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Abstract— The basic definition of the re-entrant line, which

constitutes the typical abstraction for the formal modelling and

analysis of the fab scheduling problem, considers only the job

contest for the finite processing capacity of the system worksta-

tions, ignoring completely the effects and complications arising

from additional operational issues like the finite buffering capac-

ity of the system workstations / production units. Yet, as the

semiconductor industry moves to more extensively automated

operational modes, the explicit characterization and control of

these additional operational features is of paramount importance

for the robust and stable operation of the entire system. More-

over, the operational policies developed to control these logical

aspects of the system behavior introduce additional constraints

to the fab scheduling problem, that complicate it even further

and, more importantly, invalidate prior characterizations of its

optimal solutions. Motivated by these remarks, the work pre-

sented in this paper develops a novel analytical framework for

the modelling, analysis and control of capacitated, flexibly auto-

mated re-entrant lines, based on the class of Generalized Stochas-

tic Petri nets (GSPN’s). The proposed framework (i) allows

the seamless integration of the logical/structural and the timed-

based aspects of the system behavior, (ii) provides an analytical

formulation for the underlying scheduling problem, and (iii) leads

to an interesting qualitative characterization of the structure of

the optimal scheduling policy. Hence, it provides the analytical

basis for addressing the re-entrant line scheduling problem in its

contemporary, more complex operational context, and it consti-

tutes the starting point for the development of new scheduling

tools and policies for it.
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I. Introduction

Currently, the re-entrant (production) line is the most typi-
cal abstraction for the formal modelling and analysis of the fab
scheduling problem. In its basic characterization [1], such a line
supports the production of a single item through m worksta-
tions, W1, W2, . . . , Wm. Each workstation Wi, i = 1, . . . , m,
possesses Si identical servers, and the production of each unit
occurs in n stages, J1, J2, . . . , Jn, with stage Jj , j = 1 . . . , n,
being supported by one of the system workstations, to be de-
noted by W (Jj). The re-entrant nature of the line is expressed
by the fact that there exists at least one workstation Wk such
that |{j : W (Jj) = Wk}| ≥ 2, and raises the problem of de-
termining how to allocate the workstation processing capacity
to the job stages competing for it, in order to optimize some
pre-specified performance objective(s).1 The resulting schedul-
ing problem has been investigated extensively in the last decade,
and many of the developed results are analytically strong and of
high mathematical sophistication. A representative and insight-
ful exposition of these results is provided in the recent survey
paper of [2].

Yet, as it is evident from the above description, the basic
re-entrant line model considers that each workstation possesses
infinite buffering capacity, a feature that in the past has been
justified by the presence of the human operator in the fab shop-
floor, that handily addressed any potential overflow problems.
Currently, the migration of modern fabs to highly automated
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modes of operation, through the advent of 300mm production
technology, necessitates the development of explicit real-time
control logic that will establish the logically correct and con-
sistent operation of the fab shop-floor, including the orderly
allocation of limited resources like the buffering capacity of the
system workstations and the interconnecting material handling
equipment. The corresponding set of real-time control prob-
lems is collectively known as the fab logical or structural con-
trol problem, and it is treated in [3]. As it is argued in [3], the
explicit modelling of these additional operational aspects and
the control policies developed to address the fab logical control
problem, introduce additional constraints to the complemen-
tary performance control problem, which, therefore, must be
re-investigated in this new operational context. Indeed, a pre-
liminary study on the problem of scheduling structurally con-
trolled re-entrant lines has indicated that the introduction of
the finite buffering capacity and the corresponding structural
control logic into the fab operational model, leads to additional
material flow dynamics, that negate in a strong qualitative sense
prior analytical results, obtained through the study of the basic
re-entrant line model outlined above [4].

