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Abstract— The Optimal Node Visitation (ONV) problem ad-
dressed in this paper concerns the visitation of a subset of
nodes in a stochastic graph a specified number of times,
while minimizing the expected visits to another node in this
graph. The presented results first provide a formulation of
the ONV problem as a stochastic shortest path (SSP) problem,
and subsequently they develop a suboptimal policy that is
computationally tractable and asymptotically optimal. In
particular, it is established that the ratio of the expected
performance of this policy to the expected performance of
an optimal policy converges to one, as the underlying visita-
tion requirements are scaled uniformly to infinity. Further-
more, it is shown that under some stronger assumptions, the
divergence of the performance of this policy from the perfor-
mance of the optimal policy remains uniformly bounded by
a constant, as the visitation requirements are scaled to infin-
ity. Finally, it is shown that, for certain problem structures,
the considered policy admits a closed-form characterization
of its performance, which subsequently enables its optimized
paremeterization and its efficient integration into adaptive
control schemes of even higher efficiency.

Index Terms— Markov Decision Processes, Stochastic
Shortest Path Problems, Fluid Modeling, Suboptimal Con-
trol, Asymptotic Analysis

I. Introduction

The problem addressed in this work can be briefly de-
scribed as follows: A control agent moves through a set
of nodes, X, by selecting at each visited node x ∈ X an
action, a, from a set A(x), that will transfer it to a node
x′ ∈ S(a) ⊆ X, with probability p(x′; a). The agent is ini-
tially placed at a certain node x0 ∈ X, and its objective is
to visit each node xj ∈ XT ⊂ X, j = 1, , 2 . . . , |XT |, a cer-
tain number of times, Nj , while minimizing, in expectation,
the number of its visits to a particular node x0 ∈ X\XT .
A preliminary study of this problem was presented in [1],
where it was further assumed that (i) x0 = x0, (ii) the
transitions out from the target nodes xj ∈ XT lead de-
terministically to node x0 and (iii) the subgraph obtained
from the elimination of the transitions mentioned in (ii) has
an acyclic structure with node x0 defining its unique “root”
node and the target nodes xj ∈ XT being a subset of the
“terminal” nodes. In [1], it was shown that this more re-
stricted version of the problem accepts a stochastic shortest
path (SSP) formulation [2], but that the underlying state
space increases exponentially with respect to |XT |. Hence,
the work of [1] also introduced a sub-optimal randomized
policy that was defined on the basis of a continuous – or
“fluid” [3], [4], [5]– relaxation of the original problem, and
it was shown to be asymptotically optimal , in the sense
that the ratio of its performance to the performance of
an optimal policy converges to one, as the node visitation
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requirements are scaled uniformly to infinity. The work
presented in this paper seeks to extend and strengthen the
results of [1] by (i) expanding them to address more general
transition structures, (ii) enriching and improving the class
of asymptotically optimal policies available for the ONV
problem, and (iii) deriving stronger convergence properties
for the performance of these policies.

More specifically, in this work we study the ONV prob-
lem without the restrictive assumptions on the connectiv-
ity of the underlying state space that were introduced in
[1]. We show that under some very general assumptions
that will guarantee the existence of proper policies [2], the
problem retains its basic SSP structure, and there exists a
fluid-based relaxation such that any optimal solution of the
relaxed formulation induces an asymptotically optimal ran-
domized policy. In the following, we shall refer to any such
randomized policy that is induced by the aforementioned
relaxed formulation, as policy πrel. By using concepts and
results borrowed from renewal theory , and especially the
central limit theorem (CLT) for renewal processes [6],1 we
are also able to provide a bound for the rate of increase of
the performance difference between policy πrel and any op-
timal policy π∗, as the target node visitation requirements
are scaled uniformly to infinity. Even more interestingly,
this analysis has led to the identification of further condi-
tions, of considerable generality, under which the asymp-
totic optimality of πrel becomes stronger; in particular,
under these additional conditions, the difference between
the performance of πrel and the performance of any opti-
mal policy π∗ remains uniformly bounded by a constant,
as the node visitation requirements grow uniformly to in-
finity. Another part of the presented work discusses the
possibility for more efficient adaptive implementations of
πrel, that take advantage of the special structure that is
present in the state space of the aforementioned SSP formu-
lation. More specifically, these adaptive implementations
of πrel retain its computational efficiency while they ex-
ploit the additional information provided in the “history”
of the attained visitation requirements in order to achieve
enhanced performance, by properly adjusting the action
selection probabilities every time that a new visitation re-
quirement is met. Finally, we also establish the rather
surprising result that, under some additional assumptions
on the underlying transition structure that subsume the
topology studied in [1], the performance of policy πrel can
be characterized in “closed-form”. This result stems from
our ability to characterize the underlying process dynamics
through a Markovian scheme [6], [7], and, when applicable,
it enables (i) an optimized implementation of πrel on the
considered ONV variations, and (ii) the efficient implemen-

1instead of the strong law of large numbers (SLLN) that was orig-
inally used in [1]
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tation of adaptive “rollout” policies [8] that employ πrel as
the underlying “base” policy.

