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Abstract

The original definition of the problem of optimal node visitation (ONV) in acyclic stochastic

digraphs concerns the identification of a routing policy that will enable the visitation of each leaf

node a requested number of times, while minimizing the expected number of the graph traversals.

The original work of [1] formulated this problem as a Stochastic Shortest Path (SSP) problem, and

since the state space of this SSP formulation is exponentially sized with respect to the number

of the target nodes, it also proposed a suboptimal policy that is computationally tractable and

asymptotically optimal. This paper extends the results of [1] to the cases where (i) the tokens

traversing the graph can “split” during certain transitions to a number of (sub-)tokens, allowing,

thus, the satisfaction of many visitation requirements during a single graph traversal, and (ii) there

are additional visitation requirements attached to the internal graph nodes, which, however, can be

served only when the visitation requirements of their successors have been fully met. In addition,

the presented set of results establishes stronger convergence properties for the proposed suboptimal

policies, and it provides a formal complexity analysis of the considered ONV formulations. From

a practical standpoint, the extension of the original results performed in this paper enables their

effective usage in the application domains that motivated the ONV problem, in the first place.

1 Introduction

The ONV problem and its practical motivation The problem of the optimal node visitation (ONV)

in acyclic stochastic digraphs was originally introduced in [1]. According to the definition provided in

[1], this problem concerns the identification of a routing policy that will enable the visitation of each

leaf node of an acyclic stochastic digraph a requested number of times, while minimizing the expected

number of the graph traversals. In [1], the problem was formulated as a stochastic shortest path (SSP)

problem [2], and due to the state space explosion in the provided SSP formulation, it was eventually

addressed by a suboptimal policy that traded off optimality for computational tractability. This policy
∗An abridged version of this manuscript was presented at WODES’08.



was derived from a continuous – or “fluid” – relaxation of the original problem, and it was shown to be

asymptotically optimal , in the sense that the ratio of its performance to the performance of an optimal

policy converges to one, as the node visitation requirements are scaled uniformly to infinity.

From a more practical standpoint, the ONV problem mentioned above was motivated by our past

work presented in [3, 4]. In these works, a learning agent must compute on-line an optimal policy for

a task that evolves episodically over a state space that is acyclic, and it has a single source state that

defines the task initial state. The execution of an action implies an immediate stochastic reward and

a stochastic transition to a subsequent state. However, the statistics of the collected rewards and the

various transition probabilities are initially unknown to the learning agent. Furthermore, the considered

task can involve multi-threading , with the different threads being initiated upon the execution of certain

actions at the visited states. The objective of the learning agent is to maximize the expected value

accumulated over a single episode, through the selection of a pertinent action at each state visited by

each running thread.

In [4], it is shown that the agent can obtain an ε-optimal policy with probability at least 1 − δ, by

sampling the various actions available at each task state a certain number of times1 and selecting the

action that results to the highest sample mean. The algorithm’s sampling schedule essentially constitutes

a set of pre-specified visitation requirements for each task state. Furthermore, any viable schedule for

preforming these visitations must observe the additional requirement that a task state can have the

value of its local actions sampled only if all of its successors states have been fully sampled and the

sought policy has been determined at these states. Hence, at any point of the algorithm execution, the

various task states are naturally classified as “inactive”, “actively explored” and “fully explored”, and

the considered algorithm can be summarized as follows: Starting with the set of terminal states, the

algorithm maintains a “frontier” set of “actively explored” states for which it tries to identify an optimal

action. When an “actively explored” state has been visited a number of times equal to the respective

visitation requirement and, thus, all of its local actions have been adequately sampled, it is assigned the

action with the highest sample mean, it is declared “fully explored”, and it abandons the set of “actively

explored” states. On the other hand, “inactive” states join the “frontier” layer of “actively explored”

states when all their immediate successors become “fully explored”.

At every task iteration – or task episode – executed by the algorithm described in the previous

paragraph, the learning agent has to navigate all the activated threads through a contiguous set of

unexplored states until they reach an actively explored or a fully explored state. When an activated

thread reaches an actively explored state, the algorithm collects a sample regarding the value of one of

the state actions, and it reduces the state visitation requirement by one unit. On the other hand, a thread

that results in a fully explored state,2 does not contribute any additional information to the algorithm’s

sampling process. It is clear from this description that, in order to effect an expedient learning process,

there is a need for pertinent routing policies for the threads activated at each task episode, that will enable

the realization of the posed visitation requirements in a minimum number of episodes. Furthermore, such
1that depends on the graph structure and the performance parameters ε and δ
2This can happen due to the stochastic nature of the task transitions.
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an optimized routing policy must base the agent’s decisions on (i) the current set of inactive, actively

explored and fully explored states, (ii) the set of the visitation requirements remaining for each state, (iii)

the states of all the activated threads, and (iv) the probability distributions that govern the stochastic

outcomes of the different actions that can be exerted by the activated threads. The ONV problem of [1]

and its new variations that are studied in the later parts of this work, constitute a series of prototypical

abstractions of the aforementioned routing problem, of increasing modeling detail and corresponding

complexity. In an effort to develop the necessary analytical insights and a theoretical framework for the

effective design of the sought routing policies, all of the provided formulations assume a state of “perfect

information” for the routing agent; in particular, all of these formulations incorporate the simplifying

assumption that all the transition probabilities of the underlying task are known a priori . However,

the policies derived from this analysis can be subsequently implemented in the context of the learning

algorithm described above, according to a “certainty equivalence” scheme [2] that substitutes the actual

transition probabilities with pertinent estimates obtained during the execution of the algorithm.

The paper contributions Next we detail the major contributions of this work with respect to the

ONV problem that was motivated and outlined in the previous paragraph. As it will be revealed from

the following discussion, the presented results enhance the modeling affinity and the relevance of the

ONV problem to its motivational application context, and they also strengthen the theoretical analysis

of the underlying problem dynamics in a way that facilitates the design of more pertinent solutions

to it. A third line of the results presented in this manuscript concerns the systematic investigation of

the computational complexity of the considered variations of the ONV problem, a task that provides

formal testimony to their increased (non-polynomial) complexity, but also reveals the affinity of the

considered problems to some more classical stochastic scheduling problems that have been addressed in

the literature. A more detailed account of these contributions is as follows:

We start with a discussion of the way that the presented results increase the modeling affinity and

the relevance of the ONV problem to the machine learning context that motivated it. As stated in

the opening paragraph of this section, the ONV formulation addressed in [1] considered the case where

the only nodes possessing non-zero visitation requirements are the terminal nodes of the underlying

stochastic digraph. Furthermore, this first formulation did not consider any multi-threading effects in

its analysis. In this work, building upon the insights and the results obtained in [1], we take on the

additional features of task multi-threading and the presence of non-zero visitation requirements at the

non-terminal nodes. In particular, we attempt this extension in two steps, with the first step introducing

and analyzing the effects of multi-threading, and with the second step employing the results of the first

in order to address the more complex problem version that results from the addition of internal visitation

requirements. It is shown that, similar to the original ONV problem version of [1], both of these new

variations of the ONV problem can be modeled as SSP problems that suffer from a state space explosion.

Hence, for both of these new cases, fluid relaxations are proposed that can lead to randomized policies

that are computationally tractable and present good performance with respect to the performance of

the corresponding optimal policies. More specifically, the randomized policy developed for the case

of the ONV problem with task multi-threading but without internal visitation requirements remains
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asymptotically optimal under a uniform scaling to infinity of the posed visitation requirements. On the

other hand, the optimization problem defined by the fluid relaxation of the ONV variation that contains,

both, task multi-threading and internal visitation requirements, is a complex hybrid optimal control

problem of limited computational tractability [5]. Hence, in order to obtain computationally efficient

policies for this ONV variation, we confine our analysis within a class of randomized policies that are

easily implementable, and we provide a fluid relaxation that leads to a policy which is asymptotically

optimal within the scope of the considered policies.

From a more technical standpoint, the presented work expands the methodology developed in [1] for

the development of efficient suboptimal policies for the considered ONV problem, by basing the relevant

analyses on renewal theory [6], instead of the strong law of large numbers that was used in [1]. As a

result, the provided analyses are also able to establish bounds for the divergence of the performance

of the aforementioned policies from the performance of the corresponding optimal policy, as the posed

visitation requirements are scaled to infinity. Even more interestingly, this new line of analysis has also

revealed a number of cases of considerable practical significance where the aforementioned divergence is

uniformly bounded by a constant.