Motivated from the above remarks, the work presented in this
paper proposes a novel formal framework for analysis and con-
trol of the re-entrant line modelling the emerging flexibly auto-
mated fab, based on the broader class of Generalized Stochastic
Petri nets (GSPN) [5], [6]. More specifically, first it is shown
that the GSPN modelling framework provides a systematic in-
tegrated representation of the timed and the logical/behavioral
dynamics of the structurally controlled, capacitated re-entrant
line, which when analyzed through standard GSPN performance
evaluation techniques, leads to an analytical characterization of
the underlying scheduling problem, in the form of a Mathe-
matical Programming (MP) formulation. This formulation is
subsequently shown to be exactly solvable through enumerative
techniques for a variety of (steady-state) performance objec-
tives, thanks to some important properties of the structure of
the optimal scheduling policy. Finally, the application of the de-
veloped results to the detailed analysis of a small capacitated re-
entrant line exemplifies the presented theory, but more impor-
tantly, it reveals the fundamental structural difference between
the optimal scheduling policies for capacitated and uncapaci-
tated re-entrant lines, even in the more stochastic operational
context presumed by the GSPN modelling framework, and con-
curs the results presented in [4], which were developed under a
more deterministic set of assumptions regarding the timing of
the system operations.

Due to space limitations, the subsequent development as-
sumes that the reader is familiar with the GSPN modelling
framework and the relevant theory. An excellent introduction
to it can be found in [5], [6]. Also, it is noted, for complete-
ness, that an extensive coverage of the use of the broader class
of timed PN models for manufacturing system modelling and
analysis until the middle 1990’s, can be found in [7], [8], while
some more recent applications of the timed PN theory to the
modeling and performance evaluation of manufacturing – in-
cluding semiconductor – systems are the works presented in [9],
[10] and [11].

Finally, before proceeding with the detailed presentation of
the paper results, we want to emphasize that the nature of the
intended contribution is rather qualitative, i.e., providing de-
tailed analytical characterizations of the capacitated re-entrant
line scheduling problem, the structure of the optimal solution,
and its differentiation from past results on uncapacitated re-
entrant lines. As it is demonstrated by the presented example,
the implementation of the proposed methodology to actual fab
environments will be severely limited by the very high (super-
polynomial) complexity of the approach. Yet, the presented
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characterizations are intended to provide the analytical insights
and benchmarking cases2 for any effort towards the eventual
development of pertinent approximations to the underlying op-
timization problem. In fact, the development of such pertinent
approximations to the scheduling problem of the structurally
controlled fab, is part of our current investigations.

II. The capacitated re-entrant line and its GSPN
model

The capacitated re-entrant line considered in this work refines
the basic re-entrant line model, presented in the introductory
section, through the explicit modeling of (i) the workstation
buffering capacity and its internal material flow, and (ii) the
interconnecting material handling system. More specifically, it
is assumed that each workstation Wi, i = 1, . . . , m, consists of
Ci buffer slots and Si identical servers. Each part visiting the
workstation for the execution of some processing stage is allo-
cated one unit of buffering capacity, which it holds exclusively
during its entire sojourn in the station. Once in the station lo-
cal buffer, the part competes for one of the station servers for
the execution of the requested stage. Under the current model
definition, it can be assumed either that the part is mounted
into the server for its processing and then it is returned to its
designated slot, or that the server processes the part by visiting
the corresponding buffer. A part having finished the processing
of its current stage at a certain station, waits in its allocated
buffer for transfer to the next requested station. This transfer
is facilitated by the central (automated) material handling sys-
tem, and it is authorized by a supervisory control policy ensur-
ing that (i) the destination workstation has available buffering
capacity, and (ii) the transfer is safe, i.e., it is still physically
possible from the resulting state to process all running jobs to
completion. In the subsequent analysis, the central material
handling system can be considered to be either a centrally lo-
cated robotic manipulator, or a single-loop AGV system; in the
former case, the re-entrant line is the modeling abstraction for
what is known as a cluster tool, while in the latter case, the
resulting model represents the dynamics of a modern fab bay,
where the various process tools possess a local stocker of limited
buffering capacity.

Following the typical practice, the main scheduling objective
considered in the undertaken analysis is the maximization of the
long-run system throughput, and therefore, it is assumed that
there exists an infinite amount of raw material waiting for pro-
cessing at the line’s Input/Output (I/O) station. Furthermore,
in order to facilitate the GSPN-based modeling and analysis, it
is also assumed that all stage processing and transfer times are
exponentially distributed. In particular, the processing time of
stage Jj , j = 1 . . . , n, is assumed to follow an exponential distri-
bution with finite non-zero mean mj = 1/µj , while job transfer
times are assumed to be exponentially distributed with a mean
d = 1/λ, that applies uniformly across all the transferring oper-
ations. This presumed uniformity of the mean transfer times is
introduced in order to simplify the computations involved in the
presented example, and it also allows the analytical investiga-
tion of the limiting case where the transfer times are negligible
with respect to the processing times involved, by taking λ →∞
in the derived expressions. Finally, we notice that the rather un-
realistic assumption of exponentially distributed processing and
transfer times can be eventually relaxed in the resulting GSPN
model, by substituting each timed transition in that net with a
GSPN subnet, modeling a phase-type distribution that approxi-
mates, to any desired degree of accuracy, the original/empirical
distribution of the corresponding event timing. We refer the