From a methodological standpoint, the presented anal-
ysis for the ONV problem is similar, in spirit, to the pre-
vailing trends regarding the analysis of stochastic schedul-
ing problems [5], [9]. As indicated in [5], most stochas-
tic scheduling problems are notoriously hard to solve op-
timally, and one has to compromise for solutions that are
suboptimal but computationally tractable. In particular,
the last few years have seen the emergence of a number
of works that seek to provide suboptimal solutions to vari-
ous stochastic scheduling problems by exploiting some “re-
laxed” – or “fluid”-based – version of the original problem
[10], [11], [12]. Furthermore, in many cases, this line of
analysis also provides guaranteed bounds for the potential
suboptimality of the derived policies; cf., for instance, the
works of [3], [4] and the references provided therein.

Finally, the practical motivation for the formulation and
study of the ONV problem has been provided by our work
presented in [13]. In that work, a learning agent must
compute on-line an optimal policy for a task that evolves
episodically over a state space that is stochastic and acyclic,
and it has a single source state that defines the task ini-
tial state. It is shown that the agent can obtain an ε-
optimal policy with probability at least 1− δ, by sampling
the various actions available at each state a certain num-
ber of times2 and selecting the action that results to the
highest sample mean. Furthermore, this sampling must
be performed on a layer by layer basis, starting from the
terminal states and proceeding towards the initial state of
the underlying state space. Higher-level states that have
covered all the required sampling, and have their actions
selected, are declared “fully explored”, and they abandon
the layer of “actively explored” states. On the other hand,
lower-level states join the layer of “actively explored” states
when all their immediate successors become fully explored.
It is clear from the above that, in the considered setting,
expedient learning translates to the determination of rout-
ing policies that will enable the realization of the required
sampling in a minimum number of episodes. Furthermore,
under the assumption that the transition probabilities are
known a priori , the problem of determining such an op-
timized routing policy for a given set of actively explored
states corresponds to the ONV problem variation defined in
[1]. Hence, the ONV problem constitutes a prototypical ab-
straction whose study can offer the analytical insights and
effective policies that subsequently can be implemented in
the context of the learning algorithm described above, ac-
cording to a “certainty equivalence” scheme [2] that sub-
stitutes the actual transition probabilities with pertinent
estimates obtained during the execution of the algorithm.
Another potential application context for the ONV prob-
lem variation defined in [1] is provided by various experi-
mental setups where the subject must be studied in a num-
ber of states that are obtained from an initial state through
some sequential treatment with probabilistic outcomes at

2that depends on the graph structure and the performance param-
eters ε and δ

the various stages. Assuming that the performed treat-
ment has a destructive effect on the subject, one would
like to obtain the required measurements while minimiz-
ing the number of subjects utilized in the experiment. Fi-
nally, for the extended version of the ONV problem stud-
ied in this work, one can easily envision additional “pa-
trolling” and/or “roaming” applications over stochastically
traversed “terrains” where an agent tries to visit some se-
lected target areas a pre-specified number of times, while
minimizing its exposition to a certain dangerous region.

Given the above positioning of the paper results, the rest
of it is organized as follows: Section II provides the formal
definition of the ONV problem considered in this work,
and its further abstraction to an SSP problem. Section III
introduces a further transformation (“reduction”) of the
problem that is necessary for the subsequent definition of
the proposed asymptotically optimal policies. Section IV
introduces πrel, the primary policy considered in this work,
and it formally establishes its asymptotic optimality. Sec-
tion V addresses the potential of more elaborate, adaptive
implementations of πrel, with enhanced performance com-
pared to the original policy. Section VI presents a series
of additional results that pertain to the restricted ONV
problem version studied in [1], and concern the capability
of closed-form performance evaluation of πrel and its im-
plications. This section also reports a computational study
that exemplifies and highlights the major analytical devel-
opments of the manuscript. Finally, Section VII concludes
the paper and discusses directions for potential extensions
of the presented results.

II. Problem description and its SSP formulation

A formal description of the ONV problem The
ONV problem described in the introductory section is com-
pletely defined by a 7-tuple E = (X,x0, x

0, XT ,A,P,N ),
where:
• X is a finite set of nodes such that {x0, x

0} ⊆ X and
XT = {x1, x2, . . . , x|X

T |} ⊆ X\{x0}.
• A is a set function defined onX, that maps each x ∈ X to
the finite, non-empty set A(x), comprising all the decisions
/ actions that can be executed by the control agent at node
x. It is further assumed that for x 6= x′, A(x)∩A(x′) = ∅.
• P is the transition function, defined on

⋃
x∈X A(x), that

associates with every action a in this set a discrete proba-
bility distribution p(·; a). The support sets of the distribu-
tions p(·; a) are subsets of the node set X, to be denoted
by S(a), and it is further assumed that: (i) for every node
x ∈ X, there is an action selection scheme – or a policy
π – that renders x0 accessible from x,3 and (ii) for every
node xj ∈ XT , j = 1, 2, . . . , |XT |, there is a policy π that
renders xj accessible from x0.
• N is the visitation requirement vector , that associates
with each node xj ∈ XT a visitation requirement Nj ∈ Z+.
• Finally, in order to facilitate the following discussions on
the computational complexity of the ONV problem and the

3i.e., starting from node x and selecting actions at each node ac-
cording to policy π, there is a positive probability that the agent will
reach node x0
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Fig. 1. An example problem instance

proposed solutions, we define the instance size |E| ≡ |X|+
|
⋃
x∈X A(x)|+ |N |, where application of the operator | | on

a set returns the cardinality of this set, while application
on a vector returns its l1 norm.

