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Abstract— Generalized algebraic deadlock avoidance poli-
cies (DAPs) for sequential resource allocation systems
(RAS) have recently been proposed as an interesting exten-
sion of the class of algebraic DAPs, that maintains the an-
alytical representation and computational simplicity of the
latter, while it guarantees completeness with respect to the
maximally permissive DAP. The original work of [1] that in-
troduced these policies also provided a design methodology
for them, but this methodology is limited by the fact that
it necessitates the deployment of the entire state space of
the considered RAS. Hence, this paper seeks the develop-
ment of an alternative computational tool that can support
the synthesis of correct generalized algebraic DAPs while
controlling the underlying computational complexity. More
specifically, the presented correctness verification test pos-
sesses the convenient form of a Mixed Integer Program-
ming formulation that employs a number of variables and
constraints polynomially related to the size of the underly-
ing RAS, and it can be readily solved through canned opti-
mization software. Furthermore, since generalized algebraic
DAPs do not admit a convenient representation in the Petri
Net modeling framework, an additional contribution of the
presented results is that they effect the migration of the rele-
vant past insights and developments with respect to simpler
DAP classes, from the representational framework of Petri
nets to that of the Deterministic Finite State Automata.

Note to Practitioners—The stable and robust operation of
many contemporary technological applications, like flexibly
automated manufacturing systems, industrial and urban in-
telligent transportation systems, and automated workflow
management systems, necessitates the deployment of a con-
trol mechanism that will prevent the development of dead-
lock in the underlying resource allocation. Two typical re-
quests posed in the design of these control mechanisms are
(i) that they are computationally efficient, so that they are
effectively implementable in real time, and (ii) that they im-
pose the minimal restrictions that will ensure deadlock-free
operation, preserving, thus, the maximum possible flexibil-
ity in the system operation. In a recent work we introduced
such a control mechanism, that is known as the class of gener-
alized algebraic deadlock avoidance policies (DAPs), and possesses
the desirable properties of (i) admitting a computationally
efficient representation and (ii) encompassing the minimally
restrictive deadlock avoidance policy for any given system
configuration. However, currently we lack a computation-
ally efficient methodology for designing generalized DAPs
for any given resource allocation system (RAS). The results
presented in this paper seek to cover this need by devel-
oping a computationally efficient mechanism for assessing
the ability of tentative generalized DAPs to establish the
deadlock-free operation of some given RAS. The availability
of such a tool will eventually enable the optimized design of
generalized DAPs through its embedding in a search-based
scheme borrowed from the area of combinatorial optimiza-
tion; this last issue is part of our current investigations.
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I. Introduction

The problem of deadlock avoidance in sequential resource
allocation systems (RAS) is well established and exten-
sively studied in the relevant literature. Generally speak-
ing, the problem concerns the coordinated allocation of a
finite set of reusable resources to a set of concurrently ex-
ecuting processes so that circular waiting situations – i.e.,
situations where a subset of processes wait upon each other
for the release of the necessary resources for their advance-
ment – are avoided and each process can proceed to its suc-
cessful completion. Past work has formally characterized
the problem by means of a number of modelling frameworks
provided by qualitative Discrete Event Systems (DES) the-
ory [2] – e.g., finite state automata, Petri nets (PN), and
various other graph theoretic models – and it has also pro-
vided a number of methodologies for the synthesis of the
necessary deadlock avoidance policies (DAP’s) for various
sub-classes of these systems; we refer the reader to [3], [4]
for a systematic and comprehensive exposition of all the
currently available results.

A DAP class that has received particular attention
among those past results is that known as algebraic, since
the relevant policies seek to ensure the deadlock-freedom
of the underlying RAS by confining its operation in a sub-
space that satisfies a properly chosen set of linear inequal-
ities. This closed-form expression of the policy-defining
logic is very convenient during the real-time implementa-
tion of the policy, especially in the case that the number of
the policy-defining inequalities is a polynomial function of
the size of the controlled RAS. Furthermore, the works of
[5], [6] have shown that, under a PN-based representation,
each of the policy-defining inequalities can be conveniently
represented by the super-imposition of a “monitor” place
on the PN modeling the structure of the original RAS.
This representation subsequently facilitates a host of policy
analysis and synthesis techniques based on results coming
from the structural analysis of the PNs modeling the con-
sidered RAS class. More specifically, the current results on
algebraic DAPs encompass
1. detailed policies for a number of RAS sub-classes of very
practical significance, e.g., [7], [8], [9], [10];
2. a generic methodology for testing the correctness of ten-
tative algebraic DAPs for any given RAS, based on PN
structural analysis, e.g., [11], [12], [13];
3. an emerging algebraic theory for interpreting the func-
tionality of algebraic DAPs, e.g., [14], [15]; and
4. a methodology for designing maximally permissive al-
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gebraic DAPs through PN reachability analysis and the
theory of regions, e.g., [16], [17], [18].

