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Abstract—The first part of this paper develops a linear charac-

terization for the space of the Petri net markings that are reach-

able from the initial marking, M0, through bounded-length fireable

transition sequences. The second part discusses the practical

implications of this result for the liveness and reversibility anal-

ysis of a particular class of Petri nets known as process-resource

nets with acyclic, quasi-live, serialisable and reversible process subnets.

Note to Practitioners – One of the main challenges in the anal-

ysis and design of the resource allocation taking place in modern

technological systems, is the verification of certain properties of

the system behavior like liveness and deadlock freedom. The last

decade has seen the development of a number of computational

tests that can evaluate the aforementioned properties for a large

class of resource allocation systems. The most promising of these

tests essentially verify the target properties by establishing the

absence of some undesirable structure from the states that are

reachable during the system operation. As a result, the effective

execution of these tests necessitates the effective representation

of the underlying reachability space. Yet, in the past, the devel-

opment of a concise and computationally manageable represen-

tation of the system reachability space has been considered to be

a challenging proposition and a factor that compromises the res-

olution power of the aforementioned tests. The work presented

in this paper establishes that for a very large class of the con-

sidered resource allocation systems, the underlying reachability

space admits a precise and computationally efficient character-

ization, which subsequently leads to more powerful verification

tools of the target behavioral properties.

Keywords: Petri net reachability analysis, process-resource nets,

structural analysis, liveness verification, reversibility verification.

I. Introduction

There is a general agreement in the Petri net-related liter-
ature that the exact characterization of the reachability space
of any given Petri net (PN) through a set of linear inequalities
might require a set of constraints that is of non-polynomial size
with respect to the size of the considered net, where the latter is
defined by the number of its places and its transitions, and also,
the total number of tokens in its initial marking. As a result,
the superset of the markings satisfying the net state equation1 is
typically used as a convenient convex approximation of the orig-
inal reachability space. In this paper, we show that, for certain
PN classes, it is possible to obtain an exact linear characteriza-
tion of the reachability space which employs a number of vari-
ables and constraints that are polynomially related to the size of
the underlying net. Our results are motivated by some observa-
tions made in [1], a work that sought to improve the aforemen-
tioned characterization of the net reachability space based on
the state equation. Beyond their theoretical interest, the pre-
sented results can have significant practical implications for the
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structural analysis of certain widely used PN classes; as a case
in point, the second part of the paper establishes that the pre-
sented results enable the strengthening of some computational
tests regarding the liveness and reversibility of a particular PN
class known as process-resource nets with acyclic, quasi-live, se-
rialisable and reversible process subnets [2], by converting these
tests from sufficient to necessary and sufficient conditions.

The rest of the manuscript is organized as follows: Section II
reviews the basic concepts of the PN theory employed in this
work. Section III develops the first result of the presented work,
i.e., a linear characterization of the PN reachability space that
is accessible from the net initial marking through fireable tran-
sition sequences, the length of which does not exceed a pre-
specified bound, K. Subsequently, Section IV explores the
practical implications of this characterization, by demonstrat-
ing how it can strengthen the liveness and reversibility analysis
of process-resource nets with acyclic, quasi-live, serialisable and
reversible process subnets. Finally, Section V concludes the pa-
per and suggests directions for future work.

II. Petri net preliminaries

Petri net Definition A formal definition of the Petri net
model is as follows:

Definition 1: [3] A (marked) Petri net (PN) is defined by a
quadruple N = (P, T, W, M0), where

• P is the set of places,

• T is the set of transitions,

• W : (P × T ) ∪ (T × P ) → Z+
0 is the flow relation,2 and

• M0 : P → Z+
0 is the net initial marking, assigning to each

place p ∈ P , M0(p) tokens.

Also, for the purposes of the subsequent analysis, the size
of PN N = (P, T, W, M0) is defined as |N | ≡ |P | + |T | +
∑

p∈P
M0(p). �

The first three items in Definition 1 essentially define a
weighted bipartite digraph representing the system structure
that governs its underlying dynamics. The last item defines the
system initial state. A conventional graphical representation of
the net structure and its marking depicts nodes corresponding
to places by empty circles, nodes corresponding to transitions
by bars, and the tokens located at the various places by small
filled circles. The flow relation W is depicted by directed edges
that link every nodal pair for which the corresponding W -value
is non-zero. These edges point from the first node of the cor-
responding pair to the second, and they are also labelled – or,
“weighed” – by the corresponding W -value. By convention, ab-
sence of a label for any edge implies that the corresponding
W -value is equal to unity.

Some structure-related PN concepts For computational
purposes, the net flow relation W is also encoded by two |P |×|T |
matrices, Θ+ and Θ−, with Θ+(p, t) = W (t, p) and Θ−(p, t) =
W (p, t). The difference Θ+−Θ− is known as the net flow matrix
and it is denoted by Θ. A PN is said to be pure if and only if
(iff ) ∀p ∈ P, ∀t ∈ T, Θ−(p, t)Θ+(p, t) = 0.

