
1

Relative Value Function Approximation for the
Capacitated Re-entrant Line Scheduling Problem

Jin Young Choi and Spyros Reveliotis
School of Industrial & Systems Engineering

Georgia Institute of Technology
Atlanta, GA 30332

{choijy68,spyros}@isye.gatech.edu

Abstract— The problem addressed in this work is that
of determining how to allocate the workstation processing
and buffering capacity in a capacitated re-entrant line to
the job instances competing for it, in order to maximize its
long-run / steady-state throughput, while maintaining the logical
correctness of the underlying material flow, i.e., deadlock-free
operations. An approximation scheme for the optimal policy that
is based on Neuro-Dynamic Programming theory is proposed,
and its performance is assessed through a numerical experiment.
The derived results indicate that the proposed method holds
considerable promise for providing a viable, computationally
efficient approach to the problem, and highlight directions for
further investigation.

Note to Practitioners—Sequencing and scheduling problems
arising in the context of contemporary manufacturing environ-
ments are known to be extremely hard. For this reason, in most
practical situations, these problems have been resolved through
the application of a number of heuristics – i.e., “rules of thumb”
that are expected to provide reasonable performance. Things are
complicated even further in the automated versions of these envi-
ronments, since the applied sequencing and scheduling logic must
guarantee, in addition to good performance, logically correct and
smooth operation. Both, the logical and the performance-oriented
control problem of flexibly automated production systems can
be – and have been – addressed through formal systems theory.
However, a challenging remaining problem is the approximation
of the derived optimal policies in a way that will maintain near-
optimality, and at the same time, it will be computationally
tractable in the context of the “real-world” applications. Our past
work has addressed this approximation problem primarily with
respect to the optimal logical control policy. The work presented
in this paper undertakes the complementary problem of approx-
imating the optimal scheduling policy. To this end, we employ
some recently emerged results from a field known asNeuro-
Dynamic Programming (essentially, a systematic approximation
framework for Dynamic Programming). Our results indicate
that the proposed approximation framework holds considerable
promise towards developing a systematic analytical methodology
for deriving near-optimal and logically correct scheduling policies
for flexibly automated production systems. More specifically,
it is shown that, when applied to some prototypical problems
concerning the scheduling of re-entrant lines with finite buffering
capacity at their workstations, the proposed approximation
framework (i) effectively integrates past results concerning the
logical control of these environments, and (ii) the obtained
performance is consistently superior to the performance provided
by the typically used heuristics.

Index Terms— Capacitated re-entrant line, Neuro-Dynamic
Programming, relative value function approximation, scheduling.

I. I NTRODUCTION

I N its basic definition [1], there-entrant lineconsists ofL
workstations,W1, W2, · · ·, WL, that support the production

of a single item. Each workstationWi, i = 1, 2, · · · , L,
possessesSi identical servers, and the production of each
unit occurs in M stages,J1, J2, · · ·,JM ; each stageJj , j =
1, 2, · · · ,M , is supported by one of the system workstations,
to be denoted byW (Jj). Also, M > L, which characterizes
the re-entrant nature of the line. Thecapacitatedre-entrant
line (CRL) [2], considered in this work, further assumes
that each workstation hasBi buffer slots; each part visiting
the workstation for the execution of some processing stage
is allocated one unit of buffering capacity, which it holds
exclusively during its entire sojourn in the station, while
blocking other parts coming into the station. Once in the
station, the part competes for one of the station servers forthe
execution of the requested stage. Moreover, the part maintains
hold of its allocated buffer slot while being processed. After
having finished the processing of its current stage at a certain
station, the part waits in its allocated buffer for transferto the
next requested station. Due to the finite buffering capacity, this
transfer should be authorized by astructural control policy
(SCP) [3] ensuring that (i) the destination workstation has
available buffering capacity, and (ii) the transfer issafe, i.e., it
is still physically possible from the resulting state to process
all running jobs to completion.

In the context of this operational framework, the problem
considered in this work can be posed as determining how
to allocate the workstation processing and buffering capacity
to the competing parts, in order to maximize the long-run
system throughput, while maintaining logical correctnessof
the material flow, i.e., deadlock-free operation. To facilitate
the subsequent developments, it is further assumed that: (i)
there exists an infinite amount of raw material waiting for
processing at the line’s Input/Output (I/O) station;1 (ii) the
processing time of stageJj , j = 1, 2, · · · ,M , is exponentially
distributed with finite non-zero rateµj ;2 (iii) the involved job
transfer times are negligible when compared to the processing

1This assumption reflects the fact that we are interested in theoptimization
of the long-run system throughput.

2More general cases can be covered through approximation based on phase-
type distributions.



2

I/O

W2W1

J :  W1 -> W2 -> W1

Fig. 1. Example: A capacitated re-entrant line

times.3

Example As a more concrete example consider the capac-
itated re-entrant line depicted in Figure 1. This line has two
workstations,W1, W2, with S1 = S2 = 1 andB1 = 1, B2

= 2. The supported production sequence isJ = < J1, J2,
J3 >, with W (J1) = W (J3) = W1 andW (J2) = W2. Stage
processing times are exponentially distributed with rateµj ,
j = 1, 2, 3, and so are the involved transfer times, with a
uniform rateα → ∞. For this small configuration, it can be
easily seen that the system material flow will be deadlock-free
as long as

|J1| + |J2| ≤ B1 + B2 − 1 = 2, (1)

where |Jj |, j = 1, 2, 3, denotes the number of job instances
in W (Jj) executing stageJj . Under this condition, the CRL
scheduling problem is to find an optimal control policy that
maximizes the long-run system throughput by allocating the
workstation processing and buffering capacity to the compet-
ing parts.4

During the last fifteen years, there has been a significant
number of works dealing with the scheduling problem in the
original, uncapacitated re-entrant line; indicatively, we men-
tion those published in [1], [4], [5], [6], [7], [8], [9]. However,
the results derived in these past works cannot be immediately
transferred to the capacitated re-entrant line model, due to the
complications arising from the blocking effect taking place
in this new environment. Characteristically, the work of [10]
demonstrated through a simple example that these additional
material flow dynamics negate in a strong qualitative sense
prior analytical results obtained through the study of the basic
re-entrant line model, and necessitate the re-examinationof
the problem in this new operational context. Motivated by
these remarks, the work of [2] developed a formal approach
for the analysis and control of capacitated re-entrant lines,
based on the modelling framework of Generalized Stochastic
Petri Nets (GSPN). This framework (i) allowed the seamless
integration of logical/structural and timed-based aspects of
the system behavior, (ii) provided an analytical formulation
for the underlying scheduling problem, and (iii) led to some
interesting qualitative insights regarding the structureof the
optimal scheduling policy. However, the practical applicability

3This assumption is quite representative of the operations taking place in
highly integrated manufacturing systems, where a material handling device
like a central robotic manipulator rapidly transfers jobs among a set of
workstations located around it. On the other hand, more general cases can still
be addressed through the presented approach, by defining virtual workstations
performing job transfer operations.

of the framework of [2] to “real-world” applications is re-
stricted by the fact that it requires the complete enumeration
of the underlying state space, the size of which is a super-
polynomial function of the elements defining the considered
CRL scheduling problem.

Currently we lack a formal characterization of the com-
putational complexity of the optimal policy for the consid-
ered CRL scheduling problem. Yet, existing results on the
complexity of the optimal deadlock avoidance for sequential
resource allocation systems [11] and the optimal control of
queueing networks [12] seem to suggest that this policy willbe
computationally intractable. Hence, there is an apparent need
for scalable and efficient approximations to it. A computational
framework that holds considerable promise for providing such
scalable and efficient approximations to the optimal solution
of the considered CRL problem is that ofNeuro-Dynamic
Programming(NDP) [13].

Of particular interest to this work are the so calledpara-
metric representationNDP methods [13], [14], [15], [16];
these methods recast the considered scheduling problem to
the problem of selecting an appropriate set of values for a
parametric architecture that will eventually define the adopted
scheduling policy. Conceptually, the deployment of such an
approach consists of two major steps: (i) the specification
of the approximation architecture and its aforementioned
parametrization, and (ii) the design of effective algorithms
for tuning the parameters of the approximation architecture,
when applied on any given CRL configuration. The first of
the above two steps – i.e., the specification of the approx-
imation architecture – is typically driven by the following
considerations: Since the approximating architecture will be
involved in the real-time computation determining the applied
scheduling policy, it must be of low, preferably polynomial,
computational complexity. On the other hand, this constraint
on the architectural complexity, and, in particular, on the
“degrees-of-freedom” provided by the architecture parameter-
ization, can have an adversarial impact on the representational
capability of the architecture, and the eventual quality ofthe
generated approximations. In an effort to effectively resolve
this dilemma, the scientific community has currently confined
itself primarily in the study oflinear approximation architec-
tures, i.e., architectures which are structured as aweighted
sumof some preselected“feature” functions defined on the
underlying state space. These feature functions seek to capture
important aspects of the system state, and their selection
is driven by practical experience, insight and/or any formal
results available for the considered problem. The second major
step underlying the development of a parametric representation
NDP approach – i.e., the design of effective parameter-tuning
algorithms for the adopted approximation architecture – isalso
driven by a combined concern for approximation accuracy
and computational efficiency. Generally speaking, scalable
versions of these algorithms seek to tune the architectural
parameters by employing a host of approximate dynamic
programming and estimation theory methodologies on a set
of sample paths of the system behavior that are generated
through simulation. However, the implementational details of
these algorithms and their convergence properties strongly



3

depend on the problem at hand and the structure of the adopted
approximation architecture.