2thanks to the exact solvability of the presented formulation for small system

configurations
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J :  W1 -> W2 -> W1

Fig. 1. Example: The capacitated re-entrant line
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Fig. 2. Example: The GSPN model

reader to [12] for a detailed treatment of phase-type distribu-
tions and the relevant approximation theory.

Example: The above general description of the capacitated
re-entrant line is exemplified by the small system presented in
Figure 1. The depicted configuration possesses two stations,
W1 and W2, with S1 = S2 = 1 and C1 = 1; C2 = 2. Further-
more, the supported production sequence is J =< J1, J2, J3 >,
with W (J1) = W (J3) = W1 and W (J2) = W2. Finally,
stage processing times are exponentially distributed with means
mj = 1/µj > 0, j = 1, 2, 3, and so are the involved transfer
times, with a uniform mean d = 1/λ. For this small configura-
tion, it is easy to see that, under the operational assumptions
outlined above, the system material flow will remain deadlock-
free, as long as

|J1|+ |J2| ≤ C1 + C2 − 1 = 2 (1)

where |Jj |, j = 1, 2, 3 denotes the number of job instances in
W (Jj) executing stage Jj . 2

The GSPN modeling the behavior of the capacitated re-
entrant line of Figure 1, under the control of the maximally
permissive structural control policy (SCP) of Equation 1, is
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depicted in Figure 2. Specifically, in the GSPN of Figure 2,
the part flow dynamics associated with each processing stage
Jj , j = 1, 2, 3, are modeled by the corresponding net path
< Tja, Pjt, Tjt, Pji, Tjl, Pjp, Tjp, Pjo, Tjd >, while it also holds
Tjd ≡ Tj+1,a, with j = 4 denoting the last unloading step. A
token in place Pjt represents a part in transit to the buffer of
workstation W (Jj); a token in place Pji represents a part in
the buffer of W (Jj) waiting the allocation of one of the buffer
servers; a token in place Pjp represents a part in processing of
stage Jj ; finally, a token in place Pjo represents a part having
finished processing of stage Jj , and waiting for transfer to the
next requested workstation or, in case that Jj is the last pro-
cessing stage, to the I/O station. On the other hand, places
PMH , PSi , PCi , i = 1, 2, and PSCP model respectively the
availability of the system transporter, workstation servers and
buffers, and the logic of the applied SCP, according to the stan-
dard, by now, modeling practice of resource-process nets [13]. It
is important to notice that transitions Tja, Tjl and Tjd, that are
associated with the various decisions regarding the allocation of
the system buffering, processing and/or transport capacity, are
untimed / immediate transitions, while the delays experienced
from the processing and/or transfer times involved with the ex-
ecution of these decisions, are modeled by the timed transitions
Tjt and Tjp. As mentioned above, this separation of the net
components modeling the timings of the various system events
from the net structure modeling the underlying resource alloca-
tion and the associated decision making, enables the modeling of
timing distributions other than exponential through the (local)
substitution of the corresponding timed transitions by GSPN
subnets modeling the approximating phase-type distributions.
It also allows, as it is shown below, the modeling of the required
scheduling logic through a set of dynamic random switches , that
resolve the conflicts among the immediate transitions that are
simultaneously enabled at the net reachable vanishing markings.
Finally, some explanation is necessary about the role of places
Pidle, Pevent and their associated transitions Tidle, Treturn and
Tcon. This subnet essentially establishes a GSPN-compatible
mechanism for representing some deliberate idleness in the un-
derlying scheduling logic, since, in the considered operational
context, the optimal scheduling policy is not necessarily non-
idling. Hence, the triggering of transition Tidle consumes the
transporter-modeling token, which remains in place Pidle, until
the immediate transition Treturn is enabled through the pres-
ence of a token in place Pevent. Pevent is marked every time that
one of the system timed transitions fires, signaling the comple-
tion of some event. Notice that Treturn will always be in conflict
with transition Tcon, but it is assumed to have priority over the
latter, which is technically imposed by setting the corresponding
(static) random switch to {ξTreturn = 1, ξTcon = 0}. Finally,
Tcon is a sink transition that “consumes” event completion sig-
naling tokens, in case that the transporter is not (deliberately)
idling.