Given a transition t ∈ T , the set of places p for which (p, t) >

0 (resp., (t, p) > 0) is known as the set of input (resp., output)
places of t. Similarly, given a place p ∈ P , the set of transitions
t for which (t, p) > 0 (resp., (p, t) > 0) is known as the set of
input (resp., output) transitions of p. It is customary in the PN
literature to denote the set of input (resp., output) transitions
of a place p by •p (resp., p•). Similarly, the set of input (resp.,
output) places of a transition t is denoted by •t (resp., t•). This

2In this work, Z
+
0

denotes the set of nonnegative integers, and < denotes the

set of reals.



notation is also generalized to any set of places or transitions,
X, e.g. •X =

⋃

x∈X

•x.
The ordered set X =< x1 . . . xn > ∈ (P ∪ T )∗ is a path iff

xi+1 ∈ x•
i , i = 1, . . . , n − 1. Furthermore, a path X is charac-

terized as a circuit iff x1 ≡ xn.
The particular class of PN’s with a flow relation W mapping

onto {0, 1} are characterized as ordinary . An ordinary PN with
|t•| = |•t| = 1, ∀t ∈ T , is characterized as a state machine, while
an ordinary PN with |p•| = |•p| = 1, ∀p ∈ P , is characterized
as a marked graph.

Some dynamics-related PN concepts In the PN mod-
elling framework, the system state is represented by the net
marking M , i.e., a function from P to Z+

0 that assigns a to-
ken content to the various net places. The net marking M is
initialized to marking M0, introduced in Definition 1, and it
subsequently evolves through a set of rules summarized in the
concept of transition firing . A concise characterization of this
concept has as follows: Given a marking M , a transition t is
enabled iff for every place p ∈ •t, M(p) ≥ W (p, t), or equiva-
lently, M ≥ Θ−(·, t), and this fact is denoted by M [t〉. t ∈ T is
said to be disabled by a place p ∈ •t at M iff M(p) < W (p, t),
or, equivalently, M(p) < Θ−(p, t). Given a marking M , a tran-
sition t can be fired only if it is enabled in M , and firing such
an enabled transition t results in a new marking M ′, which is
obtained from M by removing W (p, t) tokens from each place
p ∈ •t, and placing W (t, p′) tokens in each place p′ ∈ t•. The
marking evolution incurred by the firing of a transition t can be
concisely expressed by the state equation:

M
′ = M + Θ · 1t (1)

where 1t denotes the unit vector of dimensionality |T | and with
the unit element located at the component corresponding to
transition t.

Given a PN N , a sequence of transitions, σ = t1t2 . . . tn, is
fireable from some marking M iff M [t1〉M1[t2〉M2 . . . Mn−1[tn〉

Mn; we shall also denote this fact by M
σ
→ Mn. The length of

σ is defined by the number of transitions in it, and it will be
denoted by |σ|. Also, the Parikh vector of σ is a |T |-dimensional
vector, σ̄, with each component σ̄(t), t ∈ T , stating the number
of appearances of transition t in σ.

The set of markings reachable from the initial marking
M0 through any fireable sequence of transitions is denoted
by R(N , M0) and it is referred to as the net reachability
space. Equation 1 implies that a necessary condition for M ∈
R(N , M0) is that the following system of equations is feasible
in z:

M = M0 + Θz (2)

z ∈ (Z+
0 )|T | (3)

A PN N = (P, T, W, M0) is said to be bounded iff all mark-
ings M ∈ R(N , M0) are bounded. N is said to be structurally
bounded iff it is bounded for any initial marking M0. N is said
to be reversible iff M0 ∈ R(N , M), for all M ∈ R(N , M0). A
transition t ∈ T is said to be live iff for all M ∈ R(N , M0), there
exists M ′ ∈ R(N , M) such that M ′[t〉; non-live transitions are
said to be dead at those markings M ∈ R(N , M0) for which
there is no M ′ ∈ R(N , M) such that M ′[t〉. PN N is quasi-live
iff for all t ∈ T , there exists M ∈ R(N , M0) such that M [t〉; it
is weakly live iff for all M ∈ R(N , M0), there exists t ∈ T such
that M [t〉; and it is live iff for all t ∈ T , t is live.

Siphons A siphon is a set of places S ⊆ P such that •S ⊆
S•. A siphon S is minimal iff there exists no other siphon S ′

such that S′ ⊂ S. A siphon S is said to be empty at marking
M iff M(S) ≡

∑

p∈S
M(p) = 0. S is said to be deadly marked

at marking M , iff every transition t ∈ •S is disabled by some
place p ∈ S. It is easy to see that, if S is an empty (resp.,
deadly marked) siphon at some marking M , then (i) ∀t ∈ •S, t

is a dead transition in M , and (ii) ∀M ′ ∈ R(N , M), S is empty
(resp., deadly marked).

