
Generalized Algebraic Deadlock Avoidance Policies for

Sequential Resource Allocation Systems

Spyros A. Reveliotis∗

School of Industrial and Systems Engineering,

Georgia Institute of Technology, USA,

spyros@isye.gatech.edu

Elzbieta Roszkowska

Institute of Computer Engineering, Control, and Robotics,

Wroclaw University of Technology, Poland,

ekr@pwr.wroc.pl

Jin Young Choi

Digital Communications Infra Division,

Samsung Networks Inc., Korea,

jin young.choi@samsung.com

Abstract

Currently, one of the most actively researched approaches regarding the design of deadlock

avoidance policies for sequential resource allocation systems is based on concepts and techniques

provided by the, so called, theory of regions, that addresses the broader problem of synthesizing

PN models with pre-specified behaviors. However, one limitation of the theory of regions and

its aforementioned derivatives is that they cannot be applied when the target behavior has a non-

convex representation in the underlying state space. In this paper, we show how this problem can be

circumvented by appropriately generalizing the employed class of the candidate policies.

1 Introduction

The problem of deadlock avoidance in sequential resource allocation systems (RAS) is a well established

and extensively studied problem in the relevant literature. Generally speaking, the problem concerns the

coordinated allocation of a finite set of reusable resources to a set of concurrently executing processes
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so that circular waiting situations – i.e., situations where a subset of processes wait upon each other for

the release of the necessary resources for their advancement – are avoided and each process can proceed

to its successful completion. Past work has formally characterized the problem by means of a number

of modelling frameworks provided by qualitative Discrete Event Systems (DES) theory [3] – e.g., finite

state automata, Petri nets (PN), and various other graph theoretic models – and it has also provided a

number of methodologies for the synthesis of the necessary deadlock avoidance policies (DAP’s) for

various sub-classes of these systems; we refer the reader to [10, 14] for a systematic and comprehensive

exposition of all the currently available results. The main focus of this work is a particular DAP class that

in the past has been characterized as algebraic, since the relevant policies seek to ensure the deadlock-

freedom of the underlying RAS by confining its operation in a subspace that satisfies a properly chosen

set of linear inequalities. Some typical examples of such policies are the RUN and RO DAP’s, introduced

respectively in [5] and [6]. Furthermore, references [10, 14] provide some generic methodology for

synthesizing appropriate algebraic DAP’s for a very broad RAS class, while more recently, the works of

[7, 9] have offered some interesting additional insights regarding the functionality of these policies.

When it comes to the synthesis of algebraic DAP’s, one of the currently most active approaches

seeks first (i) to deploy the reachable state space of the underlying RAS, and subsequently (ii) to exploit

the information provided in the obtained reachability graph in order to derive the linear inequalities that

will successfully establish deadlock-free operation. The original works of [4, 12] that introduced this

method, motivated and justified it on the basis of some more general results pertaining to the synthesis

of PN models with pre-specified behaviors, collectively known as the theory of regions [2]. Further-

more, the aforementioned works constrained the synthesis problem to that of obtaining the maximally

permissive or optimal DAP, i.e., the DAP that admits the maximal possible subspace that guarantees

deadlock-free behavior.1 However, there are two potential problems that can arise during the deploy-

ment of the aforementioned approach, when confined to the computation of the maximally permissive

DAP: (i) The first problem relates to the computational complexity of the resulting policy, since it is

possible that the maximally permissive DAP is characterized by a number of linear inequalities that is a

super-polynomial function of the size of the underlying RAS. (ii) The second problem is of a more ex-

istential nature, since it is also possible that the target behavioral space characterizing the optimal DAP

is not convex, and therefore, it cannot be effectively characterized by a system of linear inequalities.

