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Abstract—One of the most interesting developments from,
both, a theoretical and a practical perspective, in the emerg-
ing theory of resource allocation systems (RAS), is the char-
acterization of the non-liveness of many RAS classes through
the Petri net (PN)-based structural object of empty, or more
generally, deadly marked siphon. The work presented in
this paper seeks to develop a general theory that provides a
unifying framework for all the relevant existing results, and
reveals the key structures and mechanisms that connect the
RAS non-liveness to the concept of deadly marked – and
in certain cases, empty – siphon. In this capacity, the pre-
sented results allow also the extension of the siphon-based
characterization of non-liveness to broader RAS classes, and
provide a clear and intuitive explanation for the limitations
of the approach. The last part of the work discusses how the
derived structural characterization of RAS non-liveness can
be combined with some algorithms for detecting empty or
deadly marked siphons in a given PN marking, in order to
develop analytical liveness sufficiency tests and systematic
procedures for the design of liveness-enforcing supervisors
(LES).
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I. Introduction

One of the major breakthroughs underlying our capa-
bility to systematically evaluate the liveness of various
resource allocation system (RAS) configurations, and to
synthesize effective and computationally efficient liveness-
enforcing supervisors for non-live RAS, is the formal char-
acterization of the non-liveness of the Petri net (PN)
sub-classes modelling the behavior of these environments,
through the formation of a particular PN structural ob-
ject, known as empty or, more generally, deadly marked
siphon1 [1]. This type of results can be originally traced
in the seminal work of Ezpeleta and his colleagues [2], that
provided a siphon-based characterization for (non-)liveness
in Single Unit (SU) RAS [3], i.e., a sequential RAS sub-
class in which processes execute in (partially) ordered se-
quences of stages, with each stage requiring for its support
the exclusive allocation of one unit from a single resource
type. More specifically, [2] established that in the class
of SU-RAS, non-liveness can be interpreted through the
development of empty siphons in the system reachability

1All technical concepts are systematically introduced in the later
parts of this paper.

space. Similarly, the work of [4] established that the de-
velopment of reachable empty siphons is also the cause for
non-liveness in Augmented Marked Graphs (AMG), a RAS
model that generalizes the class of SU-RAS by introduc-
ing task parallelism, through the presence of merging and
splitting transitions. The role of empty siphons for the
non-liveness of single-unit RAS with merging and splitting
transitions was subsequently investigated more extensively
in [5]. At the same time, the work of [6] established that
the behavior of an SU-RAS under the control of a class of
liveness-enforcing supervisors (LES) expressed by a set of
linear inequality constraints on the RAS state – known as
algebraic LES – can be modelled as an AMG, and therefore,
the aforementioned results of [4] provide a structural test
for assessing the LES correctness. Beyond its theoretical
value, this finding is of considerable practical significance
since the work of [4] provides also computational sufficiency
tests for the non-existence of reachable empty siphons, that
take the convenient form of mathematical programming
(MP) formulations polynomially sized, in terms of variables
and constraints, with respect to the underlying PN model.
More recently, this entire set of results, originally devel-
oped in the context of SU-RAS, has been generalized to the
broader RAS class involving Conjunctive (C) [3] resource
allocation, i.e., to RAS environments that engage an arbi-
trary set of resources, each of them at an arbitrary level of
units, for the support of a single process stage [7], [8]. In the
C-RAS operational context, the new PN structural object
characterizing the non-liveness of the RAS behavior is that
of deadly marked siphon, while its presence is detected on
a modified reachability space, that constitutes a projection
of the original PN reachability space to a subspace defined
by a subset of the components of the net marking vector
[7]. The work in [7] developed also MP-based sufficiency
tests for the non-existence of deadly marked siphons in the
aforementioned modified reachability space, and therefore,
it offers computational tools for developing algebraic LES
for this broader class of RAS behavior. Finally, some ad-
ditional works that have investigated the role of the PN
siphon structure in the liveness of sequential resource allo-
cation, are those presented in [9], [10], [11], [12], [13].

As it is evident from the above discussion, currently,
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all the existing results on siphon-based characterization of
liveness in sequential RAS have been developed in a rather
fragmented fashion, each of them pertaining to a RAS
sub-class characterizing a particular type of RAS behav-
ior. Furthermore, the detailed study of their development
would reveal that, while they are based on formal and rig-
orous technical arguments, they fail to provide an explicit
and intuitive characterization of the underlying key mech-
anism that links the non-liveness of the considered RAS
classes to the presence of some empty or deadly marked
siphons. Hence, the work presented in this paper seeks to
develop a general theory that

• will provide a systematic explanation of the relation-
ship between the RAS non-liveness and the presence
of deadly marked – and in the case of SU-RAS, empty
– siphons;

• will offer, thus, a unifying framework for interpreting
all the relevant results existing in the literature;

• will allow the extension of the existing results to
broader and/or other RAS behaviors;

• will eventually enable a systematic methodology for es-
tablishing correct and live behavior in the considered
RAS classes, through a decomposition that differen-
tiates between (a) the design of the involved process
flows, and (b) the synthesis of a supervisor that man-
ages the allocation of the system resources to the con-
currently executing process instances in a way that
preserves the system liveness.2

Our approach is based on the identification of a minimal
set of requirements for the structure of the RAS processes
and their behavior, which when met, will allow the attribu-
tion of any experienced RAS non-liveness to the develop-
ment of deadly marked siphons in the modified reachabil-
ity space of the RAS-modelling PN. Two concepts that are
shown to play a central role in this minimal set of require-
ments are those of the process quasi-liveness and reversibil-
ity . These properties essentially imply that the execution
logic underlying the various process flows is inherently con-
sistent, and therefore, any non-liveness of the PN modelling
the overall RAS behavior can be attributed to the compe-
tition of the concurrently executing processes for the finite
system resources. A third requirement that appears in the
subsequent results, and it is necessary in order to connect
the non-liveness of the process-resource net to the presence
of deadly marked siphons, is that of acyclic process flows,
i.e., the developed results pertain to RAS in which the var-
ious processes do not present re-circulating loops among
their different stages.3

The rest of the paper is organized as follows: Section 2
first presents the PN fundamentals that are necessary for
the modelling and analysis of the considered RAS struc-
ture and behavior, and subsequently it proceeds to the

2It must be mentioned at this point, that while the present paper
was in the review process, reference [14] was published, with a set
of results quite similar to the research program outlined above. It
is emphasized that these two works were developed simultaneously
and independently, and throughout the subsequent development, we
point out the similarities and differences among them.

3This requirement can be relaxed under certain conditions; c.f. [15],
[16] for details.

systematic characterization of this RAS class through a se-
ries of definitions and assumptions. Section 3 develops the
main structural results of this work, by establishing that for
RAS with quasi-live, reversible and acyclic processes, non-
liveness can be attributed to the development of deadly
marked siphons in the modified reachability space of the
RAS-modelling PN. It also indicates how all the currently
existing results connecting liveness to empty or deadly
marked siphons, can be obtained as special cases of this
more general development. Moreover, the presented formal
argument establishing the connection between non-liveness
and deadly marked siphons provides also an intuitive ex-
planation for it, since it reveals that, in the considered
RAS class, non-liveness can be attributed to the formation
of total deadlocks in the modified PN reachability space.
Finally, Section 3 establishes that in the considered class
of systems, liveness and reversibility are equivalent con-
cepts, providing, thus, the formal link between the concept
of PN liveness and the typical concerns of RAS deadlock
avoidance theory. Section 4 overviews the MP-based suffi-
ciency test for the non-existence of deadly marked siphons
in the underlying modified reachability space, originally de-
veloped in [7], and it discusses how this test can support
the synthesis of correct algebraic LES for any instance of
the considered RAS class. Finally, Section 5 concludes the
paper, and identifies some additional research issues origi-
nating from the presented work.