Finally, as mentioned above, another line of investigation of the ONV variations considered in this

work concerns the formal study of the computational complexity of these problems. Along this line,

it is established that (i) the introduction of the multi-threading effect in the ONV problem renders it

PSPACE-hard [7], while (ii) the presence of internal visitation requirements makes it at least as hard

as the “Poisson-tree” scheduling problem [7], a stochastic scheduling problem whose computational

complexity is an open issue. The derivation of this last result reveals also the structural similarities of

the considered ONV variations to some other stochastic scheduling problems previously studied in the

literature.

Indeed, we should notice, at this point, that our analysis for the ONV problem outlined in the

previous paragraphs is similar, in spirit, to the prevailing trends regarding the analysis of stochastic

scheduling problems [8, 9]. As indicated in [8], most stochastic scheduling problems are notoriously hard

to solve optimally, and one has to compromise for solutions that are suboptimal but computationally

tractable. In particular, the last few years have seen the emergence of a number of works that seek to

provide suboptimal solutions to various stochastic scheduling problems by exploiting some “relaxed” –

or “fluid”-based – version of the original problem [10, 11, 12]. Furthermore, in many cases, this line

of analysis also provides guaranteed bounds for the potential suboptimality of the derived policies; cf.,

for instance, the works of [13, 14] and the references provided therein. However, it is also true that the

application of such a research program to any given stochastic scheduling problem is a major challenge

in itself, since the detailed results, their supportive arguments and their implementational complexity

are strongly dependent on the particular structure and attributes of the considered problem; the recent

publication of [12] provides an excellent exposition of (most of) the relevant theory and testifies to these

effects.

The rest of the paper is organized as follows: Section 2 introduces the variation of the ONV prob-

lem with multi-threaded traversals, establishes its PSPACE-hardness, and provides an asymptotically
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optimal randomized policy for it. Section 3 introduces the problem variation which further allows for

the assignment of visitation requirements to non-terminal nodes, and extends the results developed in

Section 2 to this new problem case. In addition, Section 3 discusses the relationship of this new ver-

sion of the ONV problem to the “Poisson-tree” scheduling problem mentioned above. Finally, Section 4

concludes the paper by summarizing its major developments, and highlighting directions for future work.

2 The ONV problem with multi-threaded traversals

A formal description of the considered ONV problem An instance of the problem considered

in this section is completely defined by a quadruple E = (X,A,P,N ), where

• X is a finite set of nodes, that is partitioned into a sequence of “layers”, X0, X1, . . . , XL.

X0 = {x0} defines the source or root node, while nodes x ∈ XL are the terminal or leaf nodes.

• A is a set function defined on X, that maps each x ∈ X to the finite, non-empty set A(x),

comprising all the decisions / actions that can be executed by the control agent at node x. It is

further assumed that for x 6= x′, A(x) ∩ A(x′) = ∅.

• P is the transition function, defined on
⋃
x∈X\XL A(x), that associates with every action a in this

set a discrete probability distribution p(·; a). The support sets, S(a), of the distributions p(·; a)
consist of multi-sets of X 3 that satisfy the following property: For any given action a ∈ A(x)

with x ∈ Xi for some i = 0, . . . , L − 1, the multi-sets in S(a) have their elements constrained in⋃L
j=i+1X

j . In the motivational context of the ONV problem that was discussed in the introductory

section, each multi-set νa,k ∈ S(a), k = 1, . . . |S(a)|, implies the “splitting” of the thread that

executes action a, into a number of sub-threads equal to the total number of elements in νa,k.

More specifically, for every i = 1, . . . |X|, νa,k(i) of these sub-threads are initialized at the task state

corresponding to component νa,k(i). On the other hand, the requirement that for any a ∈ A(x)

and x ∈ Xi the multi-sets of S(a) are constrained in
⋃L
j=i+1X

j , is a formal statement of the acyclic

structure of the underlying task dynamics over a single episode. We also notice, at this point, that,

for the subsequent developments, it is more intuitive to think of the various active threads that

evolve in task state space X, as “tokens” that are traversing X. In this new interpretation, the

execution of an action a ∈ A(x) by a token located in node x results in its substitution by one of

the multi-sets of tokens in the support set S(a), according to the distribution p(·; a).

• N is the visitation requirement vector , that associates with each node x ∈ XL a visitation require-

ment Nx ∈ Z+
0 . The support ||N || of N is defined by the nodes x ∈ XL with Nx > 0; we shall

refer to nodes x ∈ ||N || as the problem “target” nodes.

• Finally, we define the instance size |E| ≡ |X|+|
⋃
x∈X A(x)|+|N |, where application of the operator

| | on a set returns the cardinality of this set, while application on a vector returns its l1 norm.
3We remind the reader that a multi-set defined on a set X is essentially a vector ν of dimensionality |X| and with

elements belonging to Z+
0 , the set of non-negative integers. Each component ν(i) of vector ν corresponds to one of the

elements of X and its value indicates how many replicates of this element are included in the multi-set represented by ν.
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Figure 1: The stochastic graph for the problem instance considered in Example 1.

In the subsequent discussion we shall employ the variable vector N c to denote the vector of the

remaining visitation requirements. The control agent starts at period t = 0, by placing a token at

node x0 and setting N c := N . At every consecutive period t = 1, 2, 3, . . . , it (i) observes the current

configuration g, i.e. the number and position of the tokens in the set X\ XL and the vector of remaining

visitation requirements, N c, (ii) selects an action a ∈ A(x) and commands its execution on a single token

at node x, (iii) generates the new tokens at the nodes indicated by the multi-set selected according to

the probabilities p(·, a), (iv) updates N c
x to (N c

x − k)+ when k tokens reach one of the terminal nodes,

x ∈ XL, and finally, when the last token exits the set X\XL, (v) resets itself by placing a token at the

initial node x0, in order to start another traversal. The entire operation terminates when all the node

visitation requirements have been reduced to zero. Our intention is to determine an action selection

scheme – or a policy – π, that maps each configuration g to an action π(g) ∈
⋃
x∈X\XL A(x) in a way

that minimizes the expected number of graph traversals until N c = 0. The set of all possible policies

for the considered problem will be denoted by Π.

Example 1 As an example, we consider the problem instance depicted in Figure 1. In this case,

there are two actions, a1 and a2, emanating from the root node x0, and three leaf nodes, x1, x2 and

x3. Ordering the nodes of X in increasing order with respect to their ID number, the set S(a1) consists

of the two multi-sets νa1,1 = [0, 1, 2, 0] and νa1,2 = [0, 0, 1, 0], whereas the set S(a2) consists of the

multi-sets νa2,1 = [0, 0, 1, 0] and νa2,2 = [0, 0, 0, 1]. Furthermore, p(νa1,1; a1) = 0.5, p(νa1,2; a1) = 0.5,

p(νa2,1; a2) = 0.3 and p(νa2,2; a2) = 0.7. In more plain terms, for each token emanating from x0 through

a1, either one copy is generated at leaf node x1 and two copies at leaf node x2 with probability 0.5,

or a single copy is generated at leaf node x2 with probability 0.5. On the other hand, for each token

emanating from x0 through a2, either one copy is generated at leaf node x2 with probability 0.3, or

one copy is generated at leaf node x3 with probability 0.7. Finally, the visitation requirement vector is

N = [2, 1, 1]. �

The induced MDP problem The ONV problem defined above can be further abstracted to a

Discrete Time Markov Decision Process, M = (S,A, t, c), where

• S is the finite set of states, identified with tuples (X ,N c). The component X of this tuple is a

vector of dimensionality |X|−|XL| where each component Xx denotes the number of tokens at node
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x ∈ X\ XL. On the other hand, the component N c is a vector belonging in
∏
x∈XL{0, . . . ,Nx}

and it expresses the remaining visitation requirements.

• A is a set function defined on S that maps each state s ∈ S to the finite, non-empty set A(s),

comprising all the actions that are feasible in s. More specifically, for s = (X ,N c) with X > 0,

A(s) coincides with
⋃
x∈X\XL:Xx>0A(x). Furthermore, for all states s = (X ,N c) with X = 0 and

N c 6= 0, A(s) consists of the single “resetting” action β.

