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Abstract

This paper revisits the problem of selecting an optimal deadlock resolution strategy,

when the selection criterion is the maximization of the system throughput, and the system

is Markovian in terms of its timing and routing characteristics. This problem was recently

addressed in some of our previous work, that (i) provided an analytical formulation for it,

(ii) introduced the notion of randomized deadlock avoidance as a generalization of the more

traditional approaches of deadlock prevention/avoidance, and detection and recovery, and

(iii) provided a methodology for selecting the optimal randomized deadlock avoidance policy

for a given resource allocation system (RAS) configuration. An issue that remained open in

the problem treatment of that past work, was whether the proposed policy randomization is

essential , i.e., whether there exist any RAS configurations for which a randomized deadlock

avoidance policy is superior to any other policy that does not employ randomization. The

work presented in this paper establishes that for the basic problem formulation where the

only concern is the (unconstrained) maximization of the system throughput – or the other

typical performance objectives of minimizing the system work-in-process and mean sojourn

time – randomization of the deadlock resolution strategy is not essential. However, it is also

shown that, sometimes, it can offer an effective mechanism for accommodating additional

operational constraints, like the requirement for production according to a specified product

mix. Furthermore, the undertaken analysis provides an analytical characterization of the

dependence of the aforementioned performance measures on the transition rates relating

to the various events of the underlying state space, which can be useful for the broader

problem of synthesizing efficient scheduling policies for the considered class of resource

allocation systems.
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1 Introduction

The work presented in this paper provides a rigorous analytical treatment and a definite re-

sponse to a question raised in a prior work of ours [4, 5] regarding the extent to which random-

ization of a deadlock avoidance policy can provide an effective mechanism for enhancing the

long-term throughput of the underlying resource allocation system (RAS). More specifically,

motivated by (i) the apparent lack of a systematic analytical investigation of the impact of

the applied deadlock resolution strategy on the performance of the underlying resource alloca-

tion system, and (ii) the increasing significance of this problem in current industrial contexts

like that of semiconductor manufacturing, the work of [4, 5] (i) provided an analytical formu-

lation for it, in the case that the adopted performance objective is the maximization of the

long-term throughput of the underlying RAS, (ii) introduced the notion of randomized deadlock

avoidance as a generalization of the more traditionally applied approaches of deadlock pre-

vention/avoidance, and detection and recovery, and (iii) provided a methodology for selecting

the optimal randomized deadlock avoidance policy for a given RAS configuration. An issue

that remained open in the problem treatment of that past work, was whether the proposed

policy randomization is essential , i.e., whether there exist any RAS configurations for which

a randomized deadlock avoidance policy is superior to any other policy that does not employ

randomization.

The work presented herein establishes that for the basic problem formulation stated above

– i.e., selecting a deadlock resolution strategy that maximizes the underlying RAS throughput

– and under the additional assumptions of exponentially distributed job arrival and processing

times, randomization is not essential, i.e., there will always exist an optimal deadlock resolution

strategy under which the various system transitions from its safe to its unsafe region1 will always

remain enabled or disabled.2 It is further shown, however, that once the aforementioned basic

formulation is augmented with additional constraints, like the observation of certain ratios in

the production of the various job types, then, randomization can become essential, providing

an effective mechanism for the imposition of the aforementioned constraints. Both results are

obtained by characterizing in detail the functional dependency of the considered performance

measure on the underlying system transition probabilities and the policy control parameters,

which constitutes an additional contribution of the presented work. Indeed, the development of

1All the relevant concepts and terminology are systematically introduced in the following section.
2Notice, however, that even such a solution is conceptually different from the classical approaches of deadlock

avoidance, and detection and recovery, since under the former (resp., the latter) approach, all the problematic

transitions from the safe to the unsafe region are uniformly disabled (resp., enabled).
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this characterization (i) allowed the immediate extension of the aforementioned results to other

interesting performance measures like the minimization of the system Work-In-Process (WIP)

inventory and the average job sojourn times, and (ii) it suggests an interesting framework for

addressing the broader scheduling problem for the aforementioned environments and objectives;

this last issue constitutes part of ongoing work [2].

The rest of the paper is organized as follows: Section 2 provides an analytical charac-

terization of the considered problem in its basic definition, generalizing and formalizing the

formulation presented in [4]. Section 3 addresses the essentiality of the DAP randomization

for the basic problem formulation, by developing and analyzing the functional dependency of

the considered performance measure(s) on the underlying system transition probabilities and

the policy control parameters, mentioned above. Section 4 demonstrates that once the orig-

inal formulation is extended by additional constraints, the policy randomization can become

essential; this effect is shown by focusing on a class of constraints requesting the observation

of certain production ratios among the various job types. Finally, Section 5 draws conclusions

and provides some suggestions for future extensions of the presented work.

2 Preliminaries

This section provides an analytical characterization of the considered problem of selecting op-

timally the deadlock resolution strategy for a given RAS, by systematizing the concepts and

ideas originally developed, in a more informal manner, in [4, 5].