Motivated by these remarks, the work of [11] proposed a variation of the original methodology that, in-

stead of always seeking to compute the maximally permissive DAP, it computes, through an appropriate

Mixed Integer Programming (MIP) formulation [13], the most efficient DAP that can be expressed by

a user-specified number of linear inequalities. Clearly, this new approach can guarantee the polynomial

1All the technical concepts and results that are necessary for the thorough understanding of the presented work are system-

atically introduced in the subsequent parts of this manuscript.
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complexity of the derived policy by (pre-)selecting a number of linear inequalities that is polynomially

related to the underlying RAS size. Furthermore, the methodology can overcome the second problem

stated above by returning a sub-optimal DAP with a convex admissible state space, in the case that the

subspace defined by the optimal DAP is not convex. The work of [11] also discusses how to accommo-

date additional design considerations, like uncontrollable process advancement and resource allocation,

and how to deal with the computational complications arising from the potentially large-scale nature of

the underlying reachability space. Finally, from a more analytical standpoint, the constraints of the MIP

formulation presented in [11] provide a complete, formal characterization of the entire class of algebraic

DAP’s that are appropriate for any given RAS and do not exceed a certain dimensionality bound.

Yet, one particular issue that remains unresolved by the aforecited works, is how to extend the

concept of the algebraic DAP and how to appropriately modify the outlined methodology in order to

be able to obtain the maximally permissive DAP even in the case that the relevant state space is non-

convex. This particular problem is undertaken in this work. More specifically, the results provided in

this paper (i) first re-cast the MIP formulation developed in [11] so that it pertains more directly to

the concepts underlying the DAP synthesis problem – i.e., stripping it from the “overhead” concepts

and elements introduced by the previously adopted PN formalism2 – and subsequently (ii) they exploit

the insights obtained from this new formulation, in order to address the policy extension problem, by

introducing the class of generalized algebraic DAP’s. The last part of the paper also discusses how to

modify the derived MIP formulation so that it applies to the synthesis of generalized algebraic DAP’s.

We start the development of this material by formally introducing in the next section the notion of

sequential RAS and the corresponding deadlock avoidance problem. In order to provide a more concrete

exposition of our results, we confine our discussion in the class of disjunctive/conjunctive (D/C-)RAS;

however, it must be pointed out that the presented methodology pertains to any other RAS covered by

the representational framework introduced in [10].

2 Disjunctive / Conjunctive Resource Allocation Systems and their Dead-

lock Avoidance Problem

D/C-RAS For the purposes of this work, a Disjunctive / Conjunctive Resource Allocation System (D/C-

RAS) is formally defined by a 4-tuple Φ =< R ,C,P ,A > where: (i) R = {R1, . . . ,Rm} is the set of the

system resource types. (ii) C : R → Z+ – the set of strictly positive integers – is the system capacity

function, characterizing the number of identical units from each resource type available in the system.

Resources are considered to be reusable, i.e., each allocation cycle does not affect their functional

2Of course, as mentioned above, this formalism was instrumental for the original conception and the formal justification of

the approach.
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status or subsequent availability, and therefore, C(Ri) ≡ Ci constitutes a system invariant for each i.

(iii) P = {Π1, . . . ,Πn} denotes the set of the system process types supported by the considered system

configuration. Each process type Π j is a composite element itself, in particular, Π j =< S j,G j >, where:

(a) S j = {Ξ j1, . . . ,Ξ j,l( j)} denotes the set of processing stages involved in the definition of process type

Π j, and (b) G j is an acyclic digraph with its node set, Vj, being bijectively related to the set S j. Let V↗
j

(resp., V↘
j ) denote the set of source (resp., sink) nodes of G j. Then, any path from some node vs ∈V↗

j

to some node v f ∈V↘
j defines a process plan for process type Π j. (iv) A :

Sn
j=1 S j →∏

m
i=1{0, . . . ,Ci}

is the resource allocation function associating every processing stage Ξ jk with a resource allocation

request A( j,k) ≡ A jk. More specifically, each A jk is an m-dimensional vector, with its i-th component

indicating the number of resource units of resource type Ri necessary to support the execution of stage

Ξ jk. Obviously, in a well-defined RAS, A jk(i)≤Ci, ∀ j,k, i. Furthermore, the resource set A jk, required

for the execution of a particular processing stage Ξ jk, is allocated exclusively and non-preemptively to

each process instance, and it is released by it only upon the allocation of the resources required for the

execution of the subsequent stage. Finally, |Φ| ≡ |R |+ |
Sn

j=1 S j|+∑
m
i=1Ci will be referred to as the size

of Φ.