Yet, an inherent limitation of algebraic DAPs is that,
due to the linear structure of the employed inequalities,
they cannot admit non-convex sub-spaces, and therefore,
they might be unable to represent the maximally permissive
DAP for some given RAS. Motivated by this observation,
the work of [1] introduced the class of generalized algebraic
DAPs, which maintains the analytical representation and
computational simplicity of algebraic DAPs, and at the
same time, it guarantees completeness with respect to the
maximally permissive DAP. The results of [1] also include
a design methodology for generalized algebraic DAPs, that
essentially constitutes an extension of the results of [18]
to this new class of policies (c.f. item (4) in the above
list). However, it is well known that design methodologies
that are based on the theory of regions necessitate the de-
ployment of the entire reachability space of the underlying
plant, and therefore, they are limited by a very high com-
putational complexity. Hence, the work presented in this
paper seeks the development of an alternative computa-
tional tool that can support the synthesis of correct gen-
eralized algebraic DAPs while controlling the underlying
computational complexity. More specifically, the presented
correctness verification test possesses the convenient form
of a Mixed Integer Programming formulation that employs
a number of variables and constraints polynomially related
to the size of the underlying RAS, and it can be readily
solved through canned optimization software. The devel-
oped formulation essentially constitutes an extension to the
class of generalized algebraic DAPs of similar past results
derived for the class of algebraic DAPs (c.f. item (2) in the
above list). At the same time, the presented results effect
the migration of the earlier developments from the repre-
sentational framework of Petri nets to that of the Deter-
ministic Finite State Automata, a requirement stipulated
by the fact that generalized algebraic DAPs do not admit a
convenient representation in the PN modeling framework.
In fact, we believe that the translation of the past results
in this new representational framework is a significant con-
tribution in itself, since (a) it enables a more profound
understanding of the past developments, and (b) it renders
them more accessible to the practitioner (by circumventing
a set of technical concepts and results that pertain to PN
structural analysis).

In the light of the above introduction, the rest of the pa-
per is organized as follows: Section II provides the neces-
sary background for the systematic presentation of the pa-
per contributions. More specifically, this section provides
a formal characterization of the RAS class considered in
this work, the underlying deadlock avoidance problem, the
class of generalized algebraic DAPs as a particular solution
to this problem, and a generic DAP correctness criterion,
that constitutes the basis for the main developments of the
paper. These developments are presented in Section III,
which introduces the problem of the correctness verifica-
tion of generalized algebraic DAPs, and presents a solution
to it that is based on the aforementioned criterion for DAP

correctness and Mathematical (Mixed Integer) Program-
ming. The closing part of the section also discusses some
interesting properties of the derived test in terms of its com-
putational complexity and its relationship to similar past
results for simpler DAP classes. Section IV demonstrates
the application of the proposed method on an elucidat-
ing example, and finally, Section V concludes the paper by
highlighting the significance and applicability of the pre-
sented contributions, and suggesting directions for future
work.

II. Disjunctive / Conjunctive Resource
Allocation Systems and Generalized

Algebraic DAPs

We begin the discussion of the results presented in this
manuscript by providing a rigorous characterization of the
considered RAS and their underlying dynamics. For ex-
pository purposes, we confine the subsequent discussion to
the rather prototypical class of Disjunctive / Conjunctive
(D/C-) RAS; however, our results can be easily extended to
the more complex RAS classes presented in the taxonomy
of [3].

A. D/C-RAS specification

For the purposes of this work, a Disjunctive / Con-
junctive Resource Allocation System (D/C-RAS) is for-
mally defined by a 4-tuple Φ =< R, C,P,D > where: (i)
R = {R1, . . . , Rm} is the set of the system resource types.
(ii) C : R → Z+ – the set of strictly positive integers –
is the system capacity function, characterizing the number
of identical units from each resource type available in the
system. Resources are considered to be reusable, i.e., each
allocation cycle does not affect their functional status or
subsequent availability, and therefore, C(Ri) ≡ Ci consti-
tutes a system invariant for each i. (iii) P = {Π1, . . . ,Πn}
denotes the set of the system process types supported by
the considered system configuration. Each process type Πj

is a composite element itself, in particular, Πj =< Sj ,Gj >,
where: (a) Sj = {Ξj1, . . . ,Ξj,l(j)} denotes the set of pro-
cessing stages involved in the definition of process type
Πj , and (b) Gj is an acyclic digraph with its node set,
Vj , being bijectively related to the set Sj . Let V ↗

j (resp.,
V ↘

j ) denote the set of source (resp., sink) nodes of Gj .
Then, any path from some node vs ∈ V ↗

j to some node
vf ∈ V ↘

j defines a process plan for process type Πj . (iv)
D :

⋃n
j=1 Sj →

∏m
i=1{0, . . . , Ci} is the resource allocation

function associating every processing stage Ξjk with a re-
source allocation request D(j, k) ≡ Djk. More specifically,
each Djk is an m-dimensional vector, with its i-th com-
ponent indicating the number of resource units of resource
type Ri necessary to support the execution of stage Ξjk.
Obviously, in a well-defined RAS, Djk(i) ≤ Ci, ∀j, k, i.
Furthermore, the resource set Djk, required for the execu-
tion of a particular processing stage Ξjk, is allocated exclu-
sively and non-preemptively to each process instance, and
it is released by it only upon the allocation of the resources
required for the execution of the subsequent stage. Finally,
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|Φ| ≡ |R|+ |
⋃n

j=1 Sj |+
∑m

i=1 Ci will be referred to as the
size of Φ.