Motivated by the above remarks, this paper seeks to inves-
tigate the first of the aforestated issues, i.e., the efficacyof the
linear approximating architectures for providing scalable and
efficient solutions to the capacitated re-entrant line scheduling
problem. More specifically, afeature-based compact represen-
tation is used in order to generate an effective approximation
of the optimal control policy, and a particular set of feature
functions is suggested and evaluated through a numerical ex-
periment. A side-product of the presented work is the complete
characterization of the considered scheduling problem as a
Continuous Time Markov Decision Process (CT-MDP)[17];
this problem characterization is complementary to the original
characterization provided in [2], and it is instrumental for (i)
the justification of the proposed approximating architecture,
and (ii) the assessment of the quality of the generated approx-
imating policies, in the context of the presented numerical
experiment. The obtained results indicate that the considered
parametric representation NDP approach, in general, and the
proposed linear architecture, in particular, hold considerable
promise for providing effective and computationally efficient
approximations to the optimal CRL scheduling policy that
consistently outperform the typically employed heuristics.

The rest of the paper is organized as follows: Section II
employs the CT-MDP framework towards the formulation and
analysis of the considered scheduling problem. Section III
provides a formal characterization of the proposed approxima-
tion framework and the associated feature selection problem.4

Section IV proposes a particular set of features and assesses
the representational capability of the resulting architecture
through a numerical experiment. Finally, Section V concludes
the paper and highlights directions for future work.

II. A M ARKOV DECISION PROCESSMODEL FOR THE

CAPACITATED RE-ENTRANT L INE SCHEDULING PROBLEM

This section formulates the CRL scheduling problem as a
Markov Decision Process (MDP). The derived model provides
a rigorous characterization of the CRL operation and the
optimal scheduling policy. In this way, it offers the qualitative
insights and a benchmarking baseline for the subsequent
development of scalable approximating scheduling methods
based on the emerging theory ofNeuro-Dynamic Programming
(NDP) [13].

The induced Continuous Time Markov Decision Process
A formal characterization of the behavior generated by the
considered CRL is facilitated by the following definition of
its state.

Definition 1: Let njw, njp, and njb be respectively the
number of jobs at stageJj , j = 1, 2, . . . ,M , that are waiting

4In fact, this section provides also a parameter-tuning methodology for
the presented approximating architecture, that is derived directly from the
formal characterizations of the considered CT-MDP problem and the pro-
posed approximation framework. However, the practical applicability of this
methodology is limited by the fact that it employs a complete enumeration of
the underlying state space. Its role and value for the presented work lies in the
(i) provision of a formal characterization for the parameter-tuning problem,
and (ii) the facilitation of the computation and evaluation of the approximating
policies developed in the context of the presented numericalexperiment.

for processing, being processed, and waiting for transfer to
their next processing stage. Then, under the assumptions of
exponential processing times and zero-transfer times, theCRL
state is defined by the (3M-1) dimensional vector< n1w, n1p,
n1b, n2w, n2p, n2b, . . . , nMw, nMp >.5

The set ofeventsthat can change the system state comprises:
(i) the event corresponding to theloadingof a new job instance
to the first required workstation, (ii) the events corresponding
to the advancementof an unblocked job instance having
completed the execution of its current stage, to its next stage,
or out of the system, in case that the completed stage is the
last one, (iii) the events corresponding to thestart of the
processing of a job instance waiting at a certain workstation,
and (iv) the events corresponding to thecompletionof the
running processing stage of a job instance. Furthermore, the
CRL operation can be described by using this set of events as
follows: Scheduling decisions are exerted by the system con-
troller every time that an active process instance completes its
running processing stage. Each scheduling option constitutes
a sequence of job loading and / or advancing events that are
physically feasible, but alsoadmissibleby the applied SCP.
In general, the optimal CRL scheduling policy can involve
deliberate idlenessof some of the system resources. Therefore,
a scheduling decision that blocks any job from loading or
further advancement can be a viable – in fact, the optimal
– option, in certain cases; we shall refer to such an option
as a “do nothing” control. It must also be noticed, however,
that any throughput-maximizing scheduling policy must be
globally non-idling, i.e., there must always be at least one
job instance under processing in the system.

Based on the above description, and under the assumption of
zero transfer times, CRL states that result from the completion
of the processing of an active job instance and correspond to
decision epochs, present zero sojourn times, and therefore,
they are characterized asvanishing. The remaining states
contain at least one job instance that is in processing, and
therefore, they have a finite sojourn time that is determinedby
the “exponential race” for completion of all the job instances
that are in processing; these states will be characterized
as tangible. Let ST and SV denote respectively the set of
tangible and vanishing states. Then, the scheduling problem
of maximizing the (steady-state) throughput of the CRL can
be formulated as the sequential decision making problem of
finding a policy that maximizes the (time-)average reward
accumulated by the process defined by the CRL transitions
through the vanishing states inSV . A non-zero reward is
obtained every time that the performed transition can result to
the completion of an active process instance, while the time
corresponding to such a transition is variable and it depends
on the originating vanishing state and the selected control. We
can formalize the above discussion as follows:

For each statei ∈ SV , there exists a set of controls,U(i),
that is feasible at statei and finite: More specifically, this set
of controls corresponds to all the process and SCP-enabled

5The zero-transfer times assumption, when combined with the throughput
maximization objective, implies that any job completed in the last stage can
be unloaded immediately, and therefore, the componentnMb, representing
the number of jobs blocked in the last job stage, is redundant.



4

VS7

TS4

VS2

TS3

TS2

VS1

TS5

TS1

VS0

µ2/(µ2+µ3) µ3/(µ2+µ3)

µ1/(µ1+µ2)

µ2/(µ1+µ2)

VS8

TS8

TS7

TS6

u82

u81

u71

u61

u51

u31

u41

u21

u22

u12

u11

u01

VS3

VS4

VS6

VS5

Fig. 2. Example: the induced CT-Markov process for the capacitated re-
entrant line of Figure 1

TABLE I

EXAMPLE : VANISHING STATE INFORMATION FOR THECT-MARKOV

PROCESS INDUCED BY THE CAPACITATED RE-ENTRANT LINE OF FIGURE 1

V Sk n1wn1pn1b n2wn2pn2b n3wn3p resultantT Sk
0 0 0 0 0 0 0 0 0 (T S1)
1 0 0 1 0 0 0 0 0 (T S2 ,T S3)
2 0 0 0 0 0 1 0 0 (T S4 ,T S5)
3 0 0 1 0 1 0 0 0 (T S6)
4 0 1 0 0 0 1 0 0 (T S4)
5 0 0 1 0 0 1 0 0 (T S7)
6 0 0 0 1 0 1 0 0 (T S7)
7 0 0 0 0 0 1 0 1 (T S8)
8 0 0 0 0 1 0 0 0 (T S2 ,T S3)

event sequences that bring the system to a tangible state; we
shall call such an event sequence aclustered control, and the
resulting tangible state aresultant tangible state. LetΨ(i, u) be
the index setof job instances being processed at the tangible
state resulting from taking controlu ∈ U(i) at statei, and
also, lets(l) ∈ SV denote the vanishing state resulting from
the finishing of a job instancel ∈ Ψ(i, u). Then, fori, j ∈ SV ,
the transition probabilitypij(u) is determined by

pij(u) =

∑
l∈Ψ(i,u):s(l)=j µl∑

k∈Ψ(i,u) µk

. (2)

The sojourn timeassociated with the transition resulting from
the selection of controlu at statei is exponentially distributed
with mean value

τ̄i(u) =
1∑

k∈Ψ(i,u) µk

. (3)

Let ik be the system state at thek-th decision epochtk,
and uk the selected control attk. Then, {ik, k = 0, 1, . . .}
is a Continuous Time Markov Decision Process (CT-MDP)
with τ̄ik

(uk) > 0, where τ̄ik
(uk) is the expected transition

time resulting from applying controluk at stateik, k =
0, 1, 2, . . . Furthermore, the SCP logic applied during the
system operation ensures that the system idle and empty state
can be reached by any other process state, and therefore, the
chain structure underlying this CT-MDP problem is strongly
connected, orcommunicatingin the relevant terminology [17].