The flexibly automated manufacturing system as a resource allocation system

(RAS) and the corresponding RAS deadlock For the purposes of deadlock-related anal-

ysis, a flexibly automated production system can be pertinently abstracted to a Resource Al-

location System (RAS), consisting of a set R = {Ri, i = 1, . . . , m} of resource types, and a set

J = {JTj , j = 1, . . . , n} of job / process types, that can be executed in the system through

sequential allocation of the system resources. More specifically, each resource type Ri is fur-

ther characterized by its capacity Ci, i.e., a finite integral number indicating the number of

units of this particular resource possessed by the system. Furthermore, resources are reusable,

i.e., their allocation and deallocation to the system processes do not alter them in any way;

in that sense, they constitute a system invariant . Jobs are executed in the system through a

series of (processing) stages, and therefore, each job type JTj is defined by a stage sequence:

JTj =< JTjk, k = 1, . . . , l(j) >. In addition, each job stage JTjk is further characterized by

a resource allocation vector Ajk ∈ (Z+)m, indicating the number of resource units from each
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resource type that is required for the successful execution of the stage.

In the context of flexibly automated manufacturing systems, and the underlying RAS, dead-

lock arises due to the fact that a job, having finished the execution of a certain stage JTjk,

releases (some of) the resources allocated to it for the support of this stage, only after it has

secured – i.e., been allocated – the resources for the execution of the successive stage JTj,k+1.
3

This “hold while waiting” effect, combined with the exclusive and non-preemptive allocation

of the finite system resources to the running jobs, can give rise to circular-waiting patterns, in

which a set of jobs is permanently blocked, since each of them, in order to proceed, requires

the allocation of some resource unit(s) currently held by some other job in the set. In most

manufacturing system contexts, the occurrence of a deadlock is a major disruption, since, the

deadlocked jobs will not be able to advance and finish through “normal” system operation, and,

while the deadlock persists, the effective utilization of the resources involved is equal to zero.

Furthermore, the deadlock resolution will typically require external (human) intervention, and

the transfer of unfinished jobs to temporary storage.

RAS logical/structural analysis and deadlock avoidance From an analytical / method-

ological standpoint, the deadlock problem is systematically addressed by modeling the behavior

of the considered RAS as a Finite State Automaton (FSA) [1]. An event, e ∈ E, of this FSA,

corresponds to the advancement of any job in the system by one stage / step. The RAS state,

s ∈ S, is defined by the distribution of the currently running jobs to the various processing

stages supported by the system. The automaton state transition function, f : S × E → S, is

a formal expression of the aforementioned resource allocation mechanism: f(s, e) is mapped to

the resulting state s′, if the job step defined by event e is feasible under the resource allocation

described by state s; otherwise, it is mapped back to state s. The initial and final states of this

automaton correspond to state s0, denoting the state in which the system is idle and empty

of any jobs, and therefore, the language accepted by this automaton corresponds to complete

production runs. Finally, we notice that this FSA model can be expressed graphically by its

State Transition Diagram (STD), i.e., a graph with nodes corresponding to the FSA states,

and arcs corresponding to the feasible state transitions.

In the FSA formalism, deadlocks developed in the operation of the uncontrolled system are

represented by the formation of strongly connected components in the system reachability space,

– where the latter is denoted by Sr – which, however, are not co-accessible, i.e., the empty

3A typical example for this phenomenon is the allocation of the system buffering capacity available at the

various workstations and material handling units. Being a physical entity, a job must always be accommodated

somewhere.
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state, s0, is not reachable from them through any sequence of feasible transitions. Hence,

a correct Deadlock Avoidance Policy (DAP), P, tries to restrict the system operation to a

strongly connected component of Sr which contains the empty state s0. Let us denote the

subspace admissible by DAP P by Sr(P). Given a RAS configuration, an applied DAP is

characterized as optimal , if the corresponding admissible subspace is the maximal strongly

connected component of Sr which contains the empty state s0. The set of states admitted by

the optimal DAP, P∗, will be characterized as (the set of) reachable safe states, and it will be

denoted by Srs. The complement of Srs with respect to Sr is denoted by Sru, and it constitutes

the system reachable unsafe region; formally, Sru = Sr\Srs. In the context of the considered

RAS’s, the optimal DAP, P∗, is well-defined, and furthermore, it is effectively computable, even

though its implementation constitutes an NP-Hard problem, in general [6]. Yet, to facilitate the

subsequent discussion, in the following we shall assume that the deadlock avoidance strategy

implements the optimal DAP, P∗; we notice, however, that the presented methodology can be

applied to the comparison of any other sub-optimal DAP, P, to the alternative strategies of

detection and recovery, and randomized deadlock avoidance, by substituting in the subsequent

analysis the reachable safe subspace, Srs, by the policy admissible space, Sr(P).