• t : S ×
⋃
s∈S A(s)×S −→ [0, 1] is the MDP state transition function, i.e., a function on all triplets

(s, a, s′) with t(s, a, s′) being the probability to reach state s′ from state s on action a. More

specifically, for s = (X ,N c), a ∈ A(s) and s′ = (X ′,N c′),

t(s, a, s′) =



p(νa,i; a), if a 6= β, X ′
y = Xy − 1 ≥ 0, a ∈ A(y), X ′

x = Xx + νxa,i, ∀x ∈ X/XL

with x 6= y, and N c′

x = (N c
x − νxa,i)

+, ∀x ∈ XL, 1 ≤ i ≤ |S(a)|;

1, if a = β, X = 0, X ′ = 10;

0, otherwise.

(1)

In Equation 1, 10 denotes the unit vector with all its components equal to zero except for the one

corresponding to x0.

• c : S −→ {0, 1} is the cost function, where for s = (X ,N c),

c(s) =

1, if X = 0, N c 6= 0,

0, if otherwise.
(2)

Notice that the cost function defined by Equation 2 assigns a unit cost to every resetting action, but only

when there is at least one leaf node with a positive requirement. Hence, the set of states s = (X ,N ) with

N c = 0 constitute a closed class which is also cost-free, i.e., once the process enters this class of states

it will remain in it and there will be no more cost accumulation. We shall represent this entire class of

states with a single aggregate state, sT , which we shall refer to as the problem terminal state; clearly,

sT is absorbing and cost-free under any policy π. In order to ensure the reachability of sT from the

initial state s0, it is further assumed that for every node x ∈ XL with Nx > 0, there exists at least one

sequence ξ(x) = a(0)s(0)a(1)s(1) . . . a(k(x))s(k(x)) such that (i) a(0) ∈ A(s0) with t(s0, a(0), s(0)) > 0, (ii)

∀i = 1, . . . , k(x), a(i) ∈ A(s(i−1)) with t(s(i−1), a(i), s(i)) > 0, and (iii) sk(x) = (X ,N c) with N c
x < Nx;

we shall refer to this sequence as an action path from node x0 to node x.

In the following, we are especially interested in a policy π∗, that, starting from the initial state

s0 ≡ (10,N ), will drive the underlying process to the terminal state sT with the minimum expected

total cost. Let Vπ(s0) = Eπ[
∑∞
t=0 c(st)|s0 = s0], where π is some given policy from the policy set Π,

and the expectation Eπ[·] is taken over all possible realizations under π. Then π∗ is formally defined by

π∗ = arg min
π∈Π

Vπ(s0) (3)
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It is easy to see that, under the aforestated assumptions, the resulting SSP problem is well defined.

Therefore, according to [2], there exists a unique vector V ∗(s), s ∈ S, with V ∗(sT ) = 0 and with its

remaining components satisfying the Bellman equation

V ∗(s) = min
a∈A(s)

{c(s) +
∑
s′∈S

t(s, a, s′) · V ∗(s′)} (4)

The vector V ∗(s) is known as the optimal value function or the optimal cost-to-go vector for the considered

MDP formulation. Each component of V ∗(s) expresses the expected total cost of initiating the underlying

process at state s ∈ S and subsequently following an optimal policy. Furthermore, its availability enables

the specification of an optimal policy π∗, by setting for all s ∈ S\{sT },

π∗(s) := arg min
a∈A(s)

{c(s) +
∑
s′∈S

t(s, a, s′) · V ∗(s′)} (5)

The computational complexity of the considered ONV problem A close consideration of

the SSP formulation defined in the previous paragraph will reveal that the size of its state space is

O(
∏
x∈XL Nx), and therefore, its solution through classical MDP methods is an intractable proposition,

for most practical cases. In this paragraph we establish that the ONV problem considered in this

section is PSPACE-hard [7], and therefore, the aforementioned intractability is an inherent property

of the problem and not a deficiency of the applied methodology. More specifically, the next theorem

establishes the PSPACE-hardness of the considered ONV problem through a polynomial reduction of the

well-known QSAT problem [7] to its decision version, which is defined by the following question: Given

an ONV problem instance E and an integer K, is there a policy π with an expected value Vπ < K ?

Theorem 1 The decision version of the ONV problem with “split” transitions is PSPACE-hard.

Proof: As mentioned above, to show PSPACE-hardness, we reduce QSAT to the considered problem.4

For any quantified formula φ with n variables and m clauses, we construct an ONV problem instance,

E(X,A,P,N ;φ), that involves an acyclic graph with n decision and m + 1 terminal nodes, and its

optimal policy has a cost of 1 if and only if the original QSAT problem is satisfiable.

We now proceed into the details of the construction (cf. Figure 2 for a concrete example). The acyclic

graph consists of n decision nodes, partitioned in n consecutive layers, corresponding to the n variables

x1, . . . , xn. A decision node corresponding to an existential variable has two emanating decision arcs

whereas a decision node corresponding to a universal variable has one. Furthermore, we assume m+ 1

leaf nodes, with the first m corresponding to the m clauses c1, . . . , cm of the boolean formula φ. Each

decision arc emanating from an existential node corresponds to a truth assignment of the corresponding

variable. Each such decision arc leads with certainty to a multi-set that (i) drives tokens to the leaf

nodes corresponding to the satisfied clauses or, if no clause is satisfied, a token to the (m+1)th leaf node,

and (ii) drives one more token to the decision node in the subsequent layer. On the other hand, the

4We remind the reader that in the QSAT problem we are given a quantified boolean formula with alternating quantifiers,

∃x1∀x2∃x3 . . . ∀xn, φ(x1, . . . , xn) and we seek to determine whether this formula is satisfiable, that is, whether there is a

truth value for x1 such that for all truth values of x2, etc. there is a truth value of xn, such that φ comes out true.
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Figure 2: The acyclic graph for the ONV problem that corresponds to the quantified boolean formula

∃x1∀x2, φ(x1, x2), where φ(x1, x2) is the conjunction of the following three clauses: c1 = x1∨x2, c2 = x1

and c3 = x1 ∨ x2. The dashed lines indicate the multi-sets corresponding to each decision.

single decision arc that corresponds to a universal node leads to two distinct multi-sets with probability
1
2 . Each such multi-set corresponds to a truth assignment for the corresponding universal variable, and

is constructed in a similar fashion as before. Finally, we assign a unit requirement to the first m leaf

nodes and a requirement of zero to the last leaf node of the acyclic graph.

We claim that the optimal expected cost of E(X,A,P,N ;φ) is equal to one if and only if formula

φ is satisfiable. Suppose that the optimal expected cost is 1; i.e., we can choose a decision at the first

decision node such that for any multi-set chosen in the second node, there is a decision in the third node

etc., such that all leaf nodes satisfy their unit requirement. Then, it is obvious that this policy defines a

truth assignment for the first existential variable x1 such that for every truth assignment of the second

variable x2, there is a truth assignment to x3 etc., such that all the clauses are satisfied. Conversely,

if the quantified formula ∃x1∀x2∃x3 . . .∀xn, φ is true, there is a truth assignment for x1, such that for

every truth assignment of x2, there is a truth assignment for x3 etc., such that φ comes out true. This

last statement can be translated into a policy for choosing the appropriate decisions so that at least one

token reaches every one of the first m leaf nodes in a single traversal of the corresponding graph, thus

resulting in an optimal expected cost of one. �

The “Relaxing LP” and the policy πrel As observed in the previous paragraph, the result of The-

orem 1 implies that the exact solution of the considered ONV formulation is an intractable proposition

for most problem instances. Hence, we are motivated to seek efficient and computationally tractable

suboptimal policies. The policy developed next satisfies these requirements, also being asymptotically

optimal, since the ratio of its expected performance to V ∗ converges to unity as the node visitation

requirement vector, N , is scaled to infinity. We shall refer to this policy as πrel. Its definition and the

aforementioned properties derive from a continuous – or “fluid” – relaxation of the considered ONV

problem, that is expressed by the following LP formulation:
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V ∗rel ≡ min
∑

a∈A(x0)

χa (6)

s.t.

