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Abstract

Currently there is increasing consensus that one of the main issues differentiating the

re-manufacturing from the more traditional manufacturing processes is the need to effec-

tively model and manage the high levels of uncertainty inherent in these new processes.

Hence, the work presented in this paper undertakes the issue of uncertainty modelling

and management as it arises in the context of the optimal disassembly planning (ODP)

problem, one of the key problems to be addressed by re-manufacturing processes. More

specifically, the presented results formally establish that the theory of reinforcement learn-

ing , currently one of the most actively researched paradigms in the area of machine learn-

ing, constitutes a rigorous, efficient, and effectively implementable modelling framework

for providing (near-)optimal solutions to the optimal disassembly problem, in the face of

the aforementioned uncertainties. In addition, the proposed approach is exemplified and

elucidated by application on a case study borrowed from the relevant literature.

Keywords: disassembly planning, product recovery, uncertainty management, reinforce-

ment learning, (neuro-)dynamic programming
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1 Introduction

During the last decade, the developed economies have been becoming increasingly aware of the

need to handle used products in an environmentally conscious manner. The typical practices

adopted in the earlier phases of industrialization, that would dispose products reaching the

end of their functional life either through dumping in landfill sites or through shredding and

incineration, are reckoned to be too polluting and unnecessarily wasting precious environmen-

tal resources, by failing to retrieve and reuse materials and functional components potentially

available in the discarded product. Hence, under the pressure of emerging legislation in most of

the developed countries, manufacturers proceed to set up additional operational networks that

will retrieve their products upon reaching the end of their life, and if possible, reprocess and

reuse the constituent components and materials. This new set of reclaiming, reprocessing and

redistribution operations is collectively known as reverse logistics [5], and their design and man-

agement defines a novel and challenging technical area of production system modelling, analysis

and control.

One particular theme that is emerging as a predominant issue in the current reverse logistics

related literature is the need for effective modelling, analysis and management of the high levels

of uncertainty inherent in the operation of these systems. For instance, three recent survey

works reported in [12, 21, 5] identify the modelling and analysis of the impact of the product

and environmental uncertainties underlying the operation of modern reverse logistics systems as

one of the major issues to be addressed by the research community. Furthermore, the same works

point out that the effective management of these uncertainties is one of the fundamental issues

differentiating reverse logistics and remanufacturing-related research from the more traditional

logistics and manufacturing systems theory.

Motivated by these general remarks, the work presented in this paper undertakes the problem

of uncertainty modelling and management in the context of the more specific area of “(optimal)

disassembly planning (ODP)”, which constitutes a core problem to be addressed in the operation

of any reverse logistics process. A basic characterization of the ODP problem is provided by

means of Figure 1, which has been adapted from [12]. As depicted in Figure 1, the disassembly of

the reclaimed product units to a number of components and sub-assemblies constitutes a primary

step in the entire reverse logistics process. The derived units will be subsequently directed

either (i) for remanufacturing / refurbishing and reuse, or (ii) for extraction and recycling of

(some of) their materials, or, finally, (iii) for disposal through dumping or incineration. In

this operational context, the ODP problem seeks to determine the level of disassembly of each
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returned product unit to its constituent elements, and the particular venue of disposition of the

retrieved components, so that the total (monetary) value extracted during the process operation

is maximized, while at the same time, various technical, legislative, environmental, and any other

managerial considerations are observed.

It can be argued that the ODP problem is one of the most extensively investigated problems

in the reverse logistics literature. As it was already mentioned, three recent and quite compre-

hensive surveys of the relevant literature are provided in [12, 21, 11]. All the works presented

in these surveys address the ODP problem by (i) first formalizing in a particular representation

the dynamics of the disassembly process, as constrained by the relevant technological, environ-

mental and legislative requirements, (ii) subsequently augmenting this representation with a

“cost structure” modelling the economic elements involved in the decision-making process, and

(iii) finally defining and solving an optimization problem by means of the modelling framework

established in steps (i) and (ii). Yet, it is also true, that with the exception of the works pre-

sented in [4, 10, 15, 7, 26, 24, 6, 18, 13], all the remaining existing works on the ODP problem

are assuming a totally deterministic model for the underlying process dynamics and the ap-

plying cost structure. Furthermore, among the works that recognize the potential stochasticity

of these problem elements, many of them (e.g., [4, 10, 15, 7, 26]) deal with this issue only as

an after-thought, through (a) the sensitivity analysis of a solution developed according to a

deterministic optimization model and/or (b) the on-line heuristical adjustment of the derived

solution, in case that there exists significant deviation of the actual implementation from the

normative model. On the other hand, the works of [24, 6, 13] recognize the need to explicitly

address the involved uncertainty during the determination of the optimal policy, but they resort

to problem representations that presume the a priori availability of some (quite sophisticated)

model that provides a complete quantitative characterization of this uncertainty; only the work

of [18] recognizes the potential unavailability of the information necessary to develop such a

priori fully quantified models and the resulting need to derive this information in real-time.

The defining positions of our work, which are in agreement with the positions taken in [18],

and also with an emerging consensus in the broader community, are that: (i) understanding the

impact of the involved uncertainty and accounting for it during the development of optimized

disassembly plans, is important for the effective optimization of the overall process performance;

furthermore, (ii) any assumption regarding the a priori availability of a fully quantified model

characterizing problem elements like the statistical distributions and/or indices modelling the

randomness in the cost data and the probability distributions determining the classification of

the various components and subassemblies to different quality classes, is rather unrealistic, since
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(much of) the information necessary to develop such a model can be provided only through

observation of the process itself. These two positions further suggest that any attempt towards

developing an optimizing solution to the ODP problem, which is the focus of this work, must

involve some algorithmic components that will allow the decision making process to (i) accumu-

late its past experience to a pertinently defined set of data structures, and, at the same time,

(ii) exploit the “knowledge” captured in these data sets towards improving the overall system

performance. In broader systems theory, algorithms with the aforementioned capabilities are

known as “learning” algorithms [16]. Hence, the main topic and the intended contribution of this

paper is the design of effective and computationally efficient learning algorithms for the ODP

problem. More specifically, we are focusing on a particular class of learning algorithms known

as “reinforcement learning” in the relevant literature [19]. We believe that these algorithms are

most appropriate for the ODP problem due to (i) their strong affinity to the dynamic program-

ming framework [1], which, as it will be shown in the next section, is the natural representation

of the problem under consideration, and (ii) their computational simplicity and implementation

flexibility, two properties which render them compatible with the conditions prevailing in the

involved facilities. In addition, reinforcement learning algorithms have been extensively stud-

ied recently, and currently, there is a significant body of analytical results characterizing their

convergence and dynamics.