Modeling the alternative deadlock resolution strategies In case that the considered

production system and its underlying RAS is operated under the detection and recovery strat-

egy, the system is allowed to access its entire reachable subspace Sr. Furthermore, whenever a

deadlock is reached, the involved processes are identified, and the deadlock is resolved by swap-

ping (a subset of) the deadlocked processes in a way that it will allow their further progress.

This job swapping mechanism constitutes the deadlock recovery phase of the system opera-

tion, and, from the implementational standpoint, it could be either human-driven or totally

automated. In the FSA modeling context, the swapping of (some of) the deadlocked jobs

corresponds to a single transition from the deadlocked state sd to another deadlock-free state

s′. Since s′ is reached through the job swapping mechanism, which constitutes an exception

handling procedure, it is possible – in fact, quite typical in any actual implementation of this

strategy – that s′ ∈ S\Sr. From s′, the autonomous “normal” operation of the system is re-

sumed, until the system reaches another deadlocked state, in which case, the deadlock detection

and recovery scheme described above is repeated on this new state. Hence, in the FSA modeling

framework, the deadlock detection and recovery approach establishes the ability of the system

to run to completion, even under the occurrence of deadlocks, through the insertion of addi-

tional transitions to the STD modeling the original feasible system behavior, that correspond
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to the deadlocked process swaps by some sort of exception handling routine. In other words,

the insertion of these new transitions ensures that for every RAS state s ∈ S, visited by the

system when operated under the deadlock detection and recovery strategy, it holds: s
∗
→ s0.

Finally, the randomized deadlock avoidance strategy operates similar to the detection and

recovery approach, with the additional feature that resource allocation requests corresponding

to transitions t : s → s′, with s ∈ Srs ∧ s′ ∈ Sru, are satisfied only with a certain probability ωt.

In particular, assuming that ωt 6= 0, ∀t, the reachable state space for a given RAS configuration

under the randomized deadlock avoidance strategy is identical to the corresponding state space

that is reachable when the system is operated under the detection and recovery approach.

RAS performance modeling and optimization Under the assumption that the timing of

the various events identified in the STD modeling the system behavior under a given deadlock

resolution strategy is exponentially distributed, the system timed dynamics can be effectively

modeled by a Continuous Time Markov Chain (CTMC) [1]. To formalize the subsequent

development, consider a given RAS configuration, controlled by a randomized DAP (R-DAP)

P, and let Sr(P) ⊆ S denote the resulting reachability space. Furthermore, for every transition

tij : si
P
→ sj , si, sj ∈ Sr(P), that is feasible under the considered policy, let q̄ij denote the rate

of the exponential distribution characterizing the natural timing of the corresponding event.4

Under the control of R-DAP P, the occurrence rate of transitions tij : si → sj , with si ∈

Srs ∧ sj ∈ Sru, is moderated by the transition control probability ωij ∈ [0, 1] to qij = ωij · q̄ij .

As a result, the infinitesimal generator matrix Q, defining the CTMC that describes the system

dynamics when it is controlled by R-DAP P, is given by Q = [qij ] with

qij =































ωij q̄ij if si, sj ∈ Sr(P) ∧ i 6= j ∧ si
P
→ sj ∧ si ∈ Srs ∧ sj ∈ Sru

q̄ij if si, sj ∈ Sr(P) ∧ i 6= j ∧ si
P
→ sj ∧ (si 6∈ Srs ∨ sj 6∈ Sru)

0 if sj ∈ Sr(P) ∧ i 6= j ∧ si 6
P
→ sj

−
∑

j: j 6=i qij if si ∈ Sr(P) ∧ i = j

(1)

In the formalism of Equation 1, the system dynamics under the control of (classical) dead-

lock avoidance (resp., detection and recovery) strategy, are modeled by setting ωij = 0 (resp.,

1) ∀(i, j) : si → sj with si ∈ Srs ∧ sj ∈ Sru. Furthermore, since, under any deadlock resolution

strategy, the resulting system behavior is irreducible, aperiodic, finite-state, and therefore, er-

4In the considered operational context of flexibly automated manufacturing systems, q̄ij correspond to the job

arrival/loading, processing and unloading rates, as well as the rates characterizing the job swapping mechanism

during the deadlock recovery phase, and they are determined by factors like the adopted technology and the

applied operational policies.
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godic, the CTMC defined by Equation 1 has a unique limiting stationary distribution, expressed

by the steady state probability vector π, obtained by the following system of equations [1]:5

πT Q = 0T (2)
∑

{i: si∈Sr(P)}

πi = 1.0 (3)

Given the stability implied by the ergodic nature of the system behavior, a characterization

of the steady-state (long-run) system throughput can be obtained by considering the cumulative

rate according to which jobs are loaded into the system. Therefore, recognizing that the steady

state probabilities πi can be interpreted as the percentage of time that the RAS spends in each

state si ∈ Sr(P), while element qij denotes the rate according to which the system transitions

from state si to state sj , once in state si, the cumulative job loading rate expressing the system

throughput, under R-DAP P, is given by:

TH(P) =
∑

{(i,j): transition si
P
→ sj corresponds to a job loading event}

πiqij (4)

Finally, Equations 1 – 4, combined with the fact that, in the considered modeling framework,

a R-DAP(P) is essentially defined by the values assigned to the probabilities controlling the

transition rates from the safe to the unsafe region of the underlying RAS – to be collectively

denoted by the vector ω – imply that the optimal deadlock resolution strategy selection problem

can be formally stated as follows:

max
ω

TH(ω; q̄ij) =
∑

{(i,j): transition si
P
→ sj corresponds to a job loading event}

πiqij (5)

s.t.