∀x ∈ X\ ({x0} ∪XL),∑
a∈

S
y∈X\XL

A(y)

∑
1≤i≤|S(a)|

p(νa,i; a)νxa,iχa =
∑

a∈A(x)

χa (7)

∀x ∈ XL,∑
a∈

S
y∈X\XL

A(y)

∑
1≤i≤|S(a)|

p(νa,i; a)νxa,iχa ≥ Nx (8)

∀x ∈ X\XL, ∀a ∈ A(x), χa ≥ 0 (9)

In the following, we shall refer to the above LP formulation as the “relaxing LP”. Any optimal

solution, χ∗, of the relaxing LP can be naturally interpreted as a generalized flow pattern that can satisfy

the flow requirements for the terminal nodes x ∈ XL expressed by the visitation requirement vector,

N , while minimizing the total amount of flow induced into the graph. In particular, the generalized

nature of the flow results from the fact that in Equations 7-8 the flow leaving a node, x, is magnified

by the gains defined by the multi-sets νa,i, 1 ≤ i ≤ |S(a)|. Then, the constraints corresponding to

Equation 7 express a “balance” requirement for the generalized flow that is conveyed through the internal

nodes of the underlying acyclic digraph, while the constraints corresponding to Equation 8 express the

requirement that the total amount of flow conveyed to each terminal node x ∈ XL is at least equal to

the corresponding visitation requirement Nx in the original ONV problem.

Example 2 Consider the problem instance described in Example 1 and depicted in Figure 1. The

corresponding relaxing LP is expressed by the following linear program:

min χa1 + χa2

s.t.

0.5 · 1 · χa1 ≥ 2

0.5 · 2 · χa1 + 0.5 · 1 · χa1 + 0.3 · 1 · χa2 ≥ 1

0.7 · 1 · χa2 ≥ 1

χa1 ≥ 0, χa2 ≥ 0

�

Given an optimal solution χ∗ = {χ∗a| a ∈
⋃
x∈X\XL A(x)} of the LP defined by Equations 6-9, we

define the aforementioned randomized policy πrel as follows: πrel assigns to a state s = (X ,N c) with

X 6= 0 an action πrel(X ,N c) by (i) randomly picking a node x ∈ X\XL with Xx > 0 and (ii) executing

10



an action πrel(x;X ,N ) ∈ A(x) on a single token according to the probability distribution

Prob(πrel(x;X ,N c) = a) =
χ∗a∑

a∈A(x) χ
∗
a

, a ∈ A(x) (10)

For states s = (X ,N ), with X = 0 and N c > 0, the policy executes with certainty the “resetting” action

β ∈ A(s) that initiates a new graph traversal.

Example 3 It can be easily verified that the LP of Example 2 has the unique optimal solution

(χ∗a1 , χ∗a2) = (4.00, 1.43) (in a two-digit accuracy). The randomized policy πrel that is induced by this

solution for the ONV problem instance of Figure 1, will select, at every graph traversal, action a1 with

probability p(a1) = 4/(4+1.43) ≈ 0.737 and action a2 with probability p(a2) = 1.43/(4+1.43) ≈ 0.263.

�

It should be obvious from the above discussion, that the relaxing LP of Equations 6-9 involves a

number of variables and constraints that is polynomially related to the size of the underlying ONV

problem. Since it is also true that the solution of an LP formulation is of polynomial complexity

with respect to the number of the variables and the constraints involved, it can be concluded that the

aforestated policy πrel can be deployed with a polynomial complexity in terms of the ONV problem size

|E|. Some further reflection on the specification of policy πrel will also reveal that an element which is

instrumental for the establishment of its polynomial complexity is the fact that the policy maintains the

action selection probabilities fixed during every traversal of the underlying stochastic digraph, essentially

ignoring the information provided by the vector of the remaining visitation requirements, N c. We shall

refer to the class of randomized policies for the considered ONV problem that are characterized by such

an invariance to the vector of the remaining visitation requirements, N c, as static randomized policies.

Furthermore, in the following, the space of static randomized policies will be denoted by ΠS and the

optimal value of any given ONV problem instance restricted in ΠS will be denoted by V ∗S . In the rest

of this section we establish that, in spite of its static nature, policy πrel is an asymptotically optimal

policy for the ONV problem with respect to the broader policy set Π. In order, however, to develop

this result, it is necessary first to introduce some additional properties of the relaxing LP, including its

ability to provide a lower bound for the optimal value, V ∗, of its originating ONV problem.

The optimal value of the relaxing LP as a lower bound to V ∗ Consider an optimal solution to

the relaxing LP, χ∗, and let erelj denote the amount of flow reaching leaf node xj when a unit amount

of flow is induced into the graph and it is conveyed according to the flow pattern defined by the routing

probabilities of Eq. 10. Then, the linearity of Constraint 7 implies that erelj can be formally expressed

by the equation

erelj =

∑
a∈

S
y∈X/XL A(y)

∑
1≤i≤|S(a)| p(νa,i; a)ν

x
a,iχa∑

a∈A(x0) χ
∗
a

(11)

i.e., as the ratio of the total flow conveyed to the terminal node xj by the optimal solution χ∗ to the

total flow V ∗rel that is conveyed by χ∗ through the entire acyclic digraph. Also, the same property when

11



combined with the above definition of erelj further implies that

V ∗rel = max
j:Nj>0

{ Nj
erelj

} (12)

The quantities erelj admit also a natural interpretation in the original ONV problem context. More

specifically, a basic inductive argument on the number of layers of the node set X can establish that erelj
is equal to the expected number of tokens reaching leaf node xj during a single graph traversal under the

policy πrel that is induced by χ∗. Finally, an argument similar to that provided in the proof of Theorem

3 in [1]5 can further establish that

V ∗rel ≤ V ∗ (13)

We formalize the above two results of Equations 12 and 13 in the following theorem:

Theorem 2 Given a problem instance E = (X,A,P,N ), let V ∗rel and χ∗ respectively denote the optimal

value and an optimal solution of the relaxing LP. Also, let erelj , xj ∈ XL, be defined from χ∗ according

to Equation 11. Then,

V ∗rel = max
j:Nj>0

{ Nj
erelj

} ≤ V ∗ (14)

Establishing the asymptotic optimality of πrel Before we proceed with the main developments of

this paragraph, we present a technical lemma that is necessary in the subsequent derivations. The proof

of this lemma is based on results coming from renewal theory and it can be found in the Appendix.

Lemma 1 Let X1, X2, . . . be a sequence of i.i.d. random variables such that ∀i, 0 ≤ Xi ≤ K almost

surely, and E[X1] = µ. Set S0 = 0; Sk =
∑k
i=1Xi, ∀k ≥ 1, and define ψn = max{k : Sk ≤ n · c},

∀n ≥ 1. Then the sequence of random variables

{n−r/2(ψn −
n · c
µ

)r, n ≥ 1} (15)

is uniformly integrable for every r ≥ 1.

Next we proceed to prove the asymptotic optimality of πrel. For this, consider the problem sequence,

{E(n)}, that is induced by a problem instance E = (X,A,P,N ) through the scaling of the visitation

requirement vector, N , by a factor n ∈ Z+. Also, in the following, we shall let {V ∗rel(n)} denote the

sequence of the optimal objective values of the relaxing LP implied by the problem sequence {E(n)},
and {V ∗(n)} denote the sequence of the corresponding optimal expected total costs. It is important

to notice that, as we scale the requirement vector, N , by a factor n, the optimal solutions, χ∗, of the

relaxing-LP are scaled by the same factor n ∈ Z+. More specifically, we have the following lemma:
5The gist of this argument is as follows: Consider the “dual LP” [2] of the MDP that corresponds to the SSP formulation

of the considered ONV problem. Then, any feasible solution of this formulation admits a flow interpretation on the state

space of the ONV problem [2]. Furthermore, the aggregation of this flow, that traverses the state space of the ONV

problem, across the arcs of the underlying state transition diagram that correspond to the same transitions in the problem

defining graph G, will provide another flow that constitutes a feasible solution to the relaxing LP. In addition, the original

and the induced flows result in the same objective values for their corresponding formulations. But then, it is clear that

the relaxing LP is indeed a relaxation of the original ONV formulation and Equation 13 follows from this result.