II. The considered RAS class and its Petri net

model

This section first overviews the Petri net (PN) related
concepts that are necessary for the formal modelling of the
considered RAS class and the analysis of its properties, and
subsequently, it provides a detailed characterization of the
PN structure modelling the considered resource allocation
environments. Some excellent more extensive treatments
of the PN modelling framework and the structural and be-
havioral analysis of PN models can be found in [17], [18].

A. Petri net preliminaries

A marked Petri Net (PN) is defined by a quadruple N
= (P, T,W, M0), where P is the set of places, T is the
set of transitions, W : (P × T ) ∪ (T × P ) → Z+ is the
flow relation, and M0 : P → Z+ is the net initial marking,
assigning to each place p ∈ P , M0(p) tokens. In the special
case that the flow relation W maps onto {0, 1}, the Petri
net is said to be ordinary . If only the restriction of W to
(P ×T ) maps on {0, 1}, the PN is said to be PT -ordinary .
The set of input (resp., output) transitions of a place p is
denoted by •p (resp., p•). Similarly, the set of input (resp.,
output) places of a transition t is denoted by •t (resp.,
t•). This notation is also generalized to any set of places
or transitions, X, e.g. •X =

⋃

x∈X
•x. The ordered set

X =< x1 . . . xn > ∈ (P ∪ T )∗ is a path, if and only if
(iff) xi+1 ∈ x•

i , i = 1, . . . , n − 1. Furthermore, a path X is
characterized as a circuit iff x1 ≡ xn. Finally, an ordinary
PN such that (s.t.) ∀t ∈ T , |t•| = |•t| = 1 (resp., ∀p ∈ P ,
|p•| = |•p| = 1), is characterized as a state machine (resp.,
marked graph).
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Given a marking M , a transition t is enabled iff ∀p ∈
•t, M(p) ≥ W (p, t), and this is denoted by M [t〉. t ∈ T

is said to be disabled by p ∈ •t at M iff M(p) < W (p, t).
Furthermore, a place p ∈ P for which ∃t ∈ p• s.t. M(p) <

W (p, t) is said to be a disabling place at M . Firing an
enabled transition t results in a new marking M ′, which is
obtained by removing W (p, t) tokens from each place p ∈
•t, and placing W (t, p′) tokens in each place p′ ∈ t•. The
set of markings reachable from M0 through any fireable
sequence of transitions is denoted by R(N ,M0). A marked
PN N with initial marking M0 is said to be bounded iff
all markings M ∈ R(N ,M0) are bounded, while N is said
to be structurally bounded iff it is bounded for any initial
marking M0. N is said to be reversible iff ∀M ∈ R(N ,M0),
M0 ∈ R(N ,M).

In case that a marked PN is pure (i.e., ∀(x, y) ∈ (P×T )∪
(T × P ), W (x, y) > 0 ⇒ W (y, x) = 0), the flow relation
can be represented by the flow matrix Θ = Θ+−Θ− where
Θ+[p, t] = W (t, p) and Θ−[p, t] = W (p, t). A p-semiflow y

is a |P |-dimensional vector satisfying yT Θ = 0 and y ≥ 0,
and a t-semiflow x is a |T |-dimensional vector satisfying
Θx = 0 and x ≥ 0. A p-semiflow y (t-semiflow x, resp.)
is said to be minimal iff 6 ∃ a p-semiflow y′ (t-semiflow x′,
resp.) such that ‖y′‖ ⊂ ‖y‖ (‖x′‖ ⊂ ‖x‖, resp.), where
‖y‖ = {p ∈ P | y(p) > 0} ( ‖x‖ = {t ∈ T | x(t) > 0},
resp.).

Given a marked PN N = (P, T,W,M0), a transition t ∈
T is live iff ∀M ∈ R(N ,M0),∃M ′ ∈ R(N ,M) s.t. M ′[t〉,
and t ∈ T is dead at M ∈ R(N ,M0) iff 6 ∃ marking M ′ ∈
R(N ,M) s.t. M ′[t〉. A marking M ∈ R(N ,M0) is a (total)
deadlock iff ∀t ∈ T, t is dead. A marked PN N is quasi-live
iff ∀t ∈ T,∃M ∈ R(N ,M0) s.t. M [t〉, it is weakly live iff
∀M ∈ R(N ,M0),∃t ∈ T s.t. M [t〉, and it is live iff ∀t ∈ T ,
t is live. Of particular interest for the liveness analysis of
marked PN is a structural element known as siphon, which
is a set of places S ⊆ P such that •S ⊆ S•. A siphon S is
minimal iff 6 ∃ a siphon S′ s.t. S′ ⊂ S. A siphon S is said to
be empty at marking M iff M(S) ≡

∑

p∈S M(p) = 0, and
it is said to be deadly marked at marking M , iff ∀t ∈ •S, t

is disabled by some p ∈ S [7]. Obviously, empty siphons
are deadly marked siphons. It is easy to see that, if S is a
deadly marked siphon at some marking M , then (i) ∀t ∈
•S, t is a dead transition in M , and (ii) ∀M ′ ∈ R(N ,M), S

is deadly marked. Furthermore, it can be shown that if
marking M ∈ R(N ,M0) is a total deadlock, then the set
S of disabling places in M constitutes a deadly marked
siphon [7]. This last result constitutes the generalization
of a well-established relationship between total deadlocks
and empty siphons in ordinary PN’s [18].

Finally, given two PN’s N1 = (P1, T1,W1,M01) and
N2 = (P2, T2,W2,M02) with T1∩T2 = ∅ and P1∩P2 = Q 6=
∅ s.t. ∀p ∈ Q, M01(p) = M02(p), the PN N resulting from
the merging of the nets N1 and N2 through the place set
Q, is defined by N = (P1 ∪P2, T1 ∪ T2,W1 ∪W2,M0) with
M0(p) = M01(p), ∀p ∈ P1\P2; M0(p) = M02(p), ∀p ∈
P2\P1; M0(p) = M01(p) = M02(p), ∀p ∈ P1 ∩ P2.