III. GSPN-based performance evaluation and the
capacitated re-entrant line scheduling problem

According to the general GSPN theory [6], the marking pro-
cess of a GSPN net, N , is a semi-Markov process with a discrete
state space, S, given by the net reachability space R(N, M0). S
is partitioned to vanishing states / markings, V, which enable
at least one immediate transition of N , and therefore, they have
zero sojourn time, and tangible markings, T , which enable only
timed transitions, and therefore, they present positive sojourn
times. Furthermore, the untimed system dynamics, defined by
its transitional patterns among the various states of its reach-
able state space, are characterized by the, so called, Embedded
Markov Chain (EMC), whose branching probabilities, Q = [qkl]
are determined by the specified (dynamic) random switches , in

case of vanishing markings, and the enabled event exponential
race, in case of tangible markings. If this EMC is finite-state,
homogeneous, and irreducible, it possesses a steady-state dis-
tribution y = [yk], determined through the following system of
equations:

y = yQ ;
∑
sk∈S

yk = 1 (2)

Furthermore, the steady-state probabilities, π = [πk], for the
underlying continuous-time stochastic process, are obtained
through the following formula:

πk =

{
0, sk ∈ V
ykE[sk]/

∑
sl∈T ylE[sl] sk ∈ T (3)

In Equation 3, E[sk] denotes the expected sojourn time for tan-
gible marking sk ∈ T , and it is computed by:

E[sk] = 1 /
∑

Tj enabled in sk

rj (4)

where rj denotes the (firing) rate of (timed) transition Tj . Once
the steady-state probability vector π has been obtained, various
performance measures of interest can be defined as appropriate
functions of π and the other system parameters.

In the case of GSPN’s modelling the behavior of capacitated
re-entrant lines, the underlying EMC is finite-state and homo-
geneous, but it might contain absorbing states due to the pres-
ence of transition Tidle. Specifically, if Tidle fires while no other
event is in process, the token representing the system trans-
porter will be permanently stuck in place Pidle. This problem
can be addressed by disabling these problematic firings of Tidle

through appropriate setting of the corresponding dynamic ran-
dom switches. The resulting modified EMC has the property
that from every pair of states si and sj in it, there exists a de-
terministic scheduling policy that renders sj accessible from si.

3

This property subsequently guarantees the existence of an opti-
mal pricing of the random switching probabilities, ξl, appearing
in the modified EMC, that leads to a controlled system behav-
ior that is modelled by a unichain Markov chain, i.e., a Markov
chain consisting of a single communicating class and possibly a
set of transient states (c.f. [14], Section 8.3); in the following, the
scheduling policies resulting from such pricings will be referred
to as unichain policies, and their set will be denoted by UP .
Constraining the search for an optimal scheduling policy in set
UP , and letting Q(ξ) denote the transition probability matrix
(TPM) of the aforementioned modified EMC, resulting from the
removal of all the absorbing states, we obtain the following MP
formulation for the problem of throughput maximization for a
capacitated re-entrant line:

max
ξ∈UP

TH(ξ) ≡
∑
(k,j)

πkrjI {Transition Tj enabled in sk

∧ cor. to an unloading event}
(5)

s.t.

∀l, ξl ≥ 0.0 (6)

∀ random switch Ξu,
∑

l:ξl∈Ξu

ξl = 1.0 (7)

and

Equations 2 and 3

applied over the modified EMC.