A logical characterization of the RAS behavior The behavior generated by the D/C-RAS can be

formally modeled as a Finite State Automaton (FSA) [3]. The state of this automation is defined as

follows:

Definition 1 The D/C-RAS state, s(t), at time t, is a vector of dimensionality D, equal to the total num-

ber of distinct processing stages, such that each of its components s(t;q) corresponds to a processing

stage Ξ jk and indicates the number of process instances executing stage Ξ jk at time t. �

To simplify the notation, the following discussion omits the dependence of state s on time t. The

information contained in the RAS state is sufficient for the determination of the distribution of the

resource units to the various processing stages, as well as of the slack (or idle) resource capacity in

the system; in particular, the slack capacity, δi(s), of resource Ri at sate s, can be computed as δi(s) ≡
Ci−∑

D
q=1 s(q( j,k)) ·A jk(i). The set S of feasible resource allocation states for the considered RAS is

defined by S ≡ {s ∈ (Z+
0 )D : δi(s)≥ 0, ∀i = 1, . . . ,m}. The finiteness of the resource capacities implies

that card(S)≡ |S|< ∞. However, in general, |S| will be a super-polynomial function of the RAS size.

The set of events, E, that can change the system state, comprises: (i) the events el
jk, j = 1, . . . ,n, k ∈

{1, . . . , l( j) : Ξ jk ∈ V↗
j }, corresponding to the loading of a new instance of process type Π j into the

system, that is to follow a process plan starting with stage Ξ jk, (ii) the events ea
jkh, j = 1, . . . ,n, k,h =

1, . . . , l( j), k 6= h, corresponding to the advancement of a process instance executing stage Ξ jk to a

successor stage Ξ jh, and (iii) the events eu
j , corresponding to the unloading of a finished process instance

of type Π j. Without loss of generality, it is assumed that, during a single state transition, only one
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of these events can take place. The resulting transition, however, is feasible only if the additionally

requested set of resources can be obtained from the system slack capacity.

A natural definition for the initial state is s0 ≡ 0 i.e., the state in which the system is idle and empty

of any process instances. Since the main logical concern addressed herein is the establishment of non-

blocking behavior, the set of marked states is defined as Sm ≡ {s0}. Hence, the marked language Lm of

this automaton corresponds to “complete runs”.

The above FSA-based model of the RAS behavior can be expressed graphically by the State Tran-

sition Diagram (STD), i.e., a digraph G with nodes corresponding to the FSA states, and edges cor-

responding to the feasible state transitions. Of particular interest is the STD subgraph induced by the

nodes s that are reachable from node s0; this subgraph is denoted by Sr and it is characterized as the

reachable subspace of the considered RAS.

Deadlock and Deadlock Avoidance in D/C-RAS A major concern in the logical control of RAS

is the establishment of live – or deadlock-free or non-blocking – behavior. Deadlocks are defined as

RAS states where there is a set of process instances, such that each of its processes, in order to advance,

requests the allocation of resources currently held by some other process(es) in the considered set. Their

development results from (i) the fact that processes will hold upon their allocated resources in a non-

preemptive manner and (ii) the arbitrary structure of the process routes that can give rise to cyclical

patterns of resource requests among the various executing processes.

In the FSA-based modelling of the RAS operation, deadlocks are represented by the formation of

strongly connected components in the system reachable space, Sr, which, however, are not co-accessible,

i.e., the empty state, s0, is not reachable from them through any sequence of feasible transitions. Hence,

a correct Deadlock Avoidance Policy (DAP), ∆, tries to restrict the system operation to a strongly con-

nected component of Sr which contains the empty state s0. The RAS subspace that is reachable under –

or admissible by – some DAP ∆ will be denoted by Sr(∆). Given a D/C-RAS configuration, an applied

DAP is characterized as optimal, if the corresponding admissible subspace is the maximal strongly con-

nected component of Sr which contains the empty state s0. The set of states admitted by the optimal

DAP, ∆∗, is characterized as (the set of) reachable safe states, and it is denoted by Srs. The complement

of Srs with respect to Sr is denoted by Sru, and it constitutes the system reachable unsafe (sub-)space.

