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Abstract— The problem addressed in this work is that I. INTRODUCTION
of determining how to allocate the workstation processing

and buffering capacity in a capacitated re-entrant line to . . L i . .
the job instances competing for it, in order to maximize its N its basic definition [1], thee-entrant lineconsists ofL

long-run / steady-state throughput, while maintaining the logical workstations Wy, W, - - -, Wy, that support the production
correctness of the underlying material flow, i.e., deadlock-free of a single item. Each workstatioW;, i = 1,2,---,L,
operations. An approximation scheme for the optimal policy that possessesS; identical servers, and the production of each
is based onNeuro-Dynamic Programming theory is proposed, \nit occurs in M stages/y, Ja, - --.Ju; each stagel;, j =

and its performance is assessed through a numerical experiment. o : :
The derived results indicate that the proposed method holds 1,2,---, M, is supported by one of the system workstations,

considerable promise for providing a viable, computationally (0 be denoted byV(J;). Also, M > L, which characterizes
efficient approach to the problem, and highlight directions for the re-entrant nature of the line. Thapacitatedre-entrant
further investigation. line (CRL) [2], considered in this work, further assumes
that each workstation haB; buffer slots; each part visiting
Note to Practitioners—Sequencing and scheduling problems the workstation for the execution of some processing stage
arising in the context of contemporary manufacturing environ- is allocated one unit of buffering capacity, which it holds

ments are known to be extremely hard. For this reason, in most . . . . . . . .
practical situations, these problems have been resolved through exclusively during its entire sojourn in the station, while

the application of a number of heuristics — i.e., “rules of thumb”  Plocking other parts coming into the station. Once in the
that are expected to provide reasonable performance. Things ar Station, the part competes for one of the station serverthéor
complicated even further in the automated versions of these envi- execution of the requested stage. Moreover, the part niagnta
ronments, since the applied sequencing and scheduling logic mustpq|q of its allocated buffer slot while being processed.eft

guarantee, in addition to good performance, logically correct and . - - . .
smooth operation. Both, the logical and the performance-oriered having finished the processing of its current stage at ainerta

control problem of flexibly automated production systems can Station, the part waits in its allocated buffer for trangfethe
be — and have been — addressed through formal systems theory.next requested station. Due to the finite buffering capattitg
However, a challenging remaining problem is the approximation transfer should be authorized bys#ructural control policy
of the derived optimal policies in a way that will maintain near- (SCP) [3] ensuring that (i) the destination workstation has

optimality, and at the same time, it will be computationally . - . - co .
tractable in the context of the “real-world” applications. Our past available buffering capacity, and (ii) the transfesafe i.e., it

work has addressed this approximation problem primarily with 1S Still physically possible from the resulting state to qees
respect to the optimal logical control policy. The work presented all running jobs to completion.

in this paper undertakes the complementary problem of approx- | the context of this operational framework, the problem

imating the optimal scheduling policy. To this end, we employ : . . L
some recently emerged results from a field known adNeuro- considered in this work can be posed as determining how

Dynamic Programming (essentially, a systematic approximation t0 allocate the workstation processing and buffering cipac
framework for Dynamic Programming). Our results indicate to the competing parts, in order to maximize the long-run
that the proposed approximation framework holds considerable system throughput, while maintaining logical correctness
promise towards developing a systematic analytical methodology the material flow, i.e., deadlock-free operation. To famit

for deriving near-optimal and logically correct scheduling policies P .
for flexibly automated production systems. More specifically, the subsequent developments, it is further assumed that: (i

it is shown that, when applied to some prototypical problems there exists an infinite amount of raw material waiting for
concerning the scheduling of re-entrant lines with finite buffering processing at the line’s Input/Output (I/O) statibrfii) the
capacity at _ their vyorkst_ations, the proposed approximation processing time of stagé;, j = 1,2,---, M, is exponentially
framework (i) effectively integrates past results concerning te (istributed with finite non-zero rai;ej;z (iii) the involved job

logical control of these environments, and (i) the obtained . . :
performance is consistently superior to the performance providd transfer times are negligible when compared to the proegssi

by the typically used heuristics.

1This assumption reflects the fact that we are interested injttigization
of the long-run system throughput.

2More general cases can be covered through approximatiod bagghase-
type distributions.

Index Terms— Capacitated re-entrant line, Neuro-Dynamic
Programming, relative value function approximation, scheduling.



P i of the framework of [2] to “real-world” applications is re-
g @Od stricted by the fact that it requires the complete enumanati
‘ | of the underlying state space, the size of which is a super-
ﬁ polynomial function of the elements defining the considered

CRL scheduling problem.

o Currently we lack a formal characterization of the com-
putational complexity of the optimal policy for the consid-
ered CRL scheduling problem. Yet, existing results on the

Fig. 1. Example: A capacitated re-entrant line complexity of the optimal deadlock avoidance for sequéntia
resource allocation systems [11] and the optimal control of
gueueing networks [12] seem to suggest that this policylweill

times? computationally intractable. Hence, there is an appareatin
Example As a more concrete example consider the capdor scalable and efficient approximations to it. A compaiadil

itated re-entrant line depicted in Figure 1. This line has twiramework that holds considerable promise for providinghsu

workstations,W;, Ws,, with S; = S, = 1 andB; = 1, B, scalable and efficient approximations to the optimal sotuti

= 2. The supported production sequence/iss < Ji, J,, of the considered CRL problem is that &feuro-Dynamic

J3 >, with W (J;) = W(J3) = Wy and W (Jy) = W,. Stage Programming(NDP) [13].

processing times are exponentially distributed with raje Of particular interest to this work are the so callpdra-

j = 1,2,3, and so are the involved transfer times, with aetric representatiorNDP methods [13], [14], [15], [16];

uniform ratea — oo. For this small configuration, it can bethese methods recast the considered scheduling problem to

easily seen that the system material flow will be deadloek-frthe problem of selecting an appropriate set of values for a

as long as parametric architecture that will eventually define thepsdd
scheduling policy. Conceptually, the deployment of such an
[Jil+ ol < Bi+ B2 —1=2, @) approach consists of two major steps: (i) the specification
where|J;|, j = 1,2,3, denotes the number of job instance®f the approximation architecture and its aforementioned
in W(J;) executing stage/;. Under this condition, the CRL parametrization, and (ii) the design of effective algarith
scheduling problem is to find an optimal control policy thafor tuning the parameters of the approximation architegtur
maximizes the long-run system throughput by allocating thghen applied on any given CRL configuration. The first of
workstation processing and buffering capacity to the campéhe above two steps — i.e., the specification of the approx-
ing parts.A imation architecture — is typically driven by the following
During the last fifteen years, there has been a significznsiderations: Since the approximating architectur¢ bel
number of works dealing with the scheduling problem in thi@volved in the real-time computation determining the &gapl
original, uncapacitated re-entrant line; indicativelye wmen- Scheduling policy, it must be of low, preferably polynomial
tion those published in [1], [4], [5], [6], [7], [8], [9]. Hoaver, Ccomputational complexity. On the other hand, this constrai
the results derived in these past works cannot be immegliatél the architectural complexity, and, in particular, on the
transferred to the capacitated re-entrant line model, dubet “degrees-of-freedom” provided by the architecture patame
complications arising from the blocking effect taking macization, can have an adversarial impact on the represenéti

in this new environment. Characteristically, the work o][1 capability of the architecture, and the eventual qualitythef

demonstrated through a simple example that these additiof&@nerated approximations. In an effort to effectively heso
material flow dynamics negate in a strong qualitative sen8¥s dilemma, the scientific community has currently cordine
prior analytical results obtained through the study of taeitx itself primarily in the study ofinear approximation architec-
re-entrant line model, and necessitate the re-examinationtures, i.e., architectures which are structured aseighted

the problem in this new operational context. Motivated b§umof some preselectetfeature” functions defined on the
these remarks, the work of [2] developed a formal approatRderlying state space. These feature functions seek tareap
for the analysis and control of capacitated re-entrantslindmportant aspects of the system state, and their selection
based on the modelling framework of Generalized Stochasicdriven by practical experience, insight and/or any fdrma