PN semiflows PN semiflows provide an analytical charac-
terization of various concepts of invariance underlying the net
dynamics. Generally, there are two types, p and t-semiflows,
with a p-semiflow formally defined as a |P |-dimensional vec-
tor y satisfying yT Θ = 0 and y ≥ 0, and a t-semiflow for-
mally defined as a |T |-dimensional vector x satisfying Θx = 0
and x ≥ 0. In the light of Equation 2, the invariance prop-
erty expressed by a p-semiflow y is that yT M = yT M0, for
all M ∈ R(N , M0). Similarly, Equation 2 implies that for any
t-semiflow x, M = M0 + Θx = M0.

Given a p-semiflow y (resp., t-semiflow x) its support is de-
fined as ‖y‖ = {p ∈ P | y(p) > 0} (resp., ‖x‖ = {t ∈ T | x(t) >

0}). A p-semiflow y (resp., t-semiflow x) is said to be mini-
mal iff there is no p-semiflow y′ (resp., t-semiflow x′) such that
‖y′‖ ⊂ ‖y‖ (resp., ‖x′‖ ⊂ ‖x‖).

PN merging We conclude our general discussion on the
PN concepts and properties to be employed in the subse-
quent parts of this work, by introducing a merging operation
of two PN’s: Given two PN’s N1 = (P1, T1, W1, M01) and
N2 = (P2, T2, W2, M02) with T1 ∩ T2 = ∅ and P1 ∩ P2 = Q 6= ∅
such that for all p ∈ Q, M01(p) = M02(p), the PN N re-
sulting from the merging of the nets N1 and N2 through the
place set Q, is defined by N = (P1 ∪ P2, T1 ∪ T2, W1 ∪ W2, M0)
with M0(p) = M01(p), ∀p ∈ P1\P2; M0(p) = M02(p), ∀p ∈
P2\P1; M0(p) = M01(p) = M02(p), ∀p ∈ P1 ∩ P2.

III. Characterizing the PN markings reachable

through fireable transition sequences of

uniformly bounded length

In this section we provide a linear characterization of the set
of markings that are reachable from the initial marking, M0, of
a PN N = (P, T, W, M0), through fireable transition sequences,
the length of which is bounded by a pre-specified value, K. Our
main result is stated and proven as follows:

Theorem 1: Consider a marked PN N = (P, T, W, M0) with
reachability space R(N , M0), and let RK(N , M0) denote the set
of markings M ∈ R(N , M0) that are reachable from M0 through
some fireable transition sequence σ with |σ| ≤ K, K ∈ Z+

0 .
Also, let LK(N , M0) denote the set of vectors M ∈ <|P | that are
part of a solution to the following system of linear inequalities,
in variables M and ei, i ∈ {1, . . . , K}:

M = M0 + Θ ·

K
∑

i=1

ei (4)

M0 + Θ ·

i−1
∑

j=1

ej ≥ Θ− · ei, ∀i ∈ {1, . . . , K} (5)

(1, 1, . . . , 1) · ei ≤ 1, ∀i ∈ {1, . . . , K} (6)

ei ∈ {0, 1}|T |
, ∀i ∈ {1, . . . , K} (7)

Then, RK(N , M0) = LK(N , M0).
Proof: First we show that RK(N , M0) ⊆ LK(N , M0).

Consider a marking M1 ∈ RK(N , M0). The definition of
RK(N , M0) implies that there exists a fireable transition se-

quence, σ, such that |σ| ≤ K and M0
σ
→ M1. Sequence σ



defines the following solution for the system of Equations 4–
7: M = M1; ei = 1σ(i), ∀i ∈ {1, . . . , |σ|}; and ei = 0, ∀i ∈
{|σ| + 1, . . . , K}. In the above pricing, 1σ(i) denotes a |T |-
dimensional unit vector, with the unit element corresponding
to the i-th transition in fireable sequence σ. Also, 0 denotes
the |T |-dimensional zero vector. Clearly, this pricing satisfies
Equations 6 and 7 by construction. Equation 5 is satisfied
by the fact that σ constitutes a fireable transition sequence,
while Equation 4 is satisfied by the fact that M0

σ
→ M1. Hence

M1 ∈ LK(N , M0).
Next we show that LK(N , M0) ⊆ RK(N , M0). Let

M ∈ LK(N , M0). Then, the definition of LK(N , M0) im-
plies that there exist vectors ei, i = 1, . . . , K, such that
(MT , eT

1 , . . . , eT
K)T constitutes a solution to the system of Equa-

tions 4–7. The sequence of vectors ei, i = 1, . . . , K defines the
following string σ ∈ T ∗: ∀i ∈ {1, . . . , K}, σ(i) = ε, if ei = 0, and
σ(i) = arg maxt∈T ei(t), otherwise. In the above definition, T ∗

denotes the Kleene closure of T and ε denotes the null string.
Clearly, |σ| ≤ K. Furthermore, Equation 5 implies that σ is
a fireable transition sequence for N , while Equation 4 implies
that M0