B. Feasible behavior of the D/C-RAS

The behavior generated by a D/C-RAS with respect to
the underlying resource allocation function can be formally
modeled by a deterministic finite state automaton (DFSA)
[2]. In order to define this automaton, it is convenient to re-
number the processing stages of the D/C-RAS with the bi-
jective map q ≡ {q(j, k) = k+

∑j−1
i=1 l(i) : j = 1, . . . , n; k =

1, . . . , l(j)} and to denote the maximal value,
∑n

i=1 l(i), of
this map, by Q. Then, we have:

Definition 1: The DFSA G(Φ) = (S, E, δ, s0, SM )
abstracting the feasible dynamics of a D/C-RAS
Φ =< R, C,P,D > is defined as follows:
1. The state set S consists of vectors s such that each of
the components s(q), q = 1, . . . , Q, of s corresponds to the
respective processing stage Ξq and indicates the number of
process instances executing this stage. Hence, S consists
of all the vectors s ∈ (Z+

0 )Q that further satisfy

∀i = 1, . . . ,m,

Q∑
q=1

s(q) Dq(i) ≤ Ci (1)

where, according to the adopted notation, Dq(i) denotes
the allocation request for resource Ri that is posed by stage
Ξq.
2. The event set E is the union of the disjoint event sets
E↗, Ē and E↘, where:
(a) E↗ = {erp : r = 0, Ξp ∈

⋃n
j=1 V ↗

j }, i.e., event erp

represents the loading of a new process instance that starts
from stage Ξp.
(b) Ē = {erp : ∃j ∈ 1, . . . , n s.t. Ξp is a suc-
cessor of Ξr in graph Gj}, i.e., erp represents the advance-
ment of a process instance executing stage Ξr to a successor
stage Ξp.
(c) E↘ = {erp : Ξr ∈

⋃n
j=1 V ↘

j , p = 0}, i.e, erp rep-
resents the unloading of a finished process instance after
executing its last stage Ξr.
3. For each pair (s, erp) consider the vector s′, with its
components s′(q), q = 1, . . . , Q, given by:

s′(q) =

 s(q)− 1 if q = r
s(q) + 1 if q = p
s(q) otherwise

Then, the state transition function δ : S × E → S of the
automaton is a partial function, defined only over the sub-
set of S × E for which the aforementioned vector s′ ∈ S,
with δ(s, e) ≡ s′.
4. The initial state of the automaton corresponds to s0 =
0, which characterizes the situation where the system is
empty of any process instances.
5. The set of marked states, SM , is defined by the single-
ton SM = {s0}, which expresses the intention to execute
complete process runs. �

The requirement that s′ ∈ S in item (3) above, essen-
tially breaks down to the following two requirements:

1. ∀q = 1, . . . , Q, s′(q) ≥ 0
2. ∀i = 1, . . . ,m,

∑Q
q=1 s′(q) Dq(i) ≤ Ci

We shall refer to the first of these requirements as process-
feasibility and to the second one as resource-feasibility .
Furthermore, in order to capture state transitions resulting
from strings of events σ ∈ E∗, we extend inductively the
domain of function δ from S×E to S×E∗ in the following
manner:
1. ∀s ∈ S, δ(s, ε) = s, and
2. ∀s ∈ S,∀u ∈ E∗,∀e ∈ E, δ(s, ue) = δ(δ(s, u), e).
The symbol ε used in item (1) above, denotes the empty
string . On the other hand, in the interpretation of item (2),
it is implicitly assumed that the involved single-step tran-
sitions correspond to feasible events: i.e., only the state-
event pairs for which the original function δ is defined are
considered; otherwise, the extended version of δ is unde-
fined on the corresponding state-string pair. Then, we shall
say that state s′ is accessible from state s, or that state s
is coaccessible to state s′, iff there exists σ ∈ E∗ such that
s′ = δ(s, σ). In particular, the set of states which is acces-
sible from s0 will be denoted by Sr and it will be referred
to as the set of accessible or reachable states, and the set
of states which are coaccessible to s0 will be denoted by Ss

and it will be referred to as the set of coaccessible or safe
states.

The DFSA-based model of the RAS behavior can be
expressed graphically by the State Transition Diagram
STD(G), i.e., a digraph, whose nodes correspond to the
state set S, and edges correspond to the feasible state tran-
sitions.

C. Admissible behavior of the D/C-RAS and Deadlock
Avoidance Policies

A major concern in the logical control of (D/C-)RAS is
the establishment of deadlock-free or non-blocking behav-
ior. Deadlocks constitute RAS states where there is a set of
process instances such that each of its processes, in order to
advance, requests the allocation of resources currently held
by some other process(es) in the considered set. Their de-
velopment results from (i) the fact that processes will hold
upon their allocated resources in a non-preemptive man-
ner and (ii) the arbitrary structure of the process routes
that can give rise to cyclical patterns of resource requests
among the various executing processes. In the FSA-based
modelling of the RAS operation, the development of dead-
locks is manifested by the formation of strongly connected
components in the system reachable space, Sr, which, how-
ever, are not co-accessible, i.e., the empty state, s0, is not
reachable from them through any sequence of feasible tran-
sitions. The elimination of such problematic behavior from
the system dynamics is attained by the superimposition on
the system behavior of a deadlock avoidance policy (DAP).
A formal definition of this concept, adequate for the needs
of the subsequent developments, is as follows:

Definition 2: For the D/C-RAS model G(Φ) =
(S, E, δ, s0, SM ), consider a logical function ∆ : S →
{true, false} and the restriction δ∆ of the transition func-
tion δ, i.e., the function that generates the same values as
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δ, but it is only defined for pairs (s, σ) s.t. s′ = δ(s, σ) is
defined and ∆(s′) = true. Function ∆ is a correct DAP for
G(Φ) iff (a) ∆(s0)=true and (b) in the restricted DFSA
G∆ = (S, E, δ∆, s0, SM ), each accessible state s is also
coaccessible. �

In the above definition, the accessibility and coaccessi-
bility of state s in system G∆ are understood in the stan-
dard way, i.e., as the respective existence of a string σ s.t.
s = δ∆(s0, σ) and of a string σ′ s.t. s0 = δ∆(s, σ′).1 In
plain terms, Definition 2 implies that the state evolution
in a RAS G(Φ) that is supervised by a DAP ∆ is guarded
by two rules: an event e can occur in state s if the ten-
tative state transition is both feasible (i.e., s′ = δ(s, e) is
defined) and admissible (i.e., ∆(s′) = true). Clearly, the
least restrictive correct DAP, ∆∗, bounds the state transi-
tion function δ to δ∆∗ so that the state transition diagram
STD(G∆∗) is the maximal strongly connected component
of STD(G) that contains s0. Such a policy is effectively
computable through the one-step lookahead scheme that
admits a tentative resource allocation if and only if the
resulting state s′ of G(Φ) is coaccessible to s0, or safe.
However, the corresponding state safety problem is NP-
complete [19]. In the light of this result, the research com-
munity has sought the development of sub-optimal DAP’s
that are implementable in polynomial complexity with re-
spect to the underlying RAS size, and yet, efficient, i.e.,
they manage to admit a large part of the safe states [3].
A typical approach to the design of these policies is the
identification of a property H(s), s ∈ S, such that (i) the
complexity of testing H() on the RAS states is polynomial
with respect to the RAS size, and (ii) the logical function
∆H(s) ≡ I{H(s)} defines a correct DAP, according to Def-
inition 2. Next, we introduce the particular class of gen-
eralized algebraic DAPs, which is the focus of attention to
this work.

D. Generalized Algebraic DAPs

As mentioned in the introduction, the class of general-
ized algebraic DAPs was recently introduced in [1] as a
DAP subclass that combines analytical representation and
computational simplicity with the ability to recognize non-
convex subspaces and therefore, to preserve completeness
with respect to the maximally permissive DAP, ∆∗. A for-
mal characterization of these policies is as follows:

Definition 3: Consider a DFSA G(Φ) = (S, E, δ, s0, SM )
and a logical function ∆H(s), s ∈ S, such that:

1. The parameter H is a quadruple

H =< A, b, π, θ > (2)

where A is a real-valued matrix of dimensionality K × Q;
b is a real-valued K-dimensional vector; π is a real-valued
K-dimensional vector; and θ is a real-valued scalar.

1We notice, for completeness, that since SM = {s0}, DAP correct-
ness can also be interpreted as the requirement for reversibility of the
restricted system G∆.

2. ∆H(s) = true iff

K∑
i=1

π(i) · I{A(i,·)·s≤b(i)} ≤ θ (3)

where I{A(i,·)·s≤b(i)} denotes the indicator variable that is
priced to one if the inequality A(i, ·) · s ≤ b(i) is satisfied,
and to zero, otherwise.
Then, ∆H is a generalized algebraic DAP for RAS Φ iff it
is a correct DAP for it, according to Definition 2. �

Notice that by setting π(i) = −1,∀i, and θ = −K, the
condition expressed by Equation 3 is equivalent to the re-
quirement A · s ≤ b, and therefore, the class of generalized
algebraic DAPs subsumes the original, simpler class of al-
gebraic DAPs [3]. Also, under the reasonable assumption
that all the elements of the quadruple H are rational , one
can obtain another quadruple H ′ such that all the elements
of H ′ are integer-valued and ∆H(s) = ∆H′(s). Hence, the
correctness analysis of these policies can be pursued by
considering only integer-valued quadruples H. This obser-
vation is exploited in the next section, where we study the
development of a mathematical programming formulation
that assesses the capability of any tentative quadruple H
to define a correct generalized algebraic DAP ∆H for some
given RAS Φ.

E. A criterion for DAP correctness verification

We conclude this section by (re-)stating a criterion for
DAP correctness verification that was originally developed
in [8] and will be instrumental in the development of the
results presented in the subsequent parts of this paper.

Proposition 1: A tentative DAP ∆ for a given D/C-
RAS Φ satisfies item (b) of Definition 2, if for every state
s ∈ S\{s0} with ∆H(s)=true, there exists a feasible and
admissible event erp ∈ Ē ∪ E↘. �

In order to see the validity of Proposition 1, first notice
that the presumed acyclicity of the graphs Gj , that en-
code the available process plans for each process Πj , j =
1, . . . , n, implies that all these process plans are executable
in a finite number of steps. But then, starting from
a policy-admissible state s ∈ S\{s0}, one can establish
the existence of a feasible and admissible event sequence
σ ∈ E∗ that completes all the remaining workload in that
state, by repetitive invocation of the condition implied by
the above proposition.

III. Correctness analysis of tentative
generalized algebraic DAP’s

A. The considered problem and the basic methodology un-
derlying the proposed solution

In this section we consider the following problem: Given
a D/C-RAS Φ =< R, C,P,D > and an integer-valued
quadruple H =< A, b, π, θ > that defines a tentative gen-
eralized algebraic DAP, ∆H , for RAS Φ, we want to assess
the correctness of ∆H for Φ, i.e., according to Definition 2,
we want to assess whether
1. ∆H(s0) = true, and
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2. in the DFSA G∆H
, modeling the controlled system be-

havior, every accessible state s is also coaccessible.
Item (1) in the above list can be immediately resolved

through the test suggested by item (2) in Definition 3. Next
we focus on the more involved issue of assessing item (2),
which will be resolved through the criterion established by
Proposition 1. More specifically, in the following, we trans-
late the criterion of Proposition 1 into a mathematical pro-
gramming (MP) formulation that is able to verify the cor-
rectness of some tentative generalized algebraic DAP ∆H

for a given D/C-RAS Φ through the pricing of its optimal
objective value. The derivation of this formulation will
proceed in two steps: First, we shall develop an MP test
that will assess the existence of a feasible and admissible
event erp ∈ Ē ∪ E↘, in any given state s ∈ S. In the
second step, we shall extend the test derived in Step one
to the test suggested by Proposition 1, by turning the pa-
rameter s into a variable that takes values over the space
{s ∈ S\{s0} : ∆H(s) =true}.