Petri Nets (GSPN). This framework (i) allowed the seamle$gsults available for the considered problem. The secondrma

integration of logical/structural and timed-based aspesft Step underlying the development of a parametric representa
the system behavior, (ii) provided an analytical formalati NDP approach —i.e., the design of effective parametengini
for the underlying scheduling problem, and (iii) led to som@lgorithms for the adopted approximation architectureaise
interesting qualitative insights regarding the structafehe driven by a combined concern for approximation accuracy
optimal scheduling policy. However, the practical apditiay ~and computational efficiency. Generally speaking, scalabl
versions of these algorithms seek to tune the architectural
3This assumption is quite representative of the operatickisgaplace in parameters by employing a host of approximate dynamic
highly integrated manufacturing systems, where a materiailimndevice programming and estimation theory methodologies on a set

like a central robotic manipulator rapidly transfers jobs ama@ set of of sample paths of the system behavior that are generated
workstations located around it. On the other hand, more génases can still

be addressed through the presented approach, by defintuglvirorkstations trough Sim.UIation- Howeyer, the implementationa_l detai
performing job transfer operations. these algorithms and their convergence properties styong|

J: W1->W2->wW1



depend on the problem at hand and the structure of the adofdtadprocessing, being processed, and waiting for transfer t
approximation architecture. their next processing stage. Then, under the assumptions of
Motivated by the above remarks, this paper seeks to invesqponential processing times and zero-transfer timesCHie
tigate the first of the aforestated issues, i.e., the efficht¢hie state is defined by the (3M-1) dimensional vectof.;,, 11y,
linear approximating architectures for providing scadabhd 115, now, 72, N20, - - 5 Nasws Narp >0
efficient solutions to the capacitated re-entrant line dalieg The set ofeventsthat can change the system state comprises:
problem. More specifically, éeaturebased compact represen<i) the event corresponding to theadingof a new job instance
tation is used in order to generate an effective approxonatito the first required workstation, (ii) the events corregfing
of the optimal control policy, and a particular set of featurto the advancementof an unblocked job instance having
functions is suggested and evaluated through a numerieal emmpleted the execution of its current stage, to its nexgesta
periment. A side-product of the presented work is the cotapleor out of the system, in case that the completed stage is the
characterization of the considered scheduling problem adaat one, (iii) the events corresponding to thert of the
Continuous Time Markov Decision Process (CT-MOPJ]; processing of a job instance waiting at a certain workstatio
this problem characterization is complementary to theioglgy and (iv) the events corresponding to thempletionof the
characterization provided in [2], and it is instrumental {§ running processing stage of a job instance. Furthermoee, th
the justification of the proposed approximating architesstu CRL operation can be described by using this set of events as
and (ii) the assessment of the quality of the generated appréollows: Scheduling decisions are exerted by the system con
imating policies, in the context of the presented numericabller every time that an active process instance compliese
experiment. The obtained results indicate that the corsillerunning processing stage. Each scheduling option cotestitu
parametric representation NDP approach, in general, aand thsequence of job loading and / or advancing events that are
proposed linear architecture, in particular, hold consilkee physically feasible but alsoadmissibleby the applied SCP.
promise for providing effective and computationally effici In general, the optimal CRL scheduling policy can involve
approximations to the optimal CRL scheduling policy thadeliberate idlenessf some of the system resources. Therefore,
consistently outperform the typically employed heurstic  a scheduling decision that blocks any job from loading or
The rest of the paper is organized as follows: Section flirther advancement can be a viable — in fact, the optimal
employs the CT-MDP framework towards the formulation and option, in certain cases; we shall refer to such an option
analysis of the considered scheduling problem. Section Ht a ‘o nothing control. It must also be noticed, however,
provides a formal characterization of the proposed appraxi that any throughput-maximizing scheduling policy must be
tion framework and the associated feature selection pnable globally non-idling i.e., there must always be at least one
Section IV proposes a particular set of features and assegeb instance under processing in the system.
the representational capability of the resulting arclitee Based on the above description, and under the assumption of
through a numerical experiment. Finally, Section V conekid zero transfer times, CRL states that result from the corgulet
the paper and highlights directions for future work. of the processing of an active job instance and correspond to
decision epochs, present zero sojourn times, and therefore
II. AM ARKOV DECISIONPROCESSMODEL FOR THE they are characterized asnishing The remaining states
CAPACITATED RE-ENTRANT LINE SCHEDULING PROBLEM  contain at least one job instance that is in processing, and

This section formulates the CRL scheduling problem ast3erefore, they have a finite sojourn time that is determined
Markov Decision Process (MDP). The derived model providdge “exponential race” for completion of all the job instances
a rigorous characterization of the CRL operation and tf{gat aré in processing; these states will be characterized
optimal scheduling policy. In this way, it offers the quative S tangible Let S7 and Sy denote respectively the set of
insights and a benchmarking baseline for the subsequéftgible and vanishing states. Then, the scheduling proble
development of scalable approximating scheduling methogismaximizing the (steady-state) throughput of the CRL can
based on the emerging theoryNéuro-Dynamic Programming P& formulated as the sequential decision making problem of
(NDP) [13]. finding a policy that maX|m|zes_the (time-)average rev_vgrd

The induced Continuous Time Markov Decision Process accumulated by the process defined by the CRL transitions
A formal characterization of the behavior generated by tiBrough the vanishing states ifi,. A non-zero reward is
considered CRL is facilitated by the following definition ofobtained every time that the performed transition can teeul
its state the completion of an active process instance, while the time

Definition 1: Let n,,,n,,, and n;, be respectively the corresponding to such a transition is variable and it depend
number of jobs at stagé;, j = 1,2, ..., M, that are waiting ON the originating vanishing state and the selected conivel

‘ can formalize the above discussion as follows:

“4In fact, this section provides also a parameter-tuning metlogy for For each state € Sy, there exists a set of controlg,(i),
the presented approximating architecture, that is deriveettty from the that js feasible at stateand finite: More specifically, this set
formal characterizations of the considered CT-MDP problemd the pro-
posed approximation framework. However, the practical appllity of this of controls CorreSpondS to all the process and SCP-enabled

methodology is limited by the fact that it employs a complete ematien of

the underlying state space. Its role and value for the ptedemork lies in the 5The zero-transfer times assumption, when combined with theugfput
(i) provision of a formal characterization for the parametering problem, maximization objective, implies that any job completed in th& ktage can
and (i) the facilitation of the computation and evaluatidrthe approximating be unloaded immediately, and therefore, the compomeyt, representing
policies developed in the context of the presented numeeigaériment. the number of jobs blocked in the last job stage, is redundant.



Fig. 2. Example: the induced CT-Markov process for the caated re-
entrant line of Figure 1

TABLE |
EXAMPLE: VANISHING STATE INFORMATION FOR THECT-MARKOV
PROCESS INDUCED BY THE CAPACITATED REENTRANT LINE OF FIGURE 1

v resultantT’ S
(T'Sq)
(T'S3,T'S3)
(T'S3,TS5)
(T'Sg)
(T'S4)
(T'S7)
(T'S7)
(T'Sg)
(T'S9,TS3)

e

n3wN3p
00
00
00
00
00
00
00
01
00

Nlwm1p™1b n2w2pn2b
000 000

001 000
000
001
010
001
000
000
000

001
010
001
001
101
001
010

©~NOO A WwN ROy

TABLE Il
EXAMPLE: RESULTANT TANGIBLE STATE INFORMATION FOR THE
CT-MARKOV PROCESS INDUCED BY THE CAPACITATED REENTRANT LINE
OF FIGURE 1

nextV.S
(V. Sy)

00 (VSa)

00 (VS3, VSy)
00 (VS5)

01 (VSg)

00 (VSg)

01 (VS7,VSg)
01 (VS3)

ES

n3wN3p
00

Nlwn1p™ib n2w2pn2b
010 000

000 010
010
010
000
000
000
000

010
001
000
110
010
001

oG A wN Rl )