With this basic positioning of the presented results, the rest of the paper is organized as

follows: The next section provides an analytical characterization of the ODP problem that

reveals the underlying problem structure but also the nature and impact of the aforementioned

uncertainties on the derived solutions. Subsequently, Section 3 establishes that reinforcement

learning provides an effective and computationally efficient method for generating optimized

disassembly plans in the face of the aforementioned process uncertainties. Section 4 considers

the implementation of the proposed algorithms in the re-manufacturing facility, providing a

number of observations and suggestions that can potentially expedite the learning process and

facilitate the integration of these algorithms in the overall operational context. Finally, Section 5

concludes the paper and highlights directions for future work. Throughout the paper, a case

study adapted from [9] exemplifies and elucidates the primary concepts and methods introduced

in this work.
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2 An analytical formulation of the ODP problem

2.1 A Petri net-based modelling framework

As it was pointed out in the discussion of the introductory section, any analytical characteriza-

tion of the ODP problem must be based on a formal representation of the disassembly process

that will be able to express explicitly, yet compactly, all the feasible1 disassembly sequences

and their associated economics. Presently, the two most widely adopted representations for the

disassembly process and the associated ODP problem are based on (i) AND/OR graphs [8] and

(ii)Disassembly Petri Nets (DPN) [25] – see also [21, 11]. Although these two representations

are essentially equivalent [21, 25], in this work we adopt the DPN version, since the semantics of

the Petri net-based modelling framework (i) are more standardized than those of the AND/OR

graphs, by now being widely accepted as a basic modelling framework in the broader systems

literature, and in addition, (ii) they provide, through the notions of “place marking” and “tran-

sition firing”, a well-defined mechanism for representing the disassembly process state and the

evolution of the process dynamics. However, our work extends the basic definition of DPN’s

provided in [25, 20], in a way that accounts for the explicit modelling of the part condition and

the relevant classification /testing process; for this reason, the adopted PN-based representation

will be characterized as Extended DPN (E-DPN). Next, we proceed to a detailed characteri-

zation of the E-DPN model, assuming that the reader is familiar with the basic elements of

the PN theory; an excellent introductory treatment of the PN theory and its employment in

manufacturing applications can be found in [23].

The E-DPN model is formally defined as an eight-tuple

E-DPN = (P, T, F,m0, ρ, τ, ξ, δ)

where

1. Z = (P, T, F,m0) is a connected acyclic Petri net presenting the following structure:

(a) The set of places , P , is partitioned to three subsets: PR, PC and PL. Places p ∈ PR

model the originally retrieved product units as well as units extracted from the various

disassembly steps in their Raw status, i.e., before their testing and classification to

the various quality classes discerned by the underlying process. Places p ∈ PC model

1We remind the reader that feasibility in the ODP context should be perceived with respect to technological,

as well as environmental and legislative considerations.
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(Classified) units after testing, categorized according to some quality attribute(s).

Finally, places p ∈ PL model units directed to their final reprocessing operation;

therefore, they constitute terminal (or Leaf) places in the considered disassembly

sequence.

(b) The set of transitions , T , is also partitioned to three subsets: TD, TC and TP . Transi-

tions t ∈ TD model disassembly operations, while transitions t ∈ TP model operations

corresponding to the final re-processing of the extracted units. Finally, transitions

t ∈ TC model the classification of the different extracted artifacts, through testing

and evaluation of some quality attribute(s).

(c) The net flow relation, F , is a function from (P×T )∪(T×P ) to the set of nonnegative

integers, Z+
0 ; in the E-DPN modelling framework, F models the dynamics of a typical

disassembly process by satisfying the following conditions:2

i. {p ∈ P : •p = ∅} = {p0} ⊆ PR, i.e., the whole net has a single source node,

corresponding to the original artifact in its raw (unclassified) state. Also, ∀p ∈

PR∪PC , |p
•| ≥ 1, where |·| denotes the cardinality of the set argument; i.e., places

p ∈ PR ∪ PC correspond to non-terminal stages in the overall decision-making

process.

ii. ∀t ∈ TD,
•t = {p} ⊆ PC , and t• ⊆ PR; i.e., a disassembly operation has as input

a single classified item and it produces a number of new unclassified artifacts.

Similarly, ∀t ∈ TC ,
•t = {p} ⊆ PR, and t• = {q} ⊆ PC , while ∀t ∈ TP ,

•t =

{p} ⊆ PC , and t• = {q} ⊆ PL.

iii. Finally, F must take binary values on all of its domain, except for the part corre-

sponding to TD × PR; for pairs (t, p) ∈ TD × PR, F (t, p) will express the number

of artifacts of the p-type that are generated through a disassembly operation of

the t-type, and therefore, this value can be any nonnegative integer.

