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Abstract

In a recent work we have proposed a theoretical framework for developing optimized
scheduling policies for complex resource allocation systems (RAS). This framework relies
heavily on the expression of the RAS dynamics in the modeling framework of the Generalized
Stochastic Petri Nets (GSPNs), and the employment of this GSPN-based representation
towards the establishment of a systematic trade-off between the representational economy
of the target scheduling policies and their operational efficiency. In this paper, we enhance
the representational economy of the target policies in the aforementioned framework by
taking advantage of some notions of “(non-)conflict” in the transitional dynamics of the
underlying RAS-modeling GSPNs. A series of numerical experiments demonstrate that the
representational gains resulting from the presented methodology can be very substantial.

1 Introduction

The problem of allocating a finite set of reusable resources to a set of concurrently executing
processes, in a way that each process is able to secure the requested resources and complete its
execution in a smooth and expedient manner, is a fundamental problem that arises in many
contemporary applications. In our past research program, this problem has been investigated
through the formal abstraction of the “(sequential) resource allocation system (RAS)”, and the
corresponding dynamics have been modeled and analyzed through a set of modeling frameworks
and analytical tools that are provided by the broader area of Discrete Event Systems (DES)
[16].

More specifically, in [16], a DES-based controller for the aforementioned resource allocation
problem is structured as a two-tiered function, with the first tier seeking the restriction of the
underlying RAS behavior in order to prevent the formation of RAS deadlock and ensure the
ability of all the activated processes to reach their completion, and the second tier trying to
further “bias” the behavior that is determined by the first-tier control function in order to
address certain performance considerations. In more DES-theoretic terms, the first-tier control
function outlined above is essentially a supervisory controller that seeks to elicit from the feasible
behavior of the considered RAS an admissible non-blocking behavior, while the second-tier
∗This work was partially supported by NSF grants CMMI-0928231 and ECCS-1405156.
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control function is essentially a scheduler that seeks to attend to typical performance objectives
like throughput maximization, delay minimization for the constituent processes, etc.

Furthermore, the perusal of the relevant literature reveals that, in the past two decades,
the problem of nonblocking supervision for the considered RAS classes has received extensive
attention, and currently there is a rich set of results able to provide effective and, in many
cases, maximally permissive nonblocking supervision for RAS instances of pretty large size and
complex behavior. On the other hand, the currently existing results for the corresponding
scheduling problem are quite limited. More specifically, this scheduling problem has been
formally characterized, at considerable generality, by means of the classical theory of Markov
Decision Processes (MDPs) [3, 16], but this characterization is of limited practical value since
the resulting formulations suffer from the notorious “curse of dimensionality”. In fact, the
explosive size of the underlying state spaces challenges not only the computation of an optimized
scheduling policy, but even the efficient representation of any given such policy, since, in the
standard MDP framework, each policy is defined by an action selection probability distribution
for each state of the underlying state space.

Hence, motivated by these practical limitations, in a recent work [12] we have proposed the
restriction of the RAS scheduling problem in a particular policy space that admits a more
parsimonious representation of the constituent policies. This policy space is defined through
the formal representation of the timed RAS dynamics in the modeling framework of Generalized
Stochastic Petri Nets (GSPNs) [2]. GSPNs enable an explicit representation of the structure
of the underlying resource allocation function, and also, the integration in this representation
of the necessary supervisory control policies. At the same time, the additional, time-oriented
attributes of the net transitions in the GSPN model, and the related notion of the “random
switch”, enable the further modeling of the timed dynamics of the considered RAS and of the
scheduling problems that are defined with respect to (w.r.t.) these dynamics.

More specifically, in the GSPN-based RAS modeling framework developed in [12], the timed
transitions are used to model the processing times that are experienced at the various process-
ing stages of the underlying RAS, while the untimed transitions model the various decisions
regarding the initiating, advancing and terminating events for the various running processes and
the corresponding resource allocation function.1 Hence, in this modeling framework, the RAS
scheduling problem is posed naturally as the regulation of the firing of the untimed transitions,
especially in those markings that enable more than one such transition. In the standard GSPN
modeling framework this regulation takes the form of externally specified probability distri-
butions that arbitrate the firing of the contesting untimed transitions, and are known as the
corresponding “random switches”. In the modeling framework of [12] these random switches
must be specified in a way that optimizes some performance index defined w.r.t. the timed
dynamics of the considered RAS.

In [12], the aforementioned optimization problem is formulated as a nonlinear program (NLP)
and a solution methodology is proposed based on stochastic approximation (SA) methods [11].
However, in its basic positioning, this approach is challenged by the explosive number of van-
ishing markings in the GSPN state space, that further results in an explosive number of random
switches and decision variables for the aforementioned NLP. In order to control this explosion, in

1The key assumption behind this modeling practice is that the determination and communication of these
resource allocation decisions requires a negligible time compared to the times that are involved in the execution
of the various processing steps of the underlying system. Also, we notice that all the technical terms employed
in this introductory discussion are fully defined in the more technical part of the paper.
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[12] we proposed to restrict the considered optimization problem to a policy space where mark-
ings with the same set of enabled untimed transitions share the same regulating distributions,
i.e., the same “random switches”. The resulting random-switch scheme is known as “static”
in the GSPN literature, and the coupling that is introduced by the shared random switches
among the various net markings can lead to a substantial reduction of the number of the de-
cision variables that appear in the final NLP formulation. From a modeling standpoint, the
RAS-scheduling NLP formulations that are based on the employment of static random switches
are still very relevant to the current industrial practice, since they enable the representation
of static-priority policies, a class of policies that has raised extensive theoretical and practical
interest. On the other hand, the set of static random switches is exponentially large w.r.t. the
number of the untimed transitions appearing in the underlying GSPN, and therefore, it is still
possible that, for larger RAS instances, the NLP formulations of [12] and the corresponding SA
algorithms will have to cope with a very large number of decision variables.

The closing remark in the previous paragraph defines a need for even more parsimonious pol-
icy spaces for the considered RAS scheduling problem, in terms of, both, the representational
complexity of the target policies and the size of corresponding NLP formulations (where this
size is considered primarily w.r.t. the decision variables involved). At the same time, we would
like to attain these representational and computational gains without compromising the quality
of the currently employed policy spaces in terms of the performance potential that is carried by
their constituent policies. The work presented herein details a methodology for attaining this
task. This methodology is based on the realization that the regulation exerted by the employed
random switches should focus primarily on transitions that are in an actual “conflicting” re-
lationship; non-conflicting transitions can fire in any order without impairing each other, and
therefore, there is no need for an explicit arbitration of these firings. On the other hand, the
notion of “(non-)conflict” to be employed in the developments that are presented in this work
must reflect and support the aforestated objective of retaining the performance potential of the
originally employed policy spaces. This need stipulates an analysis that develops at the interface
of the timed and untimed behavior of the underlying GSPN, and differentiates the notion of
“(non-)conflict” that is presented herein from past investigations of this concept in the PN liter-
ature that were based primarily on the untimed aspects of the underlying PN.2 In view of these
remarks, our results can be summarized as follows: (i) We introduce a series of formal relations
among the considered scheduling policies and the corresponding policy spaces that enable a
rigorous and succinct statement of the policy-space redefinition task that is addressed in this
work. (ii) We develop a set of algorithms for supporting this space redefinition in a way that is
compatible with the computational framework that has been developed in [12] for the solution
of the corresponding NLP formulation. (iii) We also develop an additional set of results, of a
more structural nature, that provide a partial characterization of the notion of “(non-)conflict”
employed in this work in the form of sufficient conditions, and simplify further the computation
of the sought policy spaces. (iv) Finally, we provide a set of computational results that demon-
strate the computational efficiency of the presented methods, and their potential to lead to a
very substantial reduction of the representational complexity of the considered policy spaces

2A work in the past DES literature that has a similar flavor to the results that are presented herein, in
that it tries to analyze the effects of some structural and behavioral properties of certain DES classes on their
timed dynamics, is that of [7]. Also, from a conceptual standpoint, the work presented in this paper has some
affinity with the developments that are presented in [18], which seeks to establish representational economies
for the supremal supervisor of DES that are modeled by finite state automata, through the identification and
elimination of redundant information encoded in the original representation of this supervisor that is computed
by the standard theory of [14].
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and of the number of variables that are employed by the corresponding NLP formulations.