In the subsequent discussion we shall also employ the
variable vector N c to denote the vector of the remaining
visitation requirements. The control agent starts from node
x0 at period t = 0, sets N c := N , and at every consecutive
period t = 1, 2, 3, . . . , it (i) observes its current position,
xt, and the vector of remaining visitation requirements,
N c, (ii) selects and executes an action a ∈ A(xt), and
(iii) upon reaching one of the target nodes, xj ∈ XT , up-
dates Nj

c to (Nj
c − 1)+. The entire operation terminates

when all the node visitation requirements have been sat-
isfied, i.e., N c has been reduced to zero. Our intention is
to determine a policy π that maps each tuple (x,N c) to
an action π(x,N c) ∈ A(x) in a way that will enable the
agent to satisfy all the visitation requirements expressed by
N , while minimizing the expected number of visitations to
node x0.

Example Figure 1 demonstrates the above defini-
tions, by presenting a specific instance E = (X,x0, x

0,
XT ,A,P,N ) of the considered ONV problem. In the de-
picted problem instance, the control agent is initially lo-
cated to node x0, and the set of target nodes is XT =
{x1, x2}, with respective visitation requirements N1 =
N2 = 1. On the other hand, node x0 is the node to be
avoided during the execution of the requested visits to the
aforementioned target nodes. It can also be noticed that
A(x0) = {a1, a2}, A(x1) = {a3, a4}, A(x2) = {a5, a6},
A(x0) = {a7, a8}, and that the transitions resulting from
these actions satisfy the connectivity requirements posed
on the transition function P; i.e., there are paths of posi-
tive probability from each node x ∈ X to node x0 and also
paths that lead with positive probability from node x0 to
each of the two target nodes x1 and x2.

The induced stochastic shortest path problem The
ONV problem described in the previous paragraph can be
further abstracted to a Discrete Time Markov Decision
Process (DT-MDP), M = (S,A, t, c), such that:

• S is the finite set of states, identified with the tuples
(x,N c), where x ∈ X and N c ∈

∏|XT |
j=1 {0, . . . ,Nj};

• A is a set function that associates with every state s =
(x,N c) the action set A(s) ≡ A(x), where A(x) is specified
in the definition of E ;
• t : S ×

⋃
s∈S A(s) × S −→ [0, 1], is the MDP state tran-

sition function that is induced from the above definitions
of S and A, and the transition function P that appears in
the definition of E ; and
• c is the cost function defined on S with

c(s) =

{
1, if x = x0 and N c 6= 0;
0, otherwise.

(1)

It should be clear from the above specification of M
that the set of states s = (x,N c) with N c = 0 constitute
a closed class which is also cost-free, i.e., once the process
enters this class of states it will remain in it, and there will
be no further cost accumulation. Hence, for the purposes of
the subsequent developments, it is pertinent to aggregate
this entire class of states into a single aggregate state, sT ,
that is absorbing and cost-free under any policy π; we shall
refer to the state sT as the problem terminal state. Figure 2
exemplifies the resulting structure by depicting the state
transition diagram for the MDP M that is induced by the
ONV problem instance E depicted in Figure 1.

In the following, we are especially interested in a pol-
icy π∗ that, starting from the initial state s0 ≡ (x0,N ),
will drive the underlying process to the terminal state sT

with the minimum expected total cost. Let Vπ(s0) =
Eπ[

∑∞
t=0 c(st)|s0 = s0], where π is some given policy from

the policy set Π, and the expectation Eπ[·] is taken over all
possible realizations under π. Then π∗ is formally defined
by

π∗ = arg min
π∈Π

Vπ(s0) (2)

It is easy to see that the resulting MDP formulation is a
well-defined Stochastic Shortest Path (SSP) problem [2].
Therefore, according to [2]:

Theorem 1: There exists a unique vector V ∗(s), s ∈ S,
with V ∗(sT ) = 0 and with its remaining components satis-
fying the Bellman equation

V ∗(s) = min
a∈A(s)

{c(s) +
∑
s′∈S

t(s, a, s′) · V ∗(s′)} (3)

Furthermore, the vector V ∗(s) defines an optimal policy
π∗, by setting for all s ∈ S\{sT },

π∗(s) := arg min
a∈A(s)

{c(s) +
∑
s′∈S

t(s, a, s′) · V ∗(s′)} (4)

The vector V ∗ introduced in Theorem 1 is known as
the optimal value function or the optimal cost-to-go vector
for the considered MDP formulation, since each component
V ∗(s) expresses the expected total cost of initiating the un-
derlying process at state s ∈ S and subsequently following
an optimal policy. Furthermore, Equation 4 implies that
the availability of V ∗ enables the straightforward determi-
nation of an optimal policy. Yet, from a practical compu-
tational standpoint, the value of Theorem 1 in the determi-
nation of an optimal policy for any given problem instance,
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Fig. 2. The Stochastic Shortest Path problem corresponding to the ONV problem instance depicted in Figure 1

E = (X,x0, x
0, XT ,A,P,N ), is limited by the fact that the

size of the state space, S, of the induced SSP problem grows
exponentially with respect to the number of the problem
target nodes, |XT |, since |S| = |X|·

∏|XT |
j=1 (Nj+1)−|X|+1.