(d) The net initial marking , m0, is a function from the place set P to Z+
0 ; in particular,

m0(p) equals 1 if p = p0, and 0 otherwise, i.e., the entire disassembly process starts

with a returned but still unclassified product unit. Also, to facilitate the subsequent

discussion, we characterize as a terminal marking, any marking m reachable from m0

2We remind the reader that, in the PN formalism, F (p, t) denotes the number of tokens that must be available

at place p for a single firing of transition t, and are consumed by this firing. Similarly, F (t, p) denotes the

number of tokens placed in place p by a single firing of transition t. Furthermore, •p = {t ∈ T : F (t, p) ≥ 1};

p• = {t ∈ T : F (p, t) ≥ 1}; •t = {p ∈ P : F (p, t) ≥ 1}; and t• = {p ∈ P : F (t, p) ≥ 1}.
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through a sequence of transition firings, with m(p) = 0, ∀p ∈ PR ∪ PC .

2. ρ is a set of discrete probability distributions, with each distribution corresponding to a

place p ∈ PR, and with its support being equal to p•. Given a place p ∈ PR and a transition

t ∈ p•, ρ(p, t) denotes the probability that a unit of type p, upon testing, will be found in

the condition modelled by (classifying) transition t.

3. τ : TD ∪ TP → R+
0 , where R+

0 denotes the set of nonnegative real numbers, is a function

modelling the (expected) costs incurred by the various disassembly and (re-)processing

operations .

4. ξ : PL → R+
0 is a function modelling the (expected) returns from the various terminal

operations .

5. δ represents another set of discrete probability distributions, with each distribution cor-

responding to a place p ∈ PC , and with its support being equal to p•. For every place

p ∈ PC and a transition t ∈ p•, δ(p, t) denotes the probability that a unit of type p will

be disposed according to the operation modelled by transition t. These distributions will

express the adopted disassembly plan.

In this work, we are interested in identifying a disassembly plan, expressed by a distribution

set δ∗, that will maximize the expected return from each processed item. This objective is

formally expressed by introducing the place value function, πδ : P → R, which is associated

with the disassembly plan defined by the distribution set δ, and maps each place p ∈ P to a

real value representing the expected return to be obtained from the processing of a unit of the

artifact represented by place p, according to the disassembly plan defined by the aforementioned

distribution set δ. Then, our problem is to identify δ∗ = arg maxδ{π
δ(p), ∀p ∈ P}.3 We shall

also denote π∗(p) ≡ πδ
∗

(p) across all p ∈ P . The π∗(p) values for places p ∈ PL are equal

to ξ(p), introduced in item (4) of the E-DPN definition. For the remaining places, an opti-

mized disassembly plan and the resulting π∗(p) values can be computed according the dynamic

programming (DP) algorithm discussed next.

3We remind the reader that arg maxx∈X f(x) denotes any maximizer of the function f() among the elements

of the set X.
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2.2 Computing an optimal disassembly plan through dynamic pro-

gramming

In the face of the acyclic structure of the E-DPN model introduced in the previous paragraph,

the maximization of πδ(p), ∀p ∈ P , can be achieved through a specialization of the broader

logic of dynamic programming to the ODP problem context, that computes the maximized

π∗(p)-values in a recursive manner, starting from the leaf nodes. The detailed recursion is as

follows:4

∀p ∈ PL, π
∗(p) := ξ(p) (1)

∀p ∈ PR, π
∗(p) :=

∑

t∈p•

ρ(p, t) · π∗(t•) (2)

∀p ∈ PC , π
∗(p) := max

t∈p•
{

∑

q∈t•

(F (t, q) · π∗(q)) − τ(t)} (3)

Equations 1–3 above have a very straightforward interpretation in the E-DPN context. Specif-

ically, Equation 1 implies that the value extracted from the various artifacts in their terminal

operations is determined by external factors relating to their inherent value and the prevailing

market conditions. Equation 2 expresses the fact that the value of an unclassified item in some

place p ∈ PR is defined by the values corresponding to the various classifications of this item,

{π∗(t•) : t ∈ p•}, averaged according to the classification probability distribution ρ(p, ·). Finally,

Equation 3 implies that the optimal expected value to be associated with an artifact belonging

to the category corresponding to a place p ∈ PC is the value resulting from a processing option

that maximizes the resulting (expected) return, where the latter is defined as the cumulative

optimal value of all the derived artifacts reduced by the corresponding processing cost. This

last observation characterizes also the optimal disassembly plan: using the δ∗ representation

introduced above, it follows that

∀p ∈ PC ,∀t ∈ p•,

δ∗(p, t) =











1 for some t∗ ∈ arg maxt∈p•{
∑

q∈t•(F (t, q) · π∗(q)) − τ(t)}

0 otherwise
(4)

Notice that the optimal plan δ∗, defined in Equation 4, has δ∗(p, t) ∈ {0, 1} for all pairs

(p, t), i.e., it constitutes a deterministic (disassembly) policy, according to the DP terminology.

4With a slight abuse of notation, π∗(t•), in Equation 2, denotes the value of the single place q which is the

output place of transition t (since, for the considered case, t ∈ TC – c.f. item (1.c.ii) in the definition of the

E-DPN structure).
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2.3 Example

The E-DPN modelling framework and the application of the DP-based algorithm for the com-

putation of the optimal value function and the optimal disassembly plan, is demonstrated by

means of an example case study adapted from [9]. The returned item is a particular TV model,

with the basic bill of material presented in Table 1. During the disassembly, each of the ex-

tracted components is classified in two classes, “repairable” (or class 1) and “worn out” (or

class 2), according to the probability distributions listed in Table 2. The disposition venues

generally available for the TV sets and the extracted components are: upgrading (UP), restora-

tion (RES), disassembly (DSBL), recycling (REC) and disposal (DISP). However, the particular

options available for a certain component depend on its quality class, with the exception of re-

cycling and disposal, which are class-independent. Furthermore, each processing option results

in the generation of (monetary) value, which depends on the component, its condition, and, of

course, the selected option itself. The viable processing options for each (sub-)assembly, the

corresponding processing costs, and the value generated by those options that constitute termi-

nal processing steps are also listed in Table 1. On the other hand, the expected values resulting

from the various disassembly steps depend on the classification distribution(s) associated with

the components generated by that step, as well as the subsequent actions taken, and therefore,

they are not part of the data listed in Table 1. Instead, the optimized set for these values can be

computed by applying the DP algorithm, expressed by Equations 1 – 4, on the E-DPN model

of the considered disassembly process; the E-DPN model for this example, the optimal value

function π∗, and the corresponding optimal disassembly policy are depicted in Figure 2.

