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Abstract— Motivated by an emerging need for pertinent sizing and in-
dexing of various data structures that are used for the efficient storage and
processing of the reachability graph of certain bounded PN subclasses, this
work investigates the complexity of the cardinality assessment of various
marking sets that have been proposed as reasonable (over-)approximations
for the set of reachable markings. Along these lines, our main results estab-
lish the #P-hardness of the aforementioned estimation for the most promi-
nent of these marking sets. To the best of our knowledge, this is also a first
attempt to provide formal #P-hardness results for counting problems that
arise in the PN (and the broader DES) modeling framework.

I. INTRODUCTION

As suggested by its title, this paper deals with the complex-
ity of certain state-counting problems for bounded Petri nets
(PNs). At a more immediate level, the presented results can be
perceived as an attempt to provide systematic and thorough re-
sponses to some complexity questions that were recently raised
in [1] and stand open in the relevant literature.1 At the same
time, the overall positioning of the considered problems, the
presented analysis, and the derived conclusions are developed
at a much greater generality than the motivating themes of [1],
and they contribute to the development of a formal counting the-
ory adjusted to the dynamics and the needs of the PN modeling
framework. Hence, when viewed from this broader standpoint,
the presented developments parallel, in spirit, and complement
some fairly recent developments presented in [2]. But while the
work of [2] is interested in developing pertinent bounds for the
targeted state sets, the work presented in this paper investigates
the computational complexity of the counting task itself, and
develops the necessary perspectives and tools for establishing
intractability results; in fact, to the best of the author’s knowl-
edge, this is the first attempt to establish formal intractability re-
sults for counting problems that arise in the PN modeling frame-
work.2

In more concrete terms, the basic counting problem addressed
in this paper is the estimation of the cardinality of the reachable-
state set of any bounded PN. This problem is important for the
sizing of the data structures that might be necessary for a suc-
cinct representation of the underlying net dynamics [4], while,
more recently, the same problem has been related to the design
of efficient indexing schemes for these data structures [1]. But
due to the complexity of the underlying net dynamics, the de-
velopment of an exact estimate of the target quantity is deemed
practically impossible. Hence, the relevant community usually
strives for the computation of some reasonable / fairly tight up-
per bound of the target value. The ratio of the computed bound
to the actual target value is characterized as the “inflation ra-
tio”, and it quantifies the “waste” that is incurred by the em-
ployed storage scheme. For many bounded PNs, some reason-
able (over-)estimates of the size of the underlying state space are
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1We detail these questions and their relationship to the presented develop-
ments in the more technical parts of this paper.

2In fact, the validity of this statement also extends to the broader modeling
framework of Discrete Event Systems (DES) [3].

provided by the sets of states that satisfy (a relaxed version of)
the state equation or certain invariants that are present in the net
dynamics [5].3 Indeed, for many practical applications, the car-
dinality of these supersets of the net state space is of the same
order of magnitude as the cardinality of the state space itself.
Hence, sizing the employed data structures based on the size
of these surrogate sets leads to fairly efficient storage schemes;
we refer to [4], [1] for some more concrete examples regarding
these claims.

In view of the above remarks, it is pertinent to ask how easy
it is to evaluate the cardinality of the surrogate state sets that
were described in the previous paragraph, for any bounded PN.
The main contribution of this work is to formally show that the
considered counting problems constitute hard problems within
the class of counting problems; in more formal terms, they are
#P-hard problems [6]. We establish this result by analyzing the
restriction of the considered counting problems to a particular
PN sub-class that is known as the class of Gadara PNs [7], and
has received particular attention in the recent years since it mod-
els the allocation of mutex locks in the multithreaded software
used in the emergent multi-core computer architectures. Hence,
the rest of the paper is organized as follows: In Section II we
introduce the PN concepts that are needed for the developments
of this work, and the particular class of the Gadara PNs that will
be the focus of attention in the subsequent developments. In
Section III we provide the necessary background on the class
#P of counting problems, the notions of #P-hardness and #P-
completeness, and some particular #P-completeness results that
will be used in the establishment of the main results of this pa-
per. These results is the subject of Section IV. Finally, Section V
concludes the paper by summarizing the presented results, and
pointing directions for future work.