On the other hand, the monotonic decrease of N c, and the
acyclic structure in the underlying state space that is im-
plied by this effect, enable the incremental solution of the
formulation of Theorem 1 through a series of subproblems
that are defined on the subspaces obtained by fixing the
value for the remaining visitation requirement vector N c.4

Clearly, each of these subproblems will be of polynomial
complexity with respect to |E|. But the set of all possible
values for N c is an exponential function of |XT |, and there-
fore, the complexity of this decomposing approach remains
super-polynomial.

Motivated by the observations of the previous paragraph,
in the remaining part of this work we develop a number of
suboptimal policies for the considered ONV problem that
seek to trade off some operational efficiency for compu-
tational tractability. However, all the presented policies
possess asymptotic optimality , in the sense that the ratio
of their expected performance to the expected performance
of the optimal policy converges to unity as the node vis-
itation requirements grow uniformly to infinity. Further-
more, under some additional assumptions, we establish the
even stronger result that the difference of the expected

4For the example of Figure 2, these subspaces are indicated by the
dotted circles.

performance of these policies from the expected perfor-
mance attained by any optimal policy will be uniformly
bounded by a constant, as the visitation requirements are
scaled uniformly to infinity. The detailed definition and
implementation of the aforementioned suboptimal policies
for the ONV problem necessitates its transformation (pre-
processing) to an equivalent version where the underlying
stochastic graph presents some additional structural prop-
erties. We shall refer to this transformed version of any
given ONV problem as the “reduced” problem. The next
section motivates and describes this reduction.

III. The reduced ONV problem

The proposed reduction of the considered ONV problem
is motivated by the following observation: Suppose that
there exists a node subset X ′ ⊆ X\{x0} and for every
x ∈ X ′ there are action subsets A′(x) ⊆ A(x) such that
the subgraph G′ induced by X ′ and

⋃
x∈X′ A′(x) is closed

and communicating. Then, a single access by the control
agent of this subgraph through any node x ∈ X ′ can guar-
antee the satisfaction of all the visitation requirements for
all target nodes x ∈ XT ∩X ′. Hence, in the computation
of any solution of the considered ONV problem, it will be
pertinent to aggregate the subgraph G′ into a single node
with a visitation requirement of 1, if x ∈ XT ∩ X ′ 6= ∅,
and 0 otherwise. Furthermore, it should not be difficult
to see that for every node x ∈ X\{x0}, there is a unique
maximal closed and communicating subgraph G′(x) pre-
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Input: An ONV problem instance E = (X,x0, x
0,

XT ,A,P,N )
Output: The reduced problem instance Er = (Xr, xr0,
x0, XT r

,Ar,Pr,N r)

Stage 1
• G0 := G (where G denotes the stochastic graph corre-

sponding to E).
• Remove from G0 node x0 and all the actions emanating

from and leading to it.
• Repeat:
– Identify in G0 a node x with no actions emanating from

it, and remove it from G0 as well as all the actions leading
to it,
until the entire graph G0 has been eliminated or no node x
can be identified.
• If the entire graph G0 has been eliminated, go to Stage

3; otherwise, proceed with Stage 2.

Stage 2
• G1 := G0 (where G0 is the stochastic graph obtained

from the execution of Stage 1).
• Repeat:
– Pick a node x in G1 and compute the subgraph G′(x)

of G1 corresponding to the equivalence class of x;
– remove G′(x) from G1,

until all of G1 has been eliminated.

Stage 3
• Use the results of Stages 1 and 2 in order to compile and

return the graph Gr corresponding to the reduced problem
version Er. In particular, replace, in the original graph G,
every subgraph G′(x) with more than one nodes, computed
in Stage 2, by a single aggregate node x′, and associate to
this node x′ a unit visitation requirement, if G′(x) con-
tains any target nodes, and a zero visitation requirement,
otherwise.

Fig. 3. An algorithm for computing the reduced version, Er, of any
given ONV problem instance E

senting the aforementioned properties,5 and collectively,
these maximal subgraphs define an equivalence relation-
ship on X\{x0}. The reduced version of the ONV prob-
lem proposed in this section is obtained by aggregating
the subgraph G′ corresponding to each equivalence class of
X\{x0} by a single node. In this reduced problem represen-
tation, nodes corresponding to singleton equivalence classes
preserve their visitation requirements while the remaining
nodes possess a binary visitation requirement, evaluated as
explained above. Finally, it is implicitly understood that
whenever a node corresponding to a non-singleton equiva-
lence class, with a unit visitation requirement, is visited for
the first time, the agent will remain in the corresponding
subgraph G′ until all the visitation requirements for all the
target nodes in this class have been covered.