B. Testing the existence of a feasible and admissible non-
loading event in a given state s ∈ S

Consider a state s = [s(i), i = 1, . . . , Q] ∈ S, an event
erp ∈ E, r 6= 0, and the tentative next-state srp given by:

srp(i) =

 s(i)− 1 if i = r
s(i) + 1 if i = p
s(i) otherwise

(4)

The feasibility of state srp with respect to the resource-
capacity constraints can be analytically characterized as
follows:
∀j ∈ 1, . . . ,m,

Cj −
Q∑

q=1

srp(q) Dq(j) ≥ (1− yrp
j ) L1rp

j (5)

Cj −
Q∑

q=1

srp(q) Dq(j) ≤ yrp
j U1rp

j − 1 (6)

f1
rp ≤ yrp

j (7)

f1
rp + (m− 1) ≥

m∑
j=1

yrp
j (8)

yrp
j , f1

rp ∈ {0, 1} (9)

The parameter L1rp
j (resp., U1rp

j ), j = 1, . . . ,m, de-
notes a lower (resp., upper) bound for the quantity Cj −∑Q

q=1 srp(q) Dq(j) (resp., Cj−
∑Q

q=1 srp(q)Dq(j)+1) taken
over all the states srp that can be obtained by (4).2 Hence,
constraints (5-6) enforce the pricing of the binary variable
yrp

j so that yrp
j = 1 if

∑Q
q=1 srp(q) Dq(j) ≤ Cj , and yrp

j = 0
otherwise. Consequently, constraints (7-8) imply that the
binary variable f1

rp = 1 iff yrp
j = 1 for all j ∈ 1, . . . ,m, i.e.,

iff state srp is resource-feasible.

2The necessary methodology for obtaining these bounds is provided
at the end of this section.

In a similar spirit, the characterization of the process
feasibility of the state srp – i.e., the assessment of the non-
negativity of the different components of srp – can be per-
formed as follows:
∀q ∈ 1, . . . , Q,

srp(q) ≥ (1− zrp
q ) L2rp

q (10)
srp(q) ≤ zrp

q U2rp
q − 1 (11)

f2
rp ≤ zrp

q (12)

f2
rp + (Q− 1) ≥

Q∑
q=1

zrp
q (13)

zrp
q , f2

rp ∈ {0, 1} (14)

The parameter L2rp
q (resp., U2rp

q ), q = 1, . . . , Q, denotes
a lower (resp., upper) bound for the value of srp(q) (resp.,
srp(q) + 1) over all states srp that can be obtained by (4).
Hence, constraints (10-11) enforce the pricing of the binary
variable zrp

q so that zrp
q = 1 iff srp(q) ≥ 0. But then,

constraints (12-13) price the binary variable f2
rp to 1 iff

srp ≥ 0.
Finally, the admissibility of state srp with respect to ∆H ,

H = (A, b, π, θ), can be characterized as follows:
∀i ∈ 1, . . . ,K,

bi −A(i, ·) · srp ≥ (1− xrp
i ) L3rp

i (15)
bi −A(i, ·) · srp ≤ xrp

i U3rp
i − 1 (16)

xrp
i ∈ {0, 1} (17)

and

θ −
K∑

i=1

π(i) xrp
i ≥ (1− f3

rp)Lrp (18)

θ −
K∑

i=1

π(i) xrp
i ≤ f3

rp Urp − 1 (19)

f3
rp ∈ {0, 1} (20)

The parameter L3rp
i (resp., U3rp

i ), i = 1, . . . ,K, denotes a
lower (resp., upper) bound for the quantity bi−A(i, ·) · srp

(resp., bi−A(i, ·)·srp+1) over all the states srp that can be
obtained by (4). Furthermore, the parameter Lrp (resp.,
Urp) denotes a lower (resp., upper) bound for the quantity
θ−

∑K
i=1 π(i) xrp

i (resp., θ−
∑K

i=1 π(i) xrp
i +1). Then, con-

straints (15-17) enforce the pricing of the binary variable
xrp

i so that xrp
i = 1 iff A(i, ·) · srp ≤ bi, i.e., the pricing

of xrp
i materializes the corresponding indicator variable I

in Equation (3). Consequently, by constraints (18-19), the
binary variable f3

rp = 1 iff state srp is admissible with
respect to ∆H .

Based on the above, the plausibility of the event erp at
state s of the automaton G∆H

(Φ) can be characterized as
follows:

frp ≤ fk
rp, ∀k = 1, 2, 3 (21)

frp + 2 ≥
3∑

k=1

fk
rp (22)

0 ≤ frp ≤ 1 (23)
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Constraints (21-23) set frp = 0 if fk
rp = 0 for any k = 1, 2, 3.