B. The considered RAS class and the associated PN model

For the purposes of the liveness analysis considered in
this work, a (sequential) resource allocation system (RAS)
is formally defined by a set of resource types R = {Rl, l =
1, . . . ,m}, each of them available at some finite capacity
Cl ∈ Z+, and a set of process types J = {Jj , j = 1, . . . , n},
that execute sequentially, through a number of tasks or
stages, Jjk, k = 1, . . . , λj , and with each stage Jjk engaging
a specific subset of the system resources for its execution.
More specifically, it is assumed that a process instance ad-
vances to the execution of a certain stage, Jjk, only after it
has secured the required resources, and upon its advance-
ment, it releases the resources held for the execution of
the previous stage Jj,k−1. Furthermore, the set of tasks
or stages, {Jjk, k = 1, . . . , λj}, corresponding to process
type Jj , presents some additional structure that expresses
the associated process-defining logic and characterizes the
potential process routings. Typical structures involved in
the definition of the process logic include linear, parallel,
conditional and iterative structures, as well as more com-
plex structures resulting from the nested combination of
the basic ones. Most of the past research on RAS liveness
and liveness-enforcing supervision has focused on simpler
process structures that allow the modelling of simple lin-
ear process flows, potentially enhanced with some routing
flexibility (e.g., [2], [19], [20], [21], [22], [7]).

This work does not make any explicit assumptions about
the specific structure of the considered RAS processes, but
it only requires that the involved process logic is “inher-
ently consistent”, and therefore, any non-liveness arising
in the behavior of the resulting RAS and its associated PN
model can be attributed to the (mis-)management of the
allocation of the finite set of the system resources to the
concurrently executing processes. A formal characteriza-
tion of this notion of “inherent process consistency” is pro-
vided by the following definition of the considered process
subnet and its assumed properties.

Definition 1: For the purposes of this work, a process
(sub-)net is a Petri net NP = (P, T,W,M0) such that:

i. P = PS ∪ {i, o} with PS 6= ∅;
ii. T = TS ∪ {tI , tF , t∗};
iii. i• = {tI};

•i = {t∗};
iv. o• = {t∗}; •o = {tF };
v. t•I ⊆ PS ; •tI = {i};
vi. t•F = {o}; •tF ⊆ PS ;
vii. (t∗)• = {i}; •(t∗) = {o};
viii. the underlying digraph is strongly connected ;
ix. M0(i) > 0 ∧ M0(p) = 0, ∀p ∈ P\{i};
x. ∀M ∈ R(NP ,M0), M(i)+M(o) = M0(i) =⇒ M(p) =

0, ∀p ∈ PS .
2

In the PN-based process representation introduced by
Definition 1, process instances waiting to initiate process-
ing are represented by tokens in place i, while the initiation
of a process instance is modelled by the firing of transition
tI . Similarly, tokens in place o represent completed process
instances, while the event of a process completion is mod-
elled by the firing of transition tF . Transition t∗ allows the
token re-circulation – i.e., the token transfer from place o
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to place i – in order to model repetitive process execution.
Finally, the part of the net between transitions tI and tF
that involves the process places PS , models the sequential
logic defining the considered process type, and, as it can be
seen in Definition 1, it can be quite arbitrary. However, in
order to capture the notion of the “inherent process con-
sistency” introduced at the beginning of this sub-section,
we further qualify the considered process sub-nets through
the following two assumptions:

Assumption 1: The process (sub-)nets considered in this
work are assumed to be quasi-live for M0(i) = 1.

2

Assumption 2: The process (sub-)nets considered in this
work are assumed to be reversible for every initial marking
M0 that satisfies Condition (ix) of Definition 1.

2

Assumption 1 stipulates that the every transition in the
considered process sub-net models a meaningful event that
can actually occur during the execution of some process
instance, and therefore, it is not redundant. On the other
hand, Assumption 2 essentially stipulates that, at any point
in time, all active process instances can proceed to comple-
tion, and this completion can occur without the initiation
of any additional process instances.4 When taken together,
Assumptions 1 and 2 imply also the liveness of the consid-
ered process nets; we state this result as a lemma, but we
skip its proof, since it is a rather well-known result in the
PN-research community.

Lemma 1: Under Assumptions 1 and 2, the considered
process nets are also live.

2

Since the emphasis of this work is on the characterization
and establishment of live resource allocation, the complete
characterization of the class of process nets satisfying As-
sumptions 1 and 2 lies beyond its scope. We notice, how-
ever, that all the RAS classes for which there exist results
connecting their non-liveness to the development of deadly
marked / empty siphons, involve PN-based process models
that satisfy the aforementioned assumptions.

Another assumption that is necessary for the develop-
ment of the analytical results of the next section, is that
the various process (sub-)nets are acyclic. This concept is
defined as follows:

Assumption 3: The process sub-nets considered in this
work are assumed to be acyclic, i.e., the removal of transi-
tion t∗ from them renders them acyclic digraphs.

2

4It is noticed, for completeness, that the requirement for process
reversibility introduced by Assumption 2 when combined with Defi-
nition 1 and Assumption 1, subsumes the notion of process soundness,
introduced in Workflow theory (c.f., [23], [24]) in order to character-
ize well-defined process (sub-)nets, for the case where only a single
process instance re-circulates in the considered process net. However,
Assumption 2 further stipulates that when more than one process in-
stances have been activated, still they will always be able to complete,
in spite of any additional effects arising from their interaction through
the defining process logic. This requirement plays also an important
role in the developments presented in [14]; specifically, in [14], the
authors introduce the term ”strong reversibility” in order to charac-
terize the requirement expressed by Assumption 2 as an additional
net property.
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Fig. 1. The process-resource net structure considered in this work

The modelling of the resource allocation associated with
each process stage, p ∈ PS , necessitates the augmentation
of the process sub-net NP , defined above, with a set of
resource places PR = {rl, l = 1, . . . ,m}, of initial mark-
ing M0(rl) = Cl, i = 1, . . . ,m, and with the correspond-
ing flow sub-matrix, ΘPR

, expressing the allocation and
de-allocation of the various resources to the process in-
stances as they advance through their processing stages.
Notice that the interpretation of the role of transitions
t∗, tI and tF implies that (t∗)• ∩ PR = •(t∗) ∩ PR =
(tI)

• ∩ PR = •(tF ) ∩ PR = ∅. The resulting net will be
called the resource-augmented process (sub-)net and it will
be denoted by NP . The reusable nature of the system re-
sources is captured by the following assumption regarding
the resource-augmented process net NP :

Assumption 4: Let NP = (PS ∪ {i, o} ∪ PR, T,W,M0)
denote a resource-augmented process (sub-)net. Then,
∀l ∈ {1, . . . , |PR|}, there exists a p-semiflow yrl

, s.t.: (i)
yrl

(rl) = 1; (ii) yrl
(rj) = 0, ∀j 6= l; (iii) yrl

(i) = yrl
(o) = 0;

(iv) ∀p ∈ PS , yrl
(p) = number of units from resource Ri

required for the execution of stage p.
2

While the p-semiflows introduced by Assumption 4 char-
acterize the resource allocation taking place at each process
stage and the conservative nature of the system resources,
they do not reveal anything regarding the adequacy of the
available resource set for supporting the execution of the
various processing stages, under the sequencing constraints
implied by the process-defining logic. This additional con-
cern underlying the correct definition of the various RAS
process-types is captured by extending the requirement for
quasi-liveness of the process net NP , introduced by As-
sumption 1, to the resource-augmented process net NP :

Assumption 5: The resource-augmented process (sub-
)nets considered in this work are assumed to be quasi-live
for M0(i) = 1 and M0(rl) = Cl, ∀l ∈ {1, . . . , |PR|}.
2