II. PETRI NETS AND THE GADARA SUB-CLASS

A. Petri nets: basic concepts and definitions

A formal definition of the basic Petri net model that is con-
sidered in this work, is as follows:

Definition 1: [8] A Petri net (system) is defined by a quadru-
ple N = (P,T,W,M0), where
• P is the set of places,
• T is the set of transitions,
• W : (P×T )∪ (T ×P)→ Z+

0 is the flow relation, and
• M0 : P→Z+

0 is the net initial marking, assigning to each place
p ∈ P, M0(p) tokens.

The first three items in Definition 1 essentially define a
weighted bipartite digraph representing the system structure that
governs its underlying dynamics. The last item defines the sys-
tem initial state.
PN structure-related concepts and properties Given a tran-
sition t ∈ T , the set of places p for which W (p, t) > 0 (resp.,
W (t, p) > 0) is known as the set of input (resp., output) places
of t. Similarly, given a place p ∈ P, the set of transitions t for
which W (t, p) > 0 (resp., W (p, t) > 0) is known as the set of
input (resp., output) transitions of p. It is customary in the PN
literature to denote the set of input (resp., output) transitions of

3The PN modeling framework and all the necessary concepts that are needed
for the systematic development of the presented results, are introduced in the
subsequent sections of this work.
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a place p by •p (resp., p•). Similarly, the set of input (resp.,
output) places of a transition t is denoted by •t (resp., t•). This
notation is also generalized to any set of places or transitions, X ,
e.g. •X =

⋃
x∈X •x.

The ordered set X =< x1, . . . ,xn > ∈ (P∪ T )∗ is a path, if
and only if (iff ) xi+1 ∈ xi•, i = 1, . . . ,n−1. Furthermore, a path
X is characterized as a circuit iff x1 = xn.

A PN with a flow relation W mapping onto {0,1} is said to
be ordinary. An ordinary PN such that (s.t.) ∀t ∈ T , |t•| = |•t| =
1, is characterized as a state machine.

A PN is said to be pure if ∀(x,y) ∈ (P× T ) ∪ (T × P),
W (x,y) > 0⇒W (y,x) = 0. The flow relation of pure PNs can
be represented by the |P|× |T |-dimensional flow matrix Θ(N );
in particular, Θ(N ) = Θ+(N )−Θ−(N ) where Θ+(p, t;N ) =
W (t, p) and Θ−(p, t;N ) =W (p, t). Also, a non-pure PN can be
easily converted to a pure one in a way that the dynamics of the
converted net express unambiguously the dynamics of the orig-
inal system [8]; hence, in the following we shall focus on the
class of pure PNs.
PN dynamics-related concepts and properties In the PN mod-
eling framework, the system state is represented by the net
marking M, i.e., a function from P to Z+

0 that assigns a token
content to the various places of the net. The net marking M
is initialized to marking M0, introduced in Definition 1, and it
subsequently evolves through a set of rules summarized in the
concept of transition firing. A concise characterization of this
concept is as follows: Given a marking M, a transition t is en-
abled iff for every place p ∈ •t, M(p) ≥W (p, t), and this is
denoted by M[t〉. On the other hand, t ∈ T is said to be disabled
by a place p ∈ •t at M iff M(p)<W (p, t). Given a marking M,
a transition t can be fired only if it is enabled in M, and firing
such an enabled transition t results in a new marking M′, which
is obtained from M by removing W (p, t) tokens from each place
p ∈ •t, and placing W (t, p′) tokens in each place p′ ∈ t•.

The set of markings reachable from the initial marking M0
through any fireable sequence of transitions is denoted by
R (N ) and it is referred to as the net reachability space. In
the following, we also use the notation R (N ,M) to denote the
reachability space of net N when it is initialized at a marking M
not necessarily equal to M0.4 A PN N = (P,T,W,M0) is said to
be bounded iff there exists some constant k such that M(p)≤ k,
for all places p ∈ P and all markings M ∈ R (N ). N is said to
be structurally bounded iff it is bounded for any initial marking
M0. Obviously, bounded PNs have a finite reachability space.
The state equation and the corresponding marking sets For
pure PNs, the marking evolution incurred by the firing of a tran-
sition t can be concisely expressed by the state equation:

M′ = M+Θ(N ) ·1t (1)

where 1t denotes the unit vector of dimensionality |T | and with
the unit element located at the component corresponding to tran-
sition t. Hence, in the case of pure PNs, a necessary condition
for any vector M ∈ (Z+

0 )
|P| to constitute a reachable marking, is

that the following system of equations is feasible in z:

M = M0 +Θ(N ) · z ; z ∈ (Z+
0 )
|T | (2)

4Under this more general notation, R (N )≡ R (N ,M0).