An algorithm for the identification of the aforementioned
equivalence classes and the construction of the reduced

5possibly containing just x

Stage 3

x
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Fig. 4. Demonstrating the execution of the algorithm of Figure 3

ONV problem is outlined in Figure 3. As indicated in
this figure, the construction of the reduced ONV problem,
Er = (Xr, xr0, x

0, XT r

,Ar,Pr,N r), can be performed in
three major stages: The first stage identifies and eliminates
from the original stochastic graph G ≡ G0, all those nodes
that cannot be part of a closed communicating class that
does not contain node x0. The second stage processes the
subgraph G1 returned by Stage 1, consisting of all nodes
that can be isolated from node x0 and their interconnecting
actions, in order to partition it to the equivalence classes
defined in the previous paragraph. This processing is done
through an iterative computation which at every iteration
selects one of the remaining nodes in the graph, computes
the subgraph G′(x) corresponding to the equivalence class
of x, and eliminates it from G1. The computation of G′(x)
for any node x of G1 can be performed efficiently through
concepts and techniques similar to those applied by the
Ramadge & Wonham Supervisory Control theory [14] for
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establishing nonblocking behavior.6 For the sake of brevity,
we omit the details of this computation and we refer the in-
terested reader to [15], [16]. The last stage of the algorithm
presented in Figure 3 uses the results of the previous two
stages in order to compile and return the stochastic graph
Gr that represents the reduced ONV problem. An example
execution of this algorithm is depicted in Figure 4.

We conclude this section with the statement of a prop-
erty of the reduced ONV problem Er. This property is
an immediate consequence of the construction of Gr and
it will be very useful in the developments of the following
sections.

Property 1: In the reduced ONV problem instance, Er,
node x0 is accessible from any target node x ∈ XT r

, under
any policy πr defined on Gr.

IV. A computationally efficient and
asymptotically optimal policy for the

reduced ONV problem

In this and the following section, we develop a series of
computationally efficient and asymptotically optimal poli-
cies for the reduced ONV problem Er. However, in order to
simplify the notation, we drop the index r from all the ex-
pressions presented in the subsequent discussion. We begin
with the definition and study of a randomized policy that is
obtained through a continuous – or “fluid” – relaxation of
the MDP formulation corresponding to the reduced ONV
problem. We shall refer to this policy as the policy πrel.
For reasons that will become clear in the subsequent dis-
cussion, it is convenient first to define and analyze policy
πrel for ONV problem instances with x0 = x0.

The “Relaxing LP” and the policy πrel for re-
duced ONV problem instances with x0 = x0 The
definition of the policy πrel for a reduced ONV problem
instance E = (X,x0, x

0, XT ,A,P,N ) with x0 = x0 relies
on the optimal solution of the following LP formulation,
that will be called the “relaxing LP”:

min
∑

a∈A(x0)

χa (5)

s.t. ∑
a:x∈S(a)

p(x; a) · χa =
∑

a∈A(x)

χa, ∀x ∈ X\{x0} (6)

∑
a:x∈S(a)

p(x; a) · χa ≥ Nx, ∀x ∈ XT (7)

χa ≥ 0, ∀a ∈
⋃
x∈X

A(x) (8)

Equation 6 in the relaxing LP formulation enables a
“flow”-based interpretation of its feasible solutions, {χa}.

6The correspondence between these two problems can be seen more
clearly when noticing that for the needs of the considered compu-
tation, a stochastic transition can be modeled by a transition to an
intermediary dummy node with uncontrollable transitions to the pos-
sible outcomes. Then, in both cases, the problem reduces to confining
the roaming agent to the maximal strongly connected component of
the underlying graph that contains a certain node.

This flow is defined on a graph that is obtained from the
original graph G, that characterizes the agent transitions
among the nodes x ∈ X, by redirecting the transitions
leading to node x0, to a “sink” dummy node xs. Fluid is
pumped in this modified graph from node x0, it is routed
through the graph according to the flow pattern indicated
by {χa}, and eventually it gets absorbed to xs through the
redirected transitions. Under this flow-based interpreta-
tion, the objective of the formulation of Equations 5–8 is to
minimize the amount of fluid pumped through x0, while en-
suring that the total flow entering each target node x ∈ XT

is no less than the quantity expressed by the correspond-
ing visitation requirement Nx. Property 1 in Section III
guarantees that this LP formulation is well-defined and it
possesses a finite optimal value.

Given an optimal solution χ∗ = {χ∗a| a ∈
⋃
x∈X A(x)}

of the LP defined by Equations 5-8, policy πrel assigns
to a state s = (x,N c) with

∑
a∈A(x) χ

∗
a > 0, an action

πrel(x,N c) ∈ A(x) according to the probability distribu-
tion

Prob(πrel(x,N c) = a) =
χ∗a∑

a∈A(x) χ
∗
a

, a ∈ A(x) (9)

On the other hand, states s = (x,N c) with
∑
a∈A(x) χ

∗
a =

0, are inaccessible under πrel, and the policy is indetermi-
nate at them. Clearly the deployment of the aforestated
policy πrel is of polynomial complexity with respect to the
problem size |E|.