In the D/C-RAS operational context, the optimal DAP, ∆∗, is well-defined, and it is effectively com-

putable through an one-step lookahead scheme that admits a tentative resource allocation if and only if

(iff) the resulting state is safe. However, the corresponding state safety problem is NP-complete [1]. In

the light of this result, the research community has sought the development of sub-optimal DAP’s that

are implementable in polynomial complexity with respect to the underlying RAS size, and yet, efficient,

i.e., they manage to admit a large part of Srs. This idea has been formalized by the concept of Polyno-

mial Kernel (PK-) DAP [10]. From an implementational standpoint, a typical approach to the design of
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PK-DAP’s is the identification of a property H (s), s ∈ S, such that (i) the complexity of testing H () on

the RAS states is polynomial with respect to the RAS size, and (ii) the subspace {s ∈ Sr : H (s) = TRUE}
is strongly connected.3 In this setting, algebraic PK-DAP’s can be defined as the particular class of

PK-DAP’s where the property H (s) constitutes a system of linear inequalities on the RAS state s that

is polynomially sized with respect to the RAS size |Φ|. In the next section, first we characterize the

set of correct algebraic DAP’s for any given D/C-RAS Φ that can be expressed as a system of K linear

inequalities, where K is an externally specified parameter, and subsequently we employ this characteri-

zation towards the development of a mathematical programming (MP) formulation that will return the

most efficient DAP in the aforementioned class, when assuming that efficiency is characterized by a

“weight” function defined on the reachable space of Φ, Sr.

3 Design of Algebraic DAP’s through the Deployment of the RAS Reach-

ability Space

In the subsequent discussion, the considered class of algebraic DAP’s will be represented with the tuple

(A,b), where A is a K×D real-valued matrix and b is a K-dimensional real-valued vector. Furthermore,

the algebraic policy

A · s≤ b (1)

obtained for some particular pricing of the matrix A and vector b, will be denoted by ∆(A,b). It must

be noticed that this definition of the algebraic DAP constitutes already a generalization of the way that

this concept was employed in the earlier works, since it allows for real-valued entries of the policy-

defining elements A and b.4 Also, it is easy to see that under this extended, real-valued representation,

all the elements of A and b can be appropriately scaled so that they belong in the interval [−1,1], while

maintaining the discriminatory power of the original constraint set; i.e., all the key problem variables in

this section can be naturally bounded in the interval [−1,1], and this assumption will be applied in the

subsequent developments:

∀i = 1, . . . ,K, ∀ j = 1, . . . ,D,

−1≤ A(i, j)≤ 1 (2)

3We notice, for completeness, that an additional condition that is expected to be satisfied by the property H () defining a

PK-DAP, is that H (s0) = TRUE; c.f. [10]. However, this requirement can be relaxed since the state s0 can be easily recognized

and admitted through an additional step that tests explicitly for “s = s0” during the policy implementation. This approach is

actually presumed in the rest of this work.
4The integrality of the elements of matrix A and vector b in the algebraic DAP’s appearing in all the past developments,

was the result of the (ad-hoc) reasoning underlying the specification of these DAP’s and/or the PN-based modelling framework

employed for their analysis.
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∀i = 1, . . . ,K,

−1≤ b(i)≤ 1 (3)

We remind the reader that according to the characterizations provided in the previous section, an

algebraic DAP ∆(A,b) will be correct iff every state s ∈ Sr\{s0} that is reachable under the policy,

is also co-reachable under it, i.e., there is an admissible transition sequence from state s back to the

initial state s0. This correctness specification can be expressed analytically through a constraint set

that confines the pricing of variables A(i, j), i = 1, . . . ,K, j = 1, . . . ,D and b(i), i = 1, . . . ,K, and it is

developed as follows:

First we introduce the binary variables xi
l, l = 1, . . . , |Sr|, i = 1, . . . ,K, that will be priced to one if

state sl satisfies the inequality A(i, ·) · sl ≤ b(i), and to zero, otherwise. This pricing can be achieved by

the following constraint set:

∀l = 1, . . . , |Sr|, ∀i = 1, . . . ,K,

b(i)−A(i, ·) · sl ≤ ε · (xi
l −1)+U · xl

i (4)

b(i)−A(i, ·) · sl ≥ ε · xi
l +U · (xi

l −1) (5)

xi
l ∈ {0,1} (6)

The introduction of the parameter ε > 0 in Eqs 4 and 5 seeks to prevent any potential ambiguity in the

developed formulation, by forcing the value of the difference |A(i, ·) ·sl−b(i)| away from zero. Its value

should be chosen small enough so that it does not affect the outcome of the formulation, and it can be

determined by trial and error. On the other hand, the parameter U appearing in Eqs 4 and 5 denotes an

upper bound for the quantity |A(i, ·) ·sl−b(i)|, l = 1, . . . , |Sr|, i = 1, . . . ,K, and it can be readily obtained

when taking into consideration the bounds established by Eqs 2 and 3, and the bounds established for

the components of the state vector s by the finiteness of the resource capacities. It is easy to see, then,

that a positive value for the difference b(i)−A(i, ·) · sl will force xi
l to one, while a negative value for

this difference will force xi
l to zero.

Given the variables xi
l , the admissibility of state sl by policy ∆(A,b) can be expressed by the real-

valued variable xl , which is priced as follows:

∀l = 1, . . . , |Sr|,∀i = 1, . . . ,K,

xl ≤ xi
l (7)

∀l = 1, . . . , |Sr|,

xl ≥
K

∑
i=1

xi
l −K +1 (8)

0≤ xl ≤ 1 (9)

7



Constraint 7 forces xl to zero, if any of the policy-defining inequalities are violated by state sl . In

the opposite case, the combination of Constraints 8 and 9 forces xl to one.

In order to formally express the aforestated policy correctness requirement, we also need to char-

acterize the reachability and co-reachability of any state sl ∈ Sr\{s0}, under ∆(A,b). For this task, we

introduce the additional sets of real-valued variables zq
l and yq

l , l = 0, . . . , |Sr|, q = 0, . . . Q̄, such that the

pricing of the variable zq
l (resp., yq

l ) to one indicates that there is a policy-admissible path from state s0

to sl (resp., from state sl to s0) and the minimal length of any such path is equal to q steps; in any other

case, zq
l (resp., yq

l ) should be priced to zero. The parameter Q̄ appearing in the above definition denotes

an upper bound to the maximal length of any loop-free path emanating from or resulting to state s0, and

it can be easily obtained from the deployed reachability graph. The availability of the variables zq
l and

yq
l enables the straightforward expression of the policy correctness requirement through the following

constraint set:

∀l = 1, . . . , |Sr|,
Q̄

∑
q=1

zq
l ≤

Q̄

∑
q=1

yq
l (10)

It remains, however, to introduce additional constraint sets that will enforce the desired pricing for zq
l

and yq
l . The set enforcing the correct pricing of variables zq

l is as follows:

∀l = 0, . . . , |Sr|, z0
l = I{sl=s0} (11)

∀l = 1, . . . , |Sr|,∀q = 1, . . . Q̄, zq
l ≥ 0 (12)

∀l = 1, . . . , |Sr|,∀q = 1, . . . Q̄, zq
l ≤ ∑

m∈IP(l)
zq−1

m (13)

∀l = 1, . . . , |Sr|,∀q = 1, . . . Q̄, zq
l ≤ xl (14)

∀l = 1, . . . , |Sr|,∀q = 1, . . . Q̄,∀m ∈ IP(l),

zq
l ≥ zq−1

m − (1− xl)−
q−1

∑
ζ=0

zζ

l (15)

Eq. 11 is a “boundary condition” that prices the variables z0
l ; the parameter I{sl=s0} is the corresponding

indicator variable. Eq. 12 states the nonnegative real nature of the variables zq
l , while the pricing of these

variables in a way that is consistent with their definition is enforced by Eqs 13–15. More specifically,

the quantity IP(l) appearing in these two equations denotes the set of immediate predecessor states of

state sl , i.e., those states sm from which there is an immediate transition to state sl . Hence, Eq. 13

expresses the fact that for state sl ∈ Sr\{s0} to be accessible under policy ∆(A,b) in q steps, there

must be an immediate predecessor state sm that is accessible under policy ∆ in q− 1 steps. Similarly,

Eq. 14 expresses the fact that state sl ∈ Sr\{s0} will be accessible under ∆(A,b) only if it satisfies the

policy-defining constraints. Finally, Eq. 15 forces zq
l to 1, if there is an immediate predecessor state sm

that is accessible from state s0 through a minimal policy-admissible path of q− 1 steps; however, this

enforcement takes place only if (i) state sl itself is policy-admissible and (ii) there is no other shorter
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policy-admissible path to it.