For a given (pure) PN N = (P,T,W,M0), let

SE(N )≡{M ∈ (Z+
0 )
|P| : ∃z∈ (Z+

0 )
|T | s.t. M = M0+Θ(N ) ·z}

(3)
We shall refer to SE(N ) as the set of markings satisfying the

state equation of net N . We shall also consider an expanded
version of the set SE(N ), to be denoted by ŜE(N ), that is
obtained from SE(N ) by relaxing the integrality requirement
for the elements of the “counting” vector z:

ŜE(N )≡{M ∈ (Z+
0 )
|P| : ∃z∈ (R+

0 )
|T | s.t. M =M0+Θ(N ) ·z}

(4)
ŜE(N ) is characterized as the set of markings satisfying the

“relaxed” state equation of net N . Furthermore it is evident
from the above definitions of R (N ), SE(N ) and ŜE(N ), that

R (N ) ⊆ SE(N ) ⊆ ŜE(N ) (5)

In [5] it is shown that the two inclusions appearing in Equa-
tion 5 can be strict.
PN invariants and the induced marking sets The PN mod-
eling framework recognizes two notions of invariance: p and
t-invariants. For the purposes of the developments pursued in
this work, we define as a p-invariant of a PN N , any non-zero
|P|-dimensional vector y satisfying

yT ·Θ(N ) = 0 (6)

In the light of Equation 1, the invariance property in the net
dynamics that is represented by a p-invariant y, refers to the fact
that

∀M ∈ ŜE(N ), yT ·M = yT ·M0 (7)

Equation 6 further implies that the p-invariants of a PN N
constitute a vector space, and therefore, they can be collectively
represented by any basis B of this space. In particular, the set
of markings M that satisfy all the p-invariants of net N , in the
sense of Equation 7, can be expressed as follows:

P I (N )≡ {M ∈ (Z+
0 )
|P| : BT ·M = BT ·M0} (8)

Equations 4, 6 and 8 also imply that

ŜE(N ) ⊆ P I (N ) (9)

while [5] demonstrates that the above inclusion can be strict.
A p-invariant y is said to be a p-semiflow if it also holds that

y≥ 0. Given a p-semiflow y, its support is defined as ‖y‖= {p∈
P | y(p)> 0}. A p-semiflow y is said to be of minimal support iff
there is no p-semiflow y′ s.t. ‖y′‖ ⊂ ‖y‖. On the other hand, a p-
semiflow y is said to be minimal if it is of minimal support and its
non-zero elements are relatively prime. The set of all minimal p-
semiflows of a PN N is unique and it is called the fundamental
set of p-semiflows [5]. Let the fundamental set of p-semiflows
of a PN N be collectively represented by matrix Φ(N ); i.e.,
each column of Φ(N ) is a minimal p-semiflow of N . Then, the
set of markings satisfying all the minimal p-semiflows of N can
be compactly expressed by:

P SF (N )≡ {M ∈ (Z+
0 )
|P| : Φ(N )T ·M = Φ(N )T ·M0} (10)
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In [5] it is also shown that every p-semiflow of N can be
obtained as a non-negative linear combination of its minimal p-
semiflows. Hence, the set P SF (N ) contains all the markings
M of N that satisfy every p-semiflow of this net. Furthermore,
since the set of p-semiflows is only a subset of the set of the
p-invariants of any given PN N , it also holds that

P I (N ) ⊆ P SF (N ) (11)

Once again, [5] also demonstrates that the above inclusion can
be strict.

We close this section with some remarks that relate to the
well-posedness of the counting problems that are defined by the
sets ŜE(N ), P I (N ) and P SF (N ), and some relationships
that exist among these problems. It is evident from the definition
of the set P SF (N ) in Eq. 10, and the non-negative and integral
nature of the elements of Φ(N ) and M, that P SF (N ) will have
a finite cardinality iff the matrix Φ(N ) has no zero rows. When
combined with the discussion that follows the definition of the
set P SF (N ), this last remark further implies that P SF (N )
will have a finite cardinality iff the net N has a strictly positive
p-semiflow; such a PN N is characterized as conservative.

Furthermore, we define as a t-invariant of a PN N =
(P,T,W,M0) any |T |-dimensional vector x such that5

Θ(N ) · x = 0 (12)

Similar to the case of p-invariants, we define as a t-semiflow
any t-invariant with nonnegative elements. In the particular case
where a PN N possesses a t-semiflow x with strictly positive
elements, it is said to be consistent. The following proposition
reveals some further implications of the notions of PN conser-
vatism and consistency in the context of our work, and it is for-
mally established in [5].