σ
→ M . Hence, M ∈ RK(N , M0). �

Notice that if we ignore Equation 7, which characterizes the
binary nature of the variable vectors ei, i = 1, . . . , K, the re-
maining system of equations – i.e., Equations 4–6 – involves
(|P | + 1)K + |P | constraints in |T |K binary and |P | unre-
stricted variables. In the particular case that every marking
M ∈ R(N , M0) can be reached from the initial marking M0

through a fireable transition sequence σ of length |σ| ≤ K,
RK(N , M0) = R(N , M0), and therefore, the system of Equa-
tions 4–7 provides an exact linear characterization of R(N , M0)
that involves a number of variables and constraints that is a
polynomial function of |P |, |T | and K. If K also happens to be
a polynomial function of |N |, then, the system of Equations 4–7
provides a linear characterization of R(N , M0) involving a num-
ber of variables and constraints that are polynomially related
to |N |. We summarize the above discussion in the following
corollary:

Corollary 1: Consider a PN N = (P, T, W, M0) and suppose
that every marking M ∈ R(N , M0) can be reached from M0

through a fireable transition sequence σ, the length of which
is bounded uniformly by a polynomial function f(|N |), of the
net size |N |. Then, R(N , M0) = Lf(|N|)(N , M0) and the cor-
responding system of Equations 4–7 constitutes an exact linear
characterization of R(N , M0) involving a number of variables
and constraints that are polynomially related to |N |. �

The next section (i) establishes that the class of process-
resource nets with acyclic, quasi-live, serialisable and reversible
process subnets [2] satisfies the requirements of Corollary 1, and
(ii) explores the implications of this result for the analysis of the
liveness and reversibility of these nets.

IV. Implications for the structural analysis of

process-resource nets with acyclic, quasi-live,

serialisable and reversible process subnets

Process-resource nets with acyclic, quasi-live, weakly

separable and reversible process subnets Process-resource
nets with acyclic, quasi-live, serialisable and reversible process
subnets aggregate a number of PN classes that have been exten-
sively used in the literature for modelling the contest of concur-
rently executing processes for a finite set of reusable resources.
They are formally characterized through the following series of
definitions, taken from [2], [4].3

3We refer the reader to [2] for an extensive treatment of process-resource nets

and their properties. Furthermore, a fairly comprehensive survey of the available
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Fig. 1. The process net structure of Definition 2

Definition 2: [2] A process (sub-)net is an ordinary Petri net
NP = (P, T, W, M0) such that:
i. P = PS ∪ {i, o} with PS 6= ∅;
ii. T = TS ∪ {tI , tF , t∗};
iii. i• = {tI};

•i = {t∗};
iv. o• = {t∗}; •o = {tF };
v. t•I ⊆ PS ; •tI = {i};
vi. t•F = {o}; •tF ⊆ PS ;
vii. (t∗)• = {i}; •(t∗) = {o};
viii. the underlying digraph is strongly connected ;
ix. M0(i) > 0 ∧ M0(p) = 0, ∀p ∈ P\{i};
x. ∀M ∈ R(NP , M0), M(i) + M(o) = M0(i) =⇒ M(p) =
0, ∀p ∈ PS . �

The PN-based process representation introduced by Defini-
tion 2 is depicted in Figure 1. Process instances waiting to
initiate processing are represented by tokens in place i, while
the initiation of a process instance is modelled by the firing of
transition tI . Similarly, tokens in place o represent completed
process instances, while the event of a process completion is
modelled by the firing of transition tF . Transition t∗ allows the
token re-circulation – i.e., the token transfer from place o to
place i – in order to model repetitive process execution. Finally,
the part of the net between transitions tI and tF , that involves
the process places PS , models the sequential logic defining the
considered process type. In particular, places p ∈ PS corre-
spond to the various processing stages of the modelled process,
while the net connectivity among these places expresses the se-
quential logic characterizing the process flow. As it can be seen
in Definition 2, this part of the process subnet can be quite arbi-
trary. However, the subnets considered in this work are further
qualified by the next four definitions.

Definition 3: [2] A process net is characterized as acyclic, iff
the removal of transition t∗ from it renders it an acyclic digraph.
�

Definition 4: [2] A process net is characterized as quasi-live,
iff the corresponding PN is quasi-live for M0(i) = 1. �

Definition 5: [4]4 A process net NP is characterized as k-
reversible, iff , when initialized at M0(i) = k > 0, for any mark-
ing M ∈ R(NP , M0) there exists a transition sequence σ, not
containing t∗, that is fireable from M and results to marking
MF with MF (p) = k if p = o and MF (p) = 0 otherwise. NP is
said to be reversible, iff it is 1-reversible. Finally, NP is said to
be strongly reversible, iff it is k-reversible for every k > 0. �

literature on the problems of liveness characterization and liveness-enforcing

supervision of process-resource nets and the underlying resource allocation sys-

tems, can be found in [5].
4More specifically, this definition is equivalent to Definition 3 in [4] when

the term “k-reversibility” is replaced with that of “k-soundness” and the term

“strong reversibility” is replaced with that of “soundness”.