πT Q(ω; q̄ij) = 0T (6)
∑

i: si∈Sr(P)

πi = 1.0 (7)

∀i, j, ωij ∈ [0, 1] (8)

Example To provide a concrete example of the concepts introduced above, consider the small

RAS depicted in Figure 1. This RAS consists of two resources, R1 and R2 of unit capacity,

and it supports the execution of two job types, JT1 and JT2, with respective process plans

5In the following, boldface elements in the presented equations denote column vectors.
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R2R1

JT1: R1 -> R2

JT2: R2 -> R1

Figure 1: Example: The considered RAS

s0

s1 s2

s3

s6s8s5

s4s7

JT11 JT21

JT12 JT22

JT11 JT12 JT22 JT12

JT11 JT21

JT21JT22

λ1 λ2

µ11

µ12

µ12 µ22

µ22

µ21

λ1 µ22 µ12ρ λ2

ω2λ1ω1λ2

Figure 2: Example: The state space describing the system behavior under various deadlock

resolution strategies
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JT1 : < [1, 0]T , [0, 1]T >, JT2 : < [0, 1]T , [1, 0]T >.6 The STD modeling the system state

space under the control of the three deadlock resolution strategies considered in this work is

depicted in Figure 2. Specifically, the uncontrolled system behavior is modeled by the subgraph

induced by the state subset Sr = {s0, s1, s2, s3, s4, s5, s6, s7}. Furthermore, the reachable safe

subspace, admitted by the optimal deadlock avoidance policy is defined by the state subset

Srs = {s0, s1, s2, s3, s4, s5, s6}, while the reachable unsafe subspace consists of the singleton

Sru = {s7}, which constitutes the unique deadlock state. Hence, the transitions from Srs to

Sru, that must be controlled under randomized deadlock avoidance, are td
1 = s1 → s7, and

td2 = s2 → s7. In the following, we shall denote the respective control probabilities by ω1

and ω2. Moreover, under the randomized deadlock avoidance and the detection and recovery

strategies, the deadlock of state s7 is resolved by swapping the two deadlocked jobs, and the

resulting state, s8, is a state that is unreachable under the “normal” system operation. Finally,

once in state s8, the system will return to its safe region Srs, either through state s3 or through

state s4.

In order to characterize the timed dynamics of this system and its expected throughput

at steady state, let us further assume that the loading time for jobs of type JTi, i = 1, 2,

follows an exponential distribution with rate λi, i = 1, 2. Similarly, the processing time for

stage JTij , i, j = 1, 2, is exponentially distributed with rate µij . Finally, the time required for

recovering from the deadlock of state s7 is exponentially distributed with rate ρ > 0.7 Then,

the occurrence rates for the various system transitions are annotated in Figure 2, while the

6This RAS could model, for instance, the allocation of the buffering capacity in a two-machine robotic cell,

or a two-chamber cluster tool, supporting the processing of two parts with counterflow process plans.
7The requirement that ρ is strictly greater than 0 enforces that the applied detection and recovery strategy

as well as any R-DAP contain indeed a deadlock recovery mechanism, and they do not let the system get

permanently stuck in the deadlock state.
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infinitesimal matrix generator for the resulting CTMC is as follows:

Q =

















































−(λ1 + λ2) λ1 λ2

−(µ11 + ω1λ2) µ11 ω1λ2

−(µ21 + ω2λ1) µ21 ω2λ1

µ12 −(µ12 + λ1) λ1

µ22 −(µ22 + λ2) λ2

µ12 −µ12

µ22 −µ22

−ρ ρ

µ22 µ12 −(µ22 + µ12)

















































(9)

Denoting the system steady state probabilities by πi, i = 0, . . . , 8, the cumulative job loading

rate at steady state, defining its (long-run) throughput, is given by:

TH = λ1π0 + λ2π0 + ω1λ2π1 + ω2λ1π2 + λ1π3 + λ2π4 (10)

Therefore, the problem of selecting the optimal deadlock resolution strategy for this example

system is posed as follows:

max
ω1,ω2

TH(ω1, ω2; λi, µij , ρ, i, j = 1, 2) = λ1π0 + λ2π0 + ω1λ2π1 + ω2λ1π2 + λ1π3 + λ2π4 (11)

s.t.