The complete PN-based model, N = (P, T,W,M0), of
any given instance from the considered RAS class is ob-
tained by merging the resource-augmented process nets
NPj

= (Pj , Tj ,Wj ,M0j
), j = 1, . . . , n, modelling its con-

stituent process types, through their common resource
places. The resulting PN class is characterized as the
class of process-resource nets with quasi-live, reversible and
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acyclic process sub-nets, and its basic structure is depicted
in Figure 1. Let P =

⋃

j Pj , PS =
⋃

j PSj
; I =

⋃

j{ij};

O =
⋃

j{oj}. Then, P = PS ∪ I ∪ O ∪ PR. Furthermore,
the re-usable nature of the resource allocation taking place
in the entire process-resource net is characterized by a p-
semiflow yrl

for each resource type Rl, l = 1, . . . ,m, de-
fined by: (i) yrl

(rl) = 1; (ii) yrl
(rj) = 0, ∀j 6= l; (iii)

yrl
(ij) = yrl

(oj) = 0, ∀j; (iv) ∀p ∈ PS , yrl
(p) = y

(j∗)
rl (p),

where NPj∗
denotes the resource-augmented process sub-

net containing place p, and y
(j∗)
rl () denotes the correspond-

ing p-semiflow for resource Rl. Finally, it is easy to see
that Assumption 5 regarding the quasi-liveness of the con-
stituent resource-augmented process sub-nets NPj

implies
also the quasi-liveness of the entire process-resource net N .

The next definition extends to the class of process-
resource nets, considered in this work, the notion of the
modified marking, originally introduced in [25], [7] for ana-
lyzing the liveness of a more restricted PN subclass, mod-
elling the behavior of sequential RAS with multi-unit re-
source allocation per stage and routing flexibility.

Definition 2: Given a process-resource net N = (PS ∪
I ∪ O ∪ PR, T,W,M0) and M ∈ R(N ,M0), the modified
marking M is defined by

M(p) =

{

M(p) if p 6∈ I ∪ O

0 otherwise
(1)

Furthermore, the set of all modified markings induced by
the net reachable markings is defined by R(N ,M0) =
{M | M ∈ R(N ,M0)}
2

We conclude this section by noticing that, from a com-
pletely practical standpoint, the main requirement under-
lying the classical RAS deadlock avoidance theory, is that
every process activated in the system will be able to run to
completion, without getting entangled in a deadlock situa-
tion [26]. In the PN-modelling framework, this requirement
is explicitly modelled by stipulating that the corresponding
process-resource net is reversible. However, in the consid-
ered class of process-resource nets, reversibility is equiv-
alent to liveness. This result is established in Section 3,
and justifies, in terms of the more typical requirements of
the RAS deadlock avoidance theory, the overall approach
taken in this work.

III. Liveness analysis of process-resource nets

with quasi-live, reversible and acyclic

process sub-nets

The main result of this section links the non-liveness aris-
ing in the class of process-resource nets with quasi-live, re-
versible and acyclic process sub-nets,5 to the development
of a special type of deadly marked siphon in the net mod-
ified reachability space. It is also discussed how this new
result encompasses and explains all existing similar results,

5We clarify that in the subsequent development of this paper, a pro-
cess (sub-)net is characterized quasi-live if it satisfies Assumption 1
and the corresponding resource-augmented process sub-net satisfies
Assumption 5, it is characterized reversible if it satisfies Assump-
tion 2, and it is characterized acyclic if it satisfies Assumption 3.

pertaining to more restricted RAS classes. The last part
of the section establishes that, for the considered class of
process-resource nets, liveness and reversibility are equiva-
lent concepts.

The result connecting the non-liveness arising in the
class of process-resource nets with quasi-live, reversible and
acyclic process sub-nets to the presence of deadly marked
siphons is developed in a three-step argument, that fur-
ther reveals the fundamental structures and mechanisms
behind it. Hence, its derivation provides also the intuitive
explanation requested in the opening discussion of this pa-
per. The first step in this development is established by
the following lemma:

Lemma 2: Consider a process-resource net N = (PS ∪
I∪O∪PR, T,W,M0) with quasi-live and reversible process
sub-nets. If ∃M ∈ R(N ,M0) s.t. ∃ a process sub-net NPj∗

with M(ij∗)+M(oj∗) 6= M0(ij∗) and M is a total deadlock,
then ∃ siphon S s.t.

i. S is deadly marked at M ;
ii. S ∩ PR 6= ∅;
iii. ∀p ∈ S ∩ PR, p is a disabling place at M .
Proof: Let S denote the set of disabling places in mod-

ified marking M . Since M is a total deadlock, S• = T ⊇
•S. Therefore, S is a siphon, while the definition of S im-
plies also that it is deadly marked. This establishes part
(i) in the above lemma.

To establish that S ∩ PR 6= ∅, consider the process sub-
net NPj∗

. The fact that M(ij∗)+M(oj∗) 6= M0(ij∗) implies
that there are active process instances in the sub-net NPj∗

.
But then, Assumptions 2 and 1 imply that sub-net NPj∗

remains live in spite of any token removal from places ij∗

and oj∗ requested by Definition 2. Hence, the occurrence

of the system deadlock at M must involve insufficiently
marked resource places.

Finally, part (iii) of Lemma 2 is an immediate conse-
quence of the above definition of set S. 2

In the following, a deadly marked siphon S satisfying
also the conditions (ii) and (iii) in Lemma 2, will be called
a resource-induced deadly marked siphon. Lemma 2 essen-
tially specializes the more general connection between total
deadlocks and deadly marked siphons (c.f., Section 2.1), to
the subclass of process-resource nets with quasi-live and
reversible active processes. From a methodological stand-
point, it provides a vehicle for connecting the liveness of
resource allocation – and, in certain cases, even the quasi-
liveness – taking place in process-resource nets, to resource-
induced deadly marked siphons, as long as it can be estab-
lished that the lack of (any of) these properties implies the
existence a reachable marking M s.t. (i) there exists a pro-
cess sub-net NPj∗

with M(ij∗) + M(oj∗) 6= M0(ij∗) and

(ii) the corresponding modified marking M is a total dead-
lock. The next lemma establishes that this is the case for
the class of process-resource nets with quasi-live, reversible
and acyclic process sub-nets.

Lemma 3: Consider a process-resource net N = (PS ∪
I∪O∪PR, T,W,M0) with quasi-live, reversible and acyclic
process sub-nets. If N is not live, then, ∃M ∈ R(N ,M0)
s.t. (i) ∃ process sub-net NPj∗

with M(ij∗) + M(oj∗) 6=

M0(ij∗) and (ii) M is a total deadlock.
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Proof: Since N is not live, ∃M ′ ∈ R(N ,M0) and t′ ∈ T

s.t. t′ is dead in M ′. We claim that ∃M ∈ R(N ,M ′)
s.t. (i) ∃ process sub-net NPj∗

with M(ij∗) + M(oj∗) 6=
M0(ij∗) and (ii) every transition t 6∈ (I ∪ O)• is disabled
in M . Indeed, the acyclic structure of the process sub-nets
NPj

, j = 1, . . . , n, implies that every transition sequence
σ s.t. M ′[σ〉 and ∀t ∈ σ, t 6∈ (I ∪ O)•, will be of finite
length. Consider such a maximal transition sequence σ̂

and let M ′[σ̂〉M . Then, at marking M there must exist
a process sub-net NPj∗

with M(ij∗) + M(oj∗) 6= M0(ij∗),
since otherwise the initial marking M0 is reachable from
M , and then, the quasi-liveness of N implies that t′ is
not dead at M ′. To see that M is a total deadlock for
N , simply notice that the specification of M , by setting
M(ij) = M(oj) = 0, ∀j, essentially disables all transitions
t ∈ (I ∪O)•, that, by construction, are the only transitions
potentially enabled in M . 2

The next theorem completes the aforementioned three-
step development of the key result of this section, by stat-
ing and proving, by means of Lemmas 2 and 3, that in
the class of process-resource nets with quasi-live, reversible
and acyclic processes, there is a direct relationship between
the RAS non-liveness and the presence of resource-induced
deadly marked siphons in the modified reachability space
of the RAS-modelling PN.