Example Figure 2 presents the induced CT-Markov process
for the CRL of Figure £, while the detailed characterization of
the depicted states is provided in Tables | and Il. Doubiedi
nodes in Figure 2 indicate the procaasgiblestates, and the
expressions on the edges emanating from them characterize
the corresponding branching probabilities. Single-limedles
are thevanishingstates.A

An algorithm for generating the state space of the
considered CT-MDP Next we present an algorithm that
generates the state space of the considered CT-MDP directly
from the basic description of the system configuration. The
proposed algorithm consists of two parts: (i) identifyirge t
systemsafe region i.e., this part of the state space from
which it is physically possible to process all running jobs
to completion without running into deadlock; (ii) genenafi
the state space of the target CT-MDP, by starting from the
null state and systematically exploring all possible @ust
controls at every visited state, while using the informatio
about the safe region for checking the structural admigyibi
of arising new states.

event sequences that bring the system to a tangible state; wé. ldentifying the target safe region The identification

shall call such an event sequencelastered contrgland the
resulting tangible staterasultant tangible statd_et ¥ (i, u) be

the index setof job instances being processed at the tangible

state resulting from taking contral € U(i) at statei, and

also, lets(l) € Sy denote the vanishing state resulting from

the finishing of a job instancec ¥ (i, «). Then, fori, j € Sy,
the transition probabilityp;; (u) is determined by

_ Zlelll(i,u):s(l):j Hi
Zkelll(i,u) Mk

Pij (U) 2

The sojourn timeassociated with the transition resulting from

the selection of contral at statei is exponentially distributed
with mean value
1
Tiu) =s—— 3)
ZkE\II(i,u) HE
Let i, be the system state at theth decision epochy,
and u; the selected control at,. Then, {ix,k = 0,1,...}

is a Continuous Time Markov Decision Process (CT-MDP) 2-
with 7, (ux) > 0, where7;, (uy) is the expected transition

time resulting from applying control,;, at statei,, k =
0,1,2,...

Furthermore, the SCP logic applied during the
system operation ensures that the system idle and empgy stat
can be reached by any other process state, and therefore, the

of the safe region for the buffer space allocation of the
capacitated re-entrant line considered in this work is, in
general, an NP-hard problem [11]. However, in [11], itis
also shown that in many practical cases (e.g., when the
capacity of a pertinently selected set of buffers is greater
than 1), the problem can be resolved in polynomial time
through one-step look-ahead deadlock detection. For the
remaining cases, one can either (i) employ polynomial-
complexity criteria / tests that will seek to identify a
strongly connectedcomponentof the safe region that
further contains the system empty state [3], or (ii) opt
to ignore the complexity concern, and proceed to the
identification of the entire safe region, by generating and
trimming, with respect to the system initial empty state,
the state transition diagram representing all the possible
evolution of the buffer space allocation taking place in
the underlying system; we refer the reader to [18], [3]
for the algorithmic details.

Generating the CT-MDP state spaceAfter having
obtained a characterization of the target safe region,
the Sy, and S7 state space are generated systematically
as follows: For each vanishing state, all resultant tan-
gible states are generated by enumerating all possible

Notice that some control actions corresponding to clearboptimal de-

chain structure underlying this CT-MDP problem is Stl’ong|¥isions, resulting to unnecessary idling, were omittedrduthe development

connected, ocommunicatingn the relevant terminology [17].

of the CT-MDP of Figure 2.



sets of clustered controls. These clustered controls ard.emma 3:Under an optimal control policy, for each work-
computed incrementally by augmenting generated subsgationV;, i = 1,2, ..., L, if nj,+n;, > 0forall j € o(W;),
quences of consecutive untimed controls until a resultatien " vy, 7jp = min{S;, >, w, (1w + 1) -
tangible state is reached. Then, for each resultant taniemma 4:Under an optimal control policy, for each work-

gible state, the resulting vanishing states are generatgthtion W;, i = 1,2,..., L, if (i) Z]Ea (njw +njp +
and this basic loop repeats itself. Details of the algorithm,,) < B;, and (||) Nj—1,6+ Njw+njp >0 for al j € a(W;)
are as follows: (notlce thatng, > 0 always by the assumption of an infinite
Algorithm to generate state space WIP level waiting in front of the line), thed" ) jp =
(i) Let SR denote the set of states in the safe - mom@in{:Si, > ;. ) (-1, + Mjw + njp) }-
generally, admissible - region. Lemma 5:Under an optimal control policy, for each work-

(i) Initialize Sy and Sy by letting Sy, = {so} and stationW;, i = 1,2,...,L, if (i) ny—1p + njrw +njrp >
St = 0, wheresg is the system empty and idle0 for j/ = argmin;{j : j € o(W;)} and (i) n; , +
state. D2 (kkeo (Wi k>i7y (Mkw + Mip + 1) = 0 (notice that
(iii) If all states in S, are marked as “explored”, ny, = 0 always, by the assumption of zero-transfer times),
then go to Step (vii). Otherwise, select one stathenn;: , = min{S;,n;_1p + nj/ w +njr p}.
from Sy, which is not explored, and mark it as Lemma 6:Under an optimal control policy, for each work-
“explored”. Generate all resultant tangible states bstationW;, i = 1,2,..., L, if (i) |[oc(W;)| = 1, (i) c(W;) =
(1) enumerating all possible sequences of untimeg; £ 1} and (jii) nj,, + nj, + njp < Bi, thenn;_;, = 0.
controls and (ii) checking if the resultant tangible Lemma 7:A control action that just loads a new job into
states are irt R; if a resultant tangible state is notiy/(.J;) and does not start processing is redundant.
in SR, then remove it. The formal proofs of Lemmas 1 — 7 can be based on the
(iv) For each resultant tangible state, generate the vaqyn-conflicting nature of the implied operations and can be
ishing states resulting from the completion of time@staplished through techniques and arguments similaogeth
transitions, and put them int§y, while avoiding presented in [19](Chapter 3). Here we shall provide a more

duplication. intuitive justification of their correctness. Hence, Lemrha
(v) Put the resultant tangible states generated in Stggdresses the non-optimality of a globally idling policyr fo
(iii) into Sz, while avoiding duplication. the throughput maximization problem. Lemma 2 describes
(vi) Save the transitional information and go to Steghe optimality of a local non-idling policy for a workstatio
(iii). with its buffer full of non-completed job instances. Lemma 3
(vii) Done withSy, andS7 as the vanishing and tangibleexpresses the optimality of a local non-idling policy for a
parts of the state space. workstation which contains at least one non-completed job

Systematic exploration of a vanishing stateStep (iii) instance for each job stage supported by the workstation.
of the above algorithm can be readily supported throudtemma 4 further generalizes Lemma 3 for the case that the
a Breadth-First-Search method. Furthermore, there aree soworkstation demonstrates free capacity; notice that iis thi
pertinent observations that can lead to a more efficient eraase, the non-idleness enforcing condition counts also all
meration of all clustered controls emanating from any givethe completed job instances waiting to enter the considered
vanishing state. Most of these observations essentially cavorkstation. Lemma 5 states the optimality of a local non-
stitute conditions under which a non-idling policy can balling policy for a workstation that contains at least oneno
adopted without compromising optimality with respect te thcompleted job instance to be processed at the earliest job
considered performance objective of throughput maxirnorat stage in that workstation, while there are no job instances
Then, enforcing non-idleness reduces the number of vialgde all subsequent job stages to completion in the system.
controls at any vanishing state and leads to a smaller setLefmma 6 applies to a workstation which processes only one
resultant tangible states. job stage and indicates that any free buffering capacityuch s