3This is the effect - in fact, the objective - of the applied structural control

policy.
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TABLE I

Example:The EMC markings

sk P1tP1iP1pP1o P2tP2iP2pP2o P3tP3iP3pP3oP4t PMH PidlePevent PS1
PS2

PC1
PC2

PSCP
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 2 2
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 2 2
3 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 2 1
4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 2 1
5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 2 1
6 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 2 1
7 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 2 1
8 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
9 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1
10 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 1 1
11 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 1 1
12 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0
13 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1
14 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 1 1
15 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 1 1 1
16 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 2 2
17 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0
18 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 0 2 2
19 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 2 2
20 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 2 2
21 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 2 2
22 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 2 2
23 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 2 2
24 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 2 2
25 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0
26 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 0
27 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0
28 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 1 0
29 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 0
30 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0
31 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0
32 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0
33 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 1 0
34 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 1 0
35 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0
36 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0
37 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 1 1 1 0 0
38 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 1 0 0
39 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 1 1 1 1 0 0
40 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 1 1 1 0 0
41 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 1 1 1 0 0
42 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 1 1
43 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 1 0 1 1
44 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 1
45 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1
46 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 1
47 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 0 1 1
48 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 1 1
49 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 1 1 1
50 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0
51 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0
52 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0
53 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0
54 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0
55 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0
56 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 1 1 0 0
57 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 1 0 0
58 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 1
59 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1
60 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 0 0 1 1
61 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1
62 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 1 1
63 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 1 0 0 1 1
64 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 1
65 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 1
66 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 1 1
67 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1
68 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 1 1
69 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 1
70 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 1 1 1 1

Example The EMC for the GSPN of Figure 2 is presented in
Figure 3, while the net markings corresponding to the various
states depicted in Figure 3 are listed in Table I. In Figure 3,
states corresponding to vanishing markings are depicted by sin-
gle circles, while states corresponding to tangible markings are
depicted by double circles. Furthermore, the part of the chain
depicted in dashed lines should be inaccessible under opera-
tion by any optimal scheduling policy, either because it leads
to dead/absorbing states (c.f. the relevant discussion above),
or because the transitions branching to that part of the chain
essentially introduce some unnecessary delay in the system op-
eration, by deliberately idling the server. As a more concrete
example of the latter case, consider state s30 in Figure 3, which,
according to Table I, corresponds to a state where a job, j1, in
workstation W1, having finished processing of stage J1 requests
transfer to workstation W2, that currently contains only an-
other job, j2, in processing of its second stage. Moreover, the
system transporter is available, and it is easy to check that the
requested transfer is physically feasible and admissible by the
applied SCP. Under these circumstances, deliberately idling the
transporter, by firing transition Tidle, will definitely be a subop-
timal decision, since the only way that the system can progress
once job j2 has completed the execution of its current stage, is
by eventually executing the postponed transfer of job j1 to W2,
and the overall operation of the system will have been slowed
down by the corresponding unnecessary delay. The remaining
modified EMC, depicted with solid lines in Figure 3, contains
only two random switches of two options each, which combined

with Equation 7, leaves us with two decision variables ξ1 and ξ2.
Finally, the reader can verify that any pricing (ξ1, ξ2) ∈ [0, 1]2

leads to unichain behavior for the controlled system. 2

IV. Obtaining an optimal scheduling policy

The solution of the MP formulation defined by Equa-
tions 2, 3, 5, 6 and 7 is a challenging problem because of (i)
the non-linearity arising in Equations 2 and 3, and (ii) the ad-
ditional requirement that ξ ∈ UP , which is necessary for the ex-
istence of the steady-state distribution implied by Equations 2
and 3. However, in this section, we establish that the considered
formulation will always have an optimal solution which prices
all primary decision variables, ξl, at one of their extreme values,
0 or 1, and therefore, it can be solved through enumerative tech-
niques. From a modelling standpoint, such an optimal solution
defines a deterministic scheduling policy. We notice that this
finding is consistent with a more general result on the optimal-
ity of deterministic scheduling policies provided by the theory
of Markovian Decision Processes [14]; our work provides a spe-
cialization and a complete alternative derivation for it in the
GSPN modelling framework. We proceed to this development
through a series of lemmata.

Lemma 1: The optimization problem defined by Equa-
tions 2, 3, 5, 6 and 7 can be transformed to an equivalent opti-
mization problem of the form:

max
ξ∈UP

TH(ξ) =
N(ξ)

D(ξ)
(8)
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Fig. 3. Example: The Embedded Markov Chain (EMC)

s.t.
Equations (6) and (7)

where functions N(ξ) and D(ξ) are multi-linear4 in ξ. Further-
more, D(ξ) 6= 0, ∀ξ ∈ UP satisfying Equations 6 and 7.