On the other hand, they set frp = 1 if f1
rp = f2

rp = f3
rp = 1,

that is, if state srp is both feasible and admissible. Thus,
frp = 1 denotes the fact that the event erp ∈ E, r 6= 0 is
executable at state s in G∆H

(Φ), and we have established
the following proposition:

Proposition 2: Given a state s ∈ S of a D/C-RAS Φ, and
an integer-valued quadruple H = (A, b, π, θ), consider the
values of the binary variables frp that are obtained from the
unique solution of the systems of Equations (4-23) defined
for each event erp ∈ E, r 6= 0. Then, there exists an event
erp ∈ E, r 6= 0, that is resource and process-feasible in Φ,
and also admissible with respect to policy ∆H , iff∑

erp∈E, r 6=0

frp > 0 (24)

C. Characterizing the living space for state variable s

As already mentioned, the correctness test of Proposi-
tion 1 implies that the test of Proposition 2 must be sat-
isfied by every state s ∈ S\{s0} such that ∆H(s)=true.
Hence, when s is considered as a Q-dimensional variable
vector, it must satisfy the following constraints:

First of all, the process feasibility of s implies that

∀q = 1, . . . , Q, s(q) ∈ Z+
0 (25)

Furthermore, the resource feasibility of s implies that

∀j = 1, . . . ,m,

Q∑
q=1

s(q) Dq(j) ≤ Cj (26)

The requirement that s 6= s0 can be enforced by

Q∑
q=1

s(q) ≥ 1 (27)

Finally, the admissibility of state s with respect to ∆H ,
H = (A, b, π, θ), can be enforced as follows:
∀i = 1, . . . ,K,

bi −A(i, ·) · s ≥ (1− xs
i )Li (28)

bi −A(i, ·) · s ≤ xs
i Ui − 1 (29)

xs
i ∈ {0, 1} (30)

K∑
i=1

π(i)xs
i ≤ θ (31)

The parameters Li (resp., Ui), i = 1, . . . ,K, denotes a
lower (resp., upper) bound for the quantity bi−A(i, ·)·s, s ∈
S (resp., bi−A(i, ·)·s+1, s ∈ S). Thus, constraints (28-30)
enforce the pricing of the binary variable xs

i so that xs
i = 1

if A(i, ·) · s ≤ bi, and xs
i = 0 otherwise. Consequently,

the pricing of xs
i materializes the corresponding indicator

variable I in Equation (3), and therefore, constraint (31)
enforces the admissibility of state s by policy ∆H .

D. The main result

In order to state the main result of this work, consider the
Mixed Integer Programming (MIP) formulation F with its
objective function defined by the minimization of the left-
hand-side of Equation 24, and its constraint set consisting
of Equations (25-31) and also one set of Equations (4-23)
for each event erp ∈ E, r 6= 0. Also, let O∗(F) denote the
optimal objective value of this formulation. Then, we have
the following theorem:

Theorem 1: Given a D/C-RAS Φ =< R, C,P,D > and
an integer-valued quadruple H =< A, b, π, θ >, the policy
∆H defined according to Definition 3 constitutes a cor-
rect generalized DAP for Φ if (a) ∆H(s0)=true and (b)
O∗(F) > 0, where O∗(F) is defined as in the previous
paragraph.

Proof: The definition of frp through constraints (4-23)
implies that ∑

erp∈E, r 6=0

frp ≥ 0

Furthermore, the fact that O∗(F) > 0 combined with (a)
the pricing of variable s through constraints (25-31) and (b)
Proposition 2, imply that, for every state s ∈ S\{s0} such
that ∆H(s0)=true, there exists at least one event erp ∈
Ē ∪ E↘ that is feasible and admissible. But then, the
correctness of ∆H is immediately inferred by Proposition 1.
�

E. Discussion

The following observations elaborate and clarify the pre-
vious developments:

Observation 1: In agreement with the notation used in
the previous sections, we let |R| denote the number of the
system resource types, Q denote the number of distinct
processing stages, K denote the row dimensionality of the
matrix A that defines the generalized algebraic DAP un-
der consideration, and |Ē ∪E↘| denote the number of the
job advancing and unloading events. Then, it is easy to
verify that the formulation F considered in Theorem 1
involves (|R| + Q + K + 3) · |Ē ∪ E↘| + K binary vari-
ables, Q nonnegative integer variables, Q · |Ē ∪ E↘| real
variables, and |Ē ∪ E↘| nonnengative real variables, in
|R|+ 2K + 2 + |Ē ∪E↘|(4Q + 3|R|+ 2K + 9) constraints.
Hence, the size of this formulation, in terms of variables
and constraints, is defined by second degree polynomials
in the variables that define the size of the underlying sys-
tem, |Φ|, and the complexity / size of the applied DAP.
On the other hand, the integral nature of many of the in-
volved variables implies that the computational complexity
of the proposed test remains super-polynomial with respect
to |Φ|. Collective past experience with similar formulations
obtained for algebraic DAPs in the PN modeling framework
(e.g., [11], [20], [16], [21]) and the capabilities of the existing
computational platforms for Mixed Integer Programming,
provide substantial evidence that the correctness test of
Theorem 1 will remain a viable proposition for most prac-
tical cases. Furthermore, the involved computation can be
substantially alleviated when realizing that the key concern
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is not the exact calculation of the optimum value of the
considered MP formulation but the assessment of whether
this optimum value is equal to or greater than zero. Hence,
assuming that the proposed formulation is solved through
some variant of the Branch & Bound method [22], one can
fathom any search path with a corresponding lower bound
for the optimal solution greater than zero. Similarly, the
entire computation can be terminated as soon as a feasible
solution of zero objective value is identified.