TABLE II

EXAMPLE : RESULTANT TANGIBLE STATE INFORMATION FOR THE

CT-MARKOV PROCESS INDUCED BY THE CAPACITATED RE-ENTRANT LINE

OF FIGURE 1

T Sk n1wn1pn1b n2wn2pn2b n3wn3p next V Sk
1 0 1 0 0 0 0 0 0 (V S1)
2 0 0 0 0 1 0 0 0 (V S2)
3 0 1 0 0 1 0 0 0 (V S3 , V S4)
4 0 1 0 0 0 1 0 0 (V S5)
5 0 0 0 0 0 0 0 1 (V S0)
6 0 0 0 1 1 0 0 0 (V S6)
7 0 0 0 0 1 0 0 1 (V S7 ,V S8)
8 0 0 0 0 0 1 0 1 (V S2)

Example Figure 2 presents the induced CT-Markov process
for the CRL of Figure 1,6 while the detailed characterization of
the depicted states is provided in Tables I and II. Double-lined
nodes in Figure 2 indicate the processtangiblestates, and the
expressions on the edges emanating from them characterize
the corresponding branching probabilities. Single-linednodes
are thevanishingstates.4

An algorithm for generating the state space of the
considered CT-MDP Next we present an algorithm that
generates the state space of the considered CT-MDP directly
from the basic description of the system configuration. The
proposed algorithm consists of two parts: (i) identifying the
system safe region, i.e., this part of the state space from
which it is physically possible to process all running jobs
to completion without running into deadlock; (ii) generating
the state space of the target CT-MDP, by starting from the
null state and systematically exploring all possible clustered
controls at every visited state, while using the information
about the safe region for checking the structural admissibility
of arising new states.

1. Identifying the target safe region The identification
of the safe region for the buffer space allocation of the
capacitated re-entrant line considered in this work is, in
general, an NP-hard problem [11]. However, in [11], it is
also shown that in many practical cases (e.g., when the
capacity of a pertinently selected set of buffers is greater
than 1), the problem can be resolved in polynomial time
through one-step look-ahead deadlock detection. For the
remaining cases, one can either (i) employ polynomial-
complexity criteria / tests that will seek to identify a
strongly connectedcomponentof the safe region that
further contains the system empty state [3], or (ii) opt
to ignore the complexity concern, and proceed to the
identification of the entire safe region, by generating and
trimming, with respect to the system initial empty state,
the state transition diagram representing all the possible
evolution of the buffer space allocation taking place in
the underlying system; we refer the reader to [18], [3]
for the algorithmic details.

2. Generating the CT-MDP state spaceAfter having
obtained a characterization of the target safe region,
theSV andST state space are generated systematically
as follows: For each vanishing state, all resultant tan-
gible states are generated by enumerating all possible

6Notice that some control actions corresponding to clearly suboptimal de-
cisions, resulting to unnecessary idling, were omitted during the development
of the CT-MDP of Figure 2.



5

sets of clustered controls. These clustered controls are
computed incrementally by augmenting generated subse-
quences of consecutive untimed controls until a resultant
tangible state is reached. Then, for each resultant tan-
gible state, the resulting vanishing states are generated,
and this basic loop repeats itself. Details of the algorithm
are as follows:
Algorithm to generate state space

(i) Let SR denote the set of states in the safe - more
generally, admissible - region.

(ii) Initialize SV and ST by letting SV = {s0} and
ST = ∅, wheres0 is the system empty and idle
state.

(iii) If all states in SV are marked as “explored”,
then go to Step (vii). Otherwise, select one state
from SV , which is not explored, and mark it as
“explored”. Generate all resultant tangible states by
(i) enumerating all possible sequences of untimed
controls and (ii) checking if the resultant tangible
states are inSR; if a resultant tangible state is not
in SR, then remove it.

(iv) For each resultant tangible state, generate the van-
ishing states resulting from the completion of timed
transitions, and put them intoSV , while avoiding
duplication.

(v) Put the resultant tangible states generated in Step
(iii) into ST , while avoiding duplication.

(vi) Save the transitional information and go to Step
(iii).

(vii) Done withSV andST as the vanishing and tangible
parts of the state space.

Systematic exploration of a vanishing stateStep (iii)
of the above algorithm can be readily supported through
a Breadth-First-Search method. Furthermore, there are some
pertinent observations that can lead to a more efficient enu-
meration of all clustered controls emanating from any given
vanishing state. Most of these observations essentially con-
stitute conditions under which a non-idling policy can be
adopted without compromising optimality with respect to the
considered performance objective of throughput maximization.
Then, enforcing non-idleness reduces the number of viable
controls at any vanishing state and leads to a smaller set of
resultant tangible states.

Let us consider a clustered controlusv,k at a vanishing state
sv, and letst be the resultant tangible state corresponding to
usv,k, wherest = < n1w, n1p, n1b, n2w, n2p, n2b, . . . , nMw,
nMp >. We can characterize the “properness” of the control
usv,k by investigating the “properness” of statest. For each
workstationWi, i = 1, 2, . . . , L, let σ(Wi) be the index set of
job stages processed in workstationWi, i.e.,W (Jj) = Wi for
all j ∈ σ(Wi). The following lemmas specify some conditions
under which a non-idling policy is optimal.

Lemma 1:Under an optimal control policy, 1 ≤∑
i

∑
j∈σ(Wi)

njp ≤
∑L

i=1 Si.
Lemma 2:Under an optimal control policy, for each work-

stationWi, i = 1, 2, . . . , L, if
∑

j∈σ(Wi)
(njw + njp) = Bi,

then
∑

j∈σ(Wi)
njp = Si.

Lemma 3:Under an optimal control policy, for each work-
stationWi, i = 1, 2, . . . , L, if njw+njp > 0 for all j ∈ σ(Wi),
then

∑
j∈σ(Wi)

njp = min{Si,
∑

j∈σ(Wi)
(njw + njp)}.

Lemma 4:Under an optimal control policy, for each work-
station Wi, i = 1, 2, . . . , L, if (i)

∑
j∈σ(Wi)

(njw + njp +
njb) < Bi, and (ii) nj−1,b +njw +njp > 0 for all j ∈ σ(Wi)
(notice thatn0b > 0 always, by the assumption of an infinite
WIP level waiting in front of the line), then

∑
j∈σ(Wi)

njp =
min{Si,

∑
j∈σ(Wi)

(nj−1,b + njw + njp)}.
Lemma 5:Under an optimal control policy, for each work-

stationWi, i = 1, 2, . . . , L, if (i) nj′−1,b + nj′,w + nj′,p >
0 for j′ = arg minj{j : j ∈ σ(Wi)} and (ii) nj′,b +∑

l

∑
{k:k∈σ(Wl),k>j′} (nkw + nkp + nkb) = 0 (notice that

nMb = 0 always, by the assumption of zero-transfer times),
thennj′,p = min{Si, nj′−1,b + nj′,w + nj′,p}.

Lemma 6:Under an optimal control policy, for each work-
stationWi, i = 1, 2, . . . , L, if (i) |σ(Wi)| = 1, (ii) σ(Wi) =
{j 6= 1} and (iii) njw + njp + njb < Bi, thennj−1,b = 0.

Lemma 7:A control action that just loads a new job into
W (J1) and does not start processing is redundant.

The formal proofs of Lemmas 1 – 7 can be based on the
non-conflicting nature of the implied operations and can be
established through techniques and arguments similar to those
presented in [19](Chapter 3). Here we shall provide a more
intuitive justification of their correctness. Hence, Lemma1
addresses the non-optimality of a globally idling policy for
the throughput maximization problem. Lemma 2 describes
the optimality of a local non-idling policy for a workstation
with its buffer full of non-completed job instances. Lemma 3
expresses the optimality of a local non-idling policy for a
workstation which contains at least one non-completed job
instance for each job stage supported by the workstation.
Lemma 4 further generalizes Lemma 3 for the case that the
workstation demonstrates free capacity; notice that in this
case, the non-idleness enforcing condition counts also all
the completed job instances waiting to enter the considered
workstation. Lemma 5 states the optimality of a local non-
idling policy for a workstation that contains at least one non-
completed job instance to be processed at the earliest job
stage in that workstation, while there are no job instances
at all subsequent job stages to completion in the system.
Lemma 6 applies to a workstation which processes only one
job stage and indicates that any free buffering capacity on such
a workstation should be immediately allocated to a requesting
process. Finally, Lemma 7 results from the assumption of zero-
transfer times, which allows a loading control to be performed
only when the new loaded job is going to be started instantly
after being loaded. The conditions expressed by Lemmas 1
– 7 must be integrated in the logic of any search procedure
supporting the execution of Step (iii) of the state space-
generating algorithm.

Characterizing the objective function of the CT-MDP
In the CT-MDP framework, the long-run CRL throughput is
modelled by the (time-)average rewardto be accumulated by
the considered process, formally defined by

lim
N→∞

1

E{tN}
E{

∫ tN

0

g(i(t), u(t))dt}. (4)



6

In Equation 4,g(i(t), u(t)) is therewardper unit time obtained
by taking controlu(t) at statei(t) at timet; in particular,i(t)
= ik and u(t) = uk for tk ≤ t < tk+1. In the considered
problem context,g(i, u) is defined by:

g(i, u) =





µM if the resultant tangible state has a job
being processed in the last stageJM

0 otherwise.
(5)

Thesingle-stage expected reward, G(i, u), corresponding to
statei and controlu, is given by

G(i, u) = g(i, u)τ̄i(u) (6)

From Equations 5, 6, we have

G(i, u) =

{
µM τ̄i(u) if g(i, u) > 0
0 otherwise.