The rest of this manuscript is organized as follows: Section 2 surveys the basic GSPN model
and the GSPN-based formulation of the considered RAS scheduling problem that was developed
in [12]. Section 3 provides the formal characterization of the policy-space redefinition task
that is pursued in this work, and the main algorithmic developments that are proposed in
support of this task. Section 4 presents the sufficient conditions that complement the results of
Section 3. Section 5 provides the computational results that demonstrate the efficacy and the
computational tractability of the presented method, and the substantial gains that result from
this method w.r.t. the representational complexity of the considered scheduling problem (in
terms of the decision variables involved). The material of this section also provides a concrete
demonstration of the simplification problem that is addressed in this work and its defining
elements. Finally, Section 6 concludes the paper and proposes some directions for future work.
Closing this introductory section, we notice, for completeness, that an abridged version of
the results presented herein have been submitted to CDC 2015; that write-up contains an
exposition of the main ideas that are pursued in this work, without providing, however, the
complete technical analysis and the proofs that support the corresponding developments.

2 The GSPN modeling framework and the scheduling problem
considered in [12]

This section provides a more technical overview of the developments of [12] that are necessary
for the detailed positioning of the problem that is addressed in this work. In the following
discussion of this section we assume that the reader is familiar with the basic PN theory, and
even with the main concepts and methodology that underlie the GSPN modeling framework,
and we stress those aspects of these two frameworks that are most relevant to the results of
[12]. Some comprehensive and excellent introductions to the basic PN theory and to the GSPN
modeling framework are provided, respectively, in [5] and [2].

2.1 The considered GSPN model

Following the developments of [12], we represent a GSPNN by a septupleN = (P, Tt, Tu,Wt,Wu,
m0, R), where: P is the set of places; Tt and Tu are respectively the sets of timed and untimed
transitions; Wt andWu are the flow relations that are respectively defined in (P ×Tt)∪ (Tt×P )
and (P × Tu) ∪ (Tu × P ) and express the connectivity of the elements of Tt and Tu to the
elements of P ; m0 is the initial marking of N ; and, finally, the mapping R : Tt 7→ R+ gives
rt ≡ R(t), t ∈ Tt, the rate of the exponential distribution that determines the firing times for
transition t. The considered nets are non-ordinary, and therefore, each pair in the flow relations
Wt and Wu is associated with a weight, w(p, t) or w(t, p), that denotes the corresponding token
flow.

For a given marking m ∈ Z|P |+ and a place p ∈ P , m(p) denotes the number of tokens placed
by marking m in place p. Furthermore, the basic transitional dynamics of net N are expressed
by the transition function tr(·, ·) : Z|P |+ × T 7→ Z|P |+ that is defined as follows: m′ = tr(m, t) if
m′(p) := m(p) − w(p, t) + w(t, p) and m(p) − w(p, t) ≥ 0 for all p ∈ P ; otherwise, tr(m, t) is
undefined. We shall use the notation tr(m, t)! to indicate that function tr(·, ·) is well-defined
for the pair (m, t), and we shall say that t(·, ·) is “enabled” or “fireable” at m. Also, we shall
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extend the domain of tr(·, ·) from Z|P |+ × T to Z|P |+ × T ∗ in the standard manner:3

tr(m, t1 . . . tn) =


m n = 0
tr(m, t1) n = 1
tr(tr(m, t1 . . . tn−1), tn) n ≥ 2

(1)

In line with typical convention in the PN literature, we shall use the notation •x and x•
to denote, respectively, the input and the output nodes for a node x (place or transition) of
the PN N , and we shall also employ the natural extension of this notation to entire sets of
nodes of the same type. At times, we shall also use the notation m1

t1...tn−−−→ m2 instead of
m2 = tr(m1, t1 . . . tn). Finally, for any given transition sequence σ ∈ T ∗, we use the notation
|σ| to denote the “scoring” – or the “Parikh” – vector of this sequence; i.e., |σ| is a vector of
dimensionality equal to |T |, with its i-th component reporting the number of the appearances
of the transition ti in σ.

We also adopt the following notation from [12]: R(N ) ⊆ Z|P |+ is the set of all markings of
the GSPN N that are reachable from its initial marking m0 under the (standard) transition
firing scheme that is defined by tr(·, ·). For a marking m ∈ R(N ): Eu(m) is the set of the
enabled untimed transitions at m; Et(m) is the set of the enabled timed transitions at m;
and E(m) = Eu(m) ∪ Et(m). If Eu(m) = ∅, then m is characterized as a “tangible” marking;
otherwise,m is a “vanishing” marking. The sets of all reachable tangible and vanishing markings
of the GSPN N are denoted, respectively, by RT (N ) and RV(N ), and they form a partition
of R(N ). Finally, it is further assumed that the considered GSPNs N are reversible; i.e., for
every marking m ∈ R(N ) there exists a transition sequence t1 . . . tn such that m t1...tn−−−→ m0.4

Given a markingm ∈ R(N ), in the following we shall also use the notation RuV(m) and RuT (m)
to denote, respectively, the sets of all vanishing and tangible markings that are reachable from
marking m ∈ R(N ) by firing some transition sequence in T ∗u . Hence, if m ∈ RV(N ), then
m ∈ RuV(m). On the other hand, if m ∈ RT (N ), then RuV(m) = ∅ and RuT (m) = {m}. In the
sequel, RuV(m) will be characterized as the “untimed vanishing reach” from marking m, and
RuT (m) will be the “untimed tangible reach” from m. The reader should also notice that the
net reversibility assumption that was introduced in the previous paragraph further implies that,
for all markings m ∈ RV(N ), RuT (m) 6= ∅; i.e., the considered GSPN N cannot be trapped in
a subspace of R(N ) that consists entirely of vanishing markings. In fact, since the modeling
paradigm of [12] interprets the untimed transitions as (resource allocation) decisions, it is
further assumed in [12] that the untimed vanishing reach RuV(m) of any marking m ∈ RV(N )
corresponds to a subspace that is an acyclic digraph. Finally, for every markingm ∈ RT (N ), we
also define the non-empty set R1

T (m) ≡
⋃
m′:∃t∈E(m) s.t. m t−→m′

RuT (m′); in plain terms, R1
T (m)

denotes the set of all the tangible markings that are reachable from the tangible marking m
through the firing of some transition in E(m) and an additional (possibly empty) sequence of
untimed transitions.

It is well known from the basic GSPN theory that the reachability space R(N ) of any given
GSPN N , when endowed with the transitional dynamics that characterize the timed and the

3We remind the reader that T ∗ denotes the Kleene closure of the set T , i.e., all the finite-length strings
consisting of elements from this set, including the empty string ε.

4In the case of RAS-modeling GSPNs, reversibility is ensured by (i) the assumption that the corresponding
RAS starts its operation empty, and (ii) the role of the applied liveness-enforcing supervisor (LES), which ensures
that every initiated process instance can run successfully to its completion.
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untimed transitions of N , constitutes a semi-Markov process [2], to be denoted by SM(N ).
The transitional dynamics of SM(N ) at any tangible marking m ∈ RT (N ) are determined by
the exponential race that is defined by Et(m), i.e., the enabled transitions at m. On the other
hand, the transitional dynamics of SM(N ) at any vanishing marking m ∈ RV(N ) are defined
by (i) the set Eu(m), i.e., the set of the enabled untimed transitions at m, and (ii) a probability
distribution Ξ(m) that is supported by Eu(m) and regulates the firing of the transitions in this
set; in the GSPN terminology, Ξ(m) is known as the “random switch” (r.s.) that is associated
with vanishing marking m. For the considered GSPN, the specification of a well defined set
of random switches Ξ(m), ∀m ∈ RV(N ), induces, for every marking m ∈ RT (N ), a one-step
transition probability distribution p(·|m) with corresponding support the set R1

T (m) that was
defined in the previous paragraph. In this way, the timed dynamics that are expressed by
the semi-Markov process SM(N ) can be reduced to a continuous-time Markov chain (CTMC),
M(N ), that is defined onRT (N ). Finally, if the CTMCM(N ) satisfies the standard ergodicity
assumptions of the relevant Markov chain theory (e.g., c.f. [3]), it will also possess an equilibrium
distribution π ≡ [π(m), m ∈ RT (N )] that defines the long-term behavior – or, the “steady-
state” dynamics – of the underlying GSPN N .

2.2 The GSPN-based scheduling problem addressed in [12]

An additional attribute of the RAS-modeling GSPN N considered in [12] is the finiteness of
its reachability set R(N ).5 This last property, when combined with the presumed reversibility
of the considered nets, further implies that the corresponding CTMC M(N ) will be ergodic
for any selection of random switches {Ξ(m) : m ∈ RV(N )} that retains the net reversibility.
A practical way to establish this last requirement is by maintaining some randomization in
each random switch Ξ(m) that guarantees a minimum positive selection probability δ for each
element of the set Eu(m). Given a net N from the considered GSPN class, in the sequel we shall
use the notation Π(δ) to denote the set containing all the possible selections of random switches
{Ξ(m) : m ∈ RV(N )} that satisfy this randomization requirement. Hence, Π(δ) defines a set
of “control policies” for net N that are characterized by well-defined steady-state dynamics.