Proposition 1: Consider a PN N . Then, the following holds
true:
1. If N is conservative, P I (N ) = P SF (N ).
2. If N is consistent, ŜE(N ) = P I (N ).

B. Gadara Petri nets

Gadara PNs were introduced in [7] as a particular PN class
that models the allocation dynamics of the mutex locks among
the various threads of multithreaded software. A formal defini-
tion of a Gadara net is as follows:

Definition 2: [7] Let IN = {1,2, . . . ,m} be a finite set of in-
dices. A Gadara PN is an ordinary, pure PN NG = (P,T,W,M0)
where:
1. P = P0∪PS∪PR is a partition of the net places such that: (a)
PS =

⋃
i∈IN

PSi , PSi 6= /0, and PSi ∩PS j = /0 for all i 6= j; (b) P0 =⋃
i∈IN

P0i , where P0i = {p0i}; and (c) PR = {r1,r2, . . . ,rk}, k > 0.
2. T =

⋃
i∈IN

Ti; Ti 6= /0; and Ti∩Tj = /0, for all i 6= j.
3. For all i ∈ IN , the subnet Ni generated by PSi ∪{p0i}∪Ti is
a strongly connected state machine. There are no direct con-
nections between the elements of PSi ∪{p0i} and Tj for any pair
{i, j} with i 6= j.
4. ∀p ∈ PS, if |p• |> 1, then ∀t ∈ p•, •t ∩PR = /0.

5The invariance property corresponding to the t-invariant x is expressed by the
fact that M = M0 +Θ(N ) · x = M0.

5. For each r ∈ PR, there exists a unique minimal-support
p-semiflow, yr, such that (a) {r} = ||yr|| ∩ PR; (b) ∀p ∈
||yr||, yr(p) = 1; (c) P0∩||yr||= /0; and (d) PS∩||yr|| 6= /0.
6. ∀r ∈ PR, M0(r) = 1; ∀p ∈ PS, M0(p) = 0; and ∀p0 ∈
P0, M0(p0)≥ 1.
7. PS =

⋃
r∈PR

(||yr|| \ {r}).
Items 1-3 of Definition 2 imply that a Gadara PN essentially

consists of m subnets Ni that have the structure of a strongly
connected state machine and interact through the places in the
set PR. Each subnet Ni, i ∈ IN , models the sequential logic of
a thread executing in one of its critical regions. In particular,
tokens in places of PSi model instances of this thread type exe-
cuting various stages in the corresponding critical region, while
place p0i models instances waiting to enter (or exiting) this crit-
ical region. We shall refer to subnets Ni, i ∈ IN , as the process
subnets, and to the particular places p0i as the corresponding idle
places. Item 6 of Definition 2 implies that in the initial marking
M0 of a Gadara PN, no process instance has entered any of the
critical regions modeled by its process subnets, but for each sub-
net Ni, there are some process instances waiting in the idle place
p0i . On the other hand, at M0, each place in PR contains a sin-
gle token modeling the availability of the corresponding mutex
lock. Item 5 of Definition 2 implies that each of these locks ri,
i ∈ {1, . . . ,k}, is allocated in an exclusive and reusable manner
to the process instances that execute some of the net processing
stages, more specifically, the processing stages in ||yr||. Item
7 of Definition 2 further stipulates that each processing stage
modeled by a place p ∈ PS requests at least one mutex lock for
its execution (since it is a stage executing in a critical region).
Finally, item 4 establishes a separation of the lock allocation
function from the routing decisions that are effected by a pro-
cess instance while in its critical region; this element is impor-
tant for the pertinent modeling of the dynamics that are induced
by the considered resource allocation, but it is not relevant to the
subsequent developments.