πT Q(ω1, ω2; λi, µij , ρ, i, j = 1, 2) = 0T (12)
8

∑

i=0

πi = 1.0 (13)

ω1, ω2 ∈ [0, 1] (14)

2

3 Optimal Solutions and Extreme Points

In this section, it is shown that the problem of selecting the optimal deadlock resolution strat-

egy, when formulated according to Equations 5 – 8, has always an optimal solution that is an

extreme point – i.e., a corner point – of the hypercube [0, 1]dim(ω). This result is developed in

two main steps: (i) First, the functional dependence of the objective function of Equation 5

on the problem decision variables ωij , under constraints (6) and (7), is analytically character-

ized. ( ii) Subsequently, it is established that the derived functional form, when constrained in
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the hypercube [0, 1]dim(ω), always possesses a maximal value that is an extreme point of the

considered domain.

The result relating to the first of the aforementioned steps is formally stated and proven as

follows:

Proposition 1 The optimization problem of Eqs 5 – 8 can be transformed to an equivalent

optimization problem of the form:

max
ω

TH(ω; q̄ij) =
N(ω; q̄ij)

D(ω; q̄ij)
(15)

s.t.

∀i, j, ωij ∈ [0, 1] (16)

where N(ω; q̄ij) and D(ω; q̄ij), appearing in Equation 15, are first-degree polynomials w.r.t. each

of the decision variables ωij.
8

Proof: Since the CTMC defined by matrix Q is ergodic, it possesses a unique stationary

distribution, π, which can always be effectively computed by solving the following system of

equations [1]:

πT
[

Q̂(ω; q̄ij) 1
]

=
[

0T 1
]

(17)

In Equation 17, Q̂(ω; q̄ij) denotes the matrix obtained from the chain infinitesimal generator

Q(ω; q̄ij) by removing its first column, corresponding to state s0.
9 To facilitate the subsequent

discussion, let us rewrite Equation 17 in the most familiar form of:





Q̂T (ω; q̄ij)

1T



 π =





0

1



 (18)

Furthermore, let us denote by A the system matrix in the left-hand-side (lhs) of Equation 18.

Then, regarding A, the following remarks hold: (i) A is a square invertible matrix, and therefore,

det(A) will exist and it will always have a non-zero value. (ii) Since, by the problem definition,

each control variable ωij is associated uniquely with an unsafe transition linking the safe to the

unsafe region of the system state space, it appears in a unique row of Q̂, and therefore, in a

unique column of A. More specifically, ωij will appear in the column corresponding to the πi

component of the steady state probability vector.

8This type of functions are characterized as multi-linear in the relevant literature.
9Notice that, for a well-defined RAS, all transitions emanating from and/or leading to state s0 are safe. Hence,

under R-DAP control, qij = q̄ij (c.f., Eq. 1), and therefore, by dropping this first column of Q, we still maintain

all the problem control variables, ωij .
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The first of the above observations implies that the system steady state probabilities, πk,

can always be computed as functions of ωij and q̄ij , by means of Cramer’s rule [7]:

πk(ω; q̄ij) =
det(Ak(ω; q̄ij))

det(A(ω; q̄ij))
(19)

where Ak(ω; q̄ij) is the matrix obtained from A(ω; q̄ij), by substituting its column corresponding

to variable πk with the right-hand-side (rhs) vector of Equation 18. The second of the above

remarks regarding A(ω; q̄ij), implies the following: (i) Both, the numerator, det(Ak(ω; q̄ij)) and

the denominator, det(A(ω; q̄ij)), in the rhs of Equation 19, are first-degree polynomials w.r.t. to

each control variable ωij . (ii) The numerator, det(Ak(ω; q̄ij)), is independent of the particular

ωij with i = k (assuming that such an ω-variable exists in the original problem definition).

The last two remarks further imply that each steady state probability πk is functionally

dependent on ω according to the fractional form specified by Proposition 1. Moreover, the

second of these remarks implies that this functional form applies also to the products πkqkj ,

since it guarantees that in the case of controlled transitions tkj corresponding to loading events,

where qkj = ωkjλkj , the numerator of πk, det(Ak(ω; q̄ij)), is itself independent of ωkj . Finally,

since all products πkqkj have the same denominator det(A(ω; q̄ij)), the functional form defined

in Proposition 1 applies also to their summation. But then, the result of Proposition 1 is

established simply by noticing that the problem objective function, defined in Equation 5, is just

the summation of a pertinently selected subset of the product terms πkqkj , while Equation 16

is simply the last constraint in the original problem formulation. 2

The next lemma will be used as a stepping stone in order to prove that the optimization

problem defined by Eqs 15 – 16 has an optimal solution that is an extreme point of its feasible

region. Its proof can be obtained through a simple monotonicity argument based on the form

of the derivative of function f(x), and therefore, it is omitted.

Lemma 1 The single-variable optimization problem:

max
x

f(x) =
ax + b

cx + d
(20)

s.t.

x ∈ [0, 1] (21)

with the additional assumption that

cx + d 6= 0, ∀x ∈ [0, 1] (22)

always has an optimal solution in the set {0, 1}.
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Finally, the main result of this section is stated and proven in the following theorem:

Theorem 1 The optimal deadlock resolution strategy selection problem, defined in Equations 5

– 8, always has an optimal solution that is an extreme point of the hypercube [0, 1]dim(ω).