In Figure 2, places in PR, corresponding to unclassified units, including the original product

unit itself, are depicted with dotted lines; places in PC , corresponding to units classified (through

testing) to one of the two recognized quality classes, are depicted with dashed lines; finally,

places in PL, corresponding to terminal operations, are depicted with solid lines. For referential

purposes, each place is uniquely identified by a label annotated within the corresponding circle.

In particular, the dashed-line places, that correspond to classified units, are characterized by a

label with its first part being defined by the corresponding item ID # – as specified in the 2nd

column of Table 1 – while its last digit is the quality class code: 1 for a repairable condition and 2

for worn-out. Dotted-line places, that correspond to unclassified units, are characterized by the

concatenation of the item ID # and the label of the parental classified node, whose disassembly

generated the considered item; however, in the case of item 0, that corresponds to the original

product unit, the second part of the label does not exist, and it is denoted by ‘-’. Finally, solid-
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line places, that correspond to terminal operations, are characterized by the abbreviation of the

corresponding operation. The numbers attached to transitions in TD ∪ TP – that correspond,

respectively, to disassembly and terminal operations for classified units – represent the (expected)

cost of the corresponding operation, provided in Table 1 (first entry in the pair accompanying

each operation). The numbers attached to transitions in TC – that represent the classification of

the unit associated with their input place to the quality class associated with their output place

– are the relevant classification probabilities, provided by Table 2. Finally, the numbers attached

to the various places represent their optimal value, π∗(p). For places in PL, corresponding to

terminal operations, these values are provided in Table 1 (second entry in the pair accompanying

each operation). For the remaining interior places, these values are obtained according to

the DP logic expressed by Equations 2 and 3. For instance, the optimal value of place p71,

that corresponds to item 7 in repairable condition, is computed, according to Equation 3 as:

π∗(p71) = max{70−40, 40−30, 56−20, 0−10} = 36. On the other hand, the value of place p741,

that corresponds to an unclassified unit of item 7, obtained from the disassembly of a unit of item

4 in condition 1 (repairable), is computed, according to Equation 2, as: π∗(p741) = 1.0 ·π∗(p71) =

1.0 · 36 = 36. Similarly, one can find that π∗(p81) = max{80− 30, 50− 13, 0− 10} = 50 and that

π∗(p841) = 1.0 · π∗(p81) = 1.0 · 50 = 50. Then, the value of place p41, that corresponds to one

unit of component 4 in condition 1 (repairable), can be obtained, according to Equation 3, as:

π∗(p41) = max{60−17, 36+50−10, 0−20} = 76. Furthermore, the logic of Equation 4 indicates

that, based on the above calculations, the respective optimal options for p71, p81 and p41 are

RECYCLING, UPGRADING and DISASSEMBLY. Working in this fashion, from the terminal

nodes of the E-DPN graph towards its source node, one can obtain the optimal value for each

node and the entire optimal disassembly plan; the latter is depicted by the thicker transitions

in Figure 2, and it consists of the options listed in boldface characters in Table 1. �

The presented example, and also Equations 1–4, provide a complete characterization of the

data set needed for the computation of the optimal disassembly plan through the basic DP

algorithm. In particular, this data set includes the expected costs and revenues associated

with the various processing stages, as well as the classification probabilities for the extracted

components and sub-assemblies (c.f. Tables 1 and 2). Yet, as it was remarked in the introductory

section, data like the item classification probabilities will be hard to estimate a priori, since

they are determined by the process input stream, which, in turn, consists of items exposed

to uncontrollable and unobservable consumer behaviors. In a similar vein, the expected costs

and revenues associated with the various processing stages can be significantly affected by the

quality status of the processed material, which again implies that they will not be amenable to
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guesstimate mechanisms. Furthermore, many of these parameters can be varying with time, as

they will be affected by shifts and drifts of the prevailing operational and the market conditions.

The next section discusses how these data-related issues can be addressed by reinforcement

learning algorithms, that augment the basic DP logic with learning and adaptive capabilities.

3 Managing the ODP uncertainty through Reinforcement

Learning

3.1 Reinforcement Learning: The general framework

Reinforcement learning (RL) theory is a paradigm developed by the machine learning and the

broader artificial intelligence community in an effort to design algorithms that will allow sys-

tems to “learn how to make good decisions by observing their own behavior, and use built-in

mechanisms for improving their actions through a reinforcement mechanism” [19]. The basic

structure of any RL implementation is depicted by the block diagram of Figure 3: A controlled

plant evolves in a discrete state space through the execution of a sequence of actions commanded

to it by a learning controller . The execution of an action at the running plant state causes the

transition of the plant to a new state, and it also generates an immediate reward or reinforcement

feedback that is a function of the state-action pair. The intention of the learning controller is to

select the actions to be commanded at every plant state in a way that maximizes some objective

function of the sequence of the collected rewards. In the most typical RL implementations, the

optimal action selection scheme can be characterized by an optimal value function that asso-

ciates an (expected) value with every state-action pair, such that the optimal actions for any

given state are the maximizers of the restriction of this value function to that state. Hence, given

a plant and an associated objective function, the RL controller tries to identify an optimal policy

for them by “learning” the corresponding optimal value function. More specifically, the learning

controller maintains an estimate of this value function, that is initialized to some arbitrary set of

values, and it is subsequently updated every time that a new reward observation is obtained, in a

way that brings the maintained value estimates closer to the value function corresponding to the

observed plant behavior. On the other hand, the running estimate of the optimal value function

affects the action selection process itself, since, at each decision epoch, actions are selected in

a way that seeks to balance the conflicting objectives of (i) maximizing the resulting value, as

perceived by the aforementioned estimate of the optimal value function, and (ii) enhancing the

quality of this estimate through further exploration over the plant state-action space; this last
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conflict is known in the relevant terminology as the “exploration vs. exploitation” dilemma.