However, the practical applicability of the policies in Π(δ) is limited by the fact that they
require the specification of a separate random switch Ξ(m) for every marking m ∈ R(N ); in
most practical applications, |R(N )| will grow very fast w.r.t. any parsimonious representation
of the septuple that defines the net N itself. Hence, [12] also proposes the restriction of the
considered class of control policies to the particular subset of Π(δ) that satisfies the following
additional constraint:

∀m,m′ ∈ RV(N ) with Eu(m) = Eu(m′), Ξ(m) = Ξ(m′) (2)

As explained in the introductory section, any selection of random switches that observes
Eq. (2) is characterized as “static”, since it defines the transitional dynamics at any marking
m ∈ RV(N ) on the basis of the information that is provided in the more structural entity of the
corresponding set Eu(m), and not the information that is provided in the marking m itself. In
the sequel, the set of control policies in Π(δ) that satisfies the additional constraint of Eq. (2)
will be denoted by ΠS(δ).

5The finiteness of R(N ), for any RAS-modeling GSPN N , results from the finiteness of the various resource
types of this RAS and the fact that each processing stage requires at least one resource unit for its execution.
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We complete our overview of the developments in [12], by adding that these developments also
presume the existence of a function f(·) that is defined on RT (N ) and specifies an “(immediate)
reward rate” that is collected by net N when visiting the corresponding tangible marking. The
availability of function f(·) enables the definition of an optimization problem that concerns
the selection of a control policy from the set ΠS(δ) that maximizes the collected long-term
average reward. The primary decision variables for this optimization problem are the selection
probabilities, ξ, appearing in the various random switches that are employed by the policies in
ΠS(δ). Letting ξ̄ denote a vector that collects all these decision variables, and η(ξ̄) denote the
resulting value for the aforementioned objective function, the considered optimization problem
can be concisely expressed as follows:

max
ξ̄

η(ξ̄) (3)

s.t.
∀ξ ∈ ξ̄, δ ≤ ξ (4)

∀Ξ, δ ≤ 1.0−
∑
ξ∈Ξ∩ξ̄

ξ (5)

In the above formulation, the constraints of Eq. (4) express the requirement that, in the
considered class of policies, ΠS(δ), every enabled untimed transition has a minimal selection
probability of δ. On the other hand, the constraints of Eq. (5) are necessitated by the fact that
for every employed random switch Ξ, the selection probability for one of the elements of the
corresponding set Eu is modeled only implicitly by the difference in the right-hand-side of these
constraints; hence, the constraints of Eq. (5) express the same requirement that is expressed
by the constraints of Eq. (4), but for those selection probabilities that are modeled implicitly.
The last part of [12] outlines a methodology for the solution of the mathematical programming
(MP) formulation of Eqs (3)–(5) through some relevant theory from the sensitivity analysis of
Markov reward processes [4] and stochastic approximation [11]; we refer the reader to [12] for
the relevant details.

3 A refined policy space for the considered scheduling problem

3.1 Preamble

It is clear from the discussion of Section 2 that, in any MP formulation for the considered
scheduling problems along the lines of Eqs (3)–(5), the number of the employed decision vari-
ables ξ is determined by (i) the sets of the enabled untimed transitions, Eu(m), at each marking
m ∈ RV(N ), and (ii) the sets of the distinct random switches that are defined w.r.t. each of
these transition sets. In this section we propose a refinement of the sets Eu(m) that can lead to
a substantial reduction of, both, the set of the random switches and the corresponding set of
the decision variables that will appear in the final MP formulation; controlling the size of these
two sets is very important for enhancing the effectiveness and the efficiency of the SA methods
that are used in the solution of this formulation.

The departing point for the subsequent developments of this section is the observation that the
performance of any given policy P from the policy spaces Π(δ) and ΠS(δ) that were introduced
in Section 2, is essentially determined by the structure of the corresponding CTMCM(N ;P),
i.e., (i) the set of the reachable tangible markings under policy P, RT (N ;P), and (ii) the
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one-step transition probability distributions p(·|m;P), m ∈ RT (N ;P), that are induced by the
random switches employed by P. Hence, any two policies P1 and P2 from these policy spaces
will present the same performance as long as they evolve the underlying GSPN N over the same
set of tangible markings and with the same set of one-step transition probability distributions.
This last remark motivates the following definition:

Definition 1 For the considered scheduling problem:

i. Two policies P1 and P2 from the policy space Π(δ) will be characterized as “performance-
equivalent” if and only if (iff) they define the same CTMC M(N ) for the underlying
GSPN N .

ii. For any two subspaces Π1(δ) and Π2(δ) of Π(δ), we shall say that policy space Π1(δ)
“carries the performance potential” of policy space Π2(δ) iff there exists an optimal policy
P in Π2(δ) that has a performance-equivalent policy P ′ in Π1(δ).

In view of the above discussion on the challenges that are posed to the solution of the MP
formulation of Eqs (3)–(5) by vectors ξ̄ of high dimensionality, we would like to identify a
policy space Π̃(δ) that carries the performance potential of the original policy space Π(δ) and
results in the smallest possible vector ξ̄ for the corresponding MP formulation of Eqs (3)–(5).
However, the effective resolution of this last problem would necessitate a holistic view of the
underlying reachability space R(N ), and, thus, it is challenged by complexity considerations
similar to those that were discussed in the previous sections. Hence, in the rest of this work,
we take a more pragmatic stance to this problem, seeking to develop a heuristic approach that
will redefine the sets of the activated untimed transitions at the various vanishing markings
of the considered GSPN models, based on some logic that will depend on some more “local”
attributes of these markings.

More specifically, in the rest of this section we provide a systematic methodology that will
enable the identification of a set collection {Ẽu(m) ⊆ Eu(m), m ∈ RV(N )}, such that the policy
space Π̃(δ) that is induced by these sets (i) will effect a significant reduction to the numbers of
the random switches and of the decision variables ξ that are employed by the corresponding MP
formulation of Eqs (3)–(5), and, at the same time, (ii) will carry the performance potential of the
original policy space Π(δ). Furthermore, as it will be shown in the following, the methodology
that is developed in this work can be combined with the notion of the “static” random switch
that is defined by Eq. 2, by applying this equation on the revised transition sets Ẽu(m); the
resulting policy space will be denoted by Π̃S(δ), and the corresponding MP formulation of
Eqs (3)–(5) will involve a number of decision variables ξ that is substantially smaller than
the number of the decision variables that are employed by the same formulation when applied
on the original policy space ΠS(δ). Finally, the subsequent developments will also establish
that the aforementioned reductions and simplifications essentially result from the ability of the
presented methodology to identify and control the real conflicts that arise in the underlying
RAS, while avoiding the arbitration of any elements of concurrency that do not correspond to
conflicting behavior.

3.2 Some defining properties for the sets Ẽu(m)

According to the discussion of the previous section, the sought set collection {Ẽu(m) ⊆ Eu(m),
m ∈ RV(N )} must induce a policy space Π̃(δ) that carries the performance potential of the
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policy space Π(δ), and also controls effectively the complexity of the corresponding scheduling
problem. In order to address the first of these two requirements, we stipulate the following
condition for the sought sets Ẽu(m).

Condition 1 The untimed tangible reach RuT (m′) for any vanishing marking m′ ∈ RV(N ),
under the revised sets Ẽu(m), m ∈ RV(N ), must remain the same with the untimed tangible
reach of m′ under the original sets Eu(m), m ∈ RV(N ).

It is easy to see that Condition 1 retains the communication structure among all the tangible
markings m ∈ RT (N ). Furthermore, the acyclic nature of the subspace that is induced by
the untimed vanishing reach RuV(m) of any vanishing marking m ∈ RV(N ), implies that we
can effect any desired probability distribution that will regulate the transition from marking
m to its untimed tangible reach RuT (m), by pricing appropriately the random switches that
appear in the untimed vanishing reach of m.6 This last remark, when applied to the vanishing
markings m′ that result from some tangible marking m ∈ RT (N ) through the firing of a
transition t ∈ E(m), further implies that the random switches that are induced by any set
collection {Ẽu(m) ⊆ Eu(m), m ∈ RV(N )} that satisfies Condition 1 will materialize any one-
step transition probability distribution p(·|m), for the considered tangible marking m, that is
also realizable in the original policy space Π(δ). Hence, Condition 1 is sufficient for ensuring
the realization, under the refined sets Ẽu(m), of any CTMC M(N ) that is realizable in the
original policy space Π(δ). But then, the above discussion leads to the following conclusion:

Proposition 1 The policy space Π̃(δ), induced by any collection {Ẽu(m), m ∈ RV(N )} that
satisfies Condition 1, carries the performance potential of the original policy space Π(δ).7

When it comes to the second objective that must be observed by the refined sets Ẽu(m) ⊆
Eu(m), m ∈ RV(N ), i.e., the control of the representational and the computational complexity
of the resulting scheduling problem as manifested by the number of the decision variables ξ
in the corresponding MP formulation of Eqs (3)–(5), we already remarked in Section 3.1 that
any complete solution procedure would require the expansion of the entire reachability graph
R(N ). Since this is an intractable proposition, we propose to use as a general guideline for the
selection among the set collections {Ẽu(m) ⊆ Eu(m), m ∈ RV(N )} that satisfy Condition 1,
the notion of “minimality” that is established in the following condition.