Theorem 1: Let N = (PS ∪ I ∪ O ∪ PR, T,W,M0) be a
process-resource net with quasi-live, reversible and acyclic
processes. N is live if and only if the space of modi-
fied reachable markings, R(N ,M0), contains no resource-
induced deadly marked siphons.

Proof: To show the necessity part, suppose that
∃M ∈ R(N ,M0) s.t. M contains a resource-induced deadly
marked siphon S. Let r ∈ S ∩ PR be one of the disabling
resource places, and consider t ∈ r• s.t. M(r) < W (r, t).
The definition of deadly marked siphon implies that ∀t′ ∈
•r, t′ is dead in R(N ,M). This remark, when combined
with Definition 2 and Assumption 4, further imply that
∀M ′ ∈ R(N ,M), M ′(r) ≤ M(r), since the re-introduction
of the tokens removed from places p ∈ I∪0 and their poten-
tial loading in the system, can only decrease the resource
availabilities. Therefore, t is a dead transition at M , which
contradicts the assumption of net liveness.

To show the sufficiency part, suppose that N is not live.
Then, Lemma 3 implies that ∃M ∈ R(N ,M0) s.t. (i) ∃
process sub-net NPj∗

with M(ij∗) + M(oj∗) 6= M0(ij∗),

and (ii) M is a total deadlock. But then, Lemma 2 implies

that R(N ,M0) contains a resource-induced deadly marked
siphon, which contradicts the working hypothesis. 2

The following corollary results immediately from Theo-
rem 1; its original statement (and a formal proof) can be
found in [25], [7].

Corollary 1: Let N = (PS ∪ I ∪ O ∪ PR, T,W,M0)
be a process-resource net where (i) the process sub-nets
NPj

, j = 1, . . . , n, are strongly connected state machines
with each circuit containing the places ij and oj , and (ii)

the resource-augmented process nets Npj
are quasi-live.

Then, N is live if and only if the space of modified reachable
markings, R(N ,M0), contains no resource-induced deadly
marked siphons.

2

The next corollary specializes Theorem 1 to the sub-class
of process-resource nets where the process sub-nets NPj

are
acyclic marked graphs. A stronger version of this result,
that connects also the lack of quasi-liveness to the presence
of resource-induced deadly marked siphons, is presented in
[8].

Corollary 2: Let N = (PS ∪ I ∪ O ∪ PR, T,W,M0)
be a process-resource net where (i) the process sub-nets
NPj

, j = 1, . . . , n, are strongly connected marked graphs
with each circuit containing the places ij and oj , and (ii)

the resource-augmented process nets Npj
are quasi-live.

Then, N is live if and only if the space of modified reachable
markings, R(N ,M0), contains no resource-induced deadly
marked siphons.
2

The next result states that for the case of PT -ordinary
PN’s, the problematic siphons interpreting the RAS non-
liveness are, in fact, empty siphons, and they can also be
identified in the original net reachability space R(N ,M0)

(besides the modified reachability space R(N ,M0)).
Corollary 3: Let N = (PS ∪ I ∪ O ∪ PR, T,W,M0) be

a PT-ordinary process-resource net with quasi-live, re-
versible and acyclic process sub-nets. N is live if and only
if the space of reachable markings, R(N ,M0), contains no
empty siphons.

Proof: According to Theorem 1, under the assumptions
of Corollary 3, net N is non-live, iff there exists a marking
M ∈ R(N ,M0), s.t. M 6= M0 and its modified marking
M contains a resource-induced deadly marked siphon, S.
Furthermore, the development of the result of Theorem 1
(c.f., Lemmas 2 and 3) indicates that S is defined by the
set of disabling places of a total deadlock contained in M .
Since every place p ∈ S is a disabling place in M , and net N
is PT-ordinary, M(p) = 0, ∀p ∈ S. Hence, S is an empty
siphon in M . It remains to be shown that the presence
of the resource-induced empty siphon S in the modified
marking M implies the presence of an empty siphon S ′

in the original marking M . For that, let S ′ = {ri : ri ∈
S} ∪ {p ∈ PS : M(p) = M(p) = 0 ∧ ∃ri s.t. (ri ∈ S ∧
yri

(p) > 0)}. Notice that S′ 6= ∅, since S is a resource-
induced empty siphon. We show that S ′ is a siphon (which
is empty, by construction), by considering the next two
main cases:

Case I – t ∈ •rk for some rk ∈ S: Then, ∃q ∈ S s.t.
t ∈ q•. If q ∈ PR, then q ∈ {ri : ri ∈ S} ⊂ S′. On the
other hand, if q 6∈ PR, then q ∈ PS , since (q•)• ∩ PR 6= ∅.
Furthermore, yrk

(q) > 0 and M(q) = 0 (since q ∈ S).
Therefore, q ∈ {p ∈ PS : M(p) = M(p) = 0 ∧ ∃ri s.t. (ri ∈
S ∧ yri

(p) > 0)} ⊂ S′. In both cases, t ∈ (S′)•.
Case II – t ∈ •q for some q ∈ PS with M(q) =

M(q) = 0 ∧ ∃rk s.t. (rk ∈ S ∧ yrk
(q) > 0): Then, if

∃rl s.t. rl ∈ S ∧ t ∈ r•l , t ∈ {ri : ri ∈ S}• ⊆ (S′)•. Oth-

erwise, ∃q′ ∈ (I ∪ O ∪ PS) ∩ •t with M(q′) = 0. Further-
more, since yrk

(q) > 0 and, by the sub-case assumption,
∀rl ∈ •t, M(rl) > 0, it must be that yrk

(q′) > 0. But
then, t ∈ {p ∈ PS : M(p) = M(p) = 0 ∧ ∃ri s.t. (ri ∈
S ∧ yri

(p) > 0)}• ⊆ (S′)•. 2

Corollary 3 encompasses all the relevant results appear-
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Fig. 2. Example 1 – A case of RAS non-liveness which cannot
be attributed to the development of resource-induced deadly marked
siphons, due to enabled internal process cycles

ing in [2], [4], [11] and some of the results appearing in
[5]. It also subsumes the general siphon-based charac-
terization of liveness for the process-resource nets consid-
ered in [14], since that work considers ordinary Petri nets
only. The next example demonstrates that for the case of
process-resource nets where the process flows can present
internal cycles, the structural concept of resource-induced
deadly marked siphon might not be sufficient for inter-
preting the non-liveness of resource allocation in process-
resource nets, even under the assumptions of quasi-live and
reversible process sub-nets. The works of [15], [16] iden-
tify some special structure on the resource allocation re-
quests, that allows the attribution of the net non-liveness
to resource-induced deadly marked siphons, even for the
case of process-resource nets with cyclic process routes.
However, the complete characterization of the dynamics
and the liveness-related properties of process-resource nets
with cyclic process routes is an issue open to future inves-
tigation.