(7)

Bellman’s optimality equation and the optimal relative
value function Let J∗(i) denote the optimal average reward
accumulated under “steady state” operation, while starting the
system at statei and executing the optimal policy. Then, by
virtue of the fact that the structure of the underlying CT-
MDP is communicating, J∗(i) = λ∗ for all statesi [17],
and furthermore, there exists a functionh∗(i), i ∈ SV , that
satisfies the following equation, for all statesi ∈ SV ,

h∗(i) = max
u∈U(i)

[
G(i, u) − λ∗τ̄i(u) +

∑

j∈SV

pij(u)h∗(j)

]
(8)

Function h∗(i) is known as the optimalrelative value
function7 and it defines a deterministic stationary optimal
policy π∗ for the considered problem by setting

u∗(i) ∈ arg max
u∈U(i)

[
G(i, u) − λ∗τ̄i(u) +

∑

j∈SV

pij(u)h∗(j)

]

(9)
Uniformization From a computational standpoint, it is

more convenient to work with auniformized version of
Equations 8, 9: Letting0 < γ < τ̄i(u), ∀i, u, and setting
p̃ij(u) = γpij(u)/τ̄i(u) for i 6= j; p̃ii(u) = 1 − γ/τ̄i(u);
h̃∗(i) = h∗(i)/γ for all i, we get the following discretized
version of Equations 8, 9: for all statesi ∈ SV ,

h̃∗(i) = max
u∈U(i)

[
g(i, u) − λ∗ +

∑

j∈SV

p̃ij(u)h̃∗(j)

]
(10)

u∗(i) ∈ arg max
u∈U(i)

[
g(i, u) +

∑

j∈SV

p̃ij(u)h̃∗(j)

]
(11)

The Linear Programming Approach There are several
exact solution methods to solve the resulting Discrete Time
Average Reward MDP (DT-AR-MDP) problem, including
Value and Policy Iteration, Linear Programming (LP) and a
number of variations of these basic methods. In the rest of this
work we focus on the Linear Programming approach since it

7Functionh∗(·) can be interpreted as theasymptotic relative difference in
total reward that results from starting the CRL at the various statesi and
subsequently operating it according to an optimal scheduling policy; i.e., the
differenceh∗(i)− h∗(j) expresses the asymptotic difference in total reward
that results from starting the CRL in statei instead of statej, and subsequently
operating it according to an optimal scheduling policy [17].

will allow us (i) to provide closed-form rigorous characteriza-
tions of the proposed approximation framework, and (ii) in the
context of the numerical experimentation pursued in this work,
it is readily implementable through the commercially available
LP solvers. According to [20], theprimal LP formulation for
the considered DT-AR-MDP problem employs the decision
variablesλ and h̃(i), i ∈ SV , and its detailed structure is as
follows:

min λ (12)

s.t.

λ + h̃(i) ≥ g(i, u) +
∑

j∈SV

p̃ij(u)h̃(j), ∀ i ∈ SV , u ∈ U(i).

(13)

We notice that(λ∗, h̃∗) employed in Equation 10 isan
optimal solutionof this LP. The same is true forλ∗ andh̃∗+ce,
wherec is any scalar ande is the vector with all its components
equal to one. Furthermore, in any optimal solution (λ̄, h̄) of
the LP of Equations 12 and 13, we haveλ̄ = λ∗. However,
h̄ might fail to satisfy Bellman’s equation, and therefore we
need to consider thedual LP of the LP of Equations 12 and 13
in order to obtain anoptimal relative value function and its
corresponding policy. This dual LP is formulated as follows:

max
∑

i∈SV

∑

u∈U(i)

g(i, u)x(i, u) (14)

s.t.
∀ i ∈ SV ,

∑

u∈U(i)

x(i, u) −
∑

j∈SV

∑

u∈U(j)

p̃ij(u)x(j, u) = 0 (15)

∑

i∈SV

∑

u∈U(i)

x(i, u) = 1 (16)

∀ i ∈ SV , u ∈ U(i), x(i, u) ≥ 0. (17)

The variablesx(i, u) can be interpreted as the steady-state
probabilities that statei will be visited and controlu will
then be applied. Therefore, an optimal solutionx∗ suggests
an optimal randomized scheduling policy, where controlsu at
statei are selected with probability

x∗(i, u)∑
u∈U(i) x∗(i, u)

. (18)

According to [17], there will exist an optimal solutionx∗

with x∗(i, u) > 0 for only one controlu at each statei with∑
u∈U(i) x∗(i, u) > 0. The policy derived through Equation 18

from such an optimal solution, for the restricted class of states
i with

∑
u∈U(i) x∗(i, u) > 0, induces a recurrent Markov

chain on the considered state space. The extension of this
policy to an optimalunichainpolicy for the entire set of states
can be performed as follows:

Let Sx∗ = {i ∈ SV :
∑

u∈U(i) x∗(i, u) > 0} and µ∗(i) be
an optimal action at statei for which x∗(i, µ∗(i)) > 0.

(i) If SV\Sx∗ = ∅, stop
(ii) Find a states ∈ SV\Sx∗ and an actionu ∈ U(s) for

which
∑

j∈Sx∗
p̃sj(u) > 0

(iii) Set Sx∗ = Sx∗ ∪ {s} andµ∗(s) = u. Go to (i)



7

The optimal relative value function,̃h∗(i), for this optimal
policy can be computed by solving the following system of
linear equations:8

λ + h̃(i) = g(i, µ∗(i)) +
∑

j∈SV

p̃ij(µ
∗(i))h̃(j), ∀ i ∈ SV .

(19)

Example The dual LP formulation for the DT-AR-MDP
problem for the CRL of Figure 1 is as follows:

max µ3

[
x(2, u2,2)+x(5, u5,1)+x(6, u6,1)+x(7, u7,1)

]
(20)

s.t.

γµ1x(0, u0,1) − γµ3x(2, u2,2) = 0

γ(µ1 + µ2)x(1, u1,1) + γµ2x(1, u1,2) − γµ1x(1, u0,1) = 0

γµ1x(2, u2,1) + γµ3x(2, u2,2) − γµ2x(1, u1,2)

−γµ3x(7, u7,1) − γµ2x(8, u8,1) = 0

γµ2x(3, u3,1) − γµ1x(1, u1,1) − γµ1x(8, u8,2) = 0

γµ1x(4, u4,1) − γµ2x(1, u1,1) − γµ2x(8, u8,2) = 0

γ(µ2 + µ3)x(5, u5,1) − γµ1x(2, u2,1) − γµ1x(4, u4,1) = 0

γ(µ2 + µ3)x(6, u6,1) − γµ2x(3, u3,1) = 0

γµ3x(7, u7,1) − γµ2x(5, u5,1) − γµ2x(6, u6,1) = 0

γµ2x(8, u8,1) + γ(µ1 + µ2)x(8, u8,2)

−γµ3x(5, u5,1) − γµ3x(6, u6,1) = 0

x(0, u0,1) + x(1, u1,1) + x(1, u1,2) + x(2, u2,1)

+x(2, u2,2) + x(3, u3,1) + x(4, u4,1) + x(5, u5,1)

+x(6, u6,1) + x(7, u7,1) + x(8, u8,1) + x(8, u8,2) = 1

∀ i ∈ SV , u ∈ U(i), x(i, u) ≥ 0

(21)

This LP can be solved optimally for any assignment of param-
eter values forµi, i = 1, 2, 3, and γ, and the corresponding
optimal control policy can be obtained using the procedure
described above. As a complete example, ifµi = 1 for all i,
and we setγ = 0.25, an optimal objective value of the LP is
0.4444 and the corresponding optimal control policy is:

µ(V Si) =





u1,1 or u1,2 for i = 1
u2,1 for i = 2
u8,2 for i = 8
ui,1 otherwise,

(22)

where ui,k is the k-th control associated with stateV Si in
Figure 2. In the optimal control policy, stateV S1 has two
alternative optimal controlsu11 and u12, corresponding to
deliberately idling the server in workstationW1 or not, and
resulting in the same optimal communicating class, for which
stateV S1 is a transient state. It is interesting to notice that
the actual optimal throughput is strictly less than thenominal
bottleneck throughputof 0.5, defined by the bottleneck work-
stationW1, an effect that results from the additional idleness
experienced by the server due to the finite buffering capacity.
4

8This system of linear equations definesh̃∗(·) only up to translation.

The MPD-based modeling framework developed in this
section provides an analytical basis for addressing the CRL
scheduling problem and it can be used for the computation
of the optimal scheduling policy in small CRL configurations.
However, the approach has a severe computational limitation
in that it requires the explicit enumeration of the underlying
state space, which explodes very fast. We remind the reader
that, according to the introductory discussion, it is further
believed that the deployment of the CRL optimal scheduling
policy is a computationally intractable problem. Hence, there
is a need for some near-optimal approximating scheme to it
that maintains computational tractability. This is the topic of
the next two sections.