Proof: We prove this result by contradiction, utilizing the transformed problem version of

Proposition 1. Hence, suppose that all optimal solutions to the optimization problem defined

by Eqs 15 – 16 are interior points of the hypercube [0, 1]dim(ω).10 Let ω∗ denote such an optimal

interior point. Then, there must exist a component ω∗
kl of ω∗ s.t. ω∗

kl ∈ (0, 1). Consider the

function TH(ωkl; ω∗
ij , i 6= k ∨ j 6= l, q̄ij). This function is a single-variable function possessing

the fractional form defined in Lemma 1, and it is defined over the interval [0, 1]. Yet, under

the considered hypothesis, its maximal value is obtained at ω∗
kl ∈ (0, 1), which contradicts the

result of Lemma 1 (and establishes the truth of Theorem 1). 2

Example Let us consider the example RAS introduced in Section 2, when the loading and

processing rates take the following values: λ1 = 1.0, λ2 = 1.0, µ11 = 3.0, µ12 = 2.0, µ21 =

1.0 and µ22 = 2.0. Table 1 provides the analytical form of the system throughput function,

TH(ω1, ω2; ρ), as characterized by Equation 15, for three different values of the deadlock

recovery rate, ρ. Figure 3 also provides the plots of these functions over their domain area

[0, 1]2. As expected, in all cases, the resulting throughput function obtains its maximum (and

minimum) value at one of the extreme points of its domain; the detailed characterization of

the optimal solution and the maximal value of the objective function are included in Table 1.

It is interesting to notice that for the case of ρ = 0.5, the maximal throughput is obtained for

(ω∗
1, ω

∗
2) = (0, 1), which is a strategy conceptually different from the two classical approaches of

deadlock avoidance, and deadlock detection and recovery. However, as the deadlock recovery

rate ρ increases (resp., decreases), the optimal strategy switches to deadlock detection and

recovery (resp., deadlock avoidance), since the (time) cost of deadlock recovery becomes lower

(resp., prohibitively higher than the productivity gains obtained from the enhanced operational

concurrency). 2

Generalizing Theorem 1 Concluding this section, we notice that even though the result of

Theorem 1 was developed for the case that the optimized objective was the (long-run) system

throughput, it can be easily generalized to all variations of the formulation of Eqs 5 – 8,

10Notice that (i) the functional form of TH(ω; q̄ij), implied by Proposition 1, (ii) the fact that D(ω; q̄ij) ≡

det(A(ω; q̄ij)) 6= 0, ∀ω, and (iii) the finiteness of the problem feasible region (c.f., Eq. 16), imply that the

considered problem is well-defined.
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Example System Throughput: p=0.1
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Example System Throughput: p=0.5
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Example System Throughput: p=1
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Figure 3: Example: Graphing the throughput function TH(ω1, ω2; ρ) for the considered ρ

values
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ρ TH(ω1, ω2) (ω∗
1, ω

∗
2) TH(ω∗

1, ω
∗
2)

0.1 6(12+7ω1+21ω2+12ω1ω2)
108+166ω1+462ω2+399ω1ω2

(0, 0) 0.667

0.5 6(12+7ω1+21ω2+12ω1ω2)
108+70ω1+174ω2+111ω1ω2

(0, 1) 0.702

1.0 6(12+7ω1+21ω2+12ω1ω2)
108+58ω1+138ω2+75ω1ω2

(1, 1) 0.823

Table 1: Example: The system throughput as a function of the control variables, ω1 and ω2,

and its maximal value, for various values of the deadlock recovery rate, ρ.

where the optimized function is a linear combination of the system steady-state probabilities,

π, provided that the coefficient multiplying the steady-state probability πk is only a function of

ωij with i = k. As a more concrete example, consider the objective of minimizing the average

number of parts in the system, N̄ . It can be easily seen that, under steady-state operation, this

statistic is given by:

N̄ =

Sr(P)
∑

i=0

N(si)πi (23)

where N(si) denotes the number of parts in the system when it is in state si ∈ Sr(P). Since

N(si) is independent of ω, it follows that Equation 23 is minimized, under the constraints of

Eqs 6 – 8, at one of the extreme points of the hypercube [0, 1]dim(ω). Furthermore, noticing

that, (i) by Little’s law [1], the average job sojourn time, D̄, can be expressed by

D̄ =
N̄

TH
(24)

and (ii) the fractional functional forms expressing the dependency of the quantities N̄ and

TH on the control variable vector ω (c.f., Eq. 15) have the same denominator, det(A(ω; q̄ij)),

it can be concluded that the functional dependence of the average sojourn time, D̄, on the

control vector, ω, is also expressed by a fractional form where, both, the numerator and the

denominator are first-degree polynomials w.r.t. each control variable ωij . Hence, this important

system performance measure, under the constraints of Eqs 6 – 8, is also optimized at an extreme

point of the hypercube [0, 1]dim(ω).