Observation 2: The test of Theorem 1 is only a suffi-
cient test for the correctness of policy ∆H , since the living
space of the state variable s defined by constraints (25-31)
can contain states that are not accessible under ∆H , while
O∗(F) is priced to zero by some of these states. It is possi-
ble, however, to extend the test of Theorem 1 to a necessary
and sufficient condition for correctness, by tightening the
living space of s in a way that excludes the aforementioned
problematic states, and still maintain a polynomially sized
MIP formulation with respect to |Φ|, in terms of the en-
gaged variables and constraints. Such an extension can be
achieved by modifying ideas and techniques that were de-
veloped originally in [23] for the class of algebraic DAP’s.

Observation 3: When restricted to the case of algebraic
DAPs, the test of Theorem 1 is equivalent, in terms of its
discriminative power, to the corresponding tests developed
in [12], [3]. This can be realized by first noticing that the
presence of states s 6= s0 failing the test of Proposition 2,
in the DFSA modeling framework, is equivalent to the
presence of markings containing resource-induced deadly
marked siphons, in the PN-modeling framework. Further-
more, since the PNs modeling the (D/C-)RAS behavior
under the control of algebraic DAPs are consistent and
conservative, the set of markings satisfying the state equa-
tion is equivalent to the set of markings satisfying the net
semi-flows [24]. But in a well-defined process-resource net,
these semi-flows essentially express the resource-feasibility
and policy-admissibility requirements, and therefore, the
set of DFSA states characterized by constraints (25-31) is
equivalent, in the PN modeling framework, to the set of
markings, M 6= M0, that satisfy the state equation.

Observation 4: In order to support the complete imple-
mentation of the test of Theorem 1, it remains to discuss
how to obtain the upper and lower bounds appearing in dif-
ferent parts of the involved formulation F . Here we high-
light this computation by discussing the case of L1rp

j ; the
other bounds can be obtained through similar reasoning.
Since, by its definition, L1rp

j must provide a lower bound
to the left-hand-side of Equation 5 for any value of the state
variable s, it can be priced by solving the following MIP
formulation:

L1rp
j ≡ min{Cj −

Q∑
q=1

srp(q) Dq(j)}

s.t.

Equations 4, 25-31

4
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Fig. 2. Characterization of the safe and unsafe reachable states for
the example D/C-RAS of Figure 1, in the projected sub-space defined
by the state components s1 and s3; safe reachable states are depicted
by white circles and unsafe reachable states by black ones.

IV. Example

This section demonstrates the methodology for DAP cor-
rectness verification that was developed in Section III, by
employing it to assess the correctness of a number of gener-
alized algebraic DAPs that are contemplated for the D/C-
RAS depicted in Figure 1. As indicated in Figure 1, the
considered D/C-RAS consists of two resource types, R1 and
R2, with corresponding capacities C1 = C2 = 2, and it sup-
ports two process types: Process type Π1 consists of a linear
sequence of two processing stages, Ξ11 and Ξ12, with corre-
sponding resource allocation request vectors D11 = (1, 0)T

and D12 = (0, 2)T . Process type Π2 is another linear se-
quence of two processing stages, Ξ21 and Ξ22, with corre-
sponding resource allocation request vectors D21 = (0, 1)T

and D22 = (2, 0)T . Figure 1 also annotates the mapping
of the RAS stages, {Ξ11,Ξ12,Ξ21,Ξ22}, to the components
of the state vector, s, that is employed by the FSA-based
representation of the considered RAS, and the job advanc-
ing and unloading events that will be of interest in the
subsequent formulation.

Clearly, the optimal DAP for the considered RAS must
restrict only the resource allocation with respect to stages
Ξ11 and Ξ21, since any process instances executing the re-
maining stages Ξ12 and Ξ22 can immediately exit the sys-
tem upon their completion. Hence, the admissibility of any
given RAS state, s = (s1, s2, s3, s4)T , can be resolved by
considering only its projection to the subspace defined by
its components s1 and s3. This projection is depicted in
Figure 2, which indicates that the set of reachable and safe
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TABLE I

The policy-defining parameters

Policy a1 b1 a2 b2

1 2 1 2 1
2 2 3 2 1

TABLE II

The formulation parameters Ei
j

i \ j 1 2 3 4
1 -1 1 0 0
2 0 -1 0 0
3 0 0 -1 1
4 0 0 0 -1

states of the considered D/C-RAS is indeed non-convex.
Figure 2 also proposes a structure for the generalized alge-
braic DAPs that would implement the optimal DAP, ∆∗.
More specifically, such a policy can be defined by any pair
of straight lines that separate the safe from the unsafe sub-
space, as indicated in the figure, plus a “voting” scheme
that admits a state vector s if and only if it satisfies one of
the two inequalities defined by the aforementioned straight
lines. A particular instantiation, that corresponds to the
separating lines annotated in Figure 2, is given by the in-
equality:

−1 · I{2s1≤1} − 1 · I{2s3≤1} ≤ −1 (32)

Motivated by the above observations, in the following,
we employ the MIP formulation of Theorem 1, in order to
assess the correctness for the D/C-RAS of Figure 1, of the
two generalized algebraic DAPs defined by the following
structure

−1 · I{a1s1≤b1} − 1 · I{a2s3≤b2} ≤ −1 (33)

and the parameterizations for a1, b1, a2 and b2 provided
in Table I. Notice that, under the proposed parameteriza-
tions, Policy #1 is the maximally permissive DAP defined
by Equation 32. On the other hand, Policy #2 is an in-
correct DAP, since it admits all the reachable unsafe states
with s1 = 1.