Proof: Notice that, according to Equation 2, the variable
vector y, denoting the steady state probabilities of the net mod-
ified EMC, satisfies the linear system of equations:

[
Q

T
(ξ)

1T

]
y =

[
0
1

]
(9)

where 1 and 0 denote column vectors with all their elements
equal to 1 and 0, respectively. Furthermore, the dynamic nature
of random switches, assumed in this work, implies that each

variable ξl appears in matrix Q
T
(ξ) only once, namely in the

column corresponding to the associated vanishing marking m.
To facilitate the subsequent discussion, let us rewrite Equation 9
as

Hy = b (10)

The ergodic nature of the modified EMC defined by the con-
sidered values of the variable vector ξ, implies that the linear
system of Equation 10 has a unique solution, obtained by Cram-
mer’s rule [15]:

∀mk ∈ R(N , M0), yk(ξ) =
det(Hk(ξ))

det(H(ξ))
(11)

where matrix Hk(ξ) is obtained from matrix H(ξ) by replacing
its k-th column by vector b. Furthermore, the fact that each
variable ξl appears in a single element of matrix H(ξ) implies
that ∀k, det(Hk(ξ)) is a multi-linear function in ξ. But then,
Equation 3 implies that for all mk ∈ RT (N , M0),

πk =
E[mk] det(Hk(ξ))∑

ml∈RT (N ,M0)
E[ml] det(Hl(ξ))

=
Nk(ξ)

D(ξ)
(12)

and Nk(ξ) and D(ξ) are multi-linear functions in ξ. The main
result of Lemma 1 is obtained from Equation 12, by notic-
ing that, according to Equation 5, TH(ξ) is defined as the
weighted sum of an appropriately selected set of πk. The fact
that D(ξ) 6= 0 over the considered feasible region, is established

4i.e., first-degree polynomials with respect to each single variable ξl

by the requirement that ξ ∈ UP , since it implies the existence
of a limiting distribution for the continuous-time stochastic pro-
cess modelling the time-based behavior of the controlled system.
2

The next lemma establishes some additional structure for the
polynomial functions N(ξ) and D(ξ), which is invoked in the
proof of the theorem stating the main result of this section.

Lemma 2: In the multi-linear functions N(ξ) and D(ξ) de-
fined in Lemma 1, there are no products of variables ξl belong-
ing in the same random switch Ξu.

Proof: Remember that, according to the proof of Lemma 1,
all variables ξl belonging to a single random switch Ξu regu-
lating the transitions out of a vanishing marking m, appear in
the same column of matrix H(ξ). Then, the truth of Lemma 2
follows from the elementary definition of the det() operator [15],
and the definitions of functions N(ξ) and D(ξ) in the proof of
Lemma 1. 2

Theorem 1: The MP formulation of Equations 8, 6 and 7,
introduced in Lemma 1, will always have an optimal solution in
which the primary decision variables, ξl, are priced in the set
{0, 1}.

Proof: Without loss of generality, suppose that each random
switch Ξu has |Ξu| ≥ 2. Then, solving the corresponding con-
straint in Equation 7 for one of the involved decision variables,
to be denoted by ξi(u), and replacing ξi(u) in the objective func-
tion by the resulting expression, we can rewrite the formulation
of Equations 8, 6 and 7 in a reduced variable space, as follows:

max
ξ∈UP

TH(ξ) =
N̂(ξ)

D̂(ξ)
(13)

s.t.

∀ random switch Ξu, ∀l 6= i(u), ξl ≥ 0.0 (14)

∀ random switch Ξu,
∑

l6=i(u):ξl∈Ξu

ξl ≤ 1.0 (15)

Lemma 2 implies that the functions N̂(ξ) and D̂(ξ) remain
multi-linear polynomials in ξ. Then, the partial differentiation
of function TH(ξ) with respect to each variable ξl reveals that
the objective function defined by Equation 13 is monotone with
respect to every single variable ξl.