Condition 2 For any vanishing marking m′ ∈ RV(N ) and any transition t ∈ Ẽu(m′), the
substitution of the set Ẽu(m′) by the set Ẽu(m′) \ {t} in the set collection {Ẽu(m),m ∈ RV(N )}
will result in the violation of Condition 1.

6The validity of this claim is easily established by some results in (static) network flow theory establishing the
ability to distribute a unit of flow entering an acyclic connected digraph from a single source node to its terminal
nodes in any possible manner, as long as the total amount of flow that is received by these nodes is equal to one.

7On the other hand, it is also important to notice that Condition 1 cannot guarantee that the policy space
Π̃S(δ) carries the performance potential of its counterpart policy space ΠS(δ). This limitation is due to the
coupling that is introduced by Eq. 2 in the pricing of the random switches that correspond to distinct vanishing
markings. Nevertheless, Condition 1 still guarantees that every CTMC M(N ) that is realizable in the original
policy space Π(δ), is also realizable by the policies in the policy space Π̃S(δ) through a controlled (partial)
relaxation of the coupling that is defined by Eq. 2.
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The reader should notice that the notion of minimality that is introduced by Condition 2 does
not determine uniquely the target sets Ẽu(m), m ∈ RV(N ). Furthermore, different collections
{Ẽu(m), m ∈ RV(N )}, satisfying Conditions 1 and 2 will result in different dimensions for the
variable vector ξ̄ that is employed by the corresponding MP formulation of Eqs (3)–(5). Hence,
in general, there is a need for additional selection logic that will resolve this ambiguity, and
possibly enable the further optimization of the final selection of these sets in various application
contexts. We shall revisit this issue in the next section, where we detail a particular algorithm
for the determination of the target sets Ẽu(m), m ∈ RV(N ).

3.3 Computing the refined sets Ẽu(m)

In this section, first we provide a more explicit characterization of the sets Ẽu(m), m ∈ RV(N ),
that satisfy Condition 1, and subsequently we propose some further logic that can facilitate
the selection of the final collection {Ẽu(m), m ∈ RV(N )} among all those that satisfy both
Conditions 1 and 2. These two developments will also suggest a very straightforward algorithm
for the effective computation of the collection {Ẽu(m), m ∈ RV(N )} that is targeted by the
aforementioned logic. We start these developments with the following proposition.

Proposition 2 Consider a marking m̂ ∈ RV(N ) and a set T̂ ⊆ Eu(m̂). Then, the substitution
of the set Ẽu(m̂) by the set T̂ in any collection {Ẽu(m), m ∈ RV(N )} that satisfies Condition 1,
will retain the satisfaction of this condition for the considered marking m̂ iff the set T̂ satisfies
the following condition: ⋃

m′:∃t∈T̂ ,m̂
t−→m′

RuT (m′) = RuT (m̂) (6)

Proof: We remind the reader that Condition 1 requires that the selected transition sets will
establish, for every vanishing marking m′′ ∈ RV(N ), an untimed tangible reach equal to
RuT (m′′) (i.e., the corresponding untimed tangible reach which results from the original col-
lection {Eu(m), ∀m ∈ RV(N )} that is defined by the natural dynamics of net N ). Also, for
the needs of this proof, we introduce the following additional notation: (a) For any marking
m′′ ∈ R(N ), RuT (m′′; Ẽ) will denote the untimed tangible reach of m′′ defined by the collection
{Ẽu(m), m ∈ RV(N )} that is considered by Proposition 2. (b) On the other hand, for any
marking m′′ ∈ R(N ), RuT (m′′; T̂ ) will denote the untimed tangible reach of m′′ that is defined
by the collection {Ẽu(m), m ∈ RV(N )} under the modification described in Proposition 2 (i.e.,
with the transition set Ẽu(m̂) replaced by the set T̂ defined in the proposition). Finally, we
also remind the reader that, in the considered GSPN class, the markings m′′ in RuV(m̂) (i.e.,
the untimed vanishing reach of the considered vanishing marking m̂) induce, by assumption,
an acyclic subspace of R(N ). But then, the substitution of the set Ẽu(m̂) by the set T̂ , as
suggested by Proposition 2, does not impact the untimed tangible reaches of the markings m′
that result from m̂ by firing any transition in T̂ ; i.e.,

∀m′ s.t. ∃t ∈ T̂ : m̂ t−→ m′, RuT (m′; T̂ ) = RuT (m′; Ẽ) (7)

Since the considered set collection {Ẽu(m), m ∈ RV(N )} satisfies Condition 1, it also holds
that

∀m′ s.t. ∃t ∈ T̂ : m̂ t−→ m′, RuT (m′; Ẽ) = RuT (m′) (8)
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Hence, the left-hand-side of Eq. (6) essentially expresses RuT (m̂; T̂ ) – the untimed tangible
reach of the considered marking m̂ for the collection of the untimed transition sets that is
defined in Proposition 2 – and the validity of the claimed result becomes obvious. �

Of particular interest in the subsequent developments is the following corollary of Proposi-
tion 2, that can be established from this proposition through an inductive argument on the
acyclic graphs that correspond to the untimed vanishing reaches of the vanishing markings
m ∈ RV(N ).

Corollary 1 A collection {Ẽu(m) ⊆ Eu(m), m ∈ RV(N )} satisfies Condition 1 iff every set
Ẽu(m), m ∈ RV(N ), satisfies the condition of Eq. (6).

Corollary 1 enables a localized computation, at any marking m ∈ RV(N ), of all the sets
Ẽu(m) that can be part of any collection that will satisfy Condition 1. This decomposing effect
can be further exploited towards the identification of such collections {Ẽu(m) ⊆ Eu(m), m ∈
RV(N )} that will also satisfy Condition 2. In particular, the above developments imply that
any collection {Ẽu(m) ⊆ Eu(m), m ∈ RV(N )} consisting of minimal-cardinality subsets of
the corresponding parent sets Eu(m) that satisfy the condition of Eq. (6), will also satisfy
Condition 2 (since, if this condition was violated by some particular set Ẽu(m′), then this set
would not be among the minimal-cardinality subsets of Eu(m′) that satisfies the condition of
Eq. (6)). Hence, we have the following proposition:

Proposition 3 A collection {Ẽu(m) ⊆ Eu(m), m ∈ RV(N )} consisting of minimal-cardinality
subsets of the corresponding parent sets Eu(m) that satisfy the condition of Eq. (6), will satisfy
both Conditions 1 and 2.

At this point, the following remarks are in order: (a) By minimizing the cardinality of the
selected sets Ẽu(m), m ∈ RV(N ), the selection logic that is implied by Proposition 3 is generally
conducive to the primary objective of minimizing the number of the decision variables ξ. (b) On
the other hand, the resulting selection scheme still needs further arbitration / disambiguation
in the case of vanishing markings m ∈ RV(N ) with more than one minimal-cardinality subsets
of the corresponding set Eu(m) that satisfy the condition of Eq. (6). Ideally, this conflict should
be arbitrated in a way that leads to the minimal-dimensionality vector ξ̄ for the corresponding
MP formulation of Eqs (3)–(5). Since, however, such an arbitration scheme is not practically
feasible in the context of a real-time resolution of the considered ambiguity, as is the case with
the computational framework of [12], in this work we propose to resolve this ambiguity by
taking, at every vanishing marking m ∈ RV(N ), the minimal-cardinality set Ẽu(m) ⊆ Eu(m)
that satisfies the condition of Eq. (6) and it is also lexicographically minimal w.r.t. the ordering
that is defined by the natural (or, perhaps, some other) indexing of the transition set Tu. Then,
at every visited vanishing marking m ∈ RV(N ), the corresponding set Ẽu(m) can be effectively
obtained through the execution of the computation that is depicted in Algorithm 1.