The reader can verify that the customization of the MIP
formulation of Theorem 1 to the considered application
context, results in the formulation of Figure 3. This for-
mulation consists of 148 constraints, involving 46 binary, 4
non-negative integer, 16 real and 4 nonnegative real vari-
ables. The parameters Ei

j , i = 1, . . . , 4, j = 1, . . . , 4, that
appear in it, are readily obtained by the definition of the
events e1, e2, e3 and e4 in Figure 1, and they are tabulated
in Table II. The remaining bounding parameters of the L
and U types, that are necessary for the complete charac-
terization of the formulation, can be obtained as indicated
in Observation 4.

The solution of the formulation of Figure 3 for the two
policy parameterizations provided in Table I, through the

min
4∑

i=1

fi

s.t.
s1 + 2s4 ≤ 2

2s2 + s3 ≤ 2
4∑

i=1

si ≥ 1

a1s1 − L1x
s
1 ≤ b1 − L1

a2s3 − L2x
s
2 ≤ b2 − L2

a1s1 + U1x
s
1 ≥ b1 + 1

a2s3 + U2x
s
2 ≥ b2 + 1

xs
1 + xs

2 ≥ 1

∀i = 1, . . . , 4, ∀j = 1, . . . , 4, si
j − sj = Ei

j

∀i = 1, . . . , 4, si
1 + 2si

4 − L1i
1y

i
1 ≤ 2− L1i

1

∀i = 1, . . . , 4, 2si
2 + si

3 − L1i
2y

i
2 ≤ 2− L1i

2

∀i = 1, . . . , 4, si
1 + 2si

4 + U1i
1y

i
1 ≥ 3

∀i = 1, . . . , 4, 2si
2 + si

3 + U1i
2y

i
2 ≥ 3

∀i = 1, . . . , 4, ∀j = 1, 2, f1
i − yi

j ≤ 0

∀i = 1, . . . , 4,
2∑

j=1

yi
j − f1

i ≤ 1

∀i = 1, . . . , 4, ∀j = 1, . . . , 4 si
j + L2i

jz
i
j ≥ L2i

j

∀i = 1, . . . , 4, ∀j = 1, . . . , 4 U2i
jz

i
j − si

j ≥ 1

∀i = 1, . . . , 4, ∀j = 1, . . . , 4 f2
i − zi

j ≤ 0

∀i = 1, . . . , 4,

4∑
j=1

zi
j − f2

i ≤ 3

∀i = 1, . . . , 4, a1s
i
1 − L3i

1x
i
1 ≤ b1 − L3i

1

∀i = 1, . . . , 4, a2s
i
3 − L3i

2x
i
2 ≤ b2 − L3i

2

∀i = 1, . . . , 4, a1s
i
1 + U3i

1x
i
1 ≥ b1 + 1

∀i = 1, . . . , 4, a2s
i
3 + U3i

2x
i
2 ≥ b2 + 1

∀i = 1, . . . , 4,
2∑

j=1

xi
j + Lif3

i ≥ Li + 1

∀i = 1, . . . , 4,
2∑

j=1

xi
j − U if3

i ≤ 0

∀i = 1, . . . , 4, ∀j = 1, 2, 3, fi − f j
i ≤ 0

∀i = 1, . . . , 4,
3∑

j=1

f j
i − fi ≤ 2

f j
i , xs

i , y
i
j , z

i
j , x

i
j ∈ {0, 1}; 0 ≤ fi ≤ 1; sj ∈ Z+

0 ; si
j ∈ R

Fig. 3. The MIP formulation for the considered example
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GAMS c© solver, returned, as expected, the optimal value
of 1 for the first case, and the optimal value of 0 for the
second. In the second case, the s vector returned in the
optimal solution was s = (1, 0, 1, 0)T , which can be verified
to be a deadlock state. Finally, in order to provide some
more concrete feeling regarding the underlying computa-
tional requirements, we also notice that the execution of
the considered formulation for the two policy instantiations
on a SunOS 5.9 platform, required 10 milliseconds for Pol-
icy #1 and less than one millisecond for Policy #2. These
times are consistent with the insights provided in Obser-
vation 1, since the identification of an admissible deadlock
state during the correct evaluation of Policy #2 – i.e., a fea-
sible solution with a zero objective value – results in drastic
fathoming, and therefore, an expedient search process. On
the other hand, verifying the correctness of Policy #1 re-
quires a more exhaustive enumeration of the search tree
underlying the Branch & Bound method. Both of these
times could have been improved through a customized im-
plementation of the Branch & Bound method according to
the suggestions offered in Observation 1.

V. Conclusion

The main contribution of this paper is an analytical test
that can verify the correctness of any tentative generalized
algebraic DAP ∆H for some given (D/C-)RAS Φ. The pre-
sented test possesses the convenient form of a Mixed Inte-
ger Programming formulation that employs a number of
variables and constraints polynomially related to the RAS
size |Φ|, and it can be readily solved through canned opti-
mization software. The developed formulation essentially
constitutes an extension to the class of generalized alge-
braic DAPs of similar past results derived for the class of
algebraic DAPs. At the same time, it effects the migration
of those past results from the PN to the DFSA representa-
tional framework.

Future work will evolve in two directions: (i) One leg will
explore the design of detailed, customized algorithms for
the criterion of Theorem 1 and the potential development of
alternative MP-based correctness verification tests for gen-
eralized algebraic DAPs that will employ a smaller number
of variables and/or constraints. (ii) An additional leg will
seek the embedding of the derived test(s) in an intelligent
search procedure towards the identification of highly effi-
cient generalized algebraic DAPs for any given (D/C-)RAS
Φ, possibly satisfying additional design requirements.
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