The correct pricing of the variables yq
l can be enforced by a constraint set analogous to that of

Eqs 11–15, when noticing that co-reachability becomes equivalent to reachability, once the arcs of

the underlying reachability graph have been reversed. Defining the set IS(l) as the set of immediate

successor states for state sl ∈ Sr\{s0}, we obtain:

∀l = 0, . . . , |Sr|, y0
l = I{sl=s0} (16)

∀l = 1, . . . , |Sr|,∀q = 1, . . . Q̄, yq
l ≥ 0 (17)

∀l = 1, . . . , |Sr|,∀q = 1, . . . Q̄, yq
l ≤ ∑

m∈IS(l)
yq−1

m (18)

∀l = 1, . . . , |Sr|,∀q = 1, . . . Q̄, yq
l ≤ xl (19)

∀l = 1, . . . , |Sr|,∀q = 1, . . . Q̄,∀m ∈ IS(l),

yq
l ≥ yq−1

m − (1− xl)−
q−1

∑
ζ=0

yζ

l (20)

Hence, for any given D/C-RAS Φ, the constraint set of Eqs 2–20 characterizes the entire set of

algebraic DAP’s, ∆(A,b), that can be expressed by no more than K linear inequalities. A notion of

optimality can be introduced over this set, by employing an objective function

max
|Sr|

∑
l=1

wl ·
Q̄

∑
q=1

zq
l (21)

where wl is some “weight” function defined on the set of states sl ∈ Sr\{s0}. In particular, setting

wl ≡ 1, ∀l, enables the computation of the maximally permissive DAP, as defined in Section 2. Fi-

nally, the following theorem is an immediate consequence of the above discussion and it parallels the

developments presented in [11]:

Theorem 1 For any given D/C-RAS Φ and a value K characterizing the (maximum) number of the

linear inequalities to be employed by the designed algebraic DAP, the formulation of Eqs 2–21 will

return the best possible5 algebraic DAP ∆(A,b), according to the performance criterion established by

the function wl , l = 1, . . . , |Sr|. �

The formulation of Eqs 2–21 will be always feasible, since it contains the trivial policy that confines

the RAS to its initial state s0. Of course, such a result should be interpreted as lack of an effective DAP

in the considered policy space. If we want such a negative result to be communicated as infeasibility by

the proposed formulation, we can add the constraint

|Sr|

∑
l=1

z1
l ≥ 1 (22)

5We avoid to use the word “optimal” in order to prevent confusion with the optimal DAP ∆∗.
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Furthermore, in most practical cases, one would like to enforce the existence of at least one policy-

admissible process plan for each process type Π j, j = 1, . . . ,n. In such a case, Constraint 22 should be

replaced with the following stronger requirement:

∀ j = 1, . . . ,n, ∑
l∈LD( j)

Q̄

∑
q=1

zq
l ≥ 1 (23)

where LD( j) denotes the set of states involving a loading event for process type Π j.

4 Generalized Algebraic DAP’s

As it was pointed out in the introductory section, if the reachable safe space Srs is a non-convex area

according to the state representation introduced by Definition 1, the methodology developed in the

previous section will fail to return the optimal DAP, ∆∗, no matter how large we set the value of the

design parameter K. This can be immediately deduced by the fact that the polytope defined by Eq. 1 is

always a convex region [13]. To circumvent this problem, we need to identify mechanisms that are able

to effectively recognize non-convex patterns. It turns out that such a mechanism can be provided by the

concept of the “Committee Machine” (CM), a pattern classifier that has been studied by the machine

learning community since the early sixties [8].6 In this section, first we introduce the CM concept and

establish its capability to recognize non-convex patterns in the (state) spaces of interest in this work, and

subsequently we show how to modify the methodology introduced in Section 3, so that it applies to the

design of DAP’s that are based on the CM concept. For reasons that will become clear in the following,

we shall refer to this new class of DAP’s as generalized algebraic DAP’s.