Example 1: Consider an RAS with two resource types,
R1 and R2, available at 2 and 1 units, respectively, and two
process types, J1 and J2. Process type J1 involves three
stages, J11, J12 and J13, with corresponding resource allo-
cation requests [1, 0], [0, 1] and [2, 0]. Process type J2 in-
volves two stages, J21 and J22, with corresponding resource
allocation requests [0, 1] and [2, 0]. The RAS-modelling
process-resource net, N , that expresses also the flow logic
defining the possible process transitions among their stages,
is depicted in Figure 2. In particular, Figure 2 depicts a
marking M ∈ R(N ,M0), in which the two active processes
are deadlocked (notice that transitions t11 and t21 are dead
in the depicted marking M). Yet, the reader can verify that
the corresponding modified marking M , as well as all the

modified markings M ′ ∈ R(N ,M), contain no resource-
induced deadly marked siphon. This results from the fact
that the deadlocked process in place p11 can circulate freely
in the circuit < p11, t12, p13, t13 >, and therefore, the RAS
deadlock of the two processes does not translate to a total

deadlock in R(N ,M). 2

We conclude this section by formally stating and prov-

ing that in the considered class of process-resource nets,
liveness and reversibility are equivalent concepts.

Theorem 2: A process-resource net N = (PS ∪ I ∪ O ∪
PR, T,W,M0) with quasi-live, reversible and acyclic pro-
cess sub-nets is reversible if and only if it is live.

Proof: The necessity (“only-if”) part of this theo-
rem results immediately from Lemma 3, since otherwise
∃M ∈ R(N ,M0) s.t. ∃ process sub-net NPj∗

with M(ij∗)+

M(oj∗) 6= M0(ij∗), and M is a total deadlock. In order to
establish the sufficiency (“if”) part of the theorem, consider
a marking M ∈ R(N ,M0) s.t. M 6= M0. Then, if for every
process sub-net NPj

it holds that M(ij)+M(oj) = M0(ij),
it should be obvious from the structure of net N that
M0 ∈ R(N ,M). Otherwise, using an argument simi-
lar to that in the proof of Lemma 3, one can construct
a maximal-length firing sequence σ leading to a marking
M ′ s.t. every transition t 6∈ (I ∪ O)• is disabled in M ′.
We claim that at M ′, ∀ process sub-net NPj

it holds that
M ′(ij)+M ′(oj) = M0(ij), and therefore, M0 ∈ R(N ,M ′),
which further implies that M0 ∈ R(N ,M). Indeed, by
construction, M ′ is a total deadlock of N , and if ∃ process
sub-net NPj∗

s.t. M ′(ij∗) + M ′(oj∗) 6= M0(ij∗), Lemma 2
implies that M ′ contains a resource-induced deadly marked
siphon. But then, Theorem 1 implies that N is not live,
which contradicts the working hypothesis. 2

IV. Liveness verification and liveness-enforcing

supervision for process-resource nets with

quasi-live, reversible and acyclic process

sub-nets

This section seeks to exploit the siphon-based characteri-
zation of non-liveness for process-resource nets with quasi-
live, reversible and acyclic process sub-nets, in order to
develop computational tools for assessing the liveness of
any given instance of the considered PN sub-class, and if
necessary, to synthesize a correct liveness-enforcing super-
visor (LES). Hence, the first part of the section discusses
a sufficiency test for the non-existence of resource-induced
deadly marked siphons in the modified reachability space
of any process-resource net, that was originally developed
in [7]. The considered test extends relevant ideas pre-
sented in [4] regarding the detection of the development of
empty siphons in ordinary Petri nets, and takes the form
of a mathematical programming (MP) formulation, that is
polynomially sized, in terms of variables and constraints,
with respect to the underlying PN model. As a result, it is
very practical from a computational standpoint. The sec-
ond part of the section describes how the MP-based test
discussed in the first part, can be integrated in a synthesis
procedure that supports the design of algebraic LES for the
considered class of process-resource nets.

A mathematical programming-based sufficiency

test for the liveness of process-resource nets with

quasi-live, reversible and acyclic process sub-nets

The starting point for the development of the consid-
ered MP-based sufficiency test for the liveness of process-
resource nets with quasi-live, reversible and acyclic pro-
cess sub-nets, is the observation that, given a marked PN
N = (P, T,W,M0) and a marking M ∈ R(N ,M0), the
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Input: A marked PN N = (P, T,W,M0) and a marking
M ∈ R(N ,M0)
Output: The maximal deadly marked siphon in M , S

1. S := P ; N ′ := N
2. while ∃ t ∈ T such that t is fireable in the modified

net N ′ do

(a) Remove t from N ′

(b) Remove t• from N ′

(c) S := S\t•

endwhile

3. Return S

Fig. 3. An algorithm for computing the maximal deadly marked
siphon in a given PN marking M

maximal deadly marked siphon S in M can be computed
by the algorithm of Figure 3, originally developed in [7].
For the case of structurally bounded nets, the algorithm of
Figure 3 can be converted to an IP formulation through
the use of the binary indicator variables vp, zt and ftp,
respectively defined by the following conditions:

vp = 1 ⇐⇒ place p is removed by the algorithm,

∀p ∈ P

zt = 1 ⇐⇒ transition t is removed by the algorithm,

∀t ∈ T

fpt = 1 ⇐⇒ M(p) ≥ W (p, t) ∨ vp = 1, ∀W (p, t) > 0

Furthermore, we let SB(p) denote a structural bound for
the markings of place p ∈ P . Then, the work of [7] estab-
lishes the following theorem:

Theorem 3: Given a marking M ∈ R(N ,M0) of a struc-
turally bounded PN N = (P, T,W,M0), the maximal
deadly marked siphon S contained in M is determined by:

S = {p ∈ P | vp = 0} (2)

where vp, p ∈ P , is obtained through the following IP
formulation:

G(M) = min
∑

p∈P

vp (3)

s.t.
fpt ≥

M(p)−W (p,t)+1
SB(p) , ∀W (p, t) > 0 (4)

fpt ≥ vp, ∀W (p, t) > 0 (5)

zt ≥
∑

p∈•t fpt − |•t| + 1, ∀t ∈ T (6)

vp ≥ zt, ∀W (t, p) > 0 (7)

vp, zt, fpt ∈ {0, 1}, ∀p ∈ P, ∀t ∈ T (8)

2

In order to understand the formulation of Theorem 3,
notice that Equation 6 together with Equation 4 imply that
all transitions zt fireable in marking M will have zt = 1.
Furthermore, Equation 7 implies that all places p ∈ t• for
some t with zt = 1 will have vp = 1, which implements Step
(2.b) in the algorithm of Figure 3. Similarly, Equation 5
combined with Equation 6 force zt = 1 for all transitions t

with vp = 1, ∀p ∈ •t. Finally, the fact that no additional
place p (resp., transition t) has vp = 1 (resp., zt = 1), is
guaranteed by the specification of the objective function in
the above formulation.