Definition 6: [4] A process net NP is characterized as seri-
alisable, iff , when initialized at M0(i) = k > 0, any transition
sequence σ that is fireable from M0 and it does not contain t∗

can be expressed as the interleaving of k possibly empty transi-
tion sequences, σj , j = 1, . . . , k, each of which is fireable in the
same net NP when it is initialized at M0(i) = 1. �

In words, reversibility implies that any initiated process can
always terminate, and this termination is proper , i.e., there are
no tasks left hanging in the system. k-reversibility extends the
notion of reversibility to process batches. Strong reversibility
further implies that a batch of initiated process instances can
proceed to completion without the initiation of any additional
process instances. On the other hand, serialisability essentially
implies that the various process instances maintain their iden-
tity during their execution in the system, and concurrently run-
ning processes do not give rise to unintentional behavioral pat-
terns by getting confounded. In [4] it is shown that serialis-
ability is naturally satisfied by process nets NP that constitute
(i) state machines or (ii) marked graphs in which every cycle
contains the transition t∗. Otherwise, this property can be ex-
plicitly enforced by labelling the various tokens circulating in
the net with the identity of the corresponding process, and re-
questing that any transition t can fire only when the enabling
tokens in •t have matching labels; we refer to [4] for the further
formalization of this idea. Finally, in [4] it is also established
that:

Theorem 2: [4] A serialisable and reversible process net NP

is strongly reversible. �
The modelling of the resource allocation associated with the

process stage corresponding to any place p ∈ PS , necessitates
the augmentation of the process subnet NP , defined above, with
a set of resource places PR = {rl, l = 1, . . . , m}, of initial mark-
ing M0(rl), l = 1, . . . , m, equal to the available capacity, Cl,
of the corresponding resource, and with the flow sub-matrix,
ΘPR

, expressing the allocation and de-allocation of the vari-
ous resources to the process instances as they advance through
their processing stages. The resulting PN is characterized as a
resource-augmented process (sub-)net , and it is formally defined
as follows:

Definition 7: [2] A resource-augmented, acyclic, quasi-live,
serialisable and reversible process (sub-)net , NP = (PS∪{i, o}∪
PR, T, W, M0), is an acyclic, quasi-live, serialisable and re-
versible process net, NP = (PS ∪ {i, o}, T, W, M0), augmented
with a set of places PR, such that:
i. ∀rl ∈ PR, M0(rl) ≡ Cl > 0;
ii. (t∗)• ∩ PR = •(t∗) ∩ PR = (tI)

• ∩ PR = •(tF ) ∩ PR = ∅;
iii. ∀l ∈ {1, . . . , |PR|}, there exists a p-semiflow yrl

such that:
(a) yrl

(rl) = 1; (b) yrl
(rj) = 0, ∀j 6= l; (c) yrl

(i) = yrl
(o) = 0;

(d) ∀p ∈ PS , yrl
(p) = number of units from resource Rl required

for the execution of the processing stage modelled by place p;
iv. The PN obtained from NP by setting its initial marking to
M0(i) = 1; M0(rl) = Cl, ∀rl ∈ PR; and M0(p) = 0, ∀p ∈
PS ∪ {o}, is quasi-live. �

Finally, the next definition provides the complete character-
ization of the class of process-resource nets considered in this
work.

Definition 8: [2] A process-resource net with acyclic, quasi-
live, serialisable and reversible process subnets is a PN N =
(P, T, W, M0) that is obtained by merging a number of resource-
augmented, acyclic, quasi-live, serialisable and reversible pro-
cess nets, NPj

= (Pj , Tj , Wj , M0j
), j = 1, . . . , n, through their

common resource places. �
The basic structure of a process-resource net with acyclic,

quasi-live, serialisable and reversible process subnets is depicted
in Figure 2.
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Fig. 2. The process-resource net structure considered in this work

Bounding the “distance” of the reachable markings

of a process-resource net with acyclic, quasi-live, seri-

alisable and reversible process subnets, from the net

initial marking Next we show that for a process-resource
net, N , with acyclic, quasi-live, serialisable and reversible pro-
cess subnets, every marking M ∈ R(N , M0) is reachable from
the initial marking, M0, through a fireable transition sequence,
σ, the length of which is uniformly bounded by a value, K, that
is a polynomial function of |N |. We prove this result in two
steps, starting with the following lemma.