Committee Machines Given an n-dimensional pattern space Ω, a (generalized) committee machine

(CM) is defined by a quadruple CM =< A,b,π,θ >, where: (i) A is a real-valued matrix of some

dimensionality m×n; (ii) b is a real-valued m-dimensional vector; (iii) π is a real-valued m-dimensional

vector; and (iv) θ is a real-valued scalar. The machine accepts a pattern ω ∈Ω iff
m

∑
i=1

π(i) · I{A(i,·)·ω≤b(i)} ≤ θ (24)

In Eq. 24, I{A(i,·)·ω≤b(i)} denotes the indicator variable that is priced to one if the inequality A(i, ·) ·ω ≤
b(i) is satisfied, and to zero, otherwise. The following theorem is an immediate consequence of the

results presented in ([8], Chpt. 6):

Theorem 2 Given two distinct, finite subsets of a finite-dimensional pattern space Ω, there is always a

generalized committee machine to dichotomize them. �
6In fact, the concept utilized in this work corresponds more directly to that of the “two-layered machine” in [8]. Yet, we

opted for the term “(generalized) committee machine” since it is more expressive of the dynamics underlying the logic of the

resulting policies.
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Figure 1: Characterization of the safe and unsafe reachable states for the example D/C-RAS, in the

projected sub-space defined by the state components x11 and x21; safe reachable states are depicted by

white circles and unsafe reachable states by black ones.

Generalized algebraic DAP’s It should be clear to the reader that the reachable safe and unsafe

subspaces of any given D/C-RAS Φ, satisfy the conditions of Theorem 2. Therefore, there will always

exist a committee machine, CM =< A,b,π,θ >, able to effectively recognize the safe sub-space Srs.

We shall refer to the DAP established by this CM as a generalized algebraic DAP, and we shall denote

it by ∆(A,b,π,θ). The following corollary formalizes the above remarks:

Corollary 1 Given a D/C-RAS Φ, there will always exist a generalized algebraic DAP ∆(A,b,π,θ)

such that Sr(∆(A,b,π,θ)) = Srs, i.e., the class of generalized algebraic DAP’s will always contain the

maximally permissive DAP, ∆∗. �

The next example demonstrates the notion of generalized algebraic DAP and its ability to express

the optimal DAP, ∆∗, even in the case that the reachable and safe subspace, Srs, is non-convex.

Example Consider a D/C-RAS consisting of two resources, R1 and R2, with corresponding capac-

ities C1 = C2 = 2, and supporting two process types: Process type Π1 consists of a linear sequence of

two processing stages, Ξ11 and Ξ12, with corresponding resource allocation request vectors (1,0)T and

(0,2)T , and process type Π2 is another linear sequence of two processing stages, Ξ21 and Ξ22, with

corresponding resource allocation request vectors (0,1)T and (2,0)T . It is easy to see that the optimal

DAP for the considered RAS must restrict only the resource allocation with respect to stages Ξ11 and

Ξ21, since any process instances executing the remaining stages Ξ12 and Ξ22 can immediately exit the

system upon their completion. Hence, the admissibility of any given RAS state (x11,x12,x21,x22)T can

be resolved by considering only its projection to the subspace defined by its components x11 and x21;

Figure 1 provides this characterization. Clearly, the sub-space Srs, that is admissible by the optimal pol-

icy, ∆∗, is non-convex, since the vectors (2,0)T and (0,2)T correspond to admissible resource allocation
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states, but the vector (1,1)T does not.