The theory of RL algorithms was substantially strengthened by the realization that, in their

basic definition, many of these algorithms essentially constitute stochastic approximations of

some more classical DP algorithms. More specifically, under their DP-based interpretation, RL

algorithms essentially seek to compute an underlying optimal value function, π∗(·), in an itera-

tive fashion that constitutes the Robbins-Monro stochastic approximation of some DP recursion

defined according to Bellman’s equation; the reader is referred to ([1]: Chapters 4 and 5) for the

more technical details. The interpretation and study of RL theory in the prism of this finding

has lead to a more profound understanding of the underlying learning mechanisms, and eventu-

ally, to the broader dissemination and acceptance of the field. Next we employ this connection

between DP and RL theory, in order to transform the DP recursion for the ODP problem,

developed in Section 2, to a RL algorithm; this part of our work will focus on a particular class

of RL algorithms known as Q-learning algorithms [22].

3.2 Q-learning implementation for the ODP problem

When viewed in the aforementioned DP context, the defining property of the Q-learning algo-

rithms is that the optimal value function learned by them is not the optimal state value function,

π∗(·), itself, but a refinement of it known as the (problem) Q-factors; these Q-factors are defined

for each state-action pair (i, u), such that the optimal Q-factor values – to be denoted by Q∗(i, u)

– express the expected (total) value that results by selecting action u at state i and following the

optimal policy thereafter [22, 1]. Obviously,

π∗(i) = max
u

{Q∗(i, u)} (5)

In the E-DPN representation for the ODP problem developed in Section 2, the primary decision

points are represented by places p ∈ PC . Hence, a set of Q-factors adequate to implement the Q-

learning algorithm in the considered problem context, is defined by the pairs (p, t), p ∈ PC and

t ∈ p•. Furthermore, the above interpretation of the optimal Q-factor values, Q∗(p, t), implies

that, in the context of the ODP problem, they must satisfy the following Bellman equation:

∀p ∈ PC , ∀t ∈ p•,

Q∗(p, t) =



































∑

q∈t•(F (t, q) · π∗(q)) − τ(t),

for t ∈ TP
∑

q∈t•(F (t, q) ·
∑

ψ∈q•(ρ(q, ψ) · maxu∈(ψ•)•{Q
∗(ψ•, u)})) − τ(t),

for t ∈ TD

(6)
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In plain words, Equation 6 can be interpreted as follows: The optimal Q-factor values for

transitions corresponding to terminal operations for some extracted item, are equal to the ex-

pected (monetary) value resulting from those operations minus the processing costs involved. On

the other hand, the optimal Q-factor value for transitions modelling disassembly operations is

determined by the cumulative expected value of the derived components, where the expectation

is taken with respect to the classification probabilities of the derived items, and the values of

the various quality classes are determined by the optimal Q-factor values themselves, according

to Equation 5.

According to the general discussion of RL algorithms provided in Section 3.1, a Q-learning

implementation for the ODP problem will try to develop accurate estimates, Q(p, t), of the

optimal Q-factor values, Q∗(p, t), by exploiting the information contained in the sequence of

the immediate rewards generated by the plant. In the ODP problem context, these immediate

rewards are defined by the returns generated every time that a certain artifact in some quality

class p ∈ PC is processed through an option t ∈ p•. Upon the generation of such a reward, the

algorithm will update the corresponding Q-factor estimate, Q(p, t), by employing the following

Robins-Monro stochastic approximation of Equation 6:

∀p ∈ PC , ∀t ∈ p•,

Q(p, t) := (1 − γ)Q(p, t) +

γ



































∑

q∈t•(F̂ (t, q) · π̂(q)) − τ̂(t),

for t ∈ TP
∑

q∈t•(F̂ (t, q) ·
∑

ψ∈q•(ρ̂(q, ψ) · maxu∈(ψ•)•{Q(ψ•, u)})) − τ̂(t),

for t ∈ TD

(7)

The quantities π̂ and τ̂ , that appear in Equation 7, denote respectively the (observed) re-

turned revenue and processing cost applying to that instance. In the same spirit, F̂ (t, q) denotes

the number of units of the type modelled by place q, that were actually obtained during the

applied processing step, represented by transition t. In the case of a disassembly operation,

ρ̂(q, ξ) denotes the percentage of the obtained F̂ (t, q) units that were eventually classified in the

class represented by transition ξ ∈ q•. Finally, γ is an implementational parameter known as

the algorithm learning rate; it must have a value in the interval (0, 1], and it can be interpreted

14



as the “percentage” of the “error” term5



































∑

q∈t•(F̂ (t, q) · π̂(q)) − τ̂(t),

for t ∈ TP
∑

q∈t•(F̂ (t, q) ·
∑

ψ∈q•(ρ̂(q, ψ) · maxu∈(ψ•)•{Q(ψ•, u)})) − τ̂(t),

for t ∈ TD



































− Q(p, t) (8)

that must be added to the current value of the Q(p, t) factor in order to obtain the updated

estimate.

It should be clear from the above interpretation of the various parameters involved in the

updating expression of Equation 7, that all the relevant data can be obtained from direct obser-

vation of the system operation at each processing cycle, and therefore, in case that the Q(p,t)

estimates converge to the optimal Q∗(p, t) values, the presented algorithm has indeed the poten-

tial to establish optimal operation despite the lack of an explicit model for the system behavior.

The next theorem establishes that for the ODP problem version introduced in Section 2, this

convergence will always take place, provided that the algorithm implementation satisfies some

additional conditions.