Algorithm 1 first computes the set Eu(m), and, subsequently, for each transition t in this set,
it computes (a) the marking m′(t) that results from the firing of transition t in m, and (b)
the untimed tangible reach of m′(t) under the original collection {Eu(m′′), m′′ ∈ RV(N )} of
[12]. Also, the algorithm computes the untimed tangible reach of marking m as the union
of the untimed tangible reaches of the markings m′(t), t ∈ Eu(m). In the last phase of its
computation, Algorithm 1 enumerates the subsets of the set Eu(m), sequencing them first in
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Algorithm 1 Computing the target set Ẽu(m) at a visited vanishing marking m
Input: GSPNN = (P, Tt, Tu,W ); vanishing marking m
Output: the transition set Ẽu(m)
T̂ ← Eu(m)
for each t ∈ T̂ do
m′(t)← tr(m, t);
UTR(t)← RuT (m′(t))

end for
UTR0←

⋃
t∈T̂ UTR(t)

for i := 1, . . . |T̂ | do
for j := 1, . . . , Ci|T̂ | do
T̃ ← the j-th subset of T̂ of cardinality i, where these subsets are enumerated lexico-
graphically based on some ordering of the elements of T̂
if

⋃
t∈T̃ UTR(t) = UTR0 then

return T̃
end if

end for
end for

increasing cardinality, and second (i.e., the subsets with equal cardinality) lexicographically
according to some ordering that is imposed on the elements of Eu(m);8 for every transition
set T̃ that is generated by this enumeration, Algorithm 1 checks whether this set satisfies the
condition of Eq. (6) in Proposition 2, in which case it terminates returning the set T̃ as the
sought set Ẽu(m).

The computational complexity of Algorithm 1 is determined primarily by (a) the computation
of the untimed tangible reach for every marking m′(t), and (b) the enumeration of the subsets
of Eu(m). Both of these elements imply a super-polynomial worst-case complexity w.r.t. the
“size” of the underlying GSPN N .9 Since, however, (i) the computation that provides the
aforementioned untimed tangible reaches is performed on acyclic subgraphs of a more local
nature w.r.t. the entire reachability space R(N ), and (ii) the sets Eu(m) are usually small
subsets of the transition set T , it is expected that the empirical computational complexity of
Algorithm 1 will be quite benign. These remarks are corroborated by the corresponding results
of the numerical experiments that are reported in Section 5.2.

Finally, the next example demonstrates the execution of Algorithm 1 and the above claims
regarding the low empirical complexity of the algorithm. Furthermore, the example reveals
some additional attributes of the collections {Ẽu(m) ⊆ Eu(m), m ∈ RV(N )} that are generated
by the considered algorithm.

Example Consider the marked GSPN N depicted in Figure 1a. In the depicted net, the
black transitions are untimed, while the white ones are timed. Since the depicted marking
enables the untimed transitions t2 and t6, it is vanishing; for further reference, we shall label
this marking as m1. The digraph of Figure 1b represents the untimed vanishing and tangible

8In lack of any bias that might result from special structure or further input, this can be the ordering that is
defined by the natural indexing of the net transitions in T .

9We remind the reader that this last quantity is defined as the size of any parsimonious encoding / represen-
tation of the septuple that defines GSPN N .

12



t0

t1

t2

t3

t4

t5

t6

t7

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9 p10

p11

(enabled)

(enabled)

(a) Example: the considered GSPN mark-
ing m1.

 

t3
t5

t5

t6

t2
t6

t3t6
t6

t3

t5

t0

t3

m3

m2

m1

m4

mT2

mT1

t3

t5

t0

t6

t2

(b) The digraph characterizing the un-
timed vanishing and tangible reaches of
markingm1, Ru

V(m1) andRu
T (m1), under

(i) the original random switches and (ii)
the refinement of these random switches
by Algorithm 1.

Figure 1: The GSPN vanishing marking, m1, and the digraph that characterizes its untimed
tangible reach, for the example of Section 3.3.

reaches of marking m1. More specifically, in Figure 1b, the nodes depicted as single-bordered
correspond to vanishing markings in the untimed reach of marking m1, and those depicted as
double-bordered correspond to tangible markings. Finally, the nodes and the edges that are
depicted with thicker lines in the digraph of Figure 1b, represent the untimed vanishing and
tangible reaches of the considered vanishing marking m1 under the random switches that are
returned by Algorithm 1.

It is interesting to notice in the digraph of Figure 1b the extent of the reduction that is effected
by Algorithm 1 in terms of (a) the reachable vanishing markings and (b) the dimensionality
of the random switches that are constructed for the remaining vanishing markings. Both of
these reductions simplify extensively the arbitration that must be effected on this part of the
underlying state space by the corresponding scheduling problem. Furthermore, the small size of
the random switches that are eventually employed at the reachable vanishing markings visited
by the algorithm, also corroborates our earlier claims that, in general, the enumeration of the
subsets of the sets Eu(m) that is performed by Algorithm 1 at each visited vanishing marking
m ∈ RV(N ), will be terminated in its early stages.

Finally, next we take a closer look at the way that Algorithm 1 treats the existing conflicts
among the transitions of the sets Eu(m) in its selection of the corresponding sets Ẽu(m). Hence,
consider first the execution of Algorithm 1 at the original vanishing marking m1. At this mark-
ing, the algorithm picked transition t2 over t6. The reader can check that these two transitions
are not in conflict, since •t2 = {p1, p10}, and •t6 = {p5, p7}. However, selecting among non-
conflicting transitions is still quite subtle. More specifically, the firing of the transition t2 at
marking m1 will release tokens to its output places p2 and p8. And adding one token in p8 will
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enable the untimed transition t0, which is in conflict with t6, since t0 and t6 have the common
input place p7. Hence, giving arbitrary precedence to transition t6 over transition t2 at mark-
ing m1 would have a restrictive effect on the potential behavior that can be generated by the
eventual firing of t2. On the other hand, firing t6 at m1 will only release one token to the place
p6, which is not an input place of any untimed transitions. Thus, firing t6 cannot add any new
elements to the set Eu(m), and there are no hidden conflicts by dropping t6 from the refined
random switch of m1. Similarly, the algorithm selection at marking m2 can be interpreted by
the fact that, for the effected partition ({t3}, {t0, t5, t6}) of the original set Eu(m2), it holds
that •{t3} = {p2, p9}, and •{t0, t5, t6} = {p4, p5, p7, p8, p11}; hence, there is no conflict between
these two sets. Furthermore, from the information that is provided in Figure 1b, it can be easily
checked that no new untimed transitions will be enabled before reaching some tangible marking
from m2. Thus, in this case, we can eliminate either {t3} or {t0, t5, t6}, according to the logic
that interpreted the output of Algorithm 1 on m1. Eventually, Algorithm 1 gives precedence to
the set {t3} since it is the set with the smallest cardinality. Finally, at marking m3, Algorithm 1
returns the transition set {t0, t5}, and transition t6 is eliminated from the original set of enabled
untimed transitions. When considering the original set Eu(m3) = {t0, t5, t6}, we can see that
t0 is in conflict with t5 and t6, but t5 and t6 are not in conflict. Since in this case there are no
further hidden conflicts that could have been revealed only after the firing of the non-conflicting
transitions t5 and t6, Algorithm 1 includes only one of the non-conflicting transitions in the
returned random switch, and this is transition t5 due to the applied lexicographic ordering.
The next section provides a formal characterization to the apparent connection between the
selection logic of Algorithm 1 and the nature of the conflicting relations between the selected
transition sets Ẽu(m) and their complements Eu(m)\ Ẽu(m), that was observed in this example.

4 Some sufficient conditions for the condition of Proposition 2

In this section we provide two results that define sufficient conditions for the key condition of
Eq. 6 in Proposition 2. Hence, when applicable, both of these conditions provide alternative
means to the logic that is pursued in Algorithm 1 for validating the condition of Eq. 6 for
any given pair of a vanishing marking m ∈ RV(N ) and a subset T̂ of the corresponding set
Eu(m). In particular, the second of these two conditions involves only structural attributes of
the elements of the sets T̂ and Eu(m) \ T̂ , and therefore, its testing can be much more efficient
than any test of the condition of Eq. 6 that is based on the enumeration of the corresponding
untimed tangible reach RuT (m). Finally, the first of the two presented conditions highlights the
existing connection between Condition 1 of Section 3.2 and the notion of “(non-)conflict” that
was indicated in the discussion of the example of Section 3.3.

Proposition 4 Consider a vanishing marking m of a GSPN N , and a partition (T1, T2) of
Eu(m). Furthermore, let Eu((Tu \ T1)∗) ⊆ Tu \ Eu(m) denote the set containing those untimed
transitions of N that are not enabled in m but get enabled after firing some transition sequences
in (Tu\T1)∗. Also, set T̂2 ≡ T2∪Eu((Tu\T1)∗). Finally, suppose that for each transition sequence
σ ∈ T̂ ∗2 , there exists a transition sequence σ̂t1 ∈ T̂ ∗2 T1 such that the transition sequences σσ̂t1
and t1σσ̂ are feasible at m. Then, the set T1 satisfies the condition of Eq. (6) in Proposition 2.