Lemma 1: Consider a process-resource net N = (P, T, W, M0)
with acyclic, quasi-live, serialisable and reversible process sub-
nets. Then, every marking M ∈ R(N , M0) is reachable by a
fireable transition sequence σ with σ̄(t∗j ) = 0, ∀j.

Proof: Consider a marking M ∈ R(N , M0) and a transition

sequence τ such that M0
τ
→ M . We shall show that there exists

a subsequence σ of τ such that σ̄(t∗j ) = 0, ∀j, and M0
σ
→ M .

Clearly, if τ does not contain any transition t∗j , j = 1, . . . , n,
then, σ = τ . In the opposite case, let t∗j(1) denote the first

transition t∗j , j = 1, . . . , n, appearing in τ . Also, let ρ(1) denote
the prefix of string τ up to (but excluding) the first appearance
of transition t∗j(1) , and ρ(1) denote the part of τ following the

first appearance of transition t∗j(1) . The ordinary nature of PN

NPj(1)
, together with items (iv), (vii) and (ix) of Definition 2,

imply that ρ(1) contains at least one instance of transition tFj(1)
;

let tl
Fj(1)

denote the first such instance appearing in ρ(1). The

fact that t∗j 6∈ ρ(1), ∀j, when combined with the independence
and serialisability of the process nets NPj

, j = 1, . . . , n, imply

that there exists a transition subsequence of ρ(1), let’s say ξ(1),
that contains tl

Fj(1)
and it is fireable in the net NPj(1)

when

the latter is initialized with M0(ij(1)) = 1. Finally, we also

define: (a) w(1) = ξ(1)t∗j(1) ; (b) σ(1) be the string obtained from

the transition sequence ρ(1)t∗j(1) by removing every element in

w(1); and (c) M (1) ∈ R(N , M0) be a marking of the process-

resource net N such that M0

ρ(1)t∗
j(1)

−→ M (1). Next we show that

M0
σ(1)

−→ M (1) in N .

First consider the PN N ′ obtained from net N by removing
the resource places PR and their incident arcs. Also, let M ′

denote the marking of N ′ obtained from marking M of N by
removing its components corresponding to places p ∈ PR. We

claim that in N ′, M ′
0

σ(1)

−→ (M (1))′. Indeed, the construction
of w(1) implies that it is fireable in NPj(1)

, under the initial

marking defined in item (ix) of Definition 2. Furthermore, the



serialisability of NPj
, j = 1, . . . , n, implies that M ′

0
σ(1)w(1)

−→

(M (1))′. In addition, w̄(1) is a t-semiflow in NPj(1)
, since the

selection of tl
Fj(1)

implies that, otherwise, the execution of the

string w(1) in NPj(1)
would violate item (x) of Definition 2. But

then, Definition 8 implies that w̄(1) is also a t-semiflow of the

entire net N ′. Hence, M ′
0

σ(1)

−→ (M (1))′. Moreover, the fact
that w̄(1) is a t-semiflow of net N ′, combined with item (iii)
of Definition 7, imply that w̄(1) is a t-semiflow for the original

net N . Hence, M (1) = M0 + Θ · ρ(1)t∗j(1)
= M0 + Θ · (σ̄(1) +

w̄(1)) = M0 + Θ · σ̄(1). In the light of this result, in order to

show that M0
σ(1)

−→ M (1) in N , it is adequate to show that the
string σ(1) is feasible in N with respect to resource places rl ∈
PR, when the marking of these places is initiated to M0(rl) =
Cl, ∀rl ∈ PR. This feasibility is established by noticing that the
construction of the strings σ(1) and w(1) from the string ρ(1)t∗j(1) ,

when combined with items (ii) and (iii) of Definition 7, imply
that, upon the firing of every transition t ∈ σ(1), the marking of
every place rl ∈ PR is greater than or equal to the marking of
these places upon the firing of the same transition in the original
string ρ(1).

Recapitulating the above discussion, we have shown that for
any marking M ∈ R(N , M0), the existence of a fireable transi-

tion sequence, τ , such that M0
τ
→ M , implies the existence of

another sequence τ (1) ≡ σ(1)ρ(1) such that M0
τ(1)

→ M and the

appearances of transitions t∗j , j = 1, . . . , n, in string τ (1) have
been reduced by one compared to the corresponding appear-
ances in string τ . Since |τ | is finite, the number of appearances
of the transitions t∗j , j = 1, . . . , n, in τ will be finite, let’s say
ν. But then, consecutive application of the above argument ν

times, will result to a string τ (ν) with M0
τ(ν)

→ M and no tran-
sitions t∗j , j = 1, . . . , n, in it. The entire proof concludes by

setting σ = τ (ν). �
Theorem 3: Consider a process-resource net N = (P, T, W ,

M0) with acyclic, quasi-live, serialisable and reversible process
subnets. Then, every marking M ∈ R(N , M0) is reachable by a
fireable transition sequence, σ, the length of which is uniformly
bounded by a value, K, that is a polynomial function of |N |.