The optimal value of the relaxing LP as a lower
bound to V ∗ Let erelx0,j denote the amount of flow reach-
ing the target node xj ∈ XT when a unit amount of flow
is induced into the graph through node x0 and it is con-
veyed according to the flow pattern defined by the routing
probabilities of policy πrel (cf. Eq. 9). Then, a simple
conditioning argument can establish that erelx0,j is equal to
the expected number of visits to node xj that take place
when the control agent is initially placed at node x0 and
it is subsequently routed according to policy πrel until it
returns to node x0. This interpretation of erelx0,j leads to the
following theorem:

Theorem 2: Consider a reduced ONV problem instance
E = (X,x0, x

0, XT ,A,P,N ) with x0 = x0, and let V ∗rel
and χ∗ respectively denote the optimal value and an opti-
mal solution of the relaxing LP. Also, let erelx0,j , x

j ∈ XT ,
be defined on the basis of χ∗ as indicated in the previous
paragraph. Then,

V ∗rel = max
xj∈XT

{ Nj
erelx0,j

} ≤ V ∗ (10)

The proof of this theorem is similar to the proof of The-
orem 3 in [1], and it is omitted.

Establishing the asymptotic optimality of πrel for
reduced ONV problem instances with x0 = x0 Next
we proceed to prove the asymptotic optimality of πrel

for reduced ONV problem instances with x0 = x0. For
this, consider the problem sequence {E(n)} that is induced
by a problem instance E = (X,x0, x

0, XT ,A,P,N ) with



7

x0 = x0, through the scaling of the visitation requirement
vector, N , by a factor n ∈ Z+. Also, in the following,
we shall let {V ∗rel(n)} denote the sequence of the optimal
objective values of the relaxing LPs implied by the prob-
lem sequence {E(n)}, and {V ∗(n)} denote the sequence of
the corresponding optimal expected total costs. Finally,
we notice that the optimal solutions of the relaxing LP
corresponding to problem instance {E(n)} are obtained by
scaling the optimal solutions of the relaxing LP correspond-
ing to the original problem instance {E} by a factor of n,
which further implies the invariance of policy πrel across
the sequence {E(n)}. Hence, we define {V πrel

(n)} as the
sequence of the expected costs incurred by the applica-
tion of the randomized policy πrel to the problem instances
E(n). Then, we have the following theorem:

Theorem 3: Given a reduced ONV problem instance E =
(X,x0, x

0, XT ,A,P,N ) with x0 = x0, consider the prob-
lem sequence E(n) that is obtained through the uniform
scaling of the visitation requirement vector N by a factor
n ∈ Z+. Then, as n→∞,7

V π
rel

(n)− V ∗rel(n) = O(
√
n) (11)

Furthermore, if there exists a target node xk such that, for
any other target node xj ,

Nk
erelx0,k

> max
j 6=k

{ Nj
erelx0,j

} (12)

then, as n→∞,

V π
rel

(n)− V ∗rel(n) = O(1) (13)
Proof: In the subsequent discussion it is pertinent to

decompose the motion of the control agent among the dif-
ferent nodes inX into a sequence of “traversals”, where the
ith traversal corresponds to the movements of the agent be-
tween the ith and the (i + 1)st visit by the agent to node
x0. Furthermore, we shall use the random variables Ξji ,
i = 1, 2, . . ., to denote the random number of visits to
the target node xj during the ith graph traversal under
πrel, and we shall let σ2

j = V ar(Ξj1), j = 1, 2 . . . , |XT |.
Property 1 of the reduced ONV problem instances implies
that σ2

j is well-defined for all j = 1, 2 . . . , |XT |. Finally,
{ψnj , n ≥ 0} will denote a renewal process [6] associated
with the sequence {Ξji : i = 1, 2, . . .}, defined as

ψnj = max{k :
k∑
i=1

Ξji ≤ n · Nj} (14)

where ψnj = 0 if Ξj1 > n · Nj , j : xj ∈ XT . Then the
performance of policy πrel satisfies

V π
rel

(n) ≤ E[ max
j:xj∈XT

{1 + ψnj }] (15)

7We remind the reader that f(n) = O(g(n)) ⇒ ∃c, n0 s.t. 0 ≤
f(n) ≤ c · g(n), ∀n ≥ n0.

Hence,

V π
rel

(n)− V ∗rel(n) ≤

1 + E[ max
j:xj∈XT

{ψnj }]− max
j:xj∈XT

{ nNj
erelx0,j

} ≤

1 + E[ max
j:xj∈XT

{|ψnj −
nNj
erelx0,j

|}] ≤

1 +
∑

j:xj∈XT

E[|ψnj −
nNj
erelx0,j

|] (16)

where the first inequality is the result of Equation 15 and
Theorem 2, and the second inequality is the result of the
following property:

∀ai, bi ∈ R, i = 1, . . . , n,
|max{a1, a2, . . . , an} −max{b1, b2, . . . , bn}| ≤

max{|a1 − b1|, |a2 − b2|, . . . , |an − bn|} (17)

From the renewal central limit theorem [6] we get that ∀j :
xj ∈ XT ,

1√
n
· (ψnj −

nNj
erelx0,j

) ⇒ N(0,
σ2
j · Nj

(erelx0,j)
3
) (18)

where ‘⇒’ denotes convergence in distribution as n → ∞
and N(a, b) denotes the normal distribution with mean a
and variance b. But then, Equation 18, when combined
with Lemma 1 of the Appendix and the Continuous Map-
ping Theorem, imply that ∀j : xj ∈ XT ,

1√
n
E[|ψnj −

nNj
erelx0,j

|] −→ E[|N(0,
σ2
j · Nj

(erelx0,j)
3
)|] (19)

as n → ∞. Equation 11 now follows from Equation 16
when combined with Equation 19.