Figure 1 suggests also naturally a generalized algebraic DAP, ∆(A,b,π,θ), with Sr(∆(A,b,π,θ)) =

Srs. Such a policy can be defined by any pair of straight lines that separate the safe from the unsafe

sub-space, as indicated in the Figure, plus a “voting” scheme that admits a vector (x11,x21)T if and only

if it satisfies one of the two inequalities defined by the aforementioned straight lines. A more concrete

instantiation of such a policy, that corresponds to the separating lines annotated in Figure 1, is given by

the inequality:

−1.0 · I{x11≤0.5}−1.0 · I{x21≤0.5} ≤−1.0 (25)

A MIP formulation for the design of generalized algebraic DAP’s In the last part of this section,

we modify the design methodology developed in Section 3 so that it applies to the design of generalized

algebraic DAP’s. We start the relevant discussion by noticing that the scaling effect implied by Eqs 2, 3

pertains also to the defining elements of the committee machine. Hence, Eqs 2, 3 will constitute part of

the new formulation, and furthermore, they will be complemented by the following set:

∀i = 1, . . . ,K, −1≤ π(i)≤ 1 (26)

−1≤ θ≤ 1 (27)

Similarly, Constraints 4–6, that characterize the satisfaction of the linear inequalities A(i, ·) · sl ≤
b(i), l = 1, . . . , |Sr|, i = 1, . . . ,K, by state sl , as well as Constraints 10–20, that characterize the policy

correctness and the pricing of the indicator variables zq
l and yq

l , will not be affected by change of the

policy logic, and the same remark applies to the characterization of the problem objective function by

Eq. 21. Next, we modify Constraints 7–9 of the previous formulation, so that they express the new

admissibility condition of the committee machine.

Given the variables xi
l , that are priced according to Constraints 4–6, the admissibility of a state

sl, l = 1, . . . , |Sr|, by the generalized algebraic DAP ∆(A,b,π,θ) can be expressed by a set of binary

variables, xl , that are priced as follows:

∀l = 1, . . . , |Sr|,

θ−
K

∑
i=1

π(i) · xi
l ≤ ε · (xl −1)+Λ · xl (28)

θ−
K

∑
i=1

π(i) · xi
l ≥ ε · xl +Λ · (xl −1) (29)

xl ∈ {0,1} (30)

Eqs 28–30 are similar in spirit to Eqs 4–6; in particular, the parameters ε and Λ, appearing in Eqs 28

and 29, play a role similar to that of the parameters ε and U in Eqs 4 and 5. However, one problem with

the constraint set of Eqs 28–30 is that it is nonlinear, since it involves the products π(i) · xi
l . This issue
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can be remedied by replacing the products π(i) · xi
l in Eqs 28 and 29 with the dummy variables τi

l that

are priced according to the following constraints:

∀l = 1, . . . , |Sr|, ∀i = 1, . . . ,K,

−xi
l ≤ τ

i
l ≤ xi

l (31)

(xi
l −1)≤ τ

i
l −π(i)≤ (1− xi

l) (32)

Clearly, when xi
l = 0, τi

l is forced to zero by Constraint 31, while Constraint 32 becomes identical to

Constraint 26. On the other hand, when xi
l = 1, Constraint 32 forces τi

l = π(i), and then, Constraint 31

becomes equivalent to Constraint 26. Hence, the variables τi
l are properly priced in all cases and no

additional side-effects are caused by their introduction.

The next theorem constitutes the counterpart of Theorem 1, for the case of generalized algebraic

DAP’s, and its correctness is an immediate consequence of the previous discussion.

Theorem 3 For any given D/C-RAS Φ and a value K characterizing the (maximum) number of the

linear inequalities to be employed by the designed generalized algebraic DAP, the MIP formulation

of Eqs 2–6, 10–21 and 26–32, where the products π(i) · xi
l in Eqs 28 and 29 have been replaced by

the variables τi
l , will return the best possible generalized algebraic DAP ∆(A,b,π,θ), according to the

performance criterion established by the function wl , l = 1, . . . , |Sr|. �

5 Conclusions

The key contribution of this paper was the extension of the MIP-based methodology for the design of

correct algebraic DAP’s for sequential RAS, that was originally developed in [11], so that the optimal

DAP, ∆∗, is always within the scope of the potential solutions. We also notice, for completeness, that

the presented method can be easily adjusted, in a spirit similar to that of [11], in order to account for

uncontrollable behavior and/or to cope with the large-scale nature of the underlying state spaces; the

relevant details can be traced in [11] and they are left to the reader.
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