This monotonicity property of TH(ξ), combined with the fact
that for any ξ ∈ UP such that ∀l, ξl ∈ (0, 1), ∃δ > 0 such that
∀ unit radius r, ξ + δr ∈ UP , further imply that there exists an
optimal solution of the formulation defined by Equations 13, 14
and 15 that lies on the boundary of its feasible region. Hence,
any such optimal solution ξ∗ ∈ UP must bind at least one of the
Constraints 14 and 15, for each random switch Ξu. Therefore,
∀ Ξu, either ∃ l 6= i(u) : ξl = 0 (if one of the equations defined
by Constraint 14 is bounded), or ξu(i) = 0 (i.e., Constraint 15 is
bounded). In order to price the remaining free variables ξl, (i)
we remove the variables priced to zero from the set of variables
engaged by the original formulation of Equations 8, 6 and 7, and
furthermore, (ii) we set equal to one all variables ξl that belong
to a random switch Ξu which constitutes a singleton (set) after
the variable elimination of Step (i). The resulting formulation
preserves the structure of the original one of Equations 8, 6
and 7, but it engages a reduced set of variables. Hence, the truth
of Theorem 1, is established by repetitively applying the entire
argument developed above on this reduced formulation and all
the subsequent formulations derived from it, while taking into
consideration the finiteness of the initial sets Ξu. 2

We notice that a solution of the type defined in Theorem 1,
corresponding to a deterministic scheduling policy for the un-
derlying GSPN, constitutes an extreme point [16] for the poly-
hedron defined by Equations 6 and 7. The next example demon-
strates how the result of Theorem 1 facilitates the computation
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TH(0,0)

TH(1,1)

TH(1,0)TH(0,1)

<

< <

<

Fig. 4. Example: Characterizing the dominance among the candidate

scheduling policies

of an optimal scheduling policy for any given instance from the
considered GSPN class, through an enumerative approach that
terminates in a finite number of steps.

Example Theorem 1 implies that an optimal scheduling pol-
icy for the modified EMC of Figure 3 can be obtained by (i)
computing, through Equations 2 – 5, the closed-form expres-
sions for TH(0, 0), TH(0, 1), TH(1, 0) and TH(1, 1), and (ii)
determining the parameter ranges over which each of these ex-
pressions dominates the others. Working according to this plan,
one can establish that the dominance relationships among these
four expressions are those depicted by the lattice of Figure 4. 2

The reader can verify that the optimal policy, defined by
(ξ1 = 1, ξ2 = 1), essentially implements the First-Buffer-First-
Serve (FBFS) [17] policy on the re-entrant line of Figure 1. On
the other hand, the Last-Buffer-First-Serve (LBFS) [17] policy
corresponds to the deterministic scheduling policy defined by
(ξ1 = 1, ξ2 = 0), and as it is shown in Figure 4, it is a subop-
timal policy. This result is drastically different from the situa-
tion applying to the original model of uncapacitated re-entrant
lines, where the LBFS policy has been shown to be optimal –
i.e., it maximizes the long-run system throughput – over all pos-
sible configurations [17]. Hence, this example and the overall
analysis pursued in this work corroborate the findings of the
work presented in [4], and establish the fundamental difference
between the structure of the optimal scheduling policies in ca-
pacitated and uncapacitated re-entrant lines, under a stochastic
operational regime which is broader than the deterministic case
considered in [4].

Concluding this section, we notice that the result of The-
orem 1, regarding the existence of a deterministic optimal
scheduling policy, can be immediately generalized to any other
MP formulation obtained from that of Equations 2, 3, 5, 6
and 7, by replacing Equation 5 by any other weighted sum of the
steady-state probabilities πk. Such an objective can be, for in-
stance, the minimization of the average Work-In-Process, WIP ,
of the re-entrant line under steady-state operation, defined by:

WIP =
∑

k

πk ·WIP (sk) (16)

where WIP (sk) denotes the number of parts loaded in the sys-
tem in state sk. In fact, the result of Theorem 1 applies also
to the objective of minimizing the job average sojourn time, τ ,
since (i) by Little’s law, this quantity can be expressed by

τ =
WIP

TH
(17)

and (ii) Equations 5 and 16 imply that, when expressed as frac-

tional functions of ξ, both quantities WIP and TH have the
same denominator D(ξ) defined in Equation 12.