Proof: We need to show that RuT (m) =
⋃
m′∈MRuT (m′) where M = {m′ ∈ R(N ) : ∃t ∈

T1 s.t. m′ = tr(m, t)}. The inclusion RuT (m) ⊇
⋃
m′∈MRuT (m′) is obvious since T1 ⊆ Eu(m).

So, next, we focus on the inclusion RuT (m) ⊆
⋃
m′∈MRuT (m′).
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Consider any tangible marking mT ∈ RuT (m). Then, there exists a feasible transition sequence
σn = t1t2 . . . tn leading from marking m to mT . To show that mT ∈

⋃
m′∈MRuT (m′), we

distinguish the following two cases:

Case 1: t1 ∈ T1. Then, mT ∈ RuT (tr(m, t1)) ⊆
⋃
m′∈MRuT (m′).

Case 2: t1 ∈ T2. Then, by the last assumption of Proposition 4, there exists ti ∈ T1 in the
sequence σn such that the transition sequence σi−1 = t1 . . . ti−1 is composed by transitions in
T̂2 only. According to the same assumption, we can exchange the firing order of ti and σi−1

and get the transition sequence tit1 . . . ti−1 which is feasible at m.

But then, the sequence tit1 . . . ti−1ti+1 . . . tn is a feasible sequence leading from marking m to
mT , and mT ∈ RuT (tr(m, ti)) ⊆

⋃
m′∈MRuT (m′). �

Example Returning to the example of Section 3.3, first we notice that by setting T1 = {t2}
at the vanishing marking m1 of Figure 1b, we satisfy the condition of Proposition 4: Indeed,
the only transition sequence in T̂ ∗2 (i.e., not containing an element of T1) that emanates from
marking m1, is the sequence σ = t6, and this sequence is followed by the firing of the transition
t2 ∈ T1. Furthermore, the transition sequence t2t6 is also fireable from m1, as stipulated
by Proposition 4. But then, these remarks further imply the satisfaction of the condition of
Eq. (6) in Proposition 2 by the set T1 = {t2} and render this set a viable candidate for a refined
random switch for the considered marking m1 while foregoing the complete enumeration of the
corresponding untimed reaches RuV(m1) and RuT (m1).

On the other hand, setting T1 = {t6} results in the presence of the transition sequences t2t3t0
and t2t0t3 in the corresponding set T̂ ∗2 . Both of these transition sequences lead from markingm1
to the tangible marking mT1 in the STD of Figure 1b, and obviously they are not extensible by
any sequence in T̂ ∗2 T1 (since the only transitions fireable in marking mT1 are timed transitions).
Hence, in this case, the criterion of Proposition 4 correctly fails to recognize the corresponding
set T1 as a viable candidate for a refined random switch of m1. �

The requirements that are posed in the next result are stronger than the condition set of
Proposition 4, but as remarked in the opening discussion of this section, their primary value lies
in the fact that they are much easier to verify than the condition of Eq. (6) and the condition that
is stipulated in Proposition 4. More specifically, while the conditions of Eq. (6) and Proposition
4 are tested on the untimed reach of any given marking m ∈ RV(N ), and therefore, their
assessment has an exponential worst-case complexity w.r.t. the size of the underlying GSPN
N , the conditions that are stipulated by the next proposition are polynomially verifiable; this
computational efficiency comes from the structural nature of these conditions.

Proposition 5 Consider a vanishing marking m of a GSPN N , a partition (T1, T2) of Eu(m),
and further suppose that:

i. ∃t̂ ∈ T1 such that ∀t ∈ T2, •t̂ ∩ •t = ∅;

ii. ∀t ∈ T2 and ∀p ∈ P , p ∈ t• =⇒ p • ∩ Tu = ∅.

Then, the set T1 satisfies the condition of Eq. (6) in Proposition 2.

Proof: We shall prove the result of Proposition 5 by showing that the two conditions stated
in this proposition are sufficient to satisfy the requirements of Proposition 4.
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We start by noticing that condition (ii) guarantees that the firing of any transition sequence
σ ∈ T ∗2 does not add any tokens to the input places of any untimed transition. Therefore, under
this condition, T̂2 = T2, where the set T̂2 is defined in the statement of Proposition 4, and we
only need to show that ∀σ ∈ T ∗2 , ∃σ̂t1 ∈ T ∗2 T1 such that both sequences σσ̂t1 and t1σσ̂ are
feasible at m.

Consider any transition sequence σ = t1t2 . . . tn ∈ T ∗2 feasible at m. From condition (i),
•t̂ ∩ •ti = ∅, ∀i ∈ {1, 2, . . . , n}. Therefore, firing σ does not decrease the number of tokens
in any input place of t̂, and t̂ is enabled at the marking m′ that results from the firing of σ.
In other words, σt̂ is feasible at m. The feasibility of t̂σ can be proved in a similar manner.
Therefore, the condition of Proposition 4 is met by setting σ̂ = ε and t1 = t̂. �

In [13] we employ the condition of Proposition 5 in order to define a very efficient and pertinent
policy space Π̃(δ) for a particular GSPN class that models the resource allocation taking place
in capacitated re-entrant lines (CRLs), i.e., re-entrant lines with finite buffering capacity at
their workstations [15]. The CRL concept is also employed in the next section in order to
demonstrate the efficacy of the random-switch refinement process that is developed in this
work.

5 Some computational results

The re-entrant line is a workflow-modeling abstraction that has generated a lot of interest in the
area of stochastic scheduling, since it constitutes one of the simplest workflow structures that
gives rise to nontrivial scheduling problems [9]. Furthermore, these lines have been utilized
as a modeling abstraction for the operations taking place in the fabrication of the various
chips by modern semiconductor manufacturing [10]. In its basic definition, a re-entrant line
consists of a number of single-server workstations that support the execution of a single process
type. Instances of this process type follow a fixed path among the system workstations, that
defines the corresponding process plan. However, this process plan involves some revisits to
the line stations, and therefore, process instances that are waiting for processing at the various
workstations are differentiated by their processing stage. This differentiation renders nontrivial
the allocation of the free(d) station server to the waiting processes, and defines some interesting
scheduling problems.

However, the past studies of the re-entrant line scheduling problem have addressed this problem
under the assumption of infinite buffering capacity at every station. At the same time, the work
of [15] has shown that the blocking effects that arise from the presence of finite buffers in those
lines negate the aforementioned past results and renders the CRL scheduling problem an open
issue in the current scheduling literature. In this section, we employ the CRL scheduling context
in order to demonstrate the efficacy of the random-switch refinement process that is developed
in this work.10 More specifically, in the first part of this section we present another example
that will provide a more concrete demonstration of (i) the problem addressed in this work,
and (ii) the representational gains regarding the target policy space of this problem that are
attained by Algorithm 1 of Section 3.3. In the second part of this section, we also report the
results of a more extensive computational experiment that further demonstrate and assess the
aforementioned gains.

10A detailed treatment of the CRL scheduling problem through the methodological framework that is pursued
by the considered research program can be found in [13].
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5.1 Example: Applying the presented methodology to a CRL scheduling
problem

The considered CRL In this example, we consider the CRL depicted in Figure 2. This
re-entrant line consists of two workstations, WS1 and WS2, and an I/O port that interfaces
it with the rest of its operational environment. Each workstation has a single server and two
units of buffering capacity. Jobs visiting each of the two workstations are accommodated to one
of the available buffer slots, and receive processing by the workstation server in situ (i.e., while
staying in their allocated buffer slots). A robotic manipulator supports the necessary material
handling functions, and integrates the entire facility to a fully automated cell. The process
route that is executed by the job instances that visit this cell is also annotated in the figure;
since workstation WS1 is visited twice by any running job, the considered layout constitutes
a re-entrant line. In the sequel, we shall also use the notation W(j), j = 1, 2, 3, to denote
the workstation that supports the j-th processing stage of the depicted process route; e.g.,
W(1) = WS1. Finally, we assume that the processing times for each of the three processing
stages are exponentially distributed with corresponding rates µj , j = 1, 2, 3.11

WS 1 WS 2

I/O Port

Process route:
WS1 -> WS2 -> WS1

Figure 2: An example CRL.

We want to control the workflow dynamics of the
aforementioned CRL in order to maximize its through-
put. To address this objective, first we notice that the
smooth operation of the considered CRL can be chal-
lenged by the finiteness of the buffering capacity of its
workstations in combination with the re-entrant nature
of its material flow. For instance, if the buffer of work-
station WS1 is allocated to two jobs in their first pro-
cessing stage and the buffering capacity of workstation
WS2 is also fully allocated, then it is impossible for the
cell robot to advance any of these jobs to their next
stage, and the operation of the system will be perma-
nently stalled, or deadlocked. This deadlocking problem
can be prevented by the application of an appropriate
liveness-enforcing supervisor (LES). The reader is re-
ferred to [16, 17] for a comprehensive exposition of the
current theory on the synthesis of effective and efficient LES for sequential RAS, including the
RAS corresponding to the considered CRL. Many of these LES take the convenient form of a
set of linear inequalities that control the number of process instances situated at certain subsets
of the line workstations, and as discussed further below, they admit a very efficient and elegant
PN-based representation. For the simple example depicted in Figure 2, it can be easily checked
that deadlocks can be avoided as long as the combined number of jobs situated at worksta-
tions WS1 and WS2 for the respective execution of their first and second processing stages
are kept less than or equal to three. Furthermore, this restriction implements the “maximally
permissive” LES for this particular CRL, in the sense that the enforced constraint blocks only
transitions to CRL states that contain a deadlock or states from which deadlock is unavoidable.