In case that net N is a process-resource net, the formu-
lation of Theorem 3 can be restricted to the computation
of the maximal resource-induced deadly marked siphon,
through the introduction of the following two constraints
[7]:

∑

r∈PR
vr ≤ |PR| − 1 (9)

∑

t∈r• frt − |r•| + 1 ≤ vr, ∀r ∈ PR (10)

Specifically, Constraint 9 enforces that the identified siphon
S must contain at least one resource place, while Con-
straint 10 requires that all resource places included in S

must be disabling. The resulting necessary and sufficient
condition for the non-existence of resource-induced deadly
marked siphons in a given marking M of a process-resource
net is as follows [7]:

Corollary 4: A given marking M of a process-resource
net N contains no resource-induced deadly marked siphons,
if and only if the corresponding formulation of Equations 3–
10 is infeasible.
2

The test of Corollary 4 can be extended, in principle,
to a test for the non-existence of resource-induced deadly
marked siphons over the entire modified reachability space,
R(N ,M0), of a process-resource net N = (P, T,W,M0),
by: (i) substituting marking vector M in the IP formula-
tion of Theorem 3 with the modified marking vector M ; (ii)
introducing an additional set of variables, M , representing
the net reachable markings; (iii) adding two sets of con-
straints, the first one linking variables M and M according
to the logic of Equation 1, and the second one ensuring
that the set of feasible values for the variable vector M is
equivalent to the PN reachability space R(N ,M0). Unfor-
tunately, however, any system of linear inequalities exactly
characterizing the set R(N ,M0) is of exponential complex-
ity with respect to the net size [27]. On the other hand, a
superset of the reachability space R(N ,M0) is provided by
the system state equation [18]:

M = M0 + Θx̄ (11)

M ≥ 0, x̄ ∈ Z+ (12)

The above remarks give rise to a sufficient condition for the
non-existence of resource-induced deadly marked siphons S

in the entire space R(N ,M0) of a given process-resource net
N . Furthermore, in the light of Theorem 1, this condition
constitutes a sufficient condition for liveness of process-
resource nets with quasi-live, reversible and acyclic process
sub-nets.

Corollary 5: Let N = (P, T,W,M0) be a process-
resource net with quasi-live, reversible and acyclic process
sub-nets. If the mixed integer program defined by (i) Equa-
tions 3–10, where vector variable M is replaced by vector
variable M , (ii) Equations 11–12, and (iii) Equation 1, is
infeasible, then N is live.
2
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Concluding this paragraph, we notice that for the case
of PT-ordinary process-resource nets with quasi-live, re-
versible and acyclic process sub-nets, a similar but simpler,
from a computational standpoint, liveness sufficiency test
can be derived, based on the result of Corollary 3. We
refer the reader to [4], [6] for a detailed discussion of the
corresponding formulation.

Synthesizing correct algebraic LES for process-

resource nets with quasi-live, reversible and acyclic

process sub-nets Corollary 5 can provide also the basis
for the development of a systematic methodology for the
design of liveness-enforcing supervisors (LES) for process-
resource nets with quasi-live, reversible and acyclic process
sub-nets. This is the result of the fundamental stipulation
that a LES for any given RAS is correct if and only if the
controlled system behavior is live. Hence, to the extent
that Corollary 5 constitutes a liveness criterion, it can pro-
vide a LES correctness verification tool, as long as the LES
synthesis process is restricted in a way that the controlled
system behavior can be modelled by a PN, N c, that re-
mains in the class of process-resource nets with quasi-live,
reversible and acyclic process sub-nets. This can be the
case for a large class of RAS LES encountered in the liter-
ature, characterized as algebraic LES [26], [6]. Essentially,
algebraic LES seek to restrict the concurrency supported by
the underlying RAS, by setting explicit limits on the num-
ber of process instances that can execute simultaneously
certain subsets of the RAS process stages. For implemen-
tation purposes, this idea is operationalized through the
imposition of a set of linear inequalities

A · MS ≤ b (13)

that must always be met by the projection MS of mark-
ing M of the RAS-modelling PN to the subspace defined
by its components corresponding to p ∈ PS . The sub-
set of R(N ,M0) that is reachable under the observation
of Equation 13 constitutes the LES-admissible sub-space,
RLES(N ,M0). For a correct algebraic LES, this sub-space
must (i) contain the initial marking M0, and (ii) be strongly
connected.

From a representational standpoint, the constraint(s)
expressed by Equation 13 can be modelled in the PN-
modelling framework, through the theory of control-place
invariants, presented in [28]. According to [28], each of the
inequality constraints

a[l,·] · MS ≤ bl (14)

can be implemented on the net behavior by superimposing
on the original net structure a control place wl, connected
to the rest of the network according to the flow matrix

θwl
= −a[l,·] · ΘS (15)

where ΘS denotes the flow sub-matrix of the uncontrolled
network N = (P, T,W,M0) corresponding to places p ∈
PS . The initial marking of place wl is set to

M0(wl) = bl (16)

and the resulting controller imposes Constraint 14 on the
system behavior by establishing the place invariant

a[l,·] · MS + M(wl) = bl (17)

Equation 17, when interpreted in the light of Assump-
tion 4 of Section 2.2, implies that the control places wl,
implementing each of the constraints in the LES-defining
Equation 13, essentially play the role of fictitious new re-
sources in the dynamics of the net N c, that models the
controlled system behavior. This observation further im-
plies that the superimposition of an algebraic LES to a
process-resource net with quasi-live, reversible and acyclic
process sub-nets leads to a controlled net N c that falls in
to the class of process-resource nets that satisfy Assump-
tions 2 and 3. However, in order to ensure that the net N c

satisfies also Assumption 5 with respect to the extended
“resource” set PR ∪ PW , some additional restrictions must
be imposed on the specification of the LES-defining Equa-
tion 13, which will ensure that the constituent process sub-
nets remain quasi-live after the introduction of the control
places. In that case, it is obvious that the liveness suffi-
ciency condition of Corollary 5, applied on the controlled
net N c, can function as a correctness verification tool for
the considered supervisor.

Currently, we lack a complete theory that will address, in
the broadest context of process-resource nets, the issue of
synthesizing algebraic LES that preserve the quasi-liveness
of the constituent RAS processes. An additional limitation
of the currently available results is our inability to charac-
terize, for a given process-resource net N , the set of A ma-
trices in Equation 13 that will lead, through Equation 15,
to a controlled net N c which is structurally live with re-
spect to markings M0(wl), l = 1, . . . ,dim(b). Sporadic
results, providing algebraic LES classes that preserve the
RAS quasi-liveness and are structurally live with respect
to markings M0(wl), l = 1, . . . ,dim(b), and that are ap-
propriate for Single-Unit and/or Conjunctive/Disjunctive
RAS, can be found in [19], [29], [6], [7].6 While the devel-
opment of a complete methodology able to systematically
synthesize (algebraic) LES for the class of process-resource
nets considered in this work is an important and challeng-
ing problem open to further investigation, the results of
Sections III and IV can still enable the systematic verifi-
cation of the correctness of algebraic LES that might have
been heuristically developed for any given quasi-live, re-
versible and acyclic process-resource net. The following
example demonstrates this capability.