Next we prove Equation 13. For ease of presentation,
assume that the node xk of Equation 12 is the target node
x1. Then, we have that:

V π
rel

(n)− V ∗rel(n) ≤

1 + E[ max
j:xj∈XT

{ψnj }]− max
j:xj∈XT

{ nNj
erelx0,j

} =

1 + E[ max
j:xj∈XT

{ψnj }]− E[ψn1 ] + E[ψn1 ]− nN1

erelx0,1

=

1 + E[ max
j:xj∈XT

{ψnj − ψn1 }] + E[ψn1 ]− nN1

erelx0,1

≤

1 +
∑

j 6=1:xj∈XT

E[(ψnj − ψn1 )+] + E[ψn1 ]− nN1

erelx0,1

(20)

From Corollary 2.7.1 of [17], we get that

E[ψn1 ]− nN1

erelx0,1

≤ E[Ξ2
1]

2(erelx0,1)
2

+
1

2erelx0,1

+ o(1) (21)

Next, we prove that ∀j : xj ∈ XT ,

E[(ψnj − ψn1 )+] → 0 (22)
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as n → ∞. Indeed, for r ≥ 1, anj = 1√
n
(ψnj −

n·Nj

erel
x0,j

) and

cj = N1
erel

x0,1

− Nj

erel
x0,j

> 0, we have that

E[(ψnj − ψn1 )+] =
E[(ψnj − ψn1 ) · I(ψnj ≥ ψn1 )] ≤

E[ψnj · I(ψnj ≥ ψn1 )] ≤[
E[(ψnj )2] · P (ψnj ≥ ψn1 )

]1/2
=[

E[(ψnj )2] · P ((ψnj −
n · Nj
erelx0,j

)−

(ψn1 −
n · N1

erelx0,1

) ≥ n · N1

erelx0,1

− n · Nj
erelx0,j

)

]1/2

=

[
E[(ψnj )2] · P (anj − an1 ≥

√
n · cj)

]1/2 ≤[
E[(ψnj )2] · 1

crj · nr/2
· E[(anj − an1 )r]

]1/2

≤

[
E[(ψnj )2] · 2r−1

crj · nr/2
· E[|anj |r + |an1 |r]

]1/2

(23)

where the second inequality is an application of Schwarz
inequality, the third inequality is an application of Markov
inequality, and the last inequality is a direct consequence
of (a + b)r ≤ 2r−1 · (|a|r + |b|r), a, b ∈ R. Furthermore,
from Theorem 2.3 of [17] we have that

E[(ψnj )2] = O(n2) (24)

and if we choose r such that r
2 > 2, then Equations 19, 23,

24 and Lemma 1 of the Appendix imply Equation 22.
Finally, Equation 13 follows immediately from Equa-

tion 20 when combined with Equations 21 and 22. 2

The asymptotic optimality of policy πrel for reduced
ONV problem instances with x0 = x0 is an immediate im-
plication of Theorem 3, a fact that is formally stated and
proven in the following corollary:

Corollary 1: Given a reduced ONV problem instance
E = (X,x0, x

0, XT ,A,P,N ) with x0 = x0, consider the
problem sequence E(n) that is obtained through the uni-
form scaling of the visitation requirement vector N by a
factor n ∈ Z+. Then, as n→∞,

V π
rel

(n)
V ∗(n)

→ 1 (25)

Proof: The combination of Theorems 2 and 3 implies

that limn→∞
V πrel

(n)
V ∗(n) ≤ 1, while the definition of V ∗ im-

plies that V π
rel

(n) ≥ V ∗(n), ∀n ∈ Z+. 2

The policy πrel for reduced ONV problem in-
stances with x0 6= x0 In the case of reduced ONV problem
instances with x0 6= x0, the relaxing LP is still defined by
Equations 5–8. Furthermore, Equation 9 still provides an
initial specification of the policy πrel. However, since it is
possible that the nitial state x0 is among the states that
are inaccessible under this specification of πrel, it might

be necessary to augment the policy specification with an
action selection scheme over a subset of the states that are
inaccessible under the original specification of the policy.
In the case that such an augmentation of πrel is necessary,
the only requirements that are posed on it are (i) that it re-
spects the original specification of πrel over the nodes that
this specification was initially defined, and (ii) that it ren-
ders node x0 accessible from node x0. Next, we state and
prove the asymptotic optimality of the resulting policy.