Theorem 1 Consider the implementation of the Q-learning algorithm for the ODP problem,

defined by the updating scheme of Equation 7, and further suppose that:

1. For every place p ∈ PC and transition t ∈ p•, the sequence of learning rates γk(p, t)

k=1,2,. . . , utilized in the updates of the estimate Q(p, t), satisfies the following two equa-

tions:

∞
∑

k=1

γk(p, t) = ∞ (9)

∞
∑

k=1

γ2
k(p, t) < ∞ (10)

2. For every component class p ∈ PC, the algorithm selects every processing option t ∈ p•,

an infinite number of times.

Then, the algorithm estimates, Q(p, t), will converge to the corresponding optimal values,

Q∗(p, t), with probability 1, and irrespectively of the initializing values of the Q(p, t) estimates.

5The expression of Equation 8 can be interpreted as the difference between the Q∗-value of the (p, t) pair

assessed based on the currently experienced results of executing option t on an item of the quality class p, and

the available Q(p, t) estimate.
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Proof: The proof of Theorem 1 results immediately from Proposition 5.5 of [1], when

noticing that the E-DPN structure, introduced in Section 2, implies that, starting from the

initial marking m0, every execution of the learning algorithm will result in a terminal marking,

m, in a finite number of steps, and therefore, in the terminology of [1], every feasible disassembly

policy is proper (c.f. Definition 2.1 in [1]). �

Conditions 1 and 2 of Theorem 1 are necessary in order to ensure that (i) the algorithm

implementation allows for sufficient exploration, and that (ii) the algorithm convergence is not

compromised by the stochasticity inherent in the observed rewards. A practical way to guar-

antee the requirements of the first condition, is by having the learning rates, γk(p, t), decrease

asymptotically to zero, according to the following schedule:

γk(p, t) := b/(a+ k) (11)

where a and b are positive constants. On the other hand, Condition 2 can be enforced by

introducing a small positive parameter ε << 1.0, and adopting an action selection scheme that,

at every decision cycle, selects an action corresponding to a maximal Q(p, t) estimate 6 with

probability 1− ε, and an alternative random action with probability ε.7 Hence, both Conditions

1 and 2 can be effectively satisfied during the algorithm implementation, and therefore, they do

not constrain its applicability.

3.3 Example

In order to demonstrate the ability of the Q-learning algorithm, defined by Equation 7, to

determine an optimal policy for the ODP problem, and to elucidate the dynamics of the learning

process as it converges to the optimal value function, we applied it to the ODP example discussed

in Section 2. The presented implementation satisfied Conditions 1 and Condition 2 of Theorem 1

according to the mechanisms delineated in the previous paragraph; specifically, the learning rate

used for the k-th updating of the Q(p, t) value, p ∈ PC , t ∈ p•, was γk = 0.3/(1+k/1000), while

the value of the randomizing parameter ε was set to 0.2. Furthermore the initial estimates of

the Q-factors were set to zero.

Figures 4 and 5 depict for two indicatively selected places, the evolution of the Q∗ values

learned by the algorithm. In the reported results, each trial corresponds to the processing of a

single product unit. As it is expected from Theorem 1, the juxtaposition of Figures 4 and 5 with

6such an action selection scheme is characterized as “greedy” in the relevant terminology
7For a more extensive discussion on the “exploration versus exploitation” problem and some additional ways

to address it, the reader is referred to [19, 1]
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the π∗ values reported in Figure 2 verifies that the implemented algorithm converges indeed to

the optimal Q values for the depicted state-action pairs. At the same time, these figures reveal

the significance of exploration in the learning dynamics; for instance, it can be seen in Figure 5

that it took a number of “non-greedy” selections – corresponding to the jumps taking place

in the relevant curve – before recycling emerged as the dominant option for the corresponding

stage. Figure 6 depicts the monetary value accrued by the disposition of the 2000 product

units through the processing options selected by the algorithm. The positive impact of the

underlying learning process on this quantity is revealed by the acceleration with which this

value is accumulated over the different trials; for instance, while the total value accumulated

during the processing of the first 1000 units is around $85,000, the corresponding value for the

next 1000 units is around $135,000, an increase by a factor of 1.6. �

4 Practical Considerations

The previous section modelled the ODP problem as a learning process, and established that

Q-learning constitutes an effective algorithm to support the required learning. In this section

we discuss some more practical issues concerning the implementation of the proposed algorithm

in an actual remanufacturing facility. These issues concern: (i) the characterization of the

computational and operational infrastructure necessary to support the implementation of the

learning process expressed by Equation 7; (ii) the investigation of the possibility of assisting the

learning task by integrating in it any a priori available, although partial, information about the

costs and returns to be expected by the various processing options; and (iii) the extension of the

algorithm so that it can effectively deal with potential process non-stationarity. We deal with

each of these issues in a separate subsection.

4.1 Implementing Q-learning in a remanufacturing facility

We envision the underlying operational environment as a disassembly process dedicated to a

particular product type. This process is continuously fed with reclaimed units of the considered

part type, each of which is disassembled according to a plan that is determined on-line by the

randomized action selection scheme introduced in Section 3.2, based on the currently available

Q-values for the different item-option pairs. At the same time, the outcomes of the executed

processing steps provide the data for the updating of the maintained Q-values, according to the

logic expressed in Equation 7.
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From a computational standpoint, the above mechanism is very efficient since the only thing

that it requires is the regimented updating of the Q-value corresponding to every selected item-

option pair according to a very simple and straightforward calculation.8 A more pragmatic

concern, however, is the extent to which the underlying disassembly process and its broader

operational context are adequately flexible to support the revision of the applied disassembly

plan on a unit-by-unit basis. If such an operational scheme is not deemed feasible, then the entire

operational logic outlined above is still implementable on a batch-based mode; i.e., a constant

disassembly plan is selected and applied on an entire batch of reclaimed units, while the batch

sizes are selected large enough to ensure the operational stability of the facility. The Q-values

of the item-option pairs appearing in the executed plan will still be updated according to the

logic of Equation 7; however, this updating will take place upon the completion of the entire

batch, and it will employ the batch-means for the various quantities appearing in Equation 7.