4 Product-mix Considerations and Optimal R-DAP’s

The formal arguments developed in the previous section in order to establish the non-essential

role of randomization in the optimization of the applied deadlock resolution strategy with re-

spect to the performance criteria of throughput, WIP inventories, and the job expected sojourn

15



times, reveal also the key problem elements that underly this result. Specifically, Proposition 1

and Theorem 1 imply that the aforementioned result is based on (i) the ability to express the

considered objective functions as a fraction of two multi-linear functions of the control vari-

ables, and (ii) the structure of the solution space, which is the entire hypercube [0, 1]dim(ω).

Furthermore, both of these problem properties result from the fact that the various control

probabilities, ωij , are mutually independent. It follows then that the negation of this mu-

tual independence can lead to problem variations for which the randomization of the applied

deadlock resolution strategy can be essential for achieving optimum performance.

As a case in point, in this section we consider the problem variation where the formulation

of Equations 5 – 8 is augmented with an additional constraint of the type:

THk

THl

= ξkl, (k, l) ∈ C ⊆ J × J (25)

This constraint enforces a ”product-mix” specification on the operation of the underlying pro-

duction system, and it is a requirement that arises naturally in many multi-item production

systems either due to higher-level production planning taking place in the company, or due

to the fact that the considered parts constitute components for a higher-level (sub-)assembly,

produced in some downstream operation of the overall supply chain [3]. In the following, first

we demonstrate, through an example, how the aforementioned type of constraint establishes

some coupling among the problem control variables which restrains the feasible region for the

original formulation of Equations 5 – 8, and leads to a randomized optimal solution for the un-

derlying optimization problem. Furthermore, in the second part of the section, we establish an

interesting topological property for the optimal solution(s) of the extended problem formulation

addressed in this section.

Example To provide a concrete example of the way that Constraint 25 affects the feasible

region of the original problem formulation of Equations 5 – 8, consider the example system of

Figure 1, under the parameterization introduced in the example of Section 3, for the particular

case that the deadlock recovery rate ρ = 1.0. We remind the reader that, for this particular

system, the system total throughput depends on the control variables ω1 and ω2 as follows:

TH(ω1, ω2) =
6(12 + 7ω1 + 21ω2 + 12ω1ω2)

108 + 58ω1 + 138ω2 + 75ω1ω2
(26)

Furthermore, the partial throughput functions for each of the two job types can be obtained in

a similar fashion, and they are as follows:

TH1(ω1, ω2) =
6(6 + 4ω1 + 9ω2 + 6ω1ω2)

108 + 58ω1 + 138ω2 + 75ω1ω2
(27)
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Figure 4: Example: Graphing the problem feasible region under the additional constraint of

Equation 29, and with ξ = 0.9

.

TH2(ω1, ω2) =
18(2 + ω1 + 4ω2 + 2ω1ω2)

108 + 58ω1 + 138ω2 + 75ω1ω2
(28)

Hence, in this particular case, the product-mix constraint of Equation 25 takes the form:

6 + 4ω1 + 9ω2 + 6ω1ω2

3(2 + ω1 + 4ω2 + 2ω1ω2)
= ξ (29)

For a value of ξ = 0.9, Equation 29 can be solved for ω2, giving:

ω2 = −
0.6 + 1.3ω1

−1.8 + 0.6ω1
(30)

A plot of Equation 30 for ω1 ∈ [0, 1] is provided in Figure 4. Notice that Constraint 8 in the

original problem formulation implies that the actual feasible region for the modified problem is

the segment of the depicted curve contained among the points (0, 1/3) and (12/19, 1). Hence,

plotting the function of Equation 26 for ω1 ∈ [0, 12/19], and with ω2 computed according to

Equation 30, we obtain the curve depicted in Figure 5. From this figure, it can be deduced that,

for the considered product-mix requirement, the system throughput is maximized by applying

a randomized DAP with (ω1, ω2) = (12/19, 1.0). 2

Some interesting remarks regarding the presented example are as follows:
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Figure 5: Example: Graphing the system (total) throughput as a function of the independent

variable ω1 and for a product-mix requirement TH1/TH2 = 0.9

.

1. From a mathematical standpoint, the constraint of Equation 29, introduces some cou-

pling between the two initially independent control variables ω1 and ω2, which eventually

reduces the degrees of freedom of the original feasible region from 2 to 1. In other words,

the feasible region for the modified problem formulation, F ′, reduces to a single curve in

the original feasible region, F ≡ [0, 1]2, which subsequently leads to the optimization of

the considered formulation in an interior point of F .