III. A N EURO-DYNAMIC PROGRAMMING APPROACH FOR

THE DEVELOPMENT OF ANAPPROXIMATING SCHEDULING

POLICY

NDP-based approximation of relative value function
through linear approximating architectures The observation
that the optimal control policy for a DT-AR-MDP problem is
a “greedy” policy with respect to the optimal relative value
function h̃∗ suggests that one potential approach to generate a
polynomial approximating solution to the considered schedul-
ing problem is through the approximation of the optimal
relative value function with an appropriately parameterized
function. As it was mentioned in the introductory discussion,
in the context of the emerging theory ofNeuro-Dynamic Pro-
gramming(NDP) [13], this parameterized function is known
as the employedapproximation architecture, and it defines
the space/set of functions to be considered as candidates for
the approximation. In the following, we consider a particu-
lar class of approximation architectures that are known as
linear. Structurally, they constitute aweighted sumof some
preselectedfeature functions, that capture important aspects
of the system state and their selection is driven by practical
experience, insight and/or any formal results available for the
considered problem. The main intention of the work presented
in this paper is to investigate the ability of the aforementioned
linear architectures to provide effective approximationsfor
the optimal relative value function of the MDP problem
formulated in the previous section, while identifying a“good”
set of feature functions to be employed by them.

A more formal characterization of feature-based parametric
representational methods is as follows: LetΦ be a feature
space, i.e., an (ordered) setΦ = (φ0, . . . , φK) of functions
polynomially evaluated on any given statei ∈ SV , with
φj = (φj(0), . . . , φj(|SV |−1))T , j = 0, . . . ,K; |Φ| = K +1;
and φ0(i) = 1 for all i ∈ SV . Then, any other function
f() defined onSV can be potentially approximated through
a linear combination of the feature spaceΦ, by pertinently
selecting a vector ofweighting coefficientsr = (r0, . . . , rK)T .
In the application context of the considered CRL scheduling
problem, we are especially interested in developing such
an approximating architecture for the optimal relative value
function h̃∗():

ĥ(i, r) =
K∑

k=0

φk(i)rk = (Φr)(i). (23)



8

A weight setr∗ satisfying h̃∗(i) = ĥ(i, r∗) = (Φr∗)(i), ∀i,
would give us the optimal relative value function and the
corresponding“greedy” policy based on Equation 11 would
be optimal. We notice, however, that it is not easy to find such
a rich setΦ, while maintaining computational tractability, and
as a compromising objective, we set out to findΦ andr∗ such
that h̃∗(i) ≈ ĥ(i, r∗) = (Φr∗)(i), in the sense that (i) they
minimize some distance metric characterizing the quality of
the approximation, and (ii) the corresponding “greedy” policy
defined by Equation 11 tends to maximize throughput for the
underlying DT-AR-MDP problem. Next, we elaborate on each
of these two issues.

Approximating optimal relative value functions using
a feature-based max-norm projection The quality – or
“goodness-of-fit” – of the aforementioned approximation of
h̃∗() by ĥ(i, r∗) can be measured using a number of distance
metrics. In this paper, we consider thel∞-norm, defined as
follows:

max
i

|h̃∗(i) − ĥ(i, r∗)| (24)

By employing thel∞-norm in the selection ofr∗, we are
essentially trying to bound the distance between the optimal
relative value function and its approximated value as uniformly
as possible over all states. Then, a key question that is
implicitly raised in this part of work is the extent to which
a small uniform approximation error preserves the shape of
the optimal relative value function under consideration. The
detailed mathematical formulation of the weight selection
problem for any feature spaceΦ and optimal relative value
function h̃∗(i), is as follows:

min
r,ε

ε (25)

s.t.
|h̃∗(i) − ĥ(i, r)| ≤ ε, ∀ i ∈ SV (26)

This formulation can be easily transformed into an LP
and solved by some LP-solving method. Notice that the
dependency of thel∞-norm on r is piecewise linear, which
might lead to the existence of alternative optimal solutions for
r∗.

Computing the throughput obtained by the “greedy”
policy defined by ĥ(i, r∗) The throughput of the “greedy”
policy defined byĥ(i, r∗) can be evaluated through standard
techniques provided by the MDP theory [17]. We notice,
however, that this policy might presentmulti-chain structure,
and this issue must be explicitly addressed by the applied
algorithms. Next, we deal with this issue in the broader context
of some additional practical considerations.

Some further practical considerationsFrom a more prac-
tical standpoint, we shall eventually assess the performance
of the proposed approximating scheme by comparing the
throughput of the policy generated by the approximation, with
the optimal throughput,λ∗, and also, the throughput that would
be obtained if some other heuristics were applied. However,
the implementation of this evaluation scheme is complicated
and, to some extent, compromised by the following issues:

• Some of the involved computations present numerical
instability and the accrued errors should be filtered out

to the extent possible.
• The Mathematical Programming (MP) formulation of

Equations 25 and 26 might have alternative optimal
solutionsr∗, resulting in different policies with different
throughput. However, it is not practically possible to
generate all alternative optimal solutionsr∗ and system-
atically compare their performance.

• Even worse, there might exist alternative optimal solu-
tions h̃∗

1 and h̃∗
2 to Equation 10, with̃h∗

1 6= h̃∗
2 + ce; such

solutions can result in alternative parameterizations of the
MP formulation of Equations 25 and 26, and additional
approximations of the optimal scheduling policy.

One way to reduce the effects of those undesired biases is by
opting to consider a broader set of actions in the determination
of the final control policy, rather than only those selected by
the strictly “greedy” scheme of Equation 11. In addition, we
recognize that in the eventual implementation of the proposed
approximating framework, the adopted policy will be the
converging outcome of a“learning” process that will tune the
weightsr while employing a randomizing mechanism in the
underlying decision-making process;9 the impact of this ran-
domization effect should also be accounted for when assessing
the performance resulting from the proposed approach. On the
positive side, this randomizing effect restores the “unichain”10

structure of the considered policy. To capture all the effects
discussed above, we propose to assess the performance of
the considered approximating scheme through a randomizing
policy that employs two different action-selection probabilities
at each decision epoch: In particular, the control actions in
U(i) for each statei, are classified to those iñU(i) that
present considerably high value, based onĥ(i, r∗), and those in
U(i)\Ũ(i). Control actions fromŨ(i) are selected uniformly
with some cumulative probabilityw, and similarly actions in
U(i)\Ũ(i) are selected uniformly with cumulative probability
1 − w; typically, w → 1. The detailed mathematical charac-
terization for these ideas, and the mathematical programming
formulation computing the throughput of the resulting policy
are as follows:

∀ i ∈ SV , u ∈ U(i), R(i, u) = g(i, u) +
∑

j∈SV

p̃ij(u)ĥ(j, r∗)

(27)

∀ i ∈ SV , Ũ(i) = {u : max
u∈U(i)

R(i, u) − R(i, u) ≤

δ
∣∣ max
u∈U(i)

R(i, u)
∣∣, u ∈ U(i)} (28)

min λR(r∗; δ, w) (29)

s.t.
∀ i ∈ SV , λR(r∗; δ, w) + h̃(i)

9This randomizing mechanism essentially compensates for the fact that
any approximating policy derived from the observation and analysis of a
limited number of sample paths of the system behavior, is based on imperfect
information about the system dynamics and the accompanying value function,
and therefore, it cannot be fully trustworthy.

10A unichainpolicy is a stationary policy that confines the system operation
on a subspace corresponding to a Markov chain with a single recurrent class
and a possibly empty set of transient states.



9

=





w∣∣Ũ(i)
∣∣
∑

u∈Ũ(i)

[
g(i, u) +

∑
j∈SV

p̃ij(u)h̃(j)

]

+ 1−w∣∣U(i)
∣∣−

∣∣Ũ(i)
∣∣
∑

u∈U(i)\Ũ(i)

[
g(i, u)+

∑
j∈SV

p̃ij(u)h̃(j)

]
, if

∣∣U(i)
∣∣ 6=

∣∣Ũ(i)
∣∣

1∣∣Ũ(i)
∣∣
∑

u∈Ũ(i)

[
g(i, u) +

∑
j∈SV

p̃ij(u)h̃(j)

]
,

if
∣∣U(i)

∣∣ =
∣∣Ũ(i)

∣∣
(30)

The parameterδ appearing in Equation 28 controls the
degree of “greediness” of the resulting policy; typically it
should take positive values close to 0. Having detailed the
mathematical apparatus that is necessary for the performance
evaluation of the proposed approximating scheme, in the next
section we consider the selection of a particular set of features
that could lead to good approximations of the optimal CRL
scheduling policy.