Let us consider a clustered contrql, ;. at a vanishing state a workstation should be immediately allocated to a requgsti
sy, and lets; be the resultant tangible state corresponding twocess. Finally, Lemma 7 results from the assumption af-zer
Us, k» Wheres, = < nyy, n1p, N1p, Now, Nap, Nap, - - -, N,  transfer times, which allows a loading control to be perfedm
nup >. We can characterize the “properness” of the controhly when the new loaded job is going to be started instantly
us, 1 by investigating the “properness” of state For each after being loaded. The conditions expressed by Lemmas 1
workstationW;, i = 1,2,..., L, let o(W;) be the index set of — 7 must be integrated in the logic of any search procedure
job stages processed in workstatidn, i.e., W (.J;) = W, for supporting the execution of Step (iii) of the state space-
all j € o(W;). The following lemmas specify some conditiongenerating algorithm.

under which a non-idling policy is optimal. Characterizing the objective function of the CT-MDP
Lemma 1:Under an optimal control policy,1 < In the CT-MDP framework, the long-run CRL throughput is

Do Z]eg(w njp < Zl 15 modelled by the (timegverage rewardo be accumulated by
Lemma 2: Under an optimal control policy, for each work-the considered process, formally defined by

stationW;, i = 1,2,..., L, if 3. w,)(njw + njp) = Bi,

then ZjEO(W,i) Njp = S;. NIE»noo E{tN}E{/ dt} (4)



In Equation 4g(i(t), u(t)) is therewardper unit time obtained will allow us (i) to provide closed-form rigorous charadeer

by taking controlu(t) at statei(t) at timet; in particular,i(t) tions of the proposed approximation framework, and (iihe t

= 4 and u(t) = ug for t,, < t < tx41. In the considered context of the numerical experimentation pursued in thigkwo
problem contextg(:,u) is defined by: it is readily implementable through the commercially aahié

LP solvers. According to [20], thprimal LP formulation for
the considered DT-AR-MDP problem employs the decision
variables)\ and h(i), ¢ € Sy, and its detailed structure is as

wupr  if the resultant tangible state has a job
g(i,u) = being processed in the last stadg
0 otherwise.

5y follows:
(5) _— 12
Thesingle-stage expected rewaid(i, u), corresponding to mm (12)

statei and control, is given by s.t.

G(i,u) = g(i,u)7i(u) ®) XN+1() > g6, u)+ > piy(h(y), VieSy,uelU().
From Equations 5, 6, we have jesy (13)
i, ) { parTi(u) i g(i,u) >0 7 We notice that(\*, h*) employed in Equation 10 ign
' 0 otherwise. optimal solutionof this LP. The same is true for* andh*+ce,

Bellman’s optimality equation and the optimal relative Wherecis any scalar andis the vector with all its components

value function Let J*(i) denote the optimal average rewarc@dual to one. Furthermore, in any optimal so*lutidn k) of
accumulated under “steady state” operation, while siguttie  the LP of Equations 12 and 13, we hake= \*. However,

system at staté and executing the optimal policy. Then, b)/z might fail tp satisfy Bellman’s equation, and therefore we
virtue of the fact that the structure of the underlying cTP€ed to consider theual LP of the LP of Equations 12 and 13
MDP is communicating J*(i) = \* for all states; [17], N order to obtain aroptimal relative value function and its

and furthermore, there exists a functidn(i), i € Sy, that corresponding policy. This dual LP is formulated as follows
satisfies the following equation, for all states Sy,

max Z Z g(t,w)z(i,u) (14)
e jeSY s.t.
Function h*(i) is known as the optimatelative value Vi€ Sy,
functiof and it defines a deterministic stationary optimal . . . B
policy =* for the considered problem by setting Z w(i,u) = Z Z pij(wz(j,u) = 0 (18)
w€eU (i) JESY uel(j)
u” (i) € arg max {G(i,u) — N'Ti(u) + Z p”(u)h*(])} Z Z z(i,u) = 1 (16)
uel(7) jESy 1€Sy ueU (i)
©) VieSy,ueU@i), ax(u) > 0. (17)

Uniformization From a computational standpoint, it is
more convenient to work with auniformized version of The variablesz(i,u) can be interpreted as the steady-state
Equations 8, 9: Letting) < ~ < 7i(u), Vi,u, and setting probabilities that staté will be visited and control: will
i (1) = vpi;(u)/7i(u) for i # j; pu(u) = 1 —~/7(u); then be applied. Therefore, an optimal solutieh suggests
B*(z‘) = h*(i)/~ for all i, we get the following discretized an optimal randomized scheduling policy, where contiokst

version of Equations 8, 9: for all statés Sy, state: are selected with probability
- - x*(i,u)
(i) = u) — \F 5. (W) (j - 18
h(i) = max [g(w) A +je§;va(U)h (J)] (10) S v o0 w) (18)
. According to [17], there will exist an optimal solution*
u*(i) € arg mazc) {g(i, u) + Z pﬁij(u)h*(j)} (11) with z*(é,u) > 0 for only one controk: at each staté with
ueU (i X

>uev(i) € (i) > 0. The policy derived through Equation 18

The Linear Programming Approach There are several from such an optimal solution, for the restricted class afest
jeWith > 7y 2" (4,u) > 0, induces a recurrent Markov

exact solution methods to solve the resulting Discrete Tine . ) .
Average Reward MDP (DT-AR-MDP) problem incIudingCha'n on the considered state space. The extension of this
value and Policy Iteration, Linear Programming (LP) and aolicy to an optimalunichainpolicy for the entire set of states
number of variations of these basic methods. In the restisf tifa" Pe performed as follows:

work we focus on the Linear Programming approach since itLet Su« = {i € Sy : >, ;) 7 (i, u) > 0} and p* (i) be
an optimal action at statefor which x* (i, u*(z)) > 0.

JESY

“Functionh*(-) can be interpreted as trasymptotic relative difference in
total reward that results from starting the CRL at the various statesd @) If Sy\S,- =0, stop
subsequently operating it according to an optimal schegylicy; i.e., the (ii) Find a states € SV\ST* and an action: € U(s) for
differenceh* (i) — h*(j) expresses the asymptotic difference in total reward . - g
that results from starting the CRL in statimstead of statg, and subsequently which >~ cs . Psj(u) >0
operating it according to an optimal scheduling policy [17]. (iii) Set Sy+ = S,- U{s} andp*(s) = u. Go to (i)



The optimal relative value functiorf* (i), for this optimal ~ The MPD-based modeling framework developed in this
policy can be computed by solving the following system dfection provides an analytical basis for addressing the CRL
linear equation§: scheduling problem and it can be used for the computation
- el e wsenT ) of the optimal scheduling policy in small CRL configurations
A+ h(i) = g(i, 1™ (i) + Z Pi(())h(i), Vi€ Sy However, the approach has a severe computational limitatio
jesdv (19) in that it requires the explicit enumeration of the undentyi
state space, which explodes very fast. We remind the reader
that, according to the introductory discussion, it is ferth
believed that the deployment of the CRL optimal scheduling
policy is a computationally intractable problem. Henceréh
is a need for some near-optimal approximating scheme to it
that maintains computational tractability. This is theitopf