As revealed by the above discussion, an important class of
minimal p-semiflows for Gadara PNs is defined by the limited
and reusable nature of the allocated locks. In particular, accord-
ing to items 5 and 6 of Definition 2, the allocation of the lock
corresponding to each place ri, i ∈ {1, . . . ,k}, implies the fol-
lowing invariant for the marking of a Gadara net NG:

∀M ∈ R(NG), ∑
p∈||yri ||\{ri}

M(p)+M(ri) = 1 (13)

An additional class of minimal p-semiflows is induced by
the structure of the process subnets Ni, i ∈ IN , that is stipu-
lated by item 3 of Definition 2. More specifically, the strongly-
connected-state-machine type of each subset Ni implies the min-
imal p-semiflow:

∀M ∈ R(NG), ∑
p∈PSi

M(p)+M(p0i) = M0(p0i) (14)

It turns out that the p-semiflows defined by Equations 13
and 14 constitute the entire set of the minimal p-semiflows of
any Gadara PN NG. Hence, according to the discussion of Sec-
tion II-A, any marking M that satisfies Equations 13 and 14
will satisfy any other p-semiflow of NG. An additional im-
plication of Equations 13 and 14 is that the availability of the
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sub-marking MS ≡ {M(p) : p ∈ PS} for any marking M that sat-
isfies these equations, specifies completely the entire marking
M. Indeed, each marking M(ri), for i = 1, . . . ,k, is specified by
the corresponding instantiation of Equation 13, while the instan-
tiations of Equation 14 specify accordingly the corresponding
markings M(p0i). Hence, for a Gadara net NG, we can express
the set P SF (NG), containing the markings M that satisfy the
p-semiflows of NG, by the following system of inequalities:

∀ri ∈ PR, ∑p∈||yri ||\{ri}M(p) ≤ 1 (15)

∀i ∈ IN , ∑p∈PSi
M(p) ≤ M0(p0i) (16)

Equation 15, when combined with item 7 of Definition 2 and
the nonnegative and integral nature of the PN marking, further
implies that the sub-marking MS of any marking M that satis-
fies the p-semiflows of any Gadara net NG, is a binary vector.6

Furthermore, in most practical instantiations of Gadara nets, the
inequalities of Equation 16 are rendered implicit by setting7

∀i ∈ IN , M0(p0i)≥ |PSi | (17)

Hence, in the following, we assume that the condition of Equa-
tion 17 replaces the condition ‘∀i ∈ IN , M0(p0i)≥ 1’ in item 6
of Definition 2, and thus, the corresponding sets P SF (NG) are
characterized by the sets MS(NG) containing the sub-markings
MS that satisfy Equation 15.

The work of [1] proposes an algorithm for evaluating
|MS(NG)| (and therefore, |P SF (NG)|). However, the algorithm
presented in [1] is of exponential computational complexity with
respect to (w.r.t.) |PR|, a fact that raises the question of the ex-
istence of any algorithms of polynomial complexity w.r.t. the
size of (the constituent elements of) NG for the execution of
this counting task. In Section IV we shall show that computing
|MS(NG)| is #P-complete; hence, the existence of such an ef-
ficient counting algorithm is highly unlikely. Furthermore, this
negative result extends to the estimation of the cardinality of the
sets ŜE(NG) and P I (NG). Instrumental for this extension is
the following proposition:

Proposition 2: Any Gadara PN NG is, both, conservative and
consistent.

The result of Proposition 2 is well known to the relevant com-
munity and, therefore, its proof is omitted; a relevant formal ar-
gument can be found, for instance, in [9]. On the other hand,
the significance of Proposition 2 for the needs of the undertaken
analysis is revealed by the next corollary; this corollary results
immediately when combining Proposition 2 with Proposition 1
and the discussion that precedes this second proposition in Sec-
tion II-A.

Corollary 1: For any Gadara net NG,

ŜE(NG) = P I (NG) = P SF (NG) (18)
6In more natural terms, this result expresses the fact that no processing stage

can be executed simultaneously by two or more process instances, since these
process instances would have to share the mutex locks that are required by this
processing stage.

7Since the marking M(p) of each place p ∈ PS in a Gadara PN is a binary
variable, under the selections for M0(p0i ), i ∈ IN , proposed in Equation 17, the
restrictions of Equation 16 are implied by those of Equation 15. This effect is
motivated naturally by the need to avoid situations where the dynamics of the
considered Gadara net are shaped by artificially/externally imposed restrictions
on the number of the processes that might execute concurrently in the various
critical regions, and not by the allocation patterns of the various locks that are
contested by these processes.

Furthermore, all these sets are of finite cardinality, and the cor-
responding counting problems are well-defined.

III. THE CLASS #P OF COUNTING PROBLEMS AND THE
NOTION OF #P-COMPLETENESS

In this section we provide a set of results that define a frame-
work for analyzing the complexity of counting problems. This
framework was originally introduced by Valiant in [6], [10], but
the exposition that we adopt here is based on the coverage of
this material in [11]. Furthermore, in the following, we assume
that the reader is familiar with the basic concepts relating to the
problem class NP and to NP-completeness.