11This assumption is in line with the standard timed semantics of the GSPN model, but more general distri-
butions for the processing times involved can be approximated to any desired degree of accuracy through the
methods of stages [5].
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Table 1: The semantics encoded by the GSPN of Figure 1a.
Node Description

p0 (resp., p3, p6) A job receiving processing at workstation W(1) (resp., W(2), W(3))
p1 (resp., p4) A job having completed processing at workstation W(1) (resp., W(2))
p2 (resp., p5) A job waiting for processing initiation at workstation W(2) (resp., W(3))
p7 (resp., p9) Server availability at workstation WS1 (resp., WS2)
p8 (resp., p10) Buffer slot availability at workstation WS1 (resp., WS2)

p11 A “monitor” place enforcing the marking inequality that defines the
maximally permissive LES, according to the theory of [6, 8]

t0 LES-admissible loading and initiation of processing of a new job at
workstation W(1) by allocating to this job a buffer slot and the station
server; appropriate updating of the LES-enforcing monitor

t1, (reps., t4) Completion of a job processing at workstation W(1) (resp., W(2)),
and release of the corresponding server

t2, (reps., t5) LES-admissible advancement of a completed job at workstation W(1)
(resp., W(2)) to the next workstation by allocating and de-allocating the
relevant buffer slots; appropriate updating of the LES-enforcing monitor

t3 (resp., t6) Initiation of a job processing at workstation W(2) (resp., W(3)),
by allocating the corresponding server

t7 Completion of a job processing at workstation W(3) and unloading of the
job from the system; release of the corresponding server and buffer slot

GSPN-based modeling of the considered CRL The marked GSPN modeling the oper-
ational dynamics of the CRL of Figure 2 is that depicted in Figure 1a, with its initial marking
m0 set to [0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 3]. The semantics encoded by this GSPN are detailed in
Table 1. We should also note that the provided GSPN model does not represent explicitly the
allocation of the robotic manipulator since (i) in order to simplify the exposition of the consid-
ered example, we further assume that transport times are negligible, and (ii) it can be easily
checked that if the allocation of the workstation buffers is kept deadlock-free, then the robotic
manipulator has only a supportive role to the overall cell functionality and it cannot be a cause
of any further problematic behavior. Finally, the reader can check that the aforementioned
initial marking m0 corresponds to the “empty” state of the considered CRL, i.e., the state in
which all the workstations of the line are idle and empty of any jobs.

In the GSPN of Figure 1a, untimed transitions are represented by black bars and timed
transitions are represented by white bars. Furthermore, as revealed by the juxtaposition of
Figure 1a and Table 1, timed transitions encode the completion of the processing activity at
the line workstations and the corresponding delays that are incurred by this activity; hence, the
firing rates that are associated with the timed transitions t1, t4 and t7 are the corresponding
rates µj , j = 1, 2, 3, of the exponential distributions that characterize the processing times
for the three processing stages.12 On the other hand, in the depicted GSPN, the set of the
untimed transitions, Tu = {t0, t2, t3, t5, t6}, models the job advancement through the various
stages of the underlying process plan, and the corresponding resource allocation function under
the control of the maximally permissive LES that was described in the previous paragraphs.

12In the case of processing stages with more general distributions for their processing times, the method of stages
will substitute the corresponding timed transition with a Markovian subnet that will model the approximating
“phase type” distribution.
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Figure 3: The semi-Markov process modeling the timed dynamics of the example CRL of
Figure 2 and the corresponding scheduling problem.

The semi-Markov-based modeling of the timed dynamics of the considered CRL
and the corresponding scheduling problem The timed dynamics of the GSPN of Fig-
ure 1a are represented by the semi-Markov process of Figure 3. This figure depicts the branching
probabilities at the various tangible markings of the process, as determined by the correspond-
ing exponential races. It is further assumed that at the tangible markings activating the job-
unloading transition t7, reward is collected with an instantaneous rate of µ3; in this way, the
steady-state average reward of the considered semi-Markov process will model the (long-term)
throughput of the line. Furthermore, the branching probabilities at the various vanishing mark-
ings must be determined so that this long-term throughput is maximized. Finally, Figure 3
also depicts the coupling among the random switches of this semi-Markov process that is intro-
duced by the notion of “static” random switches that is defined by Eq. (2). It can be checked
that this coupling reduces the number of the decision variables that must be employed in the
formulation of the aforementioned scheduling problem by means of the Eqs (3)–(5) from 27 to
16, a considerable reduction even for this small example.

Figure 4 presents the semi-Markov process and the static random switches that are defined for
the CRL of Figure 2 through the refinement process of Algorithm 1. The juxtaposition of the
untimed part of the semi-Markov process depicted in Figure 4 with the untimed part of the semi-
Markov process of Figure 3 reveals the very drastic simplification that has been brought about
by this refinement process. More specifically, the number of the employed random switches
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Figure 4: The semi-Markov process modeling the timed dynamics of the considered CRL and
the corresponding scheduling problem after the refinement of the original set of random switches
through Algorithm 1.

has been reduced from 11 to 2, and the corresponding MP formulation of Eqs (3)–(5) involves
only two variables! In addition, the actual decision points in any path interconnecting any
two tangible markings (i.e., the vanishing markings with more than one activated untimed
transitions in those paths) are now no more than one, and these markings reflect the actual
conflicts in the underlying CRL.

Finally, closing the discussion on the example presented in this section, we want to point
out that, as clearly demonstrated by this example, the simplification that is exerted by the
refinement process introduced in this paper is different from the simplification processes that
have been pursued in the context of the more classical GSPN theory. In the latter cases13, the
key objective is to extract a simplified stochastic process (typically a CTMC) from the original
semi-Markov process; but in those cases, the original semi-Markov process is fully-defined, by
fixing the random switches associated with the various vanishing markings to specific (exter-
nally provided) values. From a methodological standpoint, the extraction of the target CTMC
from the original semi-Markov process is based on results relating to the computation of the
transient behavior and the absorption probabilities in Discrete-Time Markov chains (DTMCs).
On the other hand, the simplification that is pursued in this paper is on the structure of the

13c.f., for instance, the corresponding appendix in [1], that introduced the GSPN model
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original semi-Markov process with the intention of generating another semi-Markov process.
The new semi-Markov process must induce a policy space Π̃(δ), through the set of its random
switches, that carries the performance potential of the policy space Π(δ) that is induced by
the original semi-Markov process.14 Another differentiating attribute between the two simpli-
fication processes discussed above is that, while the extraction of the CTMC from the original
semi-Markov process is perceived as an “off-line” operation simplifying the stochastic process
that models the timed dynamics of the underlying GSPN and the analysis of these dynamics, the
refinement process implemented by Algorithm 1 is an “on-line” process that must be embedded
in the simulation optimization algorithm that will solve the NLP formulation of Eqs (3)–(5);
this, in turn, generates different computational constraints and implementational requirements
for each process.

5.2 A more extensive numerical experiment

In this section we report the results of a more extensive computational experiment that applied
the Algorithm 1 of Section 3.3 on the 20 CRL configurations listed in Table 2.15 The obtained
results are reported in Table 3. More specifically, the first part of Table 3 reports the results of
the refinement that was effected by Algorithm 1 in combination with the notion of the static
random switches that was introduced in [12]. As explained in the earlier parts of this document,
this refinement retains the one-step connectivity of the tangible markings in the CTMCs that
are induced by the underlying GSPN model, and the performance potential of the optimized
scheduling policies that are obtained by the corresponding NLP formulations. However, the
numbers of the visited vanishing markings, and the extent of branching that takes place at
these markings, are significantly reduced by the exerted refinement. Table 3 also provides the
number of tangible markings for each configuration, which can function as a proxy measure for
the representational and computational complexity of the original scheduling problem that is
defined over the policy space Π(δ).16

The results provided in Table 3 demonstrate very vividly the dramatic reductions in the
number of static random switches and in the corresponding number of the decision variables ξ
that is effected by the application of Algorithm 1. These reductions subsequently have a very
strong impact on the solvability of the corresponding MP formulations of Eqs (3)–(5) by means
of the SA methods that are pursued in [12, 13].