Example The dual LP formulation for the DT-AR-MDP
problem for the CRL of Figure 1 is as follows:

max fi3 {x(Q,u2,2)+1’(5,U571)+z(6,u671)+x(7, ur1)| (20)

the approximation. In the following, we consider a particu-
lar class of approximation architectures that are known as
(21) Jinear. Structurally, they constitute weighted sunof some
This LP can be solved optimally for any assignment of para,ﬁ[eselectedeature functionsthat capture important aspects
eter values foru;, i = 1,2,3, and~, and the corresponding of the system state and their selection is driven by prdctica
optimal control policy can be obtained using the procedufPerience, insight and/or any formal results availabtettie
described above. As a complete exampleyif= 1 for all i considered problem. The main intention of the work presente
and we sety = 0.25, an optimal objective value of the LP idn this paper is to investigate the ability of the aforemem¢id

s.t. .
the next two sections.
Y12 (0,u0,1) — Yp3z(2, uz,2) 0
(1 + p2) (1, ur 1) + 2(1,u15) 2(1,u01) 0 I11. AN EURO-DYNAMIC PROGRAMMING APPROACH FOR
VAL H2)TR Y)Y, U2) T Y AL, Yo THE DEVELOPMENT OF ANAPPROXIMATING SCHEDULING
Yu1(2,u2,1) + Yp3x(2, uz,2) — YH2w(1, U1 2) PoLICY
—Yp3x(T,ur,1) — yox(8,us1) = 0 NDP-based approximation of relative value function
ypox(3,u3,1) — yrz(l,ur1) —ypuix(8,us2) = 0 through linear approximating architectures The observation
vz (4, ugr) — ypoz(l,ur 1) — Yuax(8,us ) = 0 thatthe optimal control policy for a DT-AR-MDP problem is
(pia + p3)a(5, ’1) (2 u2'1) (4 u4'1) _ o @ “greedy” policy with respect to the optimal relative value
3 15 T T function h* suggests that one potential approach to generate a
V(pz + p3)x(6,u6,1) — yp2x(3,us1) = 0 polynomial approximating solution to the considered scthed
yusx(7,u7,1) — Yuax(5,us1) — ypex(6,u61) = 0 ing problem is through the approximation of the optimal
Y2x(8, us1) + y(p1 + p2)z(8, us.2) relative value function with an appropriately parametxliz
B ’m(5 s 1) — 4yi53(6, u " ) = 0 function. As it was mentioned in the introductory discussio
TH3TL9, Us,1) = YH3ZAD, U, 1) = in the context of the emerging theory Neuro-Dynamic Pro-
2(0,u0,1) +#(1,u1,1) + (1, ur,2) + (2, uz,) gramming(NDP) [13], this parameterized function is known
+2(2,u2,2) + x(3,u3,1) + (4, ua1) + (5, us,1 as the employedapproximation architectureand it defines
: ; ; : ploye@pp
+2(6, ug1) + z(7,ur1) + 2(8,us 1) + #(8, us2) = 1 the space/set of functions to be considered as candidates fo
)

VieSy,uelU(i), z(i,u) >

0.4444 and the corresponding optimal control policy is: linear a_rchitecturgs to provide e_ffective approximatidos
the optimal relative value function of the MDP problem
1,1 Ofuyp  for i=1 formulated in the previous section, while identifyinggood”
u(vs,) =14 U2t for i =2 (22) set of feature functions to be employed by them.
Us,2 for i =8 A more formal characterization of feature-based parametri
Ui,1 otherwise, representational methods is as follows: &tbe afeature
where u; ;. is the k-th control associated with stafés; in space i.e., an (ordered) seb = (¢o,...,¢x) of functions

Figure 2. In the optimal control policy, staféS; has two Polynomially evaluated on any given statee Sy, with
alternative optimal controls;;; and uye, corresponding to ¢ = (¢;(0),...,¢;(ISv|—1))",7 =0,...,K; || = K +1;
deliberately idling the server in workstatidiv; or not, and and ¢o(i) = 1 for all i € Sy. Then, any other function
resulting in the same optimal communicating class, for whicf() defined onSy, can be potentially approximated through
state VS, is a transient state. It is interesting to notice that linear combination of the feature spage by pertinently
the actual optimal throughput is strictly less than tiieninal Selecting a vector ofveighting coefficients = (ro, ..., rx)".
bottleneck throughpuof 0.5, defined by the bottleneck work-In the application context of the considered CRL scheduling
station W, an effect that results from the additional idlenesgroblem, we are especially interested in developing such

experienced by the server due to the finite buffering capaci@n apprqxi(r?ating architecture for the optimal relativeueal
A function 2*():

8This system of linear equations defines(-) only up to translation.

K
h(i,r) =Y ok(i)rk = (@r)(0). (23)
k=0



A weight setr* satisfyingh*(i) = h(i,r*) = (&r*)(i), Vi, to the extent possible.
would give us the optimal relative value function and the « The Mathematical Programming (MP) formulation of
corresponding‘greedy” policy based on Equation 11 would Equations 25 and 26 might have alternative optimal
be optimal. We notice, however, that it is not easy to find such  solutionsr*, resulting in different policies with different
a rich set®, while maintaining computational tractability, and throughput. However, it is not practically possible to
as a compromising objective, we set out to fix@ndr* such generate all alternative optimal solution’s and system-
that h*(i) = h(i,r*) = (®r*)(i), in the sense that (i) they atically compare their performance.
minimize some distance metric characterizing the qualfty o « Even worse, there might exist alternative optimal solu-
the approximation, and (ii) the corresponding “greedy”i@ol tions iﬁ andﬁ; to Equation 10, witrfﬁ{ #* E; + ce; such
defined by Equation 11 tends to maximize throughput for the solutions can result in alternative parameterizationsef t
underlying DT-AR-MDP problem. Next, we elaborate on each  MP formulation of Equations 25 and 26, and additional
of these two issues. approximations of the optimal scheduling policy.
Approximating optimal relative value functions using
a feature-based max-norm projection The quality — or
“goodness-of-fit— of the aforementioned approximation of
h*() by h(i,r*) can be measured using a number of distan
metrics. In this paper, we consider thg-norm, defined as
follows:

One way to reduce the effects of those undesired biases is by
opting to consider a broader set of actions in the deterioimat
of the final control policy, rather than only those selectgd b
tfre strictly “greedy” scheme of Equation 11. In addition, we
recognize that in the eventual implementation of the pregdos
approximating framework, the adopted policy will be the
converging outcome of dearning” process that will tune the
weightsr while employing a randomizing mechanism in the
Mderlying decision-making proce$she impact of this ran-

domization effect should also be accounted for when assgssi

as possible over all states. Then, a key question that i€ Performance resulting from the proposed approach. ?n th
implicitly raised in this part of work is the extent to whichPositive side, this rangom|2|ng e_ffect restores the "uaiot?

a small uniform approximation error preserves the shape Jfucture of the considered policy. To capture all the ésfec
the optimal relative value function under consideratiohe T discussed above, we propose to assess the performance of

detailed mathematical formulation of the weight selectioh'® considered approximating scheme through a randomizing
problem for any feature spack and optimal relative value policy that employs two different action-selection protti&bs
functionfv*(z’) is as follows: at each decision epoch: In particular, the control actions i

U(i) for each statei, are classified to those i/ (i) that
min € (25) present considerably high valuekbase(fz()in r*), and those in
e U i)\ U (7). Control actions froni/ (i) are selected uniformly
. ) with some cumulative probability, and similarly actions in
[W7(@) = h(i,r)[ <6, VieSy (26) (i) U(i) are selected uniformly with cumulative probability

This formulation can be easily transformed into an LP — w; typically, w — 1. The detailed mathematical charac-
and solved by some LP-solving method. Notice that tHgrization for these ideas, and the mathematical prograigmi
dependency of thé..-norm onr is piecewise linear, which formulation computing the throughput of the resulting pwli
might lead to the existence of alternative optimal solutiéor are as follows:

) VieSy, ueU@), R(iu)=g(,u)+ Y dywh(jr)

max |h* (i) — h(i,r*)| (24)

By employing thel..-norm in the selection of-*, we are
essentially trying to bound the distance between the opti
relative value function and its approximated value as unifg

S.t.

T,
Computing the throughput obtained by the “greedy”

policy defined by ﬁ(z‘,r*) The throughput of the “greedy” Tesy 27)
policy defined byﬁ(i,r*) can be evaluated through standard ] ~ ) )
techniques provided by the MDP theory [17]. We notice, " ¢ € Sv» v = Au: wetl () R(i,u) - R(i,u) <
however, that this policy might presemtulti-chain structure, 5 | max R(i u)| we U@} (28)
and this issue must be explicitly addressed by the applied wev(@) 0V

algorithms. Next, we deal with this issue in the broader exint

of some additional practical considerations. min Ag(r*;d,w) (29)

Some further practical considerationsFrom a more prac-
tical standpoint, we shall eventually assess the perfocmar?'j
of the proposed approximating scheme by comparing tﬁeZ €
throughput of the policy generated by the approximatiorh wi
the optimal throughputy*, and also, the throughput that would °This randomizing mechanism essentially compensates for ittettfat
be obtained if some other heuristcs were applied. Howevgfy SPPATELNY oy Seried o e peerandn e o o
the implementation of this evaluation scheme is compl@tatéormation about the system dynamics and the accompanying ahction,

and, to some extent, compromised by the following issues:and therefore, it cannot be fully trustworthy.