IV. SELECTING A FEATURE SPACEΦ FOR THECRL
SCHEDULING PROBLEM: AN EXPERIMENTAL

INVESTIGATION

A. Suggesting a Feature SpaceΦ

Extracting feature functions Identifying feature functions
is a kind of data compression process that seeks to incorporate
application-specific domain knowledge into the data represen-
tation. Therefore, it is very application driven, in general. In
our case, the feature selection process is based on a number
of queueing-theoretic concepts and results [21], [22], andit
will seek to capture the following information:

• Basic State Information
– number of jobs waiting, in processing, or being

finished at each job stage.
– existence of job instances waiting, in processing, or

being finished at each job stage.
– buffer occupancy / availability at each workstation.

• Interactions
– Interactions between the feature elements character-

izing the basic state information
We notice that in [22], [21], similar information was employed
for predicting performance bounds of queueing networks
modeling re-entrant lines. Furthermore, the work of [23]
constructed an approximation function of degree 2 or 3 using
basic functions representing the number of jobs at each stage,
and showed that good fits to the optimal value function were
possible for several types of uncapacitated queueing networks.

A detailed characterization of the feature functions em-
ployed in this work, seeking to capture the basic state in-
formation listed above, is provided in Table III. We shall
refer to this set of features assimple features, since they can
be computed directly as simple functions of the system state
vector. Interactions of simple features are captured by a set of
composite featuresthat essentially constitute pairwise products
of simple features.11 Finally, we group feature functions into

11However, we omit products that result to feature functions that are
identical to one of its constituent factors.

TABLE III

SIMPLE FEATURES

Class Expression
SF0 1
SF1 nj,w, j = 2, . . . , M

SF2 nj,p, j = 1, . . . , M

SF3 nj,b, j = 1, . . . , M − 1

SF4 I{nj,w>0}, j = 2, . . . , M

SF5 I{nj,p>0}, j = 1, . . . , M

SF6 I{nj,b>0}, j = 1, . . . , M − 1

SF7 I
{

∑
j∈σ(Wi)

(njw+njp+njb)=0}
, i = 1, . . . , L

SF8 I
{0≤

∑
j∈σ(Wi)

(njw+njp+njb)≤0.2Bi}
, i = 1, . . . , L

SF9 I
{0.2Bi≤

∑
j∈σ(Wi)

(njw+njp+njb)≤0.8Bi}
, i = 1, . . . , L

SF10 I
{0.8Bi≤

∑
j∈σ(Wi)

(njw+njp+njb)≤Bi}
, i = 1, . . . , L

SF11 I
{

∑
j∈σ(Wi)

(njw+njp+njb)=Bi}
, i = 1, . . . , L

SF12 Bi −

∑
j∈σ(Wi)

(njw + njp + njb), i = 1, . . . , L

“classes”, with each class containing all the feature functions
resulting by the application of the same feature concept on
different components of the underlying CRL.

Complexity of the suggested setΦ of feature functions
The above feature specification results in 91 classes, including
a total of M(18M + 36L − 22) + L(18L − 35) + 7 feature
functions.12 While it is true that, in general, we can increase
the representational capability of a feature spaceΦ by adding
more composite features, such an expansion will also increase
the computational complexity of the approximation. Hence,in
the first part of our work, we suggest a minimalist approach,
restricting the degree of employed composite features to 2;
the impact of adding more composite features, corresponding
to higher-order interactions of simple features, is addressed in
Section IV-D.

Using these feature functions, a linearly parameterized ap-
proximation function as defined in Equation 23 is established,
and the parameter vector,r, is computed based on thel∞-
norm projection of the optimal relative value function to the
corresponding feature spaceΦ, using Equations 25 and 26. The
evaluation of the approximating capability of feature space Φ
was performed through the following numerical experiment.

B. A Numerical Experiment for EvaluatingΦ

We tested the potential performance of the approximating
architecture generated by the aforementioned feature func-
tions, on two types of re-entrant line, the first consisting of
2 single-serverworkstations and the second consisting of 3
single-serverworkstations. Both of these lines are observing
the operational assumptions stated in the previous sections,
while the adopted SCP was theoptimal – i.e., maximally
permissive– policy. For each type of re-entrant line, different
configurations were generated by changing buffering capaci-
ties; Table IV summarizes the system configurations used in
this experiment. For each configuration, 30 problem instances
with randomly generated processing rates were considered.

12We notice that some important information such as (immediateor total)
workload of a workstation, that is typically considered by queueing theory, is
not considered explicitly in our feature specification since it can be represented
by a linear combination of the employed feature functions.



10

TABLE IV

SYSTEM CONFIGURATIONS CONSIDERED IN THE NUMERICAL EXPERIMENT

configurations number of number of job stages (JS) buffer
workstations and job routes capacities

Conf 1 (B1, B2)=(1,2)
Conf 2 2 3JS(W1 → W2 → W1) (B1, B2)=(3,2)
Conf 3 (B1, B2)=(4,4)
Conf 4 (B1, B2, B3)=(1,2,2)
Conf 5 3 4JS(W1 → W2 → W3 → W1) (B1, B2, B3)=(3,2,2)
Conf 6 (B1, B2, B3)=(4,3,2)

TABLE V

THE NUMBER OF STATES AND FEATURE FUNCTIONS FOR THE

CONSIDERED RE-ENTRANT LINES

Configurations number of number of
states feature functions

Conf 1 9
Conf 2 70 255
Conf 3 275
Conf 4 85
Conf 5 460 563
Conf 6 1079

The number of states generated in each case, and the number
of the employed feature functions, are summarized in Table V.

Experimental results and assessmentTo assess the per-
formance of the considered architecture in each case, we com-
puted the throughputλ∗ resulting from the optimal policy, and
also the throughput that would be attained by the randomized
policy defined by the approximating relative value function,
ĥ(i, r∗), according to the logic outlined in Section III. More
specifically, the throughput of the randomized policy was
computed while increasing the valueδ from 0 to 0.020 by
0.001, and the valuew from 0.80 to 0.99 by 0.01. We define
the % error for this policy by

%error =
Optimal TH − TH by rand. policy

Optimal TH
× 100.

(31)
We also compared the % error attained by the proposed archi-
tecture to the % error generated by some known heuristics that
have been shown to perform well in the case of uncapacitated
re-entrant lines, namely, theLast Buffer First Serve (LBFS),
First Buffer First Serve (FBFS), First In First Out (FIFO),
and Least Work Next Queue (LWNQ)policies. Tables VI
and VII summarize the obtained results. More specifically,
Table VI lists the average, minimum and maximum % errors
of throughput obtained by using the aforementioned heuristics
on each of the six CRL configurations, while Table VII reports
the results characterizing the performance of the randomized
policy obtained through the method of Section III. Columns 2
and 3 in Table VII report the values of the parameters (δ, w)
that resulted in the best performance for the generated policy.
Column 4 reports the average of thel∞-norm approximation
errors characterizing the goodness-of-fit for each of the 30
problem instances generated for each configuration. Columns
5, 6 and 7 show respectively the average, minimum, and
maximum % errors achieved by the proposed approximating
method when using the feature spaceΦ detailed above. Finally,
Column 8 provides a measure of the “non-greediness” of the
derived policy, by reporting the extra number of control actions
included inŨ(i), averaged over all statesi.

Some interesting remarks regarding the results of this nu-
merical experiment and their implications for the quality of

TABLE VI

PERFORMANCE OF HEURISTICS FOR THE CONSIDERED RE-ENTRANT

LINES

Config. % FBFS LBFS FIFO LWNQ- LWNQ- LWNQ-
error capacity FBFS LBFS FIFO
Avg. 0 2.906683 0 0 0 0

Conf 1 Min. 0 1.419307 0 0 0 0
Max. 0 5.651860 0 0 0 0
Avg. 2.088194 2.865571 2.088194 1.889512 2.427890 1.889512

Conf 2 Min. 0.002057 0.000411 0.002057 0.002057 0.000411 0.000206
Max. 6.013643 10.944309 6.013643 7.432376 8.647182 7.432376
Avg. 0.593519 1.322035 0.593519 0.625181 0.671251 0.625181

Conf 3 Min. 0 0 0 0 0 0
Max. 4.298884 9.824424 4.298884 4.964331 5.110277 4.964331
Avg. 0.802350 2.657095 0.802350 0.802350 0.802350 0.802350

Conf 4 Min. 0 0.308027 0 0 0 0
Max. 2.831750 14.249711 2.831750 2.831750 2.831750 2.831750
Avg. 3.043938 4.621490 3.043938 2.534003 2.934190 2.534003

Conf 5 Min. 0.095917 0.082142 0.095917 0.085206 0.086738 0.085206
Max. 8.457638 14.164897 8.457638 6.956313 7.461679 6.956313
Avg. 2.783108 1.751215 2.783108 0.988989 1.051021 0.988989

Conf 6 Min. 0.099751 0.000172 0.099751 0.000172 0.000172 0.000172
Max. 8.869749 5.477629 8.869749 4.231201 4.535971 4.231201

the proposed approximating method, can be summarized as
follows:

• Overall, the throughput errors generated by the proposed
approach are rather small.