Proof: Consider a marking M ∈ R(N , M0). Then, accord-
ing to Lemma 1, there exists a transition sequence σ such that
M0

σ
→ M and σ̄(t∗j ) = 0, ∀j. The length of any such tran-

sition sequence σ is maximized by pushing as many tokens as
possible in places oj , j = 1, . . . , n. Let Kj denote the maximal
number of tokens that can be brought to place oj , j = 1, . . . , n,
by such a fireable transition sequence σ; we claim that Kj is
O(M0(ij)) for every place oj , j = 1, . . . , n.5 Indeed, Kj cannot
exceed M0(ij), since, otherwise, items (i)–(ix) of Definition 2
imply that there is a marking M ′ ∈ R(N , M0) such that its
restriction to the place set Pj violates item (x) of Definition 2.
Furthermore, the acyclic structure of net NPj

implies that the
length of any transition sequence bringing a token in place oj

is O(|Pj |). Hence, the length of any transition sequence leading
to the marking of place oj with Kj tokens is O(|Pj | · M0(ij)).
But then, Definition 8 implies that the length of any of the
aforementioned transition sequences σ is O(

∑

j
|Pj | ·M0(ij)). �

Remark 1: While the result of Theorem 3 is technically cor-
rect, in the sense that the derived bound O(

∑

j
|Pj | · M0(ij))

is indeed polynomially related to |N |, one could argue that

5We remind the reader that the statement “X is O(n)” implies that X is

a function of n and there exists some linear function of n that constitutes an

upper bound of X(n) for every n.

the initial marking M0(ij), j = 1, . . . , n, is a concept that is
not defined naturally by the original resource allocation sys-
tem (RAS), but it is artificially introduced while modelling the
(logical) dynamics of this system through the proposed class of
process-resource nets. However, in any practical study of such a
process-resource net, the markings M0(ij), j = 1, . . . , n, are se-
lected such that they express the maximal concurrency allowed
by the resource availability in the underlying RAS. Hence, for a
well-defined process-resource net, M0(ij) = O(

∑

rl∈PR
M0(rl)),

which, when combined with the results in the proof of Theo-
rem 3, implies that |σ| is O(

∑

j
|Pj | ·

∑

rl∈PR
M0(rl)). �

Remark 2: A practical bound, K, for the length of sequences
σ of Theorem 3, can be computed as the optimal value of the
following Integer Programming (IP) formulation:

K = max
∑

t∈T

z(t) (8)

s.t.
M0 + Θz ≥ 0 (9)

z(t∗j ) = 0, ∀j (10)

z ∈ (Z+
0 )|T | (11)

�
The implications of the derived results for the struc-

tural analysis of process-resource nets with acyclic,

quasi-live, serialisable and reversible process subnets

The liveness and reversibility of process-resource nets with
acyclic, quasi-live, serialisable and reversible process subnets,
are structurally characterized by the following theorem:

Theorem 4: Let N = (PS∪I∪O∪PR, T, W, M0) be a process-
resource net with acyclic, quasi-live, serialisable and reversible
processes. N is live and reversible iff the space of modified
reachable markings, R(N , M0), that is induced by R(N , M0)
through the projection

M(p) =

{

M(p) if p 6∈ I ∪ O

0 otherwise
(12)

contains no deadly marked siphons, S, such that (i) S ∩PR 6= ∅
and (ii) ∀p ∈ S ∩ PR, p is a disabling place at M .

Proof: According to Theorem 2, N is also strongly reversible.
But then, Theorem 4 is an immediate consequence of Theorems
5.3 and 5.4 in Chpt. 5 of [2]. �

A siphon, S, that is deadly marked at some marking, M , of a
process-resource net, N = (PS∪I∪O∪PR, T, W, M0), and it fur-
ther satisfies that (i) S∩PR 6= ∅ and (ii) ∀p ∈ S∩PR, p is a dis-
abling place at M , is characterized as resource-induced deadly
marked siphon. Reference [2] also establishes that the absence
of resource-induced deadly marked siphons from any marking
M of a process-resource net N = (PS ∪ I ∪ O ∪ PR, T, W, M0)
can be verified through the following computational test:

Theorem 5: [2]6 Consider a process-resource net, N = (PS ∪
I ∪O∪PR, T, W, M0), and let SB(p) denote a structural bound
for every place p ∈ PS∪I∪O∪PR. Then, any given marking, M ,
of N will contain no resource-induced deadly marked siphons,
iff the following system of equations, in binary variables vp, zt,
and fpt, is infeasible.

fpt ≥
M(p)−W (p,t)+1

SB(p)
, ∀W (p, t) > 0 (13)

fpt ≥ vp, ∀W (p, t) > 0 (14)

6In particular, c.f. Theorem 5.6 and Corollary 4 in Chpt. 5 of [2] for a

systematic derivation of this result.