. . . 10A unichainpolicy is a stationary policy that confines the system ojpemat
 Some of the involved computations present NUMerICg 5 sunspace corresponding to a Markov chain with a singlerment class

instability and the accrued errors should be filtered outd a possibly empty set of transient states.

SV7 )‘R(r*;(gaw) + iL(Z)



TABLE Il
SIMPLE FEATURES

|5wT)| Z7165(2’) [g(z’, u) + Zjesv ﬁij(u)ﬁ(j)]

Class Expression

SFO 1
1—w - . SF1 Njawsd =2, M
+ |U(i)|f|[~1(i)| ZueU(i)\U(i) [g(z,u)—l— sr2 :]ijill : ﬁ, )
= ~ 7. . . ~ . SF4 Ig;lj_’“,>0}’-7‘:2 ----- M
Sess PG|, 1 [UG)] #156)
SF6 || Tpn 0y =1 M1

SF7 I Jio=
{ZJ_EU(W”<n]-w+njp+njb):0}

1 Ji=
ogz Ny Fnin4+n:p)<0.2B;}
{ jea(Wi)( jwtniptnp) it

1 . ~ .
[0 2ouet [9(2’ w) +Xjes, pij(u)h(J)] ; .

it |[U@)| =06 oo
if [U@@)| = | (()J:.O)

SF10

1{0.23i52j60<wi)(n,jw+njp+njb)go.813i}"L =

The paramete appearing in Equation 28 controls the I{o.sgigzjeg(wi)<njw+njp+n_,»b>g3,i}”’:
degree of “greediness” of the resulting policy; typically i SF11 I{Z. <n_,.w;n,_7.,,+njb):Bi}"i=1""‘L
should take positive values close to 0. Having detailed the|| ., || , %~
mathematical apparatus that is necessary for the perfagnan
evaluation of the proposed approximating scheme, in thé nex

section we consider the selection of a particular set ofifeat |, . - .
classes”, with each class containing all the feature functions

that coqld Ieaq to good approximations of the optimal CR}‘esulting by the application of the same feature concept on
scheduling policy.

different components of the underlying CRL.

i =

jEn‘(W-)(njw +njp+tngp)i=1,...,L
i

IV. SELECTING A FEATURE SPACE® FOR THECRL Complexity of the suggested set of feature functions
SCHEDULING PROBLEM: AN EXPERIMENTAL The above feature specification results in 91 classes,dimdu
INVESTIGATION a total of M (18 M + 36L — 22) + L(18L — 35) + 7 feature
A. Suggesting a Feature Spage functions'? While it is true that, in general, we can increase

the representational capability of a feature sp&day adding
rmore composite features, such an expansion will also iserea
e computational complexity of the approximation. Here,

Extracting feature functions ldentifying feature functions
is a kind of data compression process that seeks to incdgo

application-specific domain knowledge into the data repres the first part of our work, we suggest a minimalist approach,

tation. Therefore, it is very application driven, in gereta o : i
; . restricting the degree of employed composite features to 2;
our case, the feature selection process is based on a numger.

of queueing-theoretic concepts and results [21], [22], 'mndt € _|mpact of ac_;ldlng more com_posne features,_ correspgndm
. N T to higher-order interactions of simple features, is adsdsn
will seek to capture the following information:

. Basic State Information Section [V-D.
) " . . . Using these feature functions, a linearly parameterized ap
B number of jobs .Wamng, In-processing, or belngbroximation function as defined in Equation 23 is estabtishe
f|n_|shed at egch !Ob stage. . ) ) and the parameter vector, is computed based on tHe,-
h em_sten_ce_: of job mstam_:es waiting, In processing, Qfy projection of the optimal relative value function teth
being finished at each Job_§tage. . corresponding feature spa®eusing Equations 25 and 26. The
In;ert;lgf_((%);zCCUDanCy / availability at each WorkStat'on'evaluation of the approximating capability of feature spéc
. |

was performed through the following numerical experiment.
— Interactions between the feature elements character-

izing the basic state information _ . _

We notice that in [22], [21], similar information was empéy B- A Numerical Experiment for Evaluating

for predicting performance bounds of queueing networks We tested the potential performance of the approximating
modeling re-entrant lines. Furthermore, the work of [23rchitecture generated by the aforementioned feature- func
constructed an approximation function of degree 2 or 3 usifigns, on two types of re-entrant line, the first consistirig o
basic functions representing the number of jobs at eacte stag single-serverworkstations and the second consisting of 3
and showed that good fits to the optimal value function wegingle-servemworkstations. Both of these lines are observing
possible for several types of uncapacitated queueing meswo the operational assumptions stated in the previous sagtion

A detailed characterization of the feature functions emwhile the adopted SCP was theptimal — i.e., maximally

ployed in this work, seeking to capture the basic state igermissive- policy. For each type of re-entrant line, different
formation listed above, is provided in Table Ill. We shaltonfigurations were generated by changing buffering capaci
refer to this set of features asmple featuressince they can ties; Table IV summarizes the system configurations used in
be computed directly as simple functions of the system statfs experiment. For each configuration, 30 problem instanc

vector. Interactions of simple features are captured byt afse with randomly generated processing rates were considered.
composite featurethat essentially constitute pairwise products
of simple features! Finally, we group feature functions into 2we notice that some important information such iasngediateor total)
workload of a workstation, that is typically considered hyegeing theory, is
11However, we omit products that result to feature functionat tare not considered explicitly in our feature specification siitccan be represented
identical to one of its constituent factors. by a linear combination of the employed feature functions.
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SYSTEM CONFIGURATIONS CONSIDERED IN THE NUMERICAL EXPERIMET

number of
workstations

configurations

number of job stages (JS)
and job routes

buffer
capacities

Conf 6

Conf T (B1, B2)=(.2)
Conf 2 2 S, — Wy — W) (B1, B2)=(32)
Conf 3 (B, B2)=(44)
Conf 4 (B, By, B3)=(122)
Conf 5 3 HSW, — Wy — W3 — Wq) | (B1, By, B3)=(3,22)

(B1, Ba, B3)=(43.2)

TABLE V TABLE VI
THE NUMBER OF STATES AND FEATURE FUNCTIONS FOR THE PERFORMANCE OF HEURISTICS FOR THE CONSIDERED RENTRANT
CONSIDERED REENTRANT LINES LINES
Configurations number of number of Config. % FBFS LBFS FIFO LWNQ- LWNQ- LWNQ-
states feature functions error capacity FBFS LBFS FIFO
Conf 1 9 Avg. 0 2.906683 0 0 0 0
Conf 2 70 255 Conf1 || Min. 0 1.410307 0 0 0 0
Conf 3 275 Max. 0 5.651860 0 0 0 0
Conf 4 85 Avg. 2.088194 2.865571 2.088194 1.889512 2.427890 1.889512 ||
Conf 5 460 563 Conf 2 Min. 0.002057 0.000411 0.002057 0.002057 0.000411 0.000206
Conf 6 1079 Max. 6.013643 10.944309 6.013643 7.432376 8.647182 7.432376
AVg. 0593510 | 1.322035 | 0593519 | 0.625181 | 0.671251 | 0.625181 ||
Conf3 || Min. 0 0 0 0 0 0
Max. || 4.298884 | 0.824424 | 4.208884 | 4.964331 | 5.110277 | 4.964331
Avg. 0.802350 2.657095 0.802350 0.802350 0.802350 0.802350 ||
R Conf 4 Min. 0 0.308027 0 0 0 0
The number of states generated in each case, and the numhber Max. || 2831750 | 14249711 | 2.831750 | 2831750 | 2.831750 | 2.831750
. ' . Avg. 3043038 | 4621490 | 3.043938 | 2534003 | 2.934190 | 2.534003
of the em p|oyed feature functions, are summarized in Table Confs5 || Min. 0095017 | 0.082142 | 0.095917 | 0.085206 | 0.086738 | 0.085206
! Max. || 8457638 | 14.164897 | 8.457638 | 6.956313 | 7.461679 | 6.956313
i _ AVg. 2.783108 | 1./51215 | 2783108 | 0088980 | 1.051021 | 0.988989 ||
Expe”memal I’eSU|.tS and assgssmenT'o assess the per Conf6 || Min. 0.099751 | 0.000172 | 0.099751 | 0.000172 | 0.000172 | 0.000172
formance of the considered architecture in each case, we com Max. || 8869749 | 5477620 | B8Gorso | 4231201 | 4536971 | 4231201

puted the throughput* resulting from the optimal policy, and
also the throughput that would be attained by the randomized
policy defined by the approximating relative value functio
B(z‘,r*), according to the logic outlined in Section IIl. More
specifically, the throughput of the randomized policy was *®
computed while increasing the valdefrom O to 0.020 by
0.001, and the valuer from 0.80 to 0.99 by 0.01. We define
the % error for this policy by