12



Lemma 2 Let χ∗(n) denote an optimal solution of the relaxing-LP that is obtained through the uniform

scaling of the visitation requirement vector N by a factor n ∈ Z+. Then,

χ∗(n) = n · χ∗(1) (16)

where χ∗(1) denotes an optimal solution for the relaxing LP that corresponds to n = 1, i.e., the original

ONV problem instance, and

V ∗rel(n) = n · V ∗rel(1) (17)

Proof: Assume that B is the matrix of an optimal basis [15] for the relaxing-LP expressed by Equa-

tions 6-9. Then, the corresponding optimal solution of the relaxing-LP is obtained by the vector of the

basic variables xB = B−1N while setting the non-basic variables equal to zero. The replacement of the

right hand side vector N in the constraints of Equation 8 by the scaled vector n · N , n ∈ Z+, preserves

the optimality of basis B (Chapter 5 of [15]), and the new vector of the basic variables, xB(n), is given

by

xB(n) = B−1(n · N )

= n ·B−1N

= n · xB = n · xB(1), n ∈ Z+ (18)

But then, Equations 16, 17 follow from Equation 18 and the definition of xB(n) and xB . �

When combined with Equation 10, the results of Lemma 2 imply that the set of policies πrel(n) that

are obtained for the ONV problem instances E(n) according to the process delineated in the previous

paragraphs, is invariant with respect to n. In other words, every policy πrel(n) that is obtained for

the problem instance E(n) through an optimal solution χ∗(n) of the corresponding relaxing LP, is also

one of the policies πrel that are obtained for the original ONV problem instance E . Hence, for the rest

of this paper, we shall refer to πrel(n) as πrel, and we shall define {V πrel

(n)} as the sequence of the

expected costs incurred to the problem instances E(n) by the application of a given instantiation of the

randomized policy πrel, that is obtained through Equation 10 and an optimal solution χ∗ of the relaxing

LP of Equations 6–9. Then, we have the following theorem:

Theorem 3 Given a problem instance E = (X,A,P,N ), consider the problem sequence E(n) that is

obtained through the uniform scaling of the visitation requirement vector N by a factor n ∈ Z+. Then,

as n→∞,6

V π
rel

(n)− V ∗rel(n) = O(
√
n) (19)

Furthermore, if there exists a target leaf node xk such that, for any other target leaf node xj, Nk

erel
k

>

maxj 6=k{ Nj

erel
j

}, then, as n→∞,

V π
rel

(n)− V ∗rel(n) = O(1) (20)

6We remind the reader that f(n) = O(g(n)) ⇒ ∃c, n0 s.t. 0 ≤ f(n) ≤ c · g(n), ∀n ≥ n0.
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Proof: Consider the problem instance E(n), and let Xi
j denote the random number of tokens ending

at leaf node xj during the ith graph traversal under policy πrel. Then, {Xi
j : i = 1, 2, . . .} are sequences

of non-negative, identically distributed and independent random variables with E[Xi
j ] = erelj . The

quantities erelj are defined by Equation 11 on the basis of the optimal solution of the relaxing LP, χ∗,

that was employed in the specification of the policy πrel. Furthermore, we define σ2
j ≡ V ar(Xi

j), and

we notice that these variances are finite, since the random variables Xi
j have finite support. Finally, we

define the renewal sequence Skj ≡
∑k
i=1X

i
j and we let {ψnj , n ≥ 0} be a renewal process [6] associated

with the sequence {Skj }. Hence, for every j : Nj > 0, ψnj is defined by

ψnj = max{k : Skj ≤ n · Nj} (21)

and with the additional convention that ψnj = 0 if X1
j > n · Nj . It is evident from the above definitions

that the sequence Skj denotes the number of tokens ending at terminal node xj during the first k graph

traversals. Therefore, 1+ψnj is an upper bound to the number of graph traversals necessary to cover the

requirements n ·Nj at node xj . Hence, an upper bound on the total number of graph traversals necessary

to cover the total number of requirements, n · |N |, is given by maxj:Nj>0{1 + ψnj }. Consequently, the

performance of policy πrel on E(n) satisfies

V π
rel

(n) ≤ E[ max
j:Nj>0

{1 + ψnj }] (22)

Furthermore, from Lemma 2 we have that V ∗rel(n) = nV ∗rel(1), which when combined with Theorem 2,

imply that

V ∗rel(n) = max
j:Nj>0

{nNj
erelj

} (23)

Therefore,

V π
rel

(n)− V ∗rel(n) ≤ 1 + E[ max
j:Nj>0

{ψnj }]− max
j:Nj>0

{nNj
erelj

}

≤ 1 + E[ max
j:Nj>0

{|ψnj −
nNj
erelj

|}]

≤ 1 +
∑

j:Nj>0

E[|ψnj −
nNj
erelj

|] (24)

where the first inequality is the result of Equations 22-23 and the second inequality is the result of the

following property:

∀ai, bi ∈ R, i = 1, . . . , n,

|max{a1, a2, . . . , an} −max{b1, b2, . . . , bn}| ≤ max{|a1 − b1|, |a2 − b2|, . . . , |an − bn|}

Also, from the renewal central limit theorem [6] we get that

1√
n
· (ψnj −

nNj
erelj

) ⇒ N(0,
σ2
j · Nj

(erelj )3
), j : Nj > 0 (25)

as n → ∞. But then, Equation 25, when combined with Lemma 1 and the Continuous Mapping

Theorem, imply that, for r > 0,

(
1√
n

)rE[|ψnj −
nNj
erelj

|r] −→ E[|N(0,
σ2
j · Nj

(erelj )3
)|r], j : Nj > 0 (26)
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as n→∞. Equation 19 now follows from Equation 24 when combined with Equation 26.

To prove Equation 20 we proceed as follows: Assume that maxj:Nj>0{nNj

erel
j

} = n·N1
erel
1

; then,

V π
rel

(n)− V ∗rel(n) ≤ 1 + E[ max
j:Nj>0

{ψnj }]− max
j:Nj>0

{nNj
erelj

}

= 1 + E[ max
j:Nj>0

{ψnj }]− E[ψn1 ] + E[ψn1 ]− nN1

erel1

= 1 + E[ max
j:Nj>0

{ψnj − ψn1 }] + E[ψn1 ]− nN1

erel1

≤ 1 +
∑

j 6=1:Nj>0

E[(ψnj − ψn1 )+] + E[ψn1 ]− nN1

erel1

(27)

Since, for every n ≥ 1, ψnj + 1 is a stopping time with respect to {Xi
j}, with E[ψnj ] < ∞, we can

write [6]

E[
ψn

j +1∑
i=1

Xi
j ] = E[ψnj + 1]E[X1

j ]

= erelj · (E[ψnj ] + 1) (28)

Let K denote the maximum number of tokens that can be generated during a single graph traversal.

Then, by definition of ψnj + 1,

n · Nj ≤
ψn

j +1∑
i=1

Xi
j ≤ n · Nj +K, j : Nj > 0. (29)

Equations 28 and 29 imply that

0 ≤ E[ψnj ] + 1− n · Nj
erelj

≤ K

erelj
(30)

Next, we prove that

E[(ψnj − ψn1 )+] → 0, ∀j : Nj > 0 (31)

as n→∞. Indeed, for r ≥ 1, anj = 1√
n
(ψnj −

n·Nj

erel
j

) and cj = N1
erel
1
− Nj

erel
j

> 0, we have that

E[(ψnj − ψn1 )+] = E[(ψnj − ψn1 ) · I(ψnj ≥ ψn1 )]

≤ E[ψnj · I(ψnj ≥ ψn1 )]

≤ [E[(ψnj )2] · P (ψnj ≥ ψn1 )]1/2

= [E[(ψnj )2] · P ((ψnj −
n · Nj
erelj

)

− (ψn1 −
n · N1

erel1

) ≥ n · N1

erel1

− n · Nj
erelj

)]1/2

= [E[(ψnj )2] · P (anj − an1 ≥
√
n · cj)]1/2

≤ [E[(ψnj )2] · 1
crj · nr/2

· E[(anj − an1 )r]]1/2

≤ [E[(ψnj )2] · 2r−1

crj · nr/2
· E[|anj |r + |an1 |r]]1/2 (32)
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where the second inequality is an application of Schwarz inequality, the third inequality is an application

of Markov inequality, and the last inequality is a direct consequence of (a+b)r ≤ 2r−1 ·(|a|r+ |b|r), a, b ∈
R. Furthermore, from Theorem 2.3 of [16] we have that

E[(ψnj )2] = O(n2). (33)

Furthermore, from Equation 26 we have

E[|anj |r + |an1 |r]] → E[|N(0,
σ2
j · Nj

(erelj )3
)|r + |N(0,

σ2
1 · N1

(erel1 )3
)|r]]. (34)

as n→∞. Therefore, from Equations 32, 33 and 34 we get

E[(ψnj − ψn1 )+] = O(n2−r/2). (35)

Consequently, if we choose r such that r
2 > 2, Equation 31 holds. Finally, Equation 20 follows immedi-

ately from Equation 27 when combined with Equations 30 and 31. �

The asymptotic optimality of πrel is an immediate implication of Theorem 3. This result is formally

stated and proven in the following corollary:

Corollary 1 Given a problem instance E = (X,A,P,N ), consider the problem sequence E(n) that is

obtained through the uniform scaling of the visitation requirement vector N by a factor n ∈ Z+. Then,

as n→∞,
V π

rel

(n)
V ∗(n)

−→ 1 (36)

Proof: The definitions of V π
rel

(n) and V ∗(n) imply that

V π
rel

(n)
V ∗(n)

≥ 1, n ∈ Z+. (37)

From Lemma 2 we also get that V ∗rel(n) = n · V ∗rel(1), n ∈ Z+, and, therefore, Theorem 3 implies that

V π
rel

(n)
V ∗rel(n)

=
V ∗rel(n) +O(

√
(n))

V ∗rel(n)

= 1 +
O(

√
(n))

n · V ∗rel(1)
→ 1, as n→∞ (38)

Since, from Theorem 2, V ∗rel(n) ≤ V ∗(n), we also have that

V π
rel

(n)
V ∗(n)

≤ V π
rel

(n)
V ∗rel(n)

, n ∈ Z+. (39)

The corollary follows by combining Equations 37, 38 and 39. �

Next we draw the reader’s attention to the second result of Theorem 3, which is expressed by

Equation 20. In plain terms, this result implies that when the maximizer of the ratios Nj/erelj is

unique, the difference of the expected performance of policy πrel from the lower bound V ∗rel(n) to the

optimal value V ∗(n) remains bounded as n grows to infinity. In particular, this bound is established by
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Equations 27, 30 and 31 as K/erelk , where xk is the unique maximizer leaf node of the ratios Nj/erelj .

In general, results of this type imply an excellent asymptotic performance for the corresponding policy

and they are rather scarce in the relevant literature. The considered result is even more surprising when

noticing the static nature of policy πrel that was discussed in the previous paragraphs. An apparent

intuitive interpretation of it is that the uniqueness of the maximizer of the ratios Nj/erelj defines very

prominently a “most difficult” target leaf node xk, to the extent that the bias of policy πrel towards this

node7 remains valid for all but a finite number of task iterations in each problem instance E(n), as n

grows to infinity.

Closing the discussion of this section, we also want to point out that the asymptotic regime involved

in the results of Theorem 3 and Corollary 1 is particularly relevant to the ONV formulations that arise

in the context of the sampling processes discussed in the introductory section. It is well known that the

learning algorithms considered in that section require extensive amounts of sampling in order to deliver

the typically sought performance. In particular, the scaling process of the visitation requirements that

underlies the asymptotic results presented in this section, is materialized in the context of our learning

algorithms by setting their performance parameters ε and δ to values increasingly closer to zero. In

the next section, we seek to increase the relevance of the developed results to the motivating learning

algorithms, by addressing the ONV problem with additional visitation requirements for the non-terminal

nodes of the problem-defining graph.

3 Adding the Internal Visitation Requirements

The new ONV problem version In this section we consider the extension of the ONV problem

addressed in Section 2, that is obtained by the introduction of visitation requirements for the internal

nodes of the stochastic digraph that underlies the problem definition. An instance of this new ONV

problem is defined again by a quadruple E = (X,A,P,N ), where all the components remain the same as

in the case of Section 2, except for the visitation requirement vector N , which now is defined as follows:

• N associates with each node x ∈ X a visitation requirement Nx ∈ Z+
0 . The support ||N || of N is

defined by the nodes x ∈ X with Nx > 0. Furthermore, it is implicitly assumed that the visitation

requirements of a node x ∈ X will start to be satisfied only after the complete satisfaction of the

visitation requirements of all its successor nodes.

The new problem described above can be further abstracted to an MDP, M = (S,A, t, c), where all

the components remain the same as in the MDP definition of the ONV problem addressed in Section 2,

except for the remaining visitation requirement vector N c and its updating through the transition

function t. More specifically, in this new problem context, N c is an |X|-dimensional vector initialized

at N . Furthermore, given a state s = (X ,N c) ∈ S with Xy > 0, and a decision a ∈ A(y), we compute

the state s′ = (X ′,N c′), that results from the execution of a in s through its outcome defined by the

multi-set νa,i, according to the following procedure:
7This bias is established during the policy construction by the structure of the employed optimal solution χ∗ of the

relaxing LP.
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1. X ′
y := Xy − 1;

2. ∀x ∈ X\XL, X ′
x := Xx + νxa,i;

3. ∀l = L,L− 1, . . . , 0, ∀x ∈ X l,

if
∑
q∈Succ(x)N c

q = 0 then N c′

x := (N c
x − νxa,i)

+ else N c′

x := N c
x ;

The notation Succ(x) appearing in the above specification denotes the immediate successors of node

x in the problem-defining graph G.8 For states s = (X ,N c) ∈ S with X = 0, the process “resets” itself in

the spirit expressed by Equation 1 in Section 2. Finally, defining the cost function c(s) and the terminal

state sT as discussed in Section 2, and expressing the problem objective by

π∗ = arg min
π∈Π

Eπ[
∞∑
t=0

c(st)|s0 = s0] (40)

we obtain a well-defined SSP problem. In the following, we shall use the notation V ∗(s) and π∗(s),

s ∈ S\{sT }, in order to characterize the optimal value function and an optimal policy for this SSP.

Complexity considerations Since the ONV problem variation defined in the previous paragraph

subsumes the ONV problem version defined in Section 2, it is clear that it is PSPACE-hard. On the other

hand, one can envision ONV problem instances with internal visitation requirements but without any

transition “splits”. Currently, we lack a clear-cut result regarding the complexity of this last variation of

the ONV problem, and the same is true for the complexity of the original ONV problem studied in [1].

However, as an intermediary step towards the characterization of the complexity of the ONV problem

with internal visitation requirements, and corroboration for its hard nature, we have managed to show

that the well known problem of “Poisson-tree” scheduling [7] reduces polynomially to it. Beyond assisting

with positioning the ONV problem with internal visitation requirements in the broader landscape of the

computational complexity theory, the provided reduction also reveals the affinity of the ONV problem

to the problems addressed by the more classical stochastic scheduling theory.

A brief description of the “Poisson-tree” scheduling problem is as follows [7]: The problem is defined

by a triplet Θ = (m, τ,Γ), where

• m denotes the number of the identical processors that are available in the system.

• τ = {T1, . . . , Tn} denotes a finite set of tasks that must be processed by the system processors.

It is further assumed that the processing time of each task is exponentially distributed with rate

equal to one.

• Γ = (τ,Ω) is a rooted in-tree – i.e., a directed acyclic graph with out-degree of at most one – that

expresses a set of precedence constraints imposed on the task set τ .

The memoryless property possessed by the exponential distribution [6] implies that (i) the natural

decision epochs for this scheduling problem are determined by the task completion times, and that (ii) the

uncompleted tasks can be scheduled preemptively at those points. The interval between two consecutive
8Obviously, for nodes x ∈ XL, Succ(x) = ∅ and the condition in the “if” statement of item (3) is immediately satisfied.
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decision epochs is referred to as a processing cycle. The uniformly unit-valued task processing rates

imply that (i) a processing cycle involving k processors has an expected duration of 1/k, and that (ii)

the probability for any of the k processed tasks to finish first is also equal to 1/k. The problem objective

is to identify a schedule – i.e., a policy for assigning tasks to the available processors at the end of

each processing cycle – that respects the imposed precedence constraints and minimizes the expected

makespan – i.e., the expected completion time of the last task.

While the complexity of a “Poisson-tree” scheduling problem with two processors is polynomial, the

complexity of a three-processor version of the problem is an open issue [7]. The next theorem establishes

that the ONV problem with internal visitation requirements is at least as difficult as the three-processor

“Poisson-tree” scheduling problem.

Theorem 4 The decision version of the 3-processor “Poisson-tree” scheduling problem reduces polyno-

mially to the decision version of the ONV problem with internal visitation requirements.

Proof: Given an instance Θ = (m, τ,Γ) of the “Poisson-tree” scheduling problem, the corresponding

instance E(Θ) = (X,A,P,N ) of the ONV problem is defined as follows (the reader is referred to Figure 3

and Table 3 for a more concrete example of this construction):

• X = τ ∪ {x0, xλ}. In the graph G of the constructed ONV problem, x0 will play the role of the

root node, while xλ is a terminal node with zero requirements that will enable the modeling of the

losses resulting from the under-utilization of the system processors.

• The action set A is defined as follows:

– For each node Ti ∈ τ , the action set A(Ti) is defined by the set of its incoming arcs in graph

Γ.