zt ≥
∑

p∈•t
fpt − |•t| + 1, ∀t ∈ T (15)

vp ≥ zt, ∀W (t, p) > 0 (16)
∑

r∈PR
vr ≤ |PR| − 1 (17)

∑

t∈r•
frt − |r•| + 1 ≤ vr, ∀r ∈ PR (18)

vp, zt, fpt ∈ {0, 1}, ∀p ∈ P, ∀t ∈ T (19)

�
We notice that, for well-defined process-resource nets with

acyclic, quasi-live, serialisable and reversible process subnets,
the structural bounds, SB(p), that are necessary for the appli-
cation of Theorem 5, can be obtained on the basis of item (iii)
of Definition 7 and item (x) of Definition 2. Furthermore, for
any given such net N , the test of Theorem 5 can be extended to
a test for the non-existence of resource-induced deadly marked
siphons over the entire modified reachability space, R(N , M0) –
and, through Theorem 4, to a test for assessing the net liveness
and reversibility – by:
i. substituting marking vector M in Equations 13–19 with the
modified marking vector M ;
ii. introducing an additional set of unrestricted variables, M ,
representing the net reachable markings;
iii. adding two sets of constraints, the first one linking variables
M and M according to the logic of Equation 12, and the second
one ensuring that the set of feasible values for the variable vector
M is equivalent to the reachability space R(N , M0);
iv. finally, the second set of constraints mentioned above can be
provided by Equations 4–7, where the parameter K is selected
according to the IP formulation of Equations 8-11.
The following corollary formalizes the above observation and
reveals the role of the results derived in the earlier parts of this
paper in the assessment of the liveness and reversibility of the
considered PN sub-class.

Corollary 2: Let N = (P, T, W, M0) be a process-resource net
with acyclic, quasi-live, serialisable and reversible process sub-
nets. N is live and reversible iff the system of equations de-
fined by (i) Equations 13–19, where the parameter vector M is
replaced by the variable vector M , (ii) Equations 4–7, where
the parameter K is computed according to the IP formulation
of Equations 8-11, and (iii) Equation 12, is infeasible. �

Corollary 1 and Theorem 3, together with the inspection of
Equations 13–19, imply that the number of variables and con-
straints engaged in the formulation of Corollary 2 is polynomi-
ally related to |N |. The exact number of variables and equations
depends on the value for parameter K returned by the solution
of the IP formulation of Equations 8-11. Finally, notice that, if
the application of the resulting criterion on any given process-
resource net, N , is deemed computationally intractable, one can
still resort to the sufficiency test provided in ([2]; pgs 141-142);
this test substitutes Equations 2–3 for Equations 4–7, in the
system of equations defined in Corollary 2, and it seeks to ver-
ify the absence of resource-induced deadly marked siphons in
the broader set of markings that satisfy the resulting system of
equations.

V. Conclusions

The first part of this paper presented a linear characterization
of the space of the Petri net markings that are reachable from
the initial marking, M0, through bounded-length fireable transi-
tion sequences. The second part employed this result in order to
develop a necessary and sufficient condition for the liveness and
reversibility of process-resource nets with acyclic, quasi-live, se-
rialisable and reversible process subnets; this condition takes

the computationally convenient form of testing the feasibility
of a system of linear inequalities with additional integrality re-
quirements for some of its variables, the size of which is related
polynomially to the size of the underlying PN. Furthermore,
it should be noticed that the presented methodology can be
easily extended to other structural analysis tests that concern
the verification of certain net properties and take the form of a
mathematical programming formulation parameterized with re-
spect to the net marking M . Indicatively, we mention that the
assessment of the quasi-liveness of process-resource nets where
every process subnet, NPj

, j = 1, . . . , n, of Definition 2, has
the additional structure of a marked graph with every circuit
containing the path < ojt

∗
j ij >, reduces to verifying the ab-

sence of resource-induced deadly marked siphons from the mod-
ified reachability space R(N , M0) [6]. Since the aforementioned
process nets are acyclic, reversible and serialisable, it follows
that the quasi-liveness of the entire process-resource net can be
tested together with its liveness and reversibility, through the
criterion stated in Corollary 2 of this paper. Similarly, assessing
the strong reversibility of an acyclic process net, NP , of Defini-
tion 2, reduces to verifying the absence of empty siphons from
its modified reachable markings other than M 0 [7]. A sufficiency
test for this last property, that takes the convenient form of a
mixed integer programming formulation, can be found in [8]. It
is interesting to consider whether this test can also be extended
to an exact test for the strong reversibility of any process net
sub-classes, by employing concepts and techniques similar to
those presented herein. Finally, from a more theoretical stand-
point, it would be interesting to consider whether, and/or under
what circumstances, the results of Section IV can be extended
by replacing the requirement for serialisability by the more re-
laxed property of (weak) separability, that is also introduced in
[4].
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