Optimal TH — T H by rand. policy o

100.
Optimal TH

(31)
We also compared the % error attained by the proposed archi-
tecture to the % error generated by some known heuristits tha
have been shown to perform well in the case of uncapacitated
re-entrant lines, namely, theast Buffer First Serve (LBFS),
First Buffer First Serve (FBFS), First In First Out (FIFQ) °
and Least Work Next Queue (LWNQplicies. Tables VI
and VII summarize the obtained results. More specifically,
Table VI lists the average, minimum and maximum % errors *
of throughput obtained by using the aforementioned heacsist
on each of the six CRL configurations, while Table VII reports
the results characterizing the performance of the randsuiniz
policy obtained through the method of Section Ill. Columns 2
and 3 in Table VII report the values of the parameteérsu()
that resulted in the best performance for the generatedypoli
Column 4 reports the average of thg-norm approximation
errors characterizing the goodness-of-fit for each of the 30
problem instances generated for each configuration. Caumn
5, 6 and 7 show respectively the average, minimum, and
maximum % errors achieved by the proposed approximating
method when using the feature spdedetailed above. Finally,
Column 8 provides a measure of the “non-greediness” of the
derived policy, by reporting the extra number of control@us
included inU (i), averaged over all statés

%error =

e proposed approximating method, can be summarized as
ollows:

Overall, the throughput errors generated by the proposed
approach are rather small.

Furthermore, the randomized policy derived with the
selected valuesi( w), has lower average % errors than
the errors attained by the considered heuristics. In fact, i
was found that this dominance is quite robust with respect
to the exact values aof, w. A sensitivity analysis of the
randomized policy with respect to the parameter vector
(6, w) indicated that the value af should be kept very
close to one, whil& should maintain low values, maybe

in the range of [0, 0.01].

Even more importantly, the randomized policy is more
consistent in its performance than the considered heuris-
tics, as manifested by the reported maximum % errors.
It is also interesting to notice that for the case of Con-
figuration 1, the reported throughput error is non-zero,
even though the employed architecture supports perfect
goodness-of-fit. This results from the randomizing nature
of the derived policy.

The reported non-zero value far* for the cases of
Configurations 2, 4 and 5, when combined with the data
of Table V, imply that the rank of the feature matix
must be quite small, i.e., there must be considerable linear
dependency among the employed features. We believe
that this problem will be alleviated for CRL's with larger
buffering capacities, since in that case there will be more
differentiation among the values of the various simple
features.

C. Consideration of Scalability

Some interesting remarks regarding the results of this nu-The experiment reported in Section IV-B employed quite
merical experiment and their implications for the qualify osmall system configurations, in an effort to maintain compu-
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TABLE VI
PERFORMANCE OF THE RANDOMIZED POLICY GENERATED BY THE PROP@E® ARCHITECTURE USING®

Config. B w Avg. e Avg. Min. Max. Avg. # of additional ||
% error % error % error controls per state
Conf 1 0.000 0.99 0 0.093051 0.016866 0.173766 0
Conf 2 0.001 0.98 0.934340 0.820087 0.003095 4.886354 0.079524
Conf 3 0.011 0.99 1.578569 0.714999 0.000104 3.523133 0.634667
Conf 4 0.004 0.99 0.828601 0.525297 0.065391 1.908183 0.025490
Conf 5 0.004 0.99 1.977419 0.723601 0.003318 2.617387 0.144638
Conf 6 0.007 0.99 2.917650 0.727640 0.000625 3.502581 0.303182
TABLE VI
CONSIDERED SYSTEM CONFIGURATIONS FOR THE SCALABILITY TEST
Config. number of number of job stages (JS) buffering
workstations and job routes capacities
Conf 7 2 3ISW, — Wg — W1) (B1, B2)=(10,10)
Conf 8 3 HSW — Wy — W3 — Wy) (B1, Ba, B3)=(556)
Conf 9 4 7TISW1 — Wo — Wy
— W, — Wy — W3 — Wy) | (B, By, B3, B4)=(321,2)
TABLE IX

tational tractability. In this section, we report some giddial
experiments indicating that the previously found resuditain
also to larger system configurations, where the number of the

THE NUMBER OF STATES AND FEATURE FUNCTIONS IN THE CONSIDERED
SYSTEM CONFIGURATIONS FOR THE SCALABILITY TEST

system states is significantly greater than the number of the OGO e O s
employed feature functions. e ——— =
Design of a numerical experiment for larger-sized conts 1121088 Sl

systems We can generate larger-sized re-entrant lines by
increasing the number of workstations, the number of job
stages, or the buffering capacity. However, these elements — —

also increase drastically the number of the system states, > > ™ w
to the extent that the solution of the MP formulations of w ve
Equations 14 — 17, Equations 25 — 26, and Equations 29 ™ - =E
— 30, that are employed in this work for implementing the ’_—l L

proposed approximating scheme, becomes very cumbersome.
Our intention in this experiment is to generate large system o _ _ .
that we can still handle, in the sense that the MP formulatioﬁ'g' 3. A re-entrant line with 4 single-server workstatiar 7 job stages
of Equations 14 — 17, Equations 25 — 26, and Equations 29
— 30 can be solved in reasonable time. Hence, we conside
two types of “large-sized” re-entrant lines, the first geed

. X . . . rates.
by increasing the buffering capacity of the re-entrantdine

. . . A numerical experiment for Configurations 7 and 8
pnocr;zfsg:]ed trI:a :ercT:]ttl)oer: (lj}/-Bc,)rligtit't:r?s Zi?jonodb gi;@egzd lI’Xbles X and Xl report respectively the results charadtegiz
I N9 u w Al 19 ——~ _the performance of the randomized policy obtained throbgh t
first type of the proposed expansion has the interestingteff ethod in Section Il and the performance of some heuristics

that it generates a large number of states while maintaini\rll\ﬁ;1en applied on Configurations 7 and 8. These results are

a small number of feature functions, and therefore, it aEtIOV\(/:onsistent with the ones obtained in the previous subsectio

us to test the data-cgmpressmg capability of the considler r smaller-sized re-entrant lines, in the sense that time ra
set ® of feature functions. The second type of the propos

fﬁ)dlo problem instances with randomly generated proogssi

Tables VIII and IX summarize the considered conﬁguratlo_nsarameter vectors( w). From a more qualitative standpoint,
and quote the number of states and the feature functi

enerated by the approximating procedure. Confi rat'onsﬂéy indicate that the considered debf feature functions has
9 y APproximating proceadure. gurations, good representational capability even for the case tleat th
and 8 are expansions of Configurations 3 and 6, resulti