Furthermore, to ensure a more expedient convergence for this version of the algorithm, one

should perform these Q-value updates working from the leaf nodes towards the source node of

the underlying E-DPN.

A last concern regards the extent to which the assumption of providing a dedicated facility

to a single product unit reflects the prevailing industry practice. Based on some investigation

of the industry trends reported in [2, 17], we believe that the industry will soon present the

necessary economies of scale for adopting such a product-focused lay-out; the emerging trend

of outsourcing the recycling function to 3rd party service providers is a major step in that

direction. Furthermore, the aforementioned assumption is not strictly required for the effective

implementation of the proposed learning mechanism. The algorithm is also implementable in

time-shared facilities as long as (i) a different set of data structures is employed and maintained

for each (re-)processed product type, and (ii) the facility provides ample capacity for the timely

reprocessing of all the returned product units. On the other hand, if the various product

types are contesting for the processing capacity of the remanufacturing facility, then, this effect

introduces an additional resource allocation constraint in the original problem formulation, and

necessitates the re-investigation of the problem under this modified set of assumptions.

We conclude this discussion on the implementability of the proposed learning framework, by

noticing that it is very similar, in spirit, to the framework of statistical process control (SPC)

8Actually, a more careful consideration of this updating mechanism and of the content of Equation 7 will reveal

that they present a very strong similarity to the updating mechanism employed by the exponential smoothing-

based forecasting [14]; hence, all the advantages and computational efficiency that are typically associated with

that forecasting methodology can also be attributed to the proposed implementation of Q-learning.
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[3], that has been applied to the more traditional manufacturing processes. In both cases, the

ultimate objective is to obtain a higher value from the underlying process, by applying tighter

and more systematic control on it, that is enabled by the information provided through an

effective monitoring function. As established by the experience of the SPC revolution of the

late 80’s / early 90’s, the effective deployment of such a control capability is a challenging task,

since it requires a very disciplined operation and a well-understood and managed process, but

it can result in very substantial gains!

4.2 Eliminating sub-optimal options based on partial cost / return

information

It should be obvious from the previous discussion that the number of trials required for the

eventual convergence of the Q-learning algorithm to the optimal policy depends strongly on the

size of the underlying E-DPN structure. Therefore, any effort to reduce the size of this E-DPN

structure by identifying and eliminating processing options that are going to be suboptimal can

have a considerable pay-off in terms of the convergence rate of the applied algorithm and the total

value extracted by the underlying disassembly process. Indeed, in many cases it is reasonable

to assume some a priori knowledge regarding the cost of the various processing options and

the expected returns, expressed by a set of reliable lower and upper bounds for each of these

quantities. More formally, we can assume that for each cost element τ(t), t ∈ TP ∪ TD, we are

given a lower and an upper bound, respectively denoted by τ(t) and τ(t). Similarly, for each

processing option p ∈ PL, we are given a lower and an upper bound for the expected return,

respectively denoted by ξ(p) and ξ(p). This information can subsequently enable an E-DPN

reduction scheme that will (i) compute lower and upper bounds, Q(p, t) and Q(p, t), for all

p ∈ PC , t ∈ p•, and (ii) eliminate from the E-DPN structure those actions t ∈ p•, p ∈ PC , for

which ∃t′ ∈ p• s.t. Q(p, t′) > Q(p, t).

The computation of the lower and upper bounds, Q(p, t) and Q(p, t), for all p ∈ PC , t ∈ p•,

that is involved in Step (i) above, can be performed through the following recursion that proceeds

from the E-DPN leaf nodes towards its source node, and can be derived straightforwardly from

Equations 1–6, that constitute the DP characterization of ODP problem:

∀p ∈ PL, π(p) := ξ(p); π(p) := ξ(p) (12)

∀p ∈ PR, π(p) := min
t∈p•

{π(t•)}; π(p) := max
t∈p•

{π(t•)} (13)
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∀p ∈ PC , ∀t ∈ p•, Q(p, t) :=
∑

q∈t•

(F (t, q)π(q))− τ(t); Q(p, t) :=
∑

q∈t•

(F (t, q)π(q))− τ(t) (14)

∀p ∈ PC , p•eff := {t ∈ p• : 6 ∃t′ ∈ p• s.t. Q(p, t′) > Q(p, t)} (15)

∀p ∈ PC , π(p) := max
t∈p•

eff

{Q(p, t)}; π(p) := max
t∈p•

eff

{Q(p, t)} (16)

4.3 Dealing with non-stationary processes

Throughout the previous discussion it has been assumed that the unknown parameters will

remain constant during the entire operation of the ODP process. In reality, however, it is

possible that (some of) these parameters will present significant variation during the process life

cycle. For instance, the various cost and return parameters will be determined by the prevailing

market conditions, which might significantly evolve during the process life cycle. Similarly, the

classification probabilities for the various components and sub-assemblies might be different for

different input batches, obtained from different sources. A sound implementation of the proposed

algorithm must be aware of the various non-stationarities that can potentially arise in the

considered operational environment, and provide the mechanisms to control the impact of these

non-stationarities on the process performance. Hence, in the subsequent discussion, we provide

some “rules-of-thumb” that will minimize the adversarial impact of these non-stationarities on

the process performance.