V. Conclusions

The starting point for this work was the observation that the
increasing level of automation in modern semiconductor fabs

necessitates a more detailed modelling and analysis of their
real-time operations, while the super-imposition of the appro-
priate supervisory control logic invalidates the previous analyt-
ical studies regarding the performance modelling and control of
these environments. As a result, the presented work proposed
a novel modelling and analysis framework for these systems,
which is based on the formal tool of Generalized Stochastic
Petri net, and allows the seamless integration of the fab logical
and timed dynamics in a single representation. Furthermore,
the proposed framework supports the analytical representation
of the fab scheduling problem as a Mathematical Program-
ming formulation, which can be effectively solved to optimality
through enumerative techniques. The framework presentation
and its capabilities were elucidated by detailed application on a
small system configuration. However, a severe limitation of the
presented approach is that it requires the explicit enumeration
of the underlying state space, which explodes very fast. There-
fore, part of our future work seeks to develop novel approx-
imating schemes, based on the characterizations and insights
provided by this work, that will lead to (near-)optimal schedul-
ing policies for modern fabs, while maintaining computational
tractability.

Acknowledgment

This work was partially supported by NSF grant ECS-
9979693 and by The Logistics Institute Asia Pacific.

References

[1] P. R. Kumar, “Scheduling manufacturing systems of re-entrant lines,” in

Stochastic Modeling and Analysis of Manufacturing Systems, D. D. Yao, Ed.,

pp. 325–360. Springer-Verlag, 1994.

[2] S. Kumar and P. R. Kumar, “Queueing network models in the design and

analysis of semiconductor wafer fabs,” IEEE Trans. on R&A, vol. 17, pp.

548–561, 2001.

[3] J. Park, S. A. Reveliotis, D. Bodner, C. Zhou, J.-F. Wu, and L. McGinnis,

“High-fidelity rapid prototyping of 300mm fabs through discrete event sys-

tem modeling,” Computers in Industry : invited paper for the special issue

on MASM’2000, vol. 1528, pp. 1–20, 2001.

[4] S. A. Reveliotis, “The destabilizing effect of blocking due to finite buffer-

ing capacity in multi-class queueing networks,” IEEE Trans. on Autom.

Control, vol. 45, pp. 585–588, 2000.

[5] M. A. Marsan, G. Conte, and G. Balbo, “A class of generalized stochastic

petri nets for performance evaluation of multiprocessor systems,” ACM

Trans. Comput. Sys., vol. 2, pp. 93–122, 1984.

[6] M. A. Marsan, G. Balbo, and G. Conte, Performance Models of Multipro-

cessor Systems, The MIT Press, Cambridge, MA, 1986.

[7] N. Viswanadham and Y. Narahari, Performance Modeling of Automated

Manufacturing Systems, Prentice Hall, Englewood Cliffs, NJ, 1992.

[8] A. A. Desrochers and R. Y. Al-Jaar, Applications of Petri nets in Manufac-

turing Systems, IEEE Press, Piscataway, NJ, 1995.

[9] M. Zhou and M. Jeng, “Modeling, analysis, simulation, scheduling and

control of semiconductor manufacturing systems: A petri net approach,”

IEEE Trans. on Semiconductor Manufacturing, vol. 11, pp. 333–357, 1998.

[10] M. Jeng, X. Xie, and W.-Y. Hung, “Markovian timed petri nets for per-

formance analysis of semiconductor manufacturing systems,” IEEE Trans.

on Systems, Man and Cybernetics – Part B, vol. 30, pp. 757–771, 2000.

[11] W. M. Zuberek, “Timed petri nets in modeling and analysis of cluster

tools,” IEEE Trans. on Robotics and Automation, vol. 17, pp. 562–575,

2001.

[12] H. T. Papadopoulos, C. Heavy, and J. Browne, Queueing Theory in Man-

ufacturing Systems Analysis and Design, Chapman & Hall, New York, NY,

1993.

[13] Z. A. Banaszak and B. H. Krogh, “Deadlock avoidance in flexible manufac-

turing systems with concurrently competing process flows,” IEEE Trans.

on Robotics and Automation, vol. 6, pp. 724–734, 1990.

[14] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic

Programming, John Wiley & Sons, 1994.

[15] G. Strang, Linear Algebra and its Applications, 3rd. Ed., Harcourt College

Pub., 1988.
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