Definition 3: Let R ⊆ Σ∗ × Σ∗ be a binary relation on the
strings that are generated by some alphabet Σ. Also, for any
string x ∈ Σ∗, let |x| denote its length. Then:
1. R is called polynomially decidable if there is a deterministic
Turing machine deciding the language L = {x;y : (x,y) ∈ R} in
polynomial time.
2. R is called polynomially balanced if there is some k≥ 1 such
that for all (x,y) ∈ R, |y| ≤ |x|k.

Definition 4: Let R be a polynomially balanced and polyno-
mially decidable binary relation defined on the strings of some
alphabet Σ. The counting problem associated with R is defined
as follows: “Given x ∈ Σ∗, how many y ∈ Σ∗ are there such that
(x,y) ∈ R?”. Furthermore, the class of all counting problems
associated with polynomially balanced and polynomially decid-
able relations is denoted by #P.

It is evident from the above that a counting problem Q in #P
is defined by a triplet (Σ,R,x), where Σ is an alphabet set, R
is a polynomially balanced and polynomially decidable binary
relation defined on Σ∗, and x is an element of Σ∗. Such a triplet
also defines the decision problem Q̂ of whether there exists any
y ∈ Σ∗ such that (x,y) ∈ R. Furthermore, Definition 3 implies
that problem Q̂ is in NP.

For more general counting problems Q (not necessarily in
#P), we can still consider the decision problem Q̂ of whether
the set of counted entities is non-empty. Also, a reduction from
a decision problem Q̂1 to a decision problem Q̂2 is called par-
simonious if it preserves the number of solutions for the two
problems. Then, in view of all the above definitions, the notions
of #P-hardness and #P-completeness can be defined as follows:

Definition 5: A counting problem Q is called #P-hard iff , for
any other counting problem U in #P, there is a polynomial-time
parsimonious reduction of the decision problem Û to Q̂. A #P-
hard counting problem Q will be called #P-complete iff Q also
belongs in #P.

In [10] it was established that counting all the satisfying truth
assignments of a monotone 2-SAT problem is #P-complete.8

Next, we use this result to establish the #P-completeness of
counting certain objects in graphs. These objects are formally
introduced in the following definition, and the corresponding
counting problems will be used in Section IV for the establish-
ment of the main result of this paper.

Definition 6: Consider an (undirected) graph G = (V,E),
where V denotes the node (or vertex) set, and E denotes the

8A 2-SAT problem is a SAT problem in Conjunctive Normal Form (CNF)
where every clause contains only two literals in its disjunction. On the other
hand, a SAT problem in CNF is monotone if its defining Boolean expression
contains no negations.
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edge set; every edge e∈ E corresponds to an (unordered) pair of
nodes {v1,v2}.
1. A subset V co of V is a (vertex) cover of G iff every edge has
at least one node in V co.
2. A subset V is of V is an independent set of G iff there is no
pair of nodes in V is connected by an edge in G.

It can be easily checked that the following proposition is also
true; a formal proof can be found in any introductory text of
graph theory (e.g., [12]).

Proposition 3: Consider a graph G = (V,E). Then, V co is a
vertex cover of G iff V \V co is an independent set of G.

Now we are ready to state the key result that will provide the
reduction employed in the main result of this paper. A formal
proof of this result is provided, for completeness, in the Ap-
pendix.

Proposition 4: Counting the covers and the independent sets
of any graph G = (V,E), with finite vertex set V , are #P-
complete problems.

IV. THE MAIN RESULTS

In this section we provide the main results of the paper,
i.e., we show that assessing the cardinality of the marking sets
ŜE(NG), P I (NG) and P SF (NG) of a Gadara net NG is a #P-
complete problem, which further renders the cardinality assess-
ment of the corresponding sets for any (conservative) bounded
PN N , a #P-hard problem. We also indicate some conditions
under which the cardinality assessment of the aforementioned
sets becomes #P-complete. The next theorem is instrumental
for establishing the aforementioned results.

Theorem 1: The problem of assessing the cardinality of the
set MS(NG), containing the sub-markings MS that satisfy Equa-
tion 15 for a Gadara net NG, is #P-complete.

Proof: First we notice that the considered counting problem
belongs in #P since (i) the sub-markings in MS(NG) are binary
vectors for any Gadara net NG (and thus, the relation R that is
implied by Definition 4 for the considered counting problem is
polynomially balanced), and (ii) the verification of Equation 15
for any given marking M is a task of polynomial complexity
w.r.t. the size of NG (and thus, the aforementioned relation R is
polynomially decidable).