Example 2: Consider the process-resource net de-
picted in Figure 4. As it can be seen from the figure,
the underlying RAS consists of two processes, J1 and
J2, and five resource types, R1, . . . , R5. Process type J1

has a flow represented by an acyclic marked graph, and
it involves six tasks, J11, . . . , J16, with corresponding re-
source requirements: [1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0],
[0, 0, 1, 0, 0], [0, 1, 0, 0, 0] and [0, 0, 0, 0, 1]. Process type J2

has a flow represented by an acyclic state machine, and

6Also, some of the results presented in [30], [2], [20], [9], [10] can be
recast in the same framework.
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Fig. 4. Example 2 – The considered process-resource net

it involves four stages, J21, . . . , J24, with corresponding re-
source requirements: [0, 1, 0, 0, 0], [1, 1, 0, 0, 0], [0, 1, 1, 0, 0]
and [0, 0, 0, 1, 0]. A closer inspection of the task/stage re-
source requirements for these two processes reveals that
the only resources that could be entangled in a dead-
lock are R1, R2 and R3. Therefore, the critical sections
for J1 and J2 are respectively defined by the stage sets
{J11, J12, J13, J14, J15} and {J21, J22, J23}.

Our intention is to develop a LES for this net that will
establish the liveness of the controlled net by restricting
the number of process instances that can simultaneously
execute in their critical sections identified above. Hence,
the proposed supervisor constitutes a more refined imple-
mentation of the ”process-release” control scheme, previ-
ously proposed in the literature,7 to the particular process-
resource net of Figure 4. The discussion of the previous
paragraph suggests that, from an algebraic representational
standpoint, the control logic of the considered LES can be
expressed by a single linear inequality

a · MS ≤ b (18)

where b defines the ceiling on the process concurrency im-
posed by the considered supervisor, and the elements of the
(row) vector a are provided by a set of p-semiflows charac-
terizing the control flow logic for the various process types
in their critical sections. In the PN modeling framework,
this LES is superimposed to the original process-resource
net of Figure 4 through the introduction of a control place
w, connected to the original process-resource net through
the flow structure depicted in dotted lines in Figure 4.

Next we seek to determine the maximal marking for w

that leads to live behavior for the (controlled) net struc-
ture of Figure 4, using the siphon-based liveness analysis
developed in this work. For this, we first determine an up-
per bound to the maximal number of processes that can
be executed simultaneously by the considered RAS. The
reader can convince herself that, based on the resource ca-
pacities and the process flows annotated in Figure 4, an
upper bound for the system concurrency w.r.t. job type
J1 (resp., J2) is 7 (resp., 5) process instances. Then, us-

7c.f., for instance, the policy presented in [2] and some of the policies
presented in [20]; however, the results developed in those works will
encompass neither the non-ordinary structure of the process-resource
net under consideration, nor the complexity of the involved process
flows.

ing the MIP formulation of Corollary 5 in a binary search
over the integer set {1, . . . , 12}, reveals that the maximal
marking for control place w leading to a correct algebraic
LES – or equivalently, the maximal number of jobs that
can be simultaneously loaded in the system without the
possibility of running into any deadlocking problems – is
6. For completeness, we mention that the deadlock mark-
ing identified by the computerized solver when the MIP
formulation of Corollary 5 was solved with M0(w) = 7,
was: M(i1) = 1; M(p11) = 4; M(p12) = M(p13) = 2;
M(i2) = 4; M(p21) = 1; M(r4) = 2; M(r5) = 1; and zero
for every other place. 2

We conclude this section with some remarks on the po-
tential of synthesizing a LES for any given process-resource
net, based on the mechanism of process-release control and
the structural test for liveness introduced in this section.
It is easy to see that, if the process sub-nets of the orig-
inal process-resource net N are quasi-live, reversible and
acyclic, then the process sub-nets of the controlled net N c,
resulting from the introduction of the control place {w},
are also reversible, acyclic and quasi-live with respect to
the broader “resource” set PR ∪{w}, iff M0(w) ≥ 1. How-
ever, N c may not be structurally live with respect to place
w. This effect results from the fact that process nets that
contain synchronizing / merging transitions, might need
additional control logic to ensure their liveness, even for
the execution of a single process instance,8 and exempli-
fies the extent and nature of the difficulties that must be
addressed by any research effort seeking to systematically
develop LES appropriate for the considered class of process-
resource nets.

V. Conclusions

The work presented in this paper extended the currently
existing results regarding the siphon-based characterization
of (non-)liveness in sequential RAS. Specifically, it pro-
vided a unifying framework for interpreting all the rele-
vant results currently existing in the literature, and even
more importantly, it extended the theory applicability to
broader RAS classes9 and it revealed its limitations. It
was shown that some key RAS properties that facilitate
the interpretation of its non-liveness through the concept
of resource-induced deadly marked siphon, are the quasi-
liveness, reversibility and acyclicity of its constituent pro-
cesses.

This finding further suggests that, for RAS with acyclic
processes, live behavior can be established through a two-
stage decomposition procedure, where the first stage seeks
to establish inherently consistent – i.e., quasi-live and
reversible– process behaviors, and the second stage seeks
to develop, if necessary, a control policy, in the form of

8Luckily, this effect did not appear in the case of Example 2, in spite
of the presence of the synchronizing transition t14 in the process type
J1. In fact, the reader should convince herself that, because of the
particular structure presented by process subnet between transitions
t11 and t14, J1 will be live iff it is quasi-live, for any given resource
availability.

9c.f. Example 2 in Section IV, where the addressed process-resource
net does not belong to any of the RAS classes that have been studied
in the literature.
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an (algebraic) LES, that will ensure the RAS liveness in its
process enactment phase. In order to support the first stage
of this decomposition, more work is necessary towards de-
veloping a more profound understanding of the emerging
concepts of process quasi-liveness and reversibility, as de-
fined by Assumptions 1, 2 and 5; some preliminary results
in this direction can be found in [14]. An issue that needs
further investigation in order to support the second stage
of the aforementioned decomposition, is the identification
– or even better, the development of a mechanism for the
automated synthesis – of algebraic LES structures that are
guaranteed to maintain the process quasi-liveness of the
underlying RAS, and to be structurally live with respect
to the marking of the associated control places, in the con-
text of the broader RAS classes considered in this work.
Prior experience with the development of similar algebraic
LES for the more restricted classes of SU-RAS and CD-
RAS can offer useful guidance in this task. Understanding
and controlling the dynamics of RAS with internal process
cycles is another issue that was shown to lie beyond the
boundary of the theory developed in this work, and there-
fore, it stands open to further investigation. Finally, from
an application standpoint, the successful implementation of
such a research program will extend our capability towards
the effective deployment and (re-)configuration of flexible
automation in a broad scope of applications, ranging from
automated (e.g., 300mm semiconductor) manufacturing, to
driver-less urban mono-rail and railway systems, to web-
based workflow management systems.
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