When dealing with the potential process non-stationarities, it is pertinent to discriminate

between (i) major abrupt “shifts”, and (ii) slow, yet considerable, “drifts” for (some of) the

process parameters. Regarding the former, we expect that (almost all of) these changes will

be caused by some specific source event(s) taking place in the process operational or business

environment, and therefore, they should be immediately foreseen and anticipated by an alert

process management team. In that case, the problem reduces to the effective and efficient

re-learning of an optimal policy, under the new prevailing conditions. This can be readily

done by “re-setting” the entire learning process, either to some “default” initial Q values, or

to some Q values that are deemed to reflect the experienced situation. In some other cases,

these parameter shifts can result from a systematic rotation of the process through a number of

operational modes; for instance, the process might systematically rotate among the processing

of batches coming from different input streams with different quality classification probabilities.
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In this case, it is advisable that the algorithm maintains a “bank” of different sets of Q values,

each applicable to a specific operational mode. Finally, in order to guard against any major

parametric shifts that can occur in an unexpected and otherwise undetected fashion, one can

incorporate in the process some “error-tracking” mechanism that will monitor the estimation

errors generated by the various item-option pairs according to Equation 8, and provide an

“alert” signal in case that these errors are unexpectedly and persistently increased. Foregoing

the technical details due to space limitations, we notice that this idea can be implemented

through some statistical analysis of these errors and the creation of appropriate confidence

intervals for them, similar to the case of exponential smoothing models.

The second type of non-stationarity mentioned above is more insidious and therefore more

difficult to detect based on external input. To deal effectively with it, the adopted implementa-

tion of the proposed learning algorithm must present a high degree of alertness to change and

learning flexibility . This conceptual requirement suggests, in turn, an increased value for the

exploration-controlling parameter, ε, and the preservation of a high learning rate, γk; a practical

way to satisfy this last requirement is by eliminating the dependence of the learning rate on the

trial number k, and setting it on a fairly high constant level.

5 Conclusions

The starting point and the major motivation for the work presented in this paper was the

observation that the effective management of the uncertainties inherent in the emerging re-

manufacturing processes has not been adequately addressed in the relevant literature, even

though it is currently recognized as an essential issue for the process viability. Hence, the

presented work undertook the problem of uncertainty management, as it arises in the context of

the optimal disassembly planning, one of the key tasks to be resolved for the efficient operation

of the aforementioned processes. Using recently emerged results from (approximate) dynamic

programming and machine learning, this work provided a rigorous framework for the modelling

and analysis of the ODP problem in the face of the aforementioned uncertainties, and an effective

and easily implementable computational algorithm for obtaining optimal disassembly policies.

The last part of the paper considered some additional practical issues that need to be addressed

for the effective implementation of the proposed algorithm in any “real-life” remanufacturing

facility.

As part of our future work, we shall seek to implement the presented algorithm on an

industrial-scale remanufacturing process. On the more theoretical side, we are currently inves-
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tigating a number of issues that can lead to (i) more expedient convergence of the Q-learning

algorithm in the considered application context and (ii) more enhanced responsiveness to any ex-

perienced changes in the process parameters. Some mechanisms that can lead to such enhanced

performance include (i) the exploitation of the acyclic E-DPN structure in the management of

the “exploration vs. exploitation dilemma”, and (ii) the integration to the learning framework

developed in this work of some further modelling capability that will seek to explicitly learn

an approximating model of the underlying process dynamics and the associated cost structure.

Finally, as it was mentioned in Section 4.1, another interesting problem is the extension of the

developed methodology so that it applies to resource-constrained, multi-product disassembly

processes, i.e., processes that disassemble two or more product types which contest for a shared

set of resources. The work of [15] could be a good starting point for this task; the systematic un-

derstanding and the formal characterization of the process economics and dynamics underlying

this new operational setting, in a way that enables the development of an on-line / incremental

process optimization algorithm, are also part of our research agenda.
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Figure 2: The E-DPN model and the optimal value function for the considered case study.
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Table 1: The example data; processing options annotated in boldface represent the optimal

disassembly plan.

BOM Component Quality Class Viable Options

Level ID # Name (Code) (proc. cost, value generated)

0 0 TV Repairable (1) DSBL(50,·), UP(100,400), DISP(240,0)

Worn Out (2) DSBL(50,·), DISP(240,0)

1 1 Casing Repairable (1) REC(22,130), DISP(20,0)

Worn Out (2) REC(22,130), DISP(20,0)

1 2 Wiring Repairable (1) REC(36,100), DISP(20,0)

Worn Out (2) REC(36,100), DISP(20,0)

1 3 Trafo Repairable (1) REC(26,70), DISP(20,0)

Worn Out (2) REC(26,70), DISP(20,0)

1 4 PCB Repairable (1) DSBL(10,·), REC(17,60), DISP(20,0)

Worn Out (2) DSBL(10,·), REC(17,60), DISP(20,0)

2 7 CPU Repairable (1) UP(40,70), RES(30,40), REC(20,56), DISP(10,0)

Worn Out (2) REC(20,56), DISP(10,0)

2 8 Chip Repairable (1) UP(30,80), REC(13,50), DISP(10,0)

Worn Out (2) REC(13,50), DISP(10,0)

1 5 Battery Repairable (1) UP(30,80), RES(25,50), REC(120,20), DISP(80,0)

Worn Out (2) REC(120,20), DISP(80,0)

1 6 Tube Repairable (1) REC(120,29), DISP(80,0)

Worn Out (2) REC(120,29), DISP(80,0)
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Table 2: Item Classification Probabilities: ρ(i|j) denotes the probability that the considered

item will be in class i given that its parent item was in class j; for the case of the original

product, i.e., level 0 item, the corresponding classification probabilities are unconditional.

Level Item ID # ρ(1|−) ρ(2|−)

0 0 0.5 0.5

Level Item ID # ρ(1|1) ρ(2|1) ρ(1|2) ρ(2|2)

1 1 0.8 0.2 0.2 0.8

2 0.9 0.1 0.1 0.9

3 0.5 0.5 0.5 0.5

4 0.5 0.5 0.5 0.5

5 1 0 0 1

6 1 0 0 1

2 7 1 0 0 1

8 1 0 0 1
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