2. From a more practical standpoint, the resulting randomization of the deadlock resolution

strategy is the mechanism used by the optimal policy in order to establish the required

product-mix – i.e., the requirement of Equation 29 – in the system operations. In fact,

it is possible that the problem formulation resulting by the addition of Constraint 25 to

the original formulation of Equations 5 – 8, is infeasible. For an example, the reader can

consider Equation 29 for ξ = 2. In this case, the accommodation of the product-mix

constraint will require the control of additional transitions in the system STD, according

to the randomized scheme presented above. In fact, the reader should convince herself

that, in the most general case, the association of a control probability with every single
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transition of the underlying STD essentially provides a scheduling mechanism for the

considered RAS. A systematic treatment of this idea in the formal modeling framework

of generalized stochastic Petri nets, and for the RAS sub-class modeling re-entrant lines,

can be found in [2].

3. Finally, it should be noticed that the optimal policy for the above example was obtained

at one of the two points constituting the boundary B of the feasible region F ′. In the

considered problem context,11 B is defined by the fact that some control variable(s) ωij

takes an extreme value of its feasible interval [0, 1], and further advancement beyond B,

in a way that satisfies Constraint 25, will eventually violate Constraint 8 in the original

problem formulation. It turns out that the optimization of the modified problem formu-

lation of Equations 5 – 8 and 25 on the boundary B of its feasible region F ′ is a more

general result, as it is proven next.

Theorem 2 Suppose that the optimization problem defined by Equations 5 – 8 and 25 has a

non-empty feasible region F ′ ⊆ F ≡ [0, 1]dim(ω). Then, it has an optimal solution located on

the boundary B of F ′.

Proof: Theorem 2 is trivially satisfied in the case that B = F ′. Hence, in the following,

suppose that the considered problem formulation has B ⊂ F ′ ⊆ F = [0, 1]dim(ω), and that

ω∗ ∈ F ′\B is an optimal solution for it. Then, it follows that there exists a sufficiently small

δ > 0, s.t. the entire neighborhood N(ω∗, δ) ⊆ F ′ ⊆ F . Moreover, the results of Section

3 regarding the monotonicity of the function TH(ω) w.r.t. the various control variables ωij ,

imply that there exists a non-deteriorating direction from ω∗ to another point ω1, located on

the surface of the sphere N(ω∗, δ). In case that the problem has a unique optimal solution, the

above argument implies that TH(ω1) > TH(ω∗), which contradicts the original assumption

that ω∗ is an optimal interior point, and establishes the validity of the theorem.

To address the case of the existence of many optimal solutions, notice that the structure of

the throughput function implied by Equation 15, combined with the existence of an optimal

interior point of F ′, imply that TH(ω) is constant over F ′, and therefore, the entire set B

constitutes a (sub-)set of optimal solutions. 2

A critical reading of the proof of Theorem 2 reveals that: (i) it is an immediate consequence

of the structure of the TH(ω; q̄ij) function, established by Proposition 1, and the implied

monotonicity properties; (ii) it would apply to any other set of constraints appended to the

11and as it can also be seen in the above example. . .
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original formulation of Equations 5 – 8 (i.e., other than Constraint 25). Its availability provides

an analytical insight that can be useful in the design of solution algorithms for any such extended

formulations, by taking advantage of the particular form / structure of the appended constraint

sets, and / or the establishment of further analytical / qualitative results for the resulting

optimization problem(s). For a more concrete example on how the result of Theorem 2 can

facilitate the establishment of special structure for the optimal solution space of such extended

formulations, the reader is referred to [2] (c.f., proof of Theorem 1 therein).

5 Conclusions

This work has revisited the problem of the optimality of randomized deadlock avoidance policies,

under the performance objective of maximizing of the system throughput, originally raised in

[4, 5]. The main finding is that when the only consideration is the maximization of the overall

system throughput, then the randomization of the deadlock resolution policy is not essential;

i.e., there will always exist an optimal solution in which each of the problematic transitions

from the safe to the unsafe operational region will always remain enabled or disabled. It

was also shown, however, that randomization of the control of (some of) these transitions can

provide an effective mechanism for accommodating additional operational constraints that tend

to couple the underlying control variables, and thus, further constrain the problem solution

space; constraints relating to the resulting product-mix were used to exemplify this effect.

Finally, the presented work characterized explicitly the functional dependence of the considered

objective function(s) to the underlying control variables, and in that sense, it provides broader

insights concerning the control of Continuous-Time Mark Chains under steady-state operation.

The implications of this functional characterization for the broader scheduling problem of

the steady-state operation of flexibly automated production systems is investigated in another

part of our current work, with some initial results reported in [2]. An additional issue to be

addressed in our future research concerns the management of the computational complexity of

the considered problems and their optimal solution. This complexity arises from the fact that

the presented Mathematical Programming (MP) formulations involve the complete enumera-

tion of the underlying system state space, which is known to explode extremely fast for the

considered class of systems (c.f., [6]). Hence, in order for the results presented in this work,

as well as their potential extensions to the broader scheduling problem, to be fully exploited,

we need to develop alternative more concise problem characterizations and/or computationally

efficient solution techniques that can lead fast to (near-)optimal solutions for the considered
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performance optimization problems. The results presented herein establish a formal framework

and a rigorous and insightful basis for such further computational developments.
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