1 and P2,

to the contesting tasks. More specifically, the decision to load only one of the two processors,

say processor Pi, i = 1, 2, with some task Tj , j = 1, . . . , n, while idling the other processor, is

modeled by the subnet depicted in Figure 3-(a). Similarly, the decision to load processor P1

with task Tj and processor P2 with task Tk is modeled by the subnet represented in Figure 3-(b).

Furthermore, every edge belonging to some of the chains of the original scheduling problem is

replaced by the subnet depicted in Figure 3-(c). The practical implication of this replacement

is that any flow reaching the node corresponding to some task Tj through any of the subnets

depicted in Figures 3-(a,b), can be used only locally, for the satisfaction of the flow requirements
6This time is known as the schedule makespan in the relevant theory.
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Figure 3: The main constructs employed in the reduction for the proof of Theorem 2

of that node. The flow requirements for the nodes corresponding to the tasks Tj , j = 1, . . . , n,

are set equal to the corresponding workloads Wj . The flow requirements for nodes v0, vd and

all the uncontrollable nodes appearing in the subnets of Figures 3-(a,b,c) are set equal to zero.

A more concrete example of this construction is provided in Figure 4, which depicts the flow

control problem instance corresponding to the scheduling problem instance of Table 2.

It is obvious from the above discussion and from the provided example that the construction

procedure for the induced flow control problem is of polynomial complexity with respect to the

size of the departing scheduling problem instance. Furthermore, given a feasible schedule for

the original scheduling problem, one can construct a satisficing flow profile for the induced flow

control problem, by mapping each phase of the provided schedule to a flow volume that is equal

to two times the duration of the considered phase and it is injected in the induced graph through

the edge that emanates from node v0 and models the processor loading pattern that corresponds

to that phase. Similarly, every flow profile that satisfies the nodal fluid requirements in the

induced graph G can be translated to a viable schedule for the original scheduling problem

with a makespan equal to half the total volume of the induced flow. In particular, Proposition

1 implies that any flow routing pattern that is exerted at node v0 and is of interest in this
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Figure 4: The flow control problem that is induced by the scheduling problem of Table 2

analysis, will consist of a sequence of flow distributions that remain constant over some time

interval of finite non-zero length. Each of these flow distributions defines a phase in the schedule

that is induced for the original problem, having a duration equal to half the duration of the

application of the considered distribution (or, equivalently, to half the total flow conveyed during

the application of this distribution). Furthermore, every such flow distribution that conveys

all the injected flow to a single edge e in E•(v0) implies the processor loading pattern that

corresponds to edge e according to the modeling logic delineated in the previous paragraph.

On the other hand, a flow distribution that conveys flow into the graph G through more than

one edges in E•(v0), let’s say edges e1, e2, . . . , ek, implies the division of the corresponding phase

in the schedule of the original problem into a number of k sub-phases; the i-th sub-phase in

this set applies the loading pattern corresponding to edge ei and its duration covers the fei ,

percentage of the duration of the total phase. Thus, it is clear from the above, that the original

scheduling problem will have a feasible schedule makespan of no more than C time units, if

and only if the induced flow control problem has a flow profile that covers all the nodal fluid

requirements of the induced graph G with a total flow volume no higher than 2C.
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The above results establish the NP-hardness [20] of the decision problem of Theorem 2. The

problem NP-completeness is established by further noticing that the validity of any tentative

solution for it can be verified with polynomial effort in terms of the size of the underlying

problem defining elements. The details of this argument are straightforward and they are left

to the reader. �

According to standard results presented in [20], Theorem 2 further implies that the opti-

mization problem considered in this work is NP-hard. We state this result as a corollary.

Corollary 1 The optimal flow control problem considered in this work is NP-hard.

Alleviating the computational complexity of the proposed MIP formulation In

the last part of this section we provide a series of observations that can alleviate the complexity

of the MIP formulation presented in Section 3, by taking advantage of some additional structure

that might be present in the problem defining graph G and its nodal visitation requirements.

The first of these observations concerns the dependence of the size of the mode graph G

upon the precedence constraints for the satisfaction of the nodal fluid requirements, that are

expressed by the structure of the problem defining graph G. In particular, it should be clear

that, for any given number of nodes |V | in G, the stricter the ordering imposed by G on V , the

smaller the number of the possible modes, |V|, that is encoded in G. Hence, in many practical

situations, the number of modes in graph G will be substantially smaller than 2(|V |−1), which

essentially corresponds to a very “flat” graph G where every node other than the “source”

belongs to a single layer L1.7

An additional reduction to the size of G can be obtained in the case where there are nodes

v ∈ V with zero fluid requirements. While we opted to include these nodes in the construction

of the graph G of Figure 2 for simplicity and clarity of the relevant presentation, it should be

obvious that nodes with zero fluid requirements do not contribute anything substantial in the

computation of the optimal solution of the MIP formulation. Therefore they can be omitted

during the specification of the underlying control modes.8

7Furthermore, it is easy to see that when defined on such a flat graph structure, the optimal control problem

of Equations 1–6 has a very simple optimal solution, and therefore, there is no need to resort to the solution of

the MIP formulation of Section 3 and the deployment of the mode graph G.
8The insignificance of the nodes with zero fluid requirements for the determination of the optimal solution of

the MIP formulation developed in Section 3, is manifested in the numerical example provided in that section, by

the fact that modes ν13, ν24 and ν33 correspond to zero total flows. These three modes correspond respectively
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Figure 5: Special structure for the problem defining graph G that can enable efficient solution

of the considered optimal control problem through decomposition

A third opportunity for controlling the increased computational complexity that results

from the non-polynomial size of the mode graph G is provided by the appearance of a structure

in the problem defining graph G similar to that depicted in Figure 5. Clearly, the total flow

necessary for meeting the nodal fluid requirements of the part of the graph accessed through the

depicted edge e depends only on the routing of the flow conveyed through e and this decision

does not affect the satisfaction of the nodal fluid requirements in the remaining part of the

graph. Hence, in the depicted case, the overall problem can be decomposed to the solution of

the subproblem concerning the optimal satisfaction of the nodal requirements in subgraph G′,

and the subsequent solution of the optimal control problem for the original graph G, where,

however, the sub-graph G′ has been substituted by its source node v′0 with a corresponding fluid

requirement equal to the value of the optimal solution for the first subproblem. Obviously, this

decomposition can be applied iteratively on the derived subproblems and, when applicable, it

can lead to significant reductions of the overall computational complexity.

Finally, we notice that, in certain cases, it might be possible to derive efficient solutions for

the considered optimal flow control problem by leveraging results from the theory of parallel

to the completion of the (zero) fluid requirements for nodes 9, 5 and 3 in the graph G of Figure 1.
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machine scheduling [21]. In particular, this theory contains a considerable number of cases

that admit an optimal solution of polynomial complexity. If it is possible to establish that the

problem instance under consideration reduces to such a parallel machine scheduling problem of

polynomial complexity, then, this problem instance can be solved by solving the corresponding

scheduling problem. The relevant reductions will employ constructs and arguments similar to

those employed in the proof of Theorem 2.

5 Conclusion

This paper introduced a novel optimal flow control problem, provided a series of formulations for

it that enabled its effective solution, and investigated the underlying computational complexity

by establishing its NP-hardness. Future work will investigate the implications of the derived

results for the stochastic routing problem of [17] and the optimal disassembly planning problem,

that motivated the problem considered in this work.
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