. ; ) i~ R8mber of states is quite greater than the number of feature
];;Onl '?5(: r5e %‘Q;m?e:ug;rii/ne? C%poan?iui?atti?)nzg (iioél?')e-sst? anfunctions. Finally, notice that the average values of thiénugi
S N pectively. 9 . : : 5pproximation errore*, are increased compared to those in
line cqr_15|st|ng of 4 single-server workstations with buﬁg Section IV-B. This increase results from the fact that, even
capacmesB_ - (:.)”2’ .1’2)‘ and a process route_ of 7. JObthough the linear independency among the employed feature
stages, depicted in Figure 3. For all these Conf'gurat'onsfu%ctions is enhanced by increasing buffering capacities
numerical experiment was performed by using (i) the ®et :

of feature functions including up to 2-order interactionsla number of states is increased significantly more, so that the
9 up rank of the feature matrix becomes quite smaller than

13 _ _ the number of states. Interestingly, this deteriorationthef
Increasing all these elements at the same time generates a buondpem d f-fit” of th lati | f . d

of states and makes the considered scheduling problem catiopatly ~900dness-of-fit” of the relative value function does noérse

intractable. to affect the performance of the resulting “greedy” pokcie
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TABLE X
PERFORMANCE OF THE RANDOMIZED POLICY GENERATED BY THE PROP@® ARCHITECTURE FORCONFIGURATIONS7 AND 8
Config. S w Avg. e Avg. Min. Max. Avg. # of additional ||
% error % error % error controls per state
Conf 7 0.000 0.99 12.353925 0.116272 0.000603 0.550340 0.000646
Conf 8 0.001 0.98 6.264441 0.074681 0.000395 0.183286 0.061409
TABLE XI
PERFORMANCE OF HEURISTICS FORCONFIGURATIONS7 AND 8
Config. % FBFS LBFS FIFO LWNQ- LWNQ- LWNQ-
error FBFS LBFS FIFO
Avg. 0.550538 1.053770 0.550538 0.537978 0.563585 0.537978
Conf 7 Min. 0 0 0 0 0 0
Max. 2.823672 7.421845 2.823672 2.753983 2.978492 2.753983
Avg. 0.546995 0.232962 0.546995 0.148092 0.191303 0.148092 ||
Conf 8 Min. 0.000130 0.000780 0.000130 0 0 0
Max. 2.755537 0.946889 2.755537 0.705782 0.948396 0.705782
TABLE Xl
PERFORMANCE OF THE RANDOMIZED POLICY GENERATED BY THE PROP@® ARCHITECTURE WITHw = 0.99FOR CONFIGURATION 9
Config. s Avg. e* Avg. Min. Max. Avg. # of additional I
% error % error % error controls per state
Conf 9 0.001 13.823142 3.549228 0.197071 7.473375 0.021690
TABLE XIlI
PERFORMANCE OF HEURISTICS FORCONFIGURATION 9
Config. % FBFS LBFS FIFO LWNQ- LWNQ- LWNQ-
error FBFS LBFS FIFO
Avg. 5.066853 4.306452 6.470393 4.050331 3.642792 4.114147
Conf 9 Min. 0.946650 0.102316 0.684539 0.325586 0.079637 0.325977
Max. 8.143624 11.560304 9.472767 8.691876 9.024313 8.699038
TABLE XIV

represented by the products of three simple features. Hfeer
omission of some generated feature functions that areiant
to one of the feature functions i, the resulting feature sét

’
THE NUMBER OF STATES AND FEATURE FUNCTIONS INP FOR THE
CONSIDERED REENTRANT LINES

comar [ emberst ) mmberer consists of\/ (36 M2 — 78 M +6L+60)+M L(108M +108L —
Cont 1 ) o 216)+ L(36L%—138L+130)— 15 feature functions, organized
Con s 215 in 455 classes. In the provided formuld, denotes the number
Conf s 20 5623 of job stages and. denotes the number of workstations.

As in Section IV-B, a linearly parameterized approximation
function was established using these feature functiond, an
A numerical experiment for Configuration 9 Tables XII the quality of the approximations provided by the resulting
and XllI summarize the experimental results obtained witrchitecture was evaluated through the following numerica
respect to Configuration 9. Due to the very long computationexperiment.
times involved in this particular experiment, we generaiely Experimental Results and Assessmerftor this numerical
4 problem instances with randomly selected processing ratxperiment, we used the same configurations and the same
and we fixed the value of parameterto w = 0.99,2* in order processing rates for each generated problem instanceyénat
to characterize the performance of the considered randmmizised in Section IV-B for the evaluation of the feature et
policy. Clearly, the obtained results are consistent whise The number of the generated feature functions is summarized
obtained for Configurations 7 and 8, in the sense that theTable XIV. As in Section IV-B, the actual number of classes
randomized policy has lower average and maximum % errassreduced to 364 by the fact that feature classes SF2 and
compared to those attained by the considered heuristics. SF5 are the same and therefore, only one of them should be
considered; collectively, they incIudel6<5(125M2 — 306M +
D. Investigating the impact of adding higher-order interac283)+ 24 (450M +540L — 1014) + L(36L* — 138L +130) —
tions in ® on the performance of the employed approximatingp feature functions. The evaluation of the approximating
scheme capability of the new architecture was performed according
Extending the Feature Space® by including up to 3- to the logic described in_ Sectio_n I, while considering the
order Interactions This subsection investigates the impact@me values ofd( w) as in Section IV-B, and the obtained
of adding 3-order interactions i® on the performance of results are presented in Table XV. Some interesting remarks

the employed approximating scheme. A new extendedbset regarding these results can be summarized as follows:

of feature functions considering up to 3-order interaction . The performance achieved by using the new &etof
was generated by adding to the sktcomposite features feature functions was improved, as indicated by the lower
14 _ _ _ _ average values of*, % errors, and maximum % errors,
'We remind the reader that in the previous experimental resthits

considered randomized policy has better performance whevalhe ofw is compared t‘? those attained bY the get
kept very close to one. « In fact, apaired t-test[24] applied on the relevant data,



TABLE XV
PERFORMANCE OF THE RANDOMIZED POLICY GENERATED BY THE PROP@® ARCHITECTURE USING®’
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Config. B w Avg. e Avg. Min. Max. Avg. # of additional ||
% error % error % error controls per state

Conf 1 0.000 0.99 0 0.093051 0.016866 0.173766 0

Conf 2 0.000 0.99 0 0.067502 0.000828 0.215701 0.412857

Conf 3 0.000 0.98 0.623345 0.420034 0.000305 3.184219 0.042424

Conf 4 0.000 0.99 0 0.046410 0.001023 0.193298 0

Conf 5 0.002 0.99 0.450591 0.236877 0.005249 0.692937 0.130290

Conf 6 0.003 0.99 1.096907 0.491644 0.002053 3.402330 0.156256

indicated that this performance improvement is significans] L. M. Wein, “Scheduling semiconductor wafer fabricatiotEEE Trans.

with a confidence level higher than 99.95%9%.

o The performance of the considered randomized polic§/6]
remains more consistent compared to the performangg

demonstrated by the applied heuristics.

« The above results are quite robust with respect to the

exact values ob andw.

(8]

« The inclusion of higher-order interactions introduces new
linearly independent feature functions, a fact manifesteg,]

by the smaller average values &fin all configurations.

V. CONCLUSIONS

(10]

This paper proposed an NDP-based approximating archji;
tecture for the relative value function underlying the CT-

MDP formulation of the capacitated re-entrant line schiedul
problem, and assessed its performance through a numerlt3l

experiment. The derived results indicate that the proposed
feature space and the induced approximating architectlce hl13]
considerable promise for providing a compact represemtati, ,
of the target function. Our future work intends to further

validate this assumption and promote the further developméls]
of the proposed approximation framework, by systematicall

investigating the following research topics: (i) the deyghent [16]

of a weight tuning algorithm that is computationally trdsta

for large-scale CRL configurations, (ii) the investigatiof

[17]

the quality of the approximations obtained through the em-

ployment of distance metrics other than fhg-norm, (iii) the

statistical assessment of thiginificanceof the various feature (19
functions for the performance of the resulting approxiomati

(18]

and (iv) the extension of the developed results to prodocti€?Ol

systems more general than the CRL.
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