The second part of Table 3 also reports, for each of the considered configurations, the average
and the maximum times that were spent by Algorithm 1 for the computation of the untimed
tangible reach RuT (m) and the selection of the refined transition set Ẽu(m) at each visited
vanishing marking m. The experiment was performed on a Window 7 computer with an AMD

14We remind the reader that the technical meaning of this last statement is formalized in this paper through
Definition 1 and its supporting discussion, and that, as far as we can tell, the content of this definition is a novel
contribution of this work, especially when considered in the context of the GSPN modeling framework and its
supporting theory.

15Configuration 1 in Table 2 is the CRL configuration discussed in Section 5.1.
16As revealed by the example digraph of Fig. 1b, the acyclic subspaces of R(N ) that interconnect each tangible

marking m to its corresponding set of tangible markings R1
T (m), may involve a number of different paths

connecting m with each element of R1
T (m), and each of these paths may involve a cascade of “decisions” modeled

by the random switches of the corresponding vanishing markings. Hence, the actual number of the decision
variables ξ for the scheduling problems that are formulated on the original policy space Π(δ) typically will be
higher than the number of tangible markings that is provided in the second column of Table 3, sometimes by an
order of magnitude.
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Table 2: The CRL configurations employed in the numerical experiment that is reported in
Section 5.2.

Config. work- # of job stages (JS) workstation
stations and job routes buffering capacities

1 2 3JS (WS1 →WS2 →WS1) (B1, B2) = (2, 2)
2

2 3JS (WS1 →WS2 →WS1)

(B1, B2) = (1, 2)
3 (B1, B2) = (3, 2)
4 (B1, B2) = (4, 4)
5 (B1, B2) = (10, 10)
6

3 4JS (WS1 →WS2 →WS3 →WS1)

(B1, B2, B3) = (1, 2, 2)
7 (B1, B2, B3) = (3, 2, 2)
8 (B1, B2, B3) = (4, 3, 2)
9 (B1, B2, B3) = (5, 5, 6)

10 4 7JS (WS1 →WS2 →WS4 (B1, B2, B3, B4) = (3, 2, 1, 2)→WS1 →WS2 →WS3 →WS1)

11 3 5JS (WS1 →WS2 →WS3 (B1, B2, B3) = (3, 4, 3)→WS1 →WS2)

12 3 5JS (WS1 →WS2 →WS3 (B1, B2, B3) = (3, 3, 3)→WS2 →WS3)
13 3 5JS (WS1 →WS2 →WS1 (B1, B2, B3) = (3, 4, 1)
14 →WS3 →WS2) (B1, B2, B3) = (2, 2, 2)
15 3 6JS (WS1 →WS2 →WS3 (B1, B2, B3) = (2, 3, 2)
16 →WS1 →WS2 →WS3) (B1, B2, B3) = (2, 2, 2)

17 4 7JS (WS1 →WS2 →WS4 (B1, B2, B3, B4) = (3, 3, 3, 3)→WS1 →WS2 →WS3 →WS1)

18 5 7JS (WS1 →WS2 →WS1 (B1, B2, B3, B4, B5) = (2, 2, 2, 3, 3)→WS3 →WS4 →WS5 →WS4)

19 4 8JS (WS1 →WS2 →WS3 →WS2 (B1, B2, B3, B4) = (3, 3, 3, 3)→WS3 →WS4 →WS3 →WS4)

20 5 8JS (WS1 →WS2 →WS3 →WS2 (B1, B2, B3, B4, B5) = (3, 3, 3, 3, 3)→WS3 →WS4 →WS5 →WS3)
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Table 3: Comparison of the numbers of static random switches (R.S.) and decision variables
(D.V.) for the CRL configurations of Table 2 that result from (i) no refinement, and (ii) re-
finement using Algorithm 1. The table also provides some statistics for the calculation of the
untimed tangible reach (UTR) and the selection of the refined random switch by Algorithm 1
at each visited vanishing marking.

Conf. No Refining Algor. 1 UTR Calculation R.S. Selection
Tang.
Mark.

Num.
of

R.S.

Num.
of
D.V.

Num.
of

R.S.

Num.
of

D.V.

Number
of

Calls

Mean
Time
(µs)

Max
Time
(ms)

Number
of

Calls

Mean
Time
(µs)

Max
Time
(ms)

1 19 11 16 2 2 30 6.50 0.03 47 0.46 0.00
2 7 4 4 1 1 10 5.41 0.01 18 0.06 0.00
3 33 12 18 2 2 54 6.55 0.04 85 0.50 0.00
4 87 12 18 2 2 154 7.05 0.07 265 0.66 0.00
5 579 12 18 2 2 1,102 9.01 0.25 139 0.88 0.01
6 42 20 27 1 1 82 6.44 0.04 531 0.14 0.00
7 148 35 61 2 2 332 7.08 0.13 1,175 0.35 0.00
8 301 35 61 2 2 716 7.30 0.16 2,343 0.36 0.00
9 1,593 38 68 2 2 4,212 7.79 0.39 7,644 0.44 0.02
10 4,245 397 1,104 13 15 11,288 10.49 1.48 17,902 0.73 0.03
11 2,511 113 251 4 4 6,234 11.39 0.70 11,397 0.82 0.03
12 1,162 89 181 4 4 2,991 9.04 0.45 4,879 0.70 0.03
13 1,045 81 165 5 5 2,403 9.38 0.52 4,158 0.77 0.03
14 261 73 136 5 5 587 7.28 0.16 937 0.49 0.01
15 1,518 188 414 6 6 3,767 9.11 0.61 6,270 0.58 0.03
16 694 164 342 6 6 1,635 8.49 0.44 2,583 0.55 0.02
17 41,097 579 1,827 15 17 126,946 12.79 2.83 232,901 1.08 0.05
18 20,389 191 497 4 4 75,276 9.60 1.95 121,013 0.61 0.03
19 98,133 771 2,456 19 22 335,341 12.62 7.44 556,492 1.01 0.14
20 198,231 739 2,342 14 17 775,744 13.41 5.19 1,366,010 1.13 0.08
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Opteron tm Processor (model: 6376, frequency: 2.30 GHz) and a RAM of 3.00 GB. It can be
checked in the provided data that, for all configurations, the quoted averages are in the order
of microseconds for both stages of the performed computation. And while there is an increase
of these averages for larger configurations, this increase is not explosive (as is the case with the
size of the corresponding state spaces); as explained in earlier parts of this document, this last
result is due to (i) the “local” nature of the performed computation when considered in the
context of the STD of the underlying semi-Markov process, and (ii) the typically small number
of the untimed transitions activated at m that are actually in a conflicting relation according
to the characterizations of this notion that were provided in Sections 3.3 and 4.

6 Conclusions

This paper has developed a methodology that complements the results of [12] regarding the
GSPN-based performance modeling and control of complex resource allocation systems, by en-
abling the specification of some refined policy spaces that include policies with a much more
compact representation compared to the primary policy space that was employed in [12]. More
specifically, these refined policy spaces employ a smaller number of random switches, with
smaller supports, than the set of random switches that defines the policy space of [12]. On
the other hand, the new policy spaces retain the basic structure of the CTMC that defines the
performance of the considered GSPN models, and therefore, under a “dynamic” interpretation
of the employed random switches, they carry the performance potential of the original MDP
formulation of the addressed scheduling problem. Even more importantly, the random switches
that are constructed in this work reveal the essential conflicts in the scheduling problem ad-
dressed, and enable an effective and fine control of the trade-off between the computational
tractability of the problem formulation and the operational efficiency of the derived solutions;
this last effect can be attained by the further development of mechanisms that will provide a
pertinent “middle ground” between the (fully) static and the (fully) dynamic interpretation of
the refined random switches that are developed in this work.

From a methodological standpoint, the presented developments lie at the intersection of the
qualitative and quantitative analyses of Discrete Event Systems (DES) [5], a theme that has
received only limited attention in the relevant literature.

Finally, as already mentioned, the work presented in [13] has further demonstrated and con-
cretized the practical value of the presented developments by adapting the obtained results to
the particular problem of throughput maximization in capacitated re-entrant lines.

Our future work will complement the developments presented in this paper in the following
two directions: (i) First, we shall seek the enhancement of the SA algorithm presented in [12] in
order to render it more robust to the gradient-estimation errors that arise in the computations
of that algorithm. This endeavor will be based on the integration into the SA algorithm of [12]
of some results and techniques borrowed from the area of statistical inference. (ii) The second
task to be pursued in our future work concerns the further management of the existing trade-
off between (a) the representational and computational tractability and (b) the performance
potential of the sought scheduling policies; in more practical terms, this task will seek the
development of pertinent partial decoupling techniques for the static random switches that are
provided by the presented methodology.
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