– The actions set A(x0) is defined by all the single, two and three-element subsets of the task set

τ , which do not contain pairs of tasks associated through the precedence relationship defined

by Γ.

– Finally, A(xλ) = ∅ (as already mentioned, xλ is a terminal node).

• The transition function P establishes the following connectivity:

– For each node Ti ∈ τ , the action corresponding to an incoming arc (Tj , Ti) leads determinis-

tically to node Tj .

– The action at node x0 corresponding to a task set {Ti} leads to node Ti with probability 1/3,

and to node xλ with probability 2/3. On the other hand, the action corresponding to a task

set {Ti, Tj} leads to each of these two nodes with respective probability 1/3, and to node xλ

with the remaining probability. Finally, an action corresponding to a triplet {Ti, Tj , Tk} leads

to each of these three nodes with respective probability 1/3.

• The visitation requirement vector N assigns a unit visitation requirement to each node Ti ∈ τ and

a zero visitation requirement to x0 and xλ.
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Figure 3: The rooted in-tree modeling the precedence constraints for the tasks of the “Poisson-tree”

scheduling problem Θ considered in this example.

Table 1: A tabular characterization of the stochastic graph G and the visitation requirement vector N
corresponding to the ONV problem instance E(Θ).

Node Action Outcomes and their Distribution Visitation Req.

x0 a1 (a, 1/3), (xl, 2/3) 0

a2 (b, 1/3), (xl, 2/3)

a3 (c, 1/3), (xl, 2/3)

a4 (d, 1/3), (xl, 2/3)

a5 (e, 1/3), (xl, 2/3)

a6 (b, 1/3), (c, 1/3), (xl, 1/3)

a7 (c, 1/3), (d, 1/3), (xl, 1/3)

a8 (c, 1/3), (e, 1/3), (xl, 1/3)

a9 (d, 1/3), (e, 1/3), (xl, 1/3)

a10 (c, 1/3), (d, 1/3), (e, 1/3)

a a11 (b, 1) 1

a12 (c, 1)

b a13 (d, 1) 1

a14 (e, 1)

c ∅ 1

d ∅ 1

e ∅ 1

xl ∅ 0
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Clearly, the above construction of E(Θ) can be performed in polynomial time with respect to the size

of the defining elements of problem Θ. Furthermore, a scheduling decision d applied during a processing

cycle of the original problem Θ, can be simulated in the context of the ONV problem E(Θ) through the

selection of the action a ∈ A(x0) that corresponds to the tasks selected by d, and the resulting outcomes

will have the same transition structure in each problem context. At the same time, the deterministic9

policies applied during any single traversal of the graph G in problem E(Θ) also have a mapping decision in

the original problem Θ, with the same transition structure for the resulting outcomes. More specifically,

given a state (x0,N c) for problem E(Θ), the application over a single traversal of the graph G of a

policy π that, starting from node x0, selects the action corresponding to a single task Ti and once in

the subtree emanating from node Ti follows deterministically a path leading to an active target node

Tj , can be interpreted as the scheduling decision of processing only the available task Tj during the

corresponding processing cycle of problem Θ. Also, similar interpretations apply to policies π that select

actions at state x0 corresponding to two or three tasks, and subsequently, they reach deterministically

one of the target nodes in the resulting subtree. Hence, it is possible to simulate any policy π of Θ on

E(Θ) and vice versa.

To conclude the proof, it suffices to show that the value functions for any pair of policies π, π′ related

through the aforementioned simulation, satisfy V π/V π
′
= a, for some pre-determined constant a (since,

then, there will exist a policy π for Θ with V π < K iff there exists a policy π′ for E(Θ) with V π
′
< K/a).

Next we show, through an induction on |τ |, that a = 1/3. Indeed, for the base case of |τ | = 1, there

will be only one busy processor during the relevant processing cycle, and therefore, V π = 1, while the

simulation of the corresponding decision in the E(Θ) context will result in V π
′

= 3. For a problem

Θ with |τ | > 1, consider that the aforestated relationship holds true for all “Poisson-tree” scheduling

problems involving a number of tasks less than or equal to |τ | − 1. Furthermore, let τ1 denote the set

of tasks scheduled by π during the first processing cycle, and also let Θ\Ti denote the “Poisson-tree”

scheduling problem resulting from Θ through the removal from the task set τ of task Ti ∈ τ1. Then, it

is easy to see that

V π(Θ) = (Expected duration of first processing cycle) +
1
|τ1|

∑
Ti∈τ1

V π(Θ\Ti) (41)

and a similar equation applies to V π
′
(E(Θ)), i.e.,

V π
′
(E(Θ)) = (Expected duration until the first visitation) +

1
|τ1|

∑
Ti∈τ1

V π
′
(E(Θ\Ti)) (42)

The induction hypothesis implies that V π(Θ\Ti)/V π
′
(E(Θ\Ti)) = 1/3 for every task Ti ∈ τ1, and the

reader can easily verify that the ratio of the first terms in the right-hand-sides of Equations 41 and 42

is also equal to 1/3. Hence, in this case, V π(Θ)/V π
′
(E(Θ)) = 1/3, as well. �

Problem restriction As observed in the introductory discussion, the fluid relaxation of the ONV

problem with internal visitation requirements corresponds to a hybrid optimal control problem. A
9Confining this analysis to the set of deterministic policies is enabled by the relevant MDP/SSP theory that guarantees

the existence of a deterministic optimal policy.
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detailed study of this optimal control problem is provided in [5], but the practical value of the results

derived from that analysis is limited by the non-polynomial complexity of the involved computations.

Hence, in the following, we constrain the solution of the considered ONV problem over the class of

static randomized policies, ΠS , which were introduced in the previous section and are simpler in their

characterization and evaluation, and more easily implementable. In a spirit similar to that adopted

in Section 2, we define a fluid relaxation and an induced randomized policy for the ONV variation

considered in this section. However, the proposed fluid relaxation provides a lower bound for V ∗S only,10

and the induced randomized policy is asymptotically optimal only for the problem restriction in the

policy space ΠS .

A computationally efficient and asymptotically optimal policy for the restricted problem

The problem relaxation employed in the subsequent analysis is described by the following mathematical

programming (MP) formulation:

minQx0 (43)

s.t. ∑
a∈A(x0)

χa = 1 (44)

∀x ∈ X\ ({x0} ∪XL),∑
a∈

S
y∈X\XL

A(y)

∑
1≤i≤|S(a)|

p(νa,i; a)νxa,iχa =
∑

a∈A(x)

χa (45)

erelx0 = 1 (46)

∀x ∈ X\{x0},

erelx =
∑

a∈
S

y∈X\XL
A(y)

∑
1≤i≤|S(a)|

p(νa,i; a)νxa,iχa (47)

∀x ∈ X\{x0} with Nx > 0, erelx > 0 (48)

∀x ∈ XL, Qx =
Nx
erelx

(49)

∀x ∈ X\XL, Qx = max
y∈Succ(x)

{Qy}+
Nx
erelx

(50)

∀x ∈ X\XL, ∀a ∈ A(x), χa ≥ 0 (51)

Variables χa in the above formulation denote a generalized flow that is routed through the arcs

corresponding to the different actions a ∈ A, and it conveys a unit of fluid that is induced to the

problem-defining graph G through its root node x0 (c.f., Constraints 44, 45). In a similar spirit, variables

erelx denote the amount of fluid reaching each node x ∈ X, for each unit of flow induced in G through

10and not for V ∗, which was the case with the fluid relaxation of the ONV problem presented in Section 2
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node x0 (c.f., Constraints 46, 47). Furthermore, Constraint 48 requests that any feasible solution of this

formulation has a positive flow to every node x with non-zero visitation requirements. Finally, variables

Qx denote the minimum amount of flow required in order to satisfy the corresponding node visitation

requirements, under the routing scheme described by variables χa, erelx , and the precedence constraints

expressed by the underlying graph G (c.f., Constraints 49, 50). In particular, the right-hand-side of

Constraint 50 expresses the fact that the accumulation of the fluid requested at an internal node x will

take place only after all the flow that is required for the satisfaction of the requirements of its successor

nodes has been conveyed through the graph. From a practical computational standpoint, the solution of

the above formulation can be further facilitated by replacing Constraint 50 with the following constraint:

∀x ∈ X\XL, ∀y ∈ Succ(x), Qx ≥ Qy +
Nx
erelx

(52)

The resulting formulation is convex, and it can be easily addressed through standard techniques borrowed

from convex optimization [17].