Next, we prove the #P-hardness of the considered problem
by providing a polynomial and parsimonious reduction to this
problem of the #P-complete problem of counting the indepen-
dent sets of any given graph G. Hence, let G = (V,E) with finite
vertex set V = {v1, . . . ,vm} and edge set E = {e1, . . . ,en}, and
construct a Gadara net NG as follows: The place set PS of NG is
in one-to-one correspondence with the node set V of G; let p(vi)
denote the place in PS corresponding to node vi ∈V . All places
p ∈ PS belong to a single process subnet with an additional idle
place p0 and the structure of a circuit that is defined by the place
ordering 〈p0, p(v1), . . . , p(vm)〉, after the introduction of the nec-
essary transitions. On the other hand, each edge e j ∈ E induces
a resource place r(e j) in the place set PR of the proposed net NG.
More specifically, for every edge e j ∈ E, let e j = {v1( j),v2( j)},
1( j),2( j) ∈ {1, . . . ,m}, and further assume that 1( j) 6= 2( j); a
close examination of the proof of Proposition 4 will reveal that
the imposition of the restriction 1( j) 6= 2( j) for the considered
graphs G retains the result of that proposition, and therefore, the
pursued reduction is still valid. The p-semiflow yr(e j) of item

5 in Definition 2, that is associated with place r(e j) in PR, is
completely determined by specifying the corresponding support
||yr(e j)|| according to the following rule:

||yr(e j)||= {r(e j), p(v1( j)), p(v2( j))} (19)

The specification of the p-semiflow yr(e j), for every e j ∈ E,
also determines completely the connectivity of the correspond-
ing place r(e j) to the transitions of net NG. However, in the
case that the considered graph G contains isolated vertices (i.e.,
vertices with no incident edges9), the above construction would
violate Condition 7 of Definition 2. To deal with this issue, we
also associate with each place p(vi) corresponding to a zero-
degree vertex vi, a resource place r(vi) that is used exclusively
by the process place p(vi); i.e., for each such resource place
r(vi),

||yr(vi)||= {r(vi), p(vi)} (20)

Hence, eventually the resource-place set PR consists of all places
r(e j), for each edge e j ∈ E, and the places r(vi) corresponding
to zero-degree vertices vi. Finally, the specification of the net
NG is completed by specifying its initial marking M0 by setting
M0(p) = 0, for every p ∈ PS, M0(r) = 1, for every r ∈ PR, and
M0(p0) = |V |.

It can be easily checked that, for any given graph G, the net
NG that is constructed as described in the previous paragraph,
satisfies all the conditions of Definition 2, and it is, therefore, a
Gadara net. The constructed net NG also observes the condition
of Equation 17 in Section II-B. Finally, it should be clear that the
above construction is a task of polynomial computational com-
plexity w.r.t. the size of the input graph G. Next we show that
a binary vector MS of dimensionality equal to |PS| will satisfy
Equation 15 for the constructed net NG iff the nodes vi corre-
sponding to the places p(vi) ∈ PS with MS(p(vi)) = 1 constitute
an independent set of G. Hence, counting the independent sets
of G is equivalent to assessing the cardinality of the set MS(NG),
which renders the latter a #P-hard problem.

To establish the aforestated equivalence, first assume that vec-
tor MS satisfies Equation 15. Hence, there is no pair of places
p1, p2 of PS with MS(p1) = MS(p2) = 1 that belong to the same
support ||yr|| for some r ∈ PR. But then, Equation 19 implies
that there is no edge connecting nodes of V corresponding to
any pair of places p1, p2 of PS with MS(p1) = MS(p2) = 1.
Hence, the nodes vi corresponding to the places p(vi) ∈ PS with
MS(p(vi)) = 1 are, indeed, an independent set of G. Next, con-
sider an independent set V is of G. Then, each support ||yr|| that
is defined by Equation 19 contains at most one place p ∈ PS cor-
responding to an element of V is. Hence, the binary vector MS
of dimensionality equal to |PS| and with MS(p) = 1 iff the cor-
responding node v belongs in V is, is a feasible solution for the
inequalities of Equation 15. 2

The following corollary results immediately from the combi-
nation of Theorem 1 with the definition of the set MS(NG) in
Section II-B and Corollary 1 in the same section.