• Furthermore, the randomized policy derived with the
selected values (δ, w), has lower average % errors than
the errors attained by the considered heuristics. In fact, it
was found that this dominance is quite robust with respect
to the exact values ofδ, w. A sensitivity analysis of the
randomized policy with respect to the parameter vector
(δ, w) indicated that the value ofw should be kept very
close to one, whileδ should maintain low values, maybe
in the range of [0, 0.01].

• Even more importantly, the randomized policy is more
consistent in its performance than the considered heuris-
tics, as manifested by the reported maximum % errors.

• It is also interesting to notice that for the case of Con-
figuration 1, the reported throughput error is non-zero,
even though the employed architecture supports perfect
goodness-of-fit. This results from the randomizing nature
of the derived policy.

• The reported non-zero value forε∗ for the cases of
Configurations 2, 4 and 5, when combined with the data
of Table V, imply that the rank of the feature matrixΦ
must be quite small, i.e., there must be considerable linear
dependency among the employed features. We believe
that this problem will be alleviated for CRL’s with larger
buffering capacities, since in that case there will be more
differentiation among the values of the various simple
features.

C. Consideration of Scalability

The experiment reported in Section IV-B employed quite
small system configurations, in an effort to maintain compu-



11

TABLE VII

PERFORMANCE OF THE RANDOMIZED POLICY GENERATED BY THE PROPOSED ARCHITECTURE USINGΦ

Config. δ w Avg. ε∗ Avg. Min. Max. Avg. # of additional
% error % error % error controls per state

Conf 1 0.000 0.99 0 0.093051 0.016866 0.173766 0
Conf 2 0.001 0.98 0.934340 0.820087 0.003095 4.886354 0.079524
Conf 3 0.011 0.99 1.578569 0.714999 0.000104 3.523133 0.634667
Conf 4 0.004 0.99 0.828601 0.525297 0.065391 1.908183 0.025490
Conf 5 0.004 0.99 1.977419 0.723601 0.003318 2.617387 0.144638
Conf 6 0.007 0.99 2.917650 0.727640 0.000625 3.502581 0.303182

TABLE VIII

CONSIDERED SYSTEM CONFIGURATIONS FOR THE SCALABILITY TEST

Config. number of number of job stages (JS) buffering
workstations and job routes capacities

Conf 7 2 3JS(W1 → W2 → W1) (B1, B2)=(10,10)
Conf 8 3 4JS(W1 → W2 → W3 → W1) (B1, B2, B3)=(5,5,6)
Conf 9 4 7JS(W1 → W2 → W4

→ W1 → W2 → W3 → W1) (B1, B2, B3, B4)=(3,2,1,2)

tational tractability. In this section, we report some additional
experiments indicating that the previously found results pertain
also to larger system configurations, where the number of the
system states is significantly greater than the number of the
employed feature functions.

Design of a numerical experiment for larger-sized
systems We can generate larger-sized re-entrant lines by
increasing the number of workstations, the number of job
stages, or the buffering capacity. However, these elements
also increase drastically the number of the system states,
to the extent that the solution of the MP formulations of
Equations 14 – 17, Equations 25 – 26, and Equations 29
– 30, that are employed in this work for implementing the
proposed approximating scheme, becomes very cumbersome.
Our intention in this experiment is to generate large systems
that we can still handle, in the sense that the MP formulations
of Equations 14 – 17, Equations 25 – 26, and Equations 29
– 30 can be solved in reasonable time. Hence, we considered
two types of “large-sized” re-entrant lines, the first generated
by increasing the buffering capacity of the re-entrant lines
considered in Section IV-B, and the second generated by
increasing the number of workstations and job stages.13 The
first type of the proposed expansion has the interesting effect
that it generates a large number of states while maintaining
a small number of feature functions, and therefore, it allows
us to test the data-compressing capability of the considered
set Φ of feature functions. The second type of the proposed
expansion intends to assess the scalability of the previously
obtained results in the face of more complex process flows.
Tables VIII and IX summarize the considered configurations
and quote the number of states and the feature functions
generated by the approximating procedure. Configurations 7
and 8 are expansions of Configurations 3 and 6, resulting
from increasing buffering capacities toB = (10, 10) and
B = (5, 5, 6), respectively. Configuration 9 is a re-entrant
line consisting of 4 single-server workstations with buffering
capacitiesB = (3, 2, 1, 2), and a process route of 7 job
stages, depicted in Figure 3. For all these configurations, a
numerical experiment was performed by using (i) the setΦ
of feature functions including up to 2-order interactions and

13Increasing all these elements at the same time generates a huge number
of states and makes the considered scheduling problem computationally
intractable.

TABLE IX

THE NUMBER OF STATES AND FEATURE FUNCTIONS IN THE CONSIDERED

SYSTEM CONFIGURATIONS FOR THE SCALABILITY TEST

Config. number of number of
states feature functions

Conf 7 3872 255
Conf 8 10018 563
Conf 9 21093 1497

W1
 W2


W3


W4


Fig. 3. A re-entrant line with 4 single-server workstationsand 7 job stages

(ii) 10 problem instances with randomly generated processing
rates.

A numerical experiment for Configurations 7 and 8
Tables X and XI report respectively the results characterizing
the performance of the randomized policy obtained through the
method in Section III and the performance of some heuristics,
when applied on Configurations 7 and 8. These results are
consistent with the ones obtained in the previous subsection
for smaller-sized re-entrant lines, in the sense that the ran-
domized policy has lower average and maximum % errors
compared to the errors attained by the considered heuristics;
these results are also robust with respect to the values of the
parameter vector (δ, w). From a more qualitative standpoint,
they indicate that the considered setΦ of feature functions has
a good representational capability even for the case that the
number of states is quite greater than the number of feature
functions. Finally, notice that the average values of the optimal
approximation error,ε∗, are increased compared to those in
Section IV-B. This increase results from the fact that, even
though the linear independency among the employed feature
functions is enhanced by increasing buffering capacities,the
number of states is increased significantly more, so that the
rank of the feature matrixΦ becomes quite smaller than
the number of states. Interestingly, this deterioration ofthe
“goodness-of-fit” of the relative value function does not seem
to affect the performance of the resulting “greedy” policies.



12

TABLE X

PERFORMANCE OF THE RANDOMIZED POLICY GENERATED BY THE PROPOSED ARCHITECTURE FORCONFIGURATIONS7 AND 8

Config. δ w Avg. ε∗ Avg. Min. Max. Avg. # of additional
% error % error % error controls per state

Conf 7 0.000 0.99 12.353925 0.116272 0.000603 0.550340 0.000646
Conf 8 0.001 0.98 6.264441 0.074681 0.000395 0.183286 0.061409

TABLE XI

PERFORMANCE OF HEURISTICS FORCONFIGURATIONS7 AND 8

Config. % FBFS LBFS FIFO LWNQ- LWNQ- LWNQ-
error FBFS LBFS FIFO
Avg. 0.550538 1.053770 0.550538 0.537978 0.563585 0.537978

Conf 7 Min. 0 0 0 0 0 0
Max. 2.823672 7.421845 2.823672 2.753983 2.978492 2.753983
Avg. 0.546995 0.232962 0.546995 0.148092 0.191303 0.148092

Conf 8 Min. 0.000130 0.000780 0.000130 0 0 0
Max. 2.755537 0.946889 2.755537 0.705782 0.948396 0.705782

TABLE XII

PERFORMANCE OF THE RANDOMIZED POLICY GENERATED BY THE PROPOSED ARCHITECTURE WITHw = 0.99FOR CONFIGURATION 9

Config. δ Avg. ε∗ Avg. Min. Max. Avg. # of additional
% error % error % error controls per state

Conf 9 0.001 13.823142 3.549228 0.197071 7.473375 0.021690

TABLE XIII

PERFORMANCE OF HEURISTICS FORCONFIGURATION 9

Config. % FBFS LBFS FIFO LWNQ- LWNQ- LWNQ-
error FBFS LBFS FIFO
Avg. 5.066853 4.306452 6.470393 4.050331 3.642792 4.114147

Conf 9 Min. 0.946650 0.102316 0.684539 0.325586 0.079637 0.325977
Max. 8.143624 11.560304 9.472767 8.691876 9.024313 8.699038

TABLE XIV

THE NUMBER OF STATES AND FEATURE FUNCTIONS INΦ
′

FOR THE

CONSIDERED RE-ENTRANT LINES

Config. number of number of

states feature functions inΦ
′

Conf 1 9
Conf 2 70 1642
Conf 3 275
Conf 4 85
Conf 5 460 5623
Conf 6 1079

A numerical experiment for Configuration 9 Tables XII
and XIII summarize the experimental results obtained with
respect to Configuration 9. Due to the very long computational
times involved in this particular experiment, we generatedonly
4 problem instances with randomly selected processing rates
and we fixed the value of parameterw to w = 0.99,14 in order
to characterize the performance of the considered randomized
policy. Clearly, the obtained results are consistent with those
obtained for Configurations 7 and 8, in the sense that the
randomized policy has lower average and maximum % errors
compared to those attained by the considered heuristics.