Given an optimal flow, χ∗, for the MP formulation defined by Equations 43-51, the definition and

execution of the proposed randomized policy follows exactly the same guidelines described in Section 2

for the definition of the policy πrel from the fluid relaxation of the ONV problem addressed in that

section. To emphasize this affinity between the two policies, we shall keep referring to the new policy

defined in this section as the policy πrel, while the MP formulation of Equations 43-51 will be called the

relaxing MP . The following theorem is the counterpart of Theorem 2 for this new problem context:

Theorem 5 Given an instance E = (X,A,P,N ) of the ONV problem with internal visitation require-

ments, let V ∗rel and (χ∗, erel
∗
, Q∗) respectively denote the optimal value and an optimal solution of the

corresponding relaxing MP. Then,

V ∗rel = Q∗x0 ≤ V ∗S (53)

where V ∗S denotes the optimal solution of the considered problem instance when restricted to the space of

static randomized policies.

The first part of Equation 53 in Theorem 5 is an immediate implication of the definition of V ∗rel and

Equation 43. The second part of this equation can be obtained through an argument similar to that

outlined in Footnote 5 for the corresponding result of Theorem 2. Furthermore, the perusal of Equa-

tions 49–50 reveals that the set of the optimal flows for the relaxing MP, {χ∗}, remains invariant as the

requirement vector N is scaled uniformly to infinity. This fact subsequently implies the invariance to

this scaling of the set of the induced randomized policies, {πrel}. The next theorem and the accompany-

ing corollary establish the asymptotic optimality of any instantiation of policy πrel in the new problem

context.

Theorem 6 Given an instance E = (X,A,P,N ) of the ONV problem with internal visitation require-

ments, consider the problem sequence, E(n), that is obtained through the uniform scaling of the visitation

requirement vector N by a factor n ∈ Z+. Then, as n→∞,

V π
rel

(n)− V ∗rel(n) = O(
√
n) (54)
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Proof: As in the proof of Theorem 2, let Xi
x denote the random number of tokens traversing node

x ∈ X during the ith graph traversal under πrel and σ2
x = V ar(Xi

x). Also, let {ψnx , n ≥ 1} be the renewal

process associated with the sequence {Xi
x}, defined as

ψnx = max{k :
k∑
i=1

Xi
x ≤ n · Nx} (55)

with ψnx = 0 if X1
x > n · Nx, x : Nx > 0. Finally, define

Ψn
x = ψnx + 1, x ∈ XL (56)

Ψn
x = max

y∈Succ(x)
{Ψn

y}+ ψnx + 1, x ∈ X\XL (57)

Then, the performance of policy πrel satisfies

V π
rel

(n) ≤ E[Ψn
x0 ] (58)

Equation 58, when combined with Theorem 5, imply that, in order to prove the result of Theorem 6,

it suffices to show that

∀x ∈ X, E[|Ψn
x −Q∗x(n)|] = O(

√
n) (59)

where Q∗x(n) denotes the optimal value of variable Qx in the relaxing MP formulated for problem instance

E(n).

We proceed to prove this result through an induction on the number of graph layers, l. The base

case, for l = L, is immediately obtained from the results in the proof of Theorem 3. Next, we consider

an l such that 0 ≤ l < L, and assume that Equation 59 holds for all x ∈
⋃
l+1≤i≤LX

i. Then, for x ∈ X l,

we have that

E[|Ψn
x −Q∗x(n)|] =

E[| max
y∈Succ(x)

{Ψn
y}+ ψnx + 1− max

y∈Succ(x)
{Q∗y(n)} − n · Nx

ex
|] ≤

E[ max
y∈Succ(x)

{|Ψn
y −Q∗y(n)|}] + E[|ψnx + 1− n · Nx

ex
|] ≤∑

y∈Succ(x)

E[|Ψn
y −Q∗y(n)|] + E[|ψnx + 1− n · Nx

ex
|] (60)

Each term of the summation appearing in Equation 60 is O(
√
n) from the induction hypothesis, while

the fact that

E[|ψnx + 1− n · Nx
ex

|] = O(
√
n) (61)

follows immediately from the results in the proof of Theorem 3. But then, the whole quantity appearing

in Equation 60 is O(
√
n), establishing the result of Equation 59, and, through that, the result of the

Theorem. �

The next corollary derives from Theorems 5 and 6, and it is the counterpart of Corollary 1 for the

ONV problem variation considered in this section, when restricted in the class of static randomized

policies ΠS .
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Corollary 2 Consider an instance E = (X,A,P,N ) of the ONV problem with internal visitation re-

quirements, restricted in the space of static randomized policies ΠS. Also, consider the problem sequence

E(n) that is obtained through the uniform scaling of the visitation requirement vector N by a factor

n ∈ Z+. Then, as n→∞,

V π
rel

(n)
V ∗S (n)

−→ 1 (62)

4 Conclusions

The work presented in this paper (i) extended the past results of [1] on the ONV problem to some

new problem variations, (ii) initiated the formal complexity analysis of the resulting problem taxonomy,

and (iii) offered new insights and a novel methodological base for the analysis of some computation-

ally tractable and asymptotically optimal policies for the addressed variations. From a more practical

standpoint, the developed results are important for the effective usage of the emerging theory on the

ONV problem in the applications that motivated it. Indeed, a main line of our future work will seek the

integration of the insights and results developed in this paper, in the application context presented in

the work of [4]; the reader is referred to [18] for some relevant developments. Another line of our future

research will seek the formulation of alternative fluid relaxations for the ONV problem with internal vis-

itation requirements, and the investigation of their potential for defining efficient suboptimal policies for

it. In fact, this last analysis constitutes part of a broader initiative of ours, concerning the development

of efficient, adaptive policies for the original ONV problem and its variations considered in this work; a

first set of results on this problem can be found in [19].

Appendix: Proof of Lemma 1

Let ψ′n = min{k : Sk > n · c}. Then ψ′n is a stopping time and, from Lemma 2.3 of [16], we have that

E[(
ψ′n∑
i=1

(Xi − µ))r] ≤ C(r, E[Xr]) · E[(ψ′n)
r/2] (63)

where C(r, E[Xr]) is a constant depending only on r and E[Xr]. Equation 63 further implies that

E[n−r/2 · (
ψ′n∑
i=1

(Xi − µ))r] ≤ C(r, E[Xr]) · E[(
ψ′n
n

)r/2] (64)

From Equation 64 and Theorem 2.3 of [16], we get

sup
n≥1

E[n−r/2 · (
ψ′n∑
i=1

(Xi − µ))r] <∞ (65)

which implies the uniform integrability of {n−r/2 · (
∑ψ′n
i=1(Xi − µ))r, n ≥ 1} [20].
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By the definition of the renewal process ψ′n,

n · c =
ψ′n∑
i=1

Xi + (
ψ′n∑
i=1

Xi − n · c) (66)

which further implies that

n−1/2 · (n · c− µ · ψ′n) = n−1/2 ·
ψ′n∑
i=1

(Xi − µ) + n−1/2 · (
ψ′n∑
i=1

Xi − n · c) (67)

Equation 67 combined with the triangle inequality and the fact that

0 ≤
ψ′n∑
i=1

Xi − n · c ≤ K (68)

also imply that

|n−1/2 · (n · c− µ · ψ′n)| ≤ |n−1/2 ·
ψ′n∑
i=1

(Xi − µ)|+ n−1/2 ·K (69)

and based on the inequality (a+ b)r ≤ 2r−1 · (|a|r + |b|r), a, b ∈ R, we finally get

|n−1/2(n · c− µ · ψ′n)|r ≤ 2r−1 · (|n−1/2

ψ′n∑
i=1

(Xi − µ)|r + n−r/2 ·Kr) (70)

Hence, the uniform integrability of {n−r/2 · (
∑ψ′n
i=1(Xi − µ))r, n ≥ 1} and Equation 70 imply the

uniform integrability of {n−r/2 · (n · c− µ · ψ′n)r, n ≥ 1}. Since ψ′n = ψn + 1 we have that

n−1/2 · (n · c− µ · ψn) = n−1/2 · (n · c− µ · ψ′n) + n−1/2 · µ (71)

which gives

n−r/2 · |n · c− µ · ψn|r ≤ 2r−1 · (n−r/2 · |n · c− µ · ψ′n|r + n−r/2 · µr) (72)

and implies the uniform integrability of {n−r/2 · (n · c− µ · ψn)r, n ≥ 1}.
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