Corollary 2: The counting problems of assessing the car-
dinality of the sets ŜE(NG), P I (NG) and P SF (NG), for a
Gadara net NG, are #P-complete.

The next corollary generalizes the result of Corollary 2 to the
broader class of bounded PNs.

9Such vertices are characterized as “zero-degree”.
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Corollary 3: The counting problems of assessing the cardi-
nality of the sets ŜE(N ), P I (N ) and P SF (N ), for a bounded
PN N , are #P-hard.

Proof: Corollary 3 results immediately from Corollary 2 upon
noticing that the counting problems addressed in Corollary 2 are
special cases of the corresponding counting problems that are
considered in this new corollary. 2

Since, in general, the sets ŜE(N ), P I (N ) and P SF (N )
can be infinite, the corresponding counting problems cannot be
claimed to be in class #P. To obtain such a stronger result for
a particular PN sub-class, as in the case of the Gadara nets con-
sidered in this work, we must also be able to show that the bi-
nary relation R that is induced by the corresponding counting
problem(s) according to Definition 4, is polynomially balanced
and polynomially decidable. In the case of bounded PNs, the
polynomial decidability of the binary relation R corresponding
to the cardinality assessment of the sets ŜE(N ) and P I (N )
can be easily established by means of the respective Equations 4
and 8, that define the relation R in each of the two cases. Fur-
thermore, in the case of conservative PNs, the last remark also
implies the polynomial decidability of the binary relation R that
corresponds to the cardinality assessment of the set P SF (N )
(since, in that case, Proposition 1 implies that membership in
P SF (N ) is equivalent to membership in P I (N )). On the other
hand, R will be polynomially balanced only in PN classes where
the marking vector M of any given net N from this class admits
a concise representation that is polynomially bounded w.r.t. any
concise representation of the net N itself; a typical such case is
the class of safe PNs, i.e., those PNs for which all the compo-
nents of the net marking M are guaranteed to be binary.

V. CONCLUSION

Motivated by an emerging need for pertinent sizing and in-
dexing of various data structures that are used for the effi-
cient storage and processing of the reachability graph of cer-
tain bounded PN subclasses, this work has investigated the
complexity of assessing the cardinality of various marking sets
that, in many cases, have been proposed as reasonable (over-
)approximations for the set of reachable markings. Along these
lines, our main results establish the #P-hardness of the afore-
mentioned estimation for the most prominent of these marking
sets. These results also resolve some relevant questions that are
raised in [1], and, to the best of our knowledge, they constitute
a first attempt to provide formal #P-hardness results for count-
ing problems that arise in the PN and the broader DES modeling
frameworks.

Future work will seek a more systematic assessment of the
implications of the results that were derived in this work for the
sizing and indexing problems that motivated this analysis in the
first place. It will also consider the development of efficient
approximating algorithms and effective practical solutions for
the considered counting problems. This last task can be further
guided by the study of approximating strategies and any avail-
able heuristics for the counting problems that were discussed
in Section III and facilitated the reduction that was eventually
employed in Section IV; such approximating results and some
further leads to the relevant literature can be found, for instance,
in [13].

APPENDIX

A PROOF FOR PROPOSITION 4

Since the verification of a vertex cover and of an independent
set can be performed in polynomial complexity w.r.t. the size of
the corresponding graph, Definition 4 implies that both counting
problems of Proposition 4 belong in #P. To establish their #P-
hardness, we shall provide a polynomial parsimonious reduction
of the monotone 2-SAT problem to the vertex cover problem;
once the #P-hardness of the vertex-cover counting problem has
been established, the #P-hardness of the independent-set count-
ing problem will result immediately from Proposition 3.

Hence, consider a monotone 2-SAT problem F =C1∧. . .∧Cm
that is defined over the set of Boolean variables {x1, . . . ,xn}. We
construct the graph G = (V,E) with node set V = {x1, . . . ,xn}
and edge set E defined by the clauses C1, . . . ,Cm as follows: For
i = 1, . . . ,m, clause Ci = yi1∨yi2 defines the edge ei = {yi1,yi2}.
Clearly, the construction of graph G is a task of polynomial
complexity w.r.t. the size of the defining elements of the afore-
mentioned 2-SAT problem. Furthermore, the monotonicity of
the considered SAT problem implies that a truth assignment for
{x1, . . . ,xn}will be satisfying for F iff the subset of the variables
that is set to TRUE is a cover for G. Hence, counting the satis-
fying truth assignments for F boils down to counting the covers
of G, and the proof is completed.
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