D. Investigating the impact of adding higher-order interac-
tions inΦ on the performance of the employed approximating
scheme

Extending the Feature SpaceΦ by including up to 3-
order Interactions This subsection investigates the impact
of adding 3-order interactions inΦ on the performance of
the employed approximating scheme. A new extended setΦ

′

of feature functions considering up to 3-order interactions
was generated by adding to the setΦ composite features

14We remind the reader that in the previous experimental results, the
considered randomized policy has better performance when thevalue ofw is
kept very close to one.

represented by the products of three simple features. Afterthe
omission of some generated feature functions that are identical
to one of the feature functions inΦ, the resulting feature setΦ

′

consists ofM(36M2−78M+6L+60)+ML(108M+108L−
216)+L(36L2−138L+130)−15 feature functions, organized
in 455 classes. In the provided formula,M denotes the number
of job stages andL denotes the number of workstations.

As in Section IV-B, a linearly parameterized approximation
function was established using these feature functions, and
the quality of the approximations provided by the resulting
architecture was evaluated through the following numerical
experiment.

Experimental Results and AssessmentFor this numerical
experiment, we used the same configurations and the same
processing rates for each generated problem instance, thatwere
used in Section IV-B for the evaluation of the feature setΦ.
The number of the generated feature functions is summarized
in Table XIV. As in Section IV-B, the actual number of classes
is reduced to 364 by the fact that feature classes SF2 and
SF5 are the same and therefore, only one of them should be
considered; collectively, they includeM6 (125M2 − 306M +
283)+ ML

6 (450M +540L−1014)+L(36L2−138L+130)−
15 feature functions. The evaluation of the approximating
capability of the new architecture was performed according
to the logic described in Section III, while considering the
same values of (δ, w) as in Section IV-B, and the obtained
results are presented in Table XV. Some interesting remarks
regarding these results can be summarized as follows:

• The performance achieved by using the new setΦ
′

of
feature functions was improved, as indicated by the lower
average values ofε∗, % errors, and maximum % errors,
compared to those attained by the setΦ.

• In fact, apaired t-test[24] applied on the relevant data,



13

TABLE XV

PERFORMANCE OF THE RANDOMIZED POLICY GENERATED BY THE PROPOSED ARCHITECTURE USINGΦ
′

Config. δ w Avg. ε∗ Avg. Min. Max. Avg. # of additional
% error % error % error controls per state

Conf 1 0.000 0.99 0 0.093051 0.016866 0.173766 0
Conf 2 0.000 0.99 0 0.067502 0.000828 0.215701 0.412857
Conf 3 0.000 0.98 0.623345 0.420034 0.000305 3.184219 0.042424
Conf 4 0.000 0.99 0 0.046410 0.001023 0.193298 0
Conf 5 0.002 0.99 0.450591 0.236877 0.005249 0.692937 0.130290
Conf 6 0.003 0.99 1.096907 0.491644 0.002053 3.402330 0.156256

indicated that this performance improvement is significant
with a confidence level higher than 99.95 %.15

• The performance of the considered randomized policy
remains more consistent compared to the performance
demonstrated by the applied heuristics.

• The above results are quite robust with respect to the
exact values ofδ andw.

• The inclusion of higher-order interactions introduces new
linearly independent feature functions, a fact manifested
by the smaller average values ofε∗ in all configurations.

V. CONCLUSIONS

This paper proposed an NDP-based approximating archi-
tecture for the relative value function underlying the CT-
MDP formulation of the capacitated re-entrant line scheduling
problem, and assessed its performance through a numerical
experiment. The derived results indicate that the proposed
feature space and the induced approximating architecture hold
considerable promise for providing a compact representation
of the target function. Our future work intends to further
validate this assumption and promote the further development
of the proposed approximation framework, by systematically
investigating the following research topics: (i) the development
of a weight tuning algorithm that is computationally tractable
for large-scale CRL configurations, (ii) the investigationof
the quality of the approximations obtained through the em-
ployment of distance metrics other than thel∞-norm, (iii) the
statistical assessment of thesignificanceof the various feature
functions for the performance of the resulting approximation,
and (iv) the extension of the developed results to production
systems more general than the CRL.

ACKNOWLEDGMENT

This work was partially supported by NSF grant ECS-
9979693 and by Keck Foundation.

REFERENCES

[1] P. R. Kumar, “Scheduling manufacturing systems of re-entrant lines,”
in Stochastic Modeling and Analysis of Manufacturing Systems, D. D.
Yao, Ed. Springer-Verlag, 1994, pp. 325–360.

[2] J. Y. Choi and S. A. Reveliotis, “A generalized stochastic petri net model
for performance analysis and control of capacitated re-entrant lines,”
IEEE Trans. Robotics & Automation, vol. 19, no. 3, pp. 474–480, 2003.

[3] S. A. Reveliotis, M. A. Lawley, and P. M. Ferreira, “Structural control
of large-scale flexibly automated manufacturing systems,” inThe Design
of Manufacturing Systems, C. T. Leondes, Ed. CRC Press, 2001, pp.
4–1 – 4–34.

[4] D. D. Yao Ed., Stochastic Modeling and Analysis of Manufacturing
Systems. NY, NY: Springer-Verlag, 1994.

15This statistical analysis is reported in [25] and it can be obtained by
contacting the authors.

[5] L. M. Wein, “Scheduling semiconductor wafer fabrication,” IEEE Trans.
on Semiconductor Manufacturing, vol. 1, pp. 115–130, 1988.

[6] P. R. Kumar, “Scheduling semiconductor manufacturing plants,” IEEE
Control Systems Magazine, vol. 14–6, pp. 33–40, 1994.

[7] S. H. Lu, D. Ramaswamy, and P. R. Kumar, “Efficient scheduling
policies to reduce mean and variance of cycle-time in semiconductor
manufacturing plants,”IEEE Trans. on Semiconductor Manufacturing,
vol. 7, pp. 374–385, 1994.

[8] S. Kumar and P. R. Kumar, “Fluctuation smoothing policies are stable
for stochastic re-entrant lines,”Discrete-Event Dynamic Systems: Theory
and Applications, vol. 6, pp. 361–370, 1996.

[9] ——, “Queueing network models in the design and analysis ofsemi-
conductor wafer fabs,”IEEE Trans. Robotics & Automation, vol. 17, pp.
548–561, 2001.

[10] S. A. Reveliotis, “The destabilizing effect of blocking due to finite
buffering capacity in multi-class queueing networks,”IEEE Trans. on
Autom. Control, vol. 45, pp. 585–588, 2000.

[11] M. A. Lawley and S. A. Reveliotis, “Deadlock avoidance for sequential
resource allocation systems: hard and easy cases,”Intl. Jrnl of FMS,
vol. 13, pp. 385–404, 2001.

[12] C. A. Papadimitriou and J. N. Tsitsiklis, “The complexityof opti-
mal queueing network control,”Mathematics of Operations Research,
vol. 24, 1999.

[13] D. P. Bertsekas and J. N. Tsitsiklis,Neuro-Dynamic Programming.
Belmont, MA: Athena Scientific, 1996.

[14] J. N. Tsitsiklis and B. Van Roy, “Feature-based methods for large scale
dynamic programming,”Machine Learning, vol. 22, pp. 59–94, 1996.

[15] B. Van Roy, “Learning and value function approximation in complex
decision processes,” Ph.D. dissertation, Massachusetts Institute of Tech-
nology, 1998.

[16] D. P. de Farias, “The linear programming approach to approximate
dynamic programming: Theory and application,” Ph.D. dissertation,
Massachusetts Institute of Technology, June 2002.

[17] M. L. Puterman,Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. John Wiley & Sons, 1994.

[18] C. G. Cassandras and S. Lafortune,Introduction to Discrete Event
Systems. Boston, MA: Klumwer Academic Pub., 1999.

[19] P. Glasserman and D. D. Yao,Monotone Structure in Discrete Event
Systems. John Wiley & Sons Inc., 1994.

[20] D. P. Bertsekas,Dynamic Programming and Optimal Control, vol. 2.
Belmont, MA: Athena Scientific, 1995.

[21] D. Bertsimas, I. C. Paschalidis, and J. N. Tsitsiklis, “Optimization of
multiclass queueing networks: Polyhedral and nonlinear characteriza-
tions of achievable performance,”The Annals of Applied Probability,
vol. 4, no. 1, pp. 43–75, 1994.

[22] S. Kumar and P. R. Kumar, “Performance bounds for queueing networks
and scheduling policies,”IEEE Trans. Autom. Control, vol. 39, pp. 1600–
1611, 1994.

[23] P. J. Schweitzer and A. Seidmann, “Generalized polynomial approxima-
tions in markov decision processes,”Journal of Mathematical Analysis
and Applications, vol. 110, pp. 568–582, 1985.

[24] A. J. Hayter,Probability and Statistics. International Thomson PUB,
1996.

[25] J. Y. Choi, “Performance modeling, analysis and control of capacitated
re-entrant lines,” Ph.D. dissertation, Georgia Instituteof Technology,
Atlanta, GA, 2004.