Corollary 2: Given a reduced ONV problem instance
E = (X,x0, x

0, XT ,A,P,N ) with x0 6= x0, consider the
problem sequence E(n) that is obtained through the uni-
form scaling of the visitation requirement vector N by a
factor n ∈ Z+. Then, as n→∞,

V π
rel

(n)
V ∗(n)

→ 1 (26)

Proof: Consider a reduced ONV problem instance
E(n) = (X,x0, x

0, XT ,A,P, nN ) with x0 6= x0, and let
V π

rel

(n;x0) and V ∗(n;x0) respectively denote the values of
the πrel and the optimal policy when the process is started
from x0 instead of x0. Then, we have:

V π
rel

(n)
V ∗(n)

≤ V π
rel

(n;x0) + 1
V ∗(n)

=
V π

rel

(n;x0) + 1
V ∗(n;x0)

· V
∗(n, x0)
V ∗(n)

(27)

Corollary 1 implies that

lim
n→∞

V π
rel

(n;x0) + 1
V ∗(n;x0)

= 1 (28)

Similarly, Property 1 implies that

lim
n→∞

V ∗(n, x0)
V ∗(n)

= 1 (29)

But then, the result of Corollary 2 follows from Equa-

tions 27–29, when noticing that V πrel
(n)

V ∗(n) ≥ 1. 2

We conclude this section by noticing that the results
of Theorem 3 and their derivation imply that, under
the condition that there exists a k such that Nk

erel
x0,k

>

maxj 6=k{ Nj

erel
x0,j

}, the performance of πrel and π∗ will dif-

fer from the lower bound V rel(n) by at most a constant K,
as the scaling factor n grows to infinity. A similar result
can be established for the case of reduced ONV problem
instances with x0 6= x0, through a conditioning argument
similar to that used in the proof of Corollary 2. An in-
tuitive interpretation of these two results can be obtained
by considering the ratio Nj

erel
x0,j

to be a “measure of diffi-

culty” of the visitation requirement of the target node xj ,
in the corresponding problem instance with x0 = x0. As n
grows to infinity, the differences n·Nk

erel
x0,k

− n·Nj

erel
x0,j

are also grow-

ing, hence the solution of the relaxing LP contains enough
information in order to bias the system behavior towards
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the optimal solution. On the other hand, when the target
nodes corresponding to the maximal ratio n·Nk

erel
x0,k

are more

than one, πrel will treat those nodes as equally difficult
targets. Furthermore, the static nature of this policy will
not allow it to exploit the dynamics of the future problem
states, where the original ties will have been resolved. This
last observation motivates the study of adaptive implemen-
tations of πrel, where the routing probabilities that define
the new policy are revised at every change of the vectorN c.
The possibilities and the challenges for the development of
such adaptive control schemes for the ONV problem are
addressed in the following section.

V. Adaptive Policies

In this section we consider briefly the possibilities and
challenges for enhancing the performance of policy πrel

through more dynamic implementations that adjust the
policy logic in real-time, on the basis of the available in-
formation regarding the evolution of the system state. A
first possibility for such an improvement upon πrel is the
implementation of a “rollout” scheme that uses πrel as its
“base” policy [2]. More specifically, a rollout implementa-
tion of πrel essentially clusters the states of the underlying
MDP with the same vector N c in “macro-states”,8 and ev-
ery time that a new macro-state is entered, it computes a
locally optimized policy for that macro-state. The compu-
tation of this localized policy for any visited macro-state
is based upon the restricted application of some standard
dynamic programming approach on the subspace spanned
by the macro-state, combined with the further assumption
that policy πrel will be followed outside that region (and
therefore, the values of the states s that can be reached
from the considered macro-state through a single transi-
tion are taken to be equal to V π

rel

(s)). Using arguments
similar to those provided in [2], it is easy to show that such
a scheme will result in improved performance compared to
the performance attained by the original implementation
of πrel. On the other hand, a potential source of difficulty
for this rollout-based implementation of πrel in the con-
sidered ONV problem context stems from the fact that the
aforementioned V π

rel

(s) values, that are used for the policy
specification at the visited macro-states, must be obtained
through simulation.9

An alternative dynamic implementation of πrel for the
considered problem contexts will seek to revise the routing
probabilities every time a visitation requirement is satis-
fied, by formulating and re-solving the relaxing LP corre-
sponding to that particular state. We shall refer to this
adaptive implementation of πrel as πadrel. From a com-
putational standpoint, πadrel is definitely a much more
tractable proposition than the rollout-based implementa-
tion of πrel. Furthermore, some computational studies re-
ported in the next section indicate that πadrel presents

8Figure 2 provides an example of such a state space partitioning to
“macro-states”

9A special case where these V πrel
(s) values can be obtained

through closed formulae, is discussed in the next section.

excellent performance, typically outperforming any other
suboptimal policy applied on that problem. On the other
hand, our theoretical understanding of the dynamics un-
derlying this policy is currently limited; in particular, cur-
rently we lack any theoretical guarantee that V π

adrel ≤
V π

rel

. The thorough analysis of the dynamics of policy
πadrel is an interesting and challenging task, and it is part
of our current investigations.

VI. Closed-form performance evaluation of πrel

for specially structured ONV problem
instances and its implications

In this section we focus on the more restricted ONV
problem version that was initially studied in [1], and we
show that in this case, the expected performance of πrel

admits a closed-form characterization. Furthermore, we
discuss the practical possibilities offered by this result for
an enhanced implementation of πrel in the considered prob-
lem context.

The ONV problem considered in the following is ob-
tained from the original definition of the ONV problem
presented in Section II, through the addition of the follow-
ing assumptions:

Assumption 1: x0 = x0.
Assumption 2: The transitions out from the target nodes

xj ∈ XT lead deterministically to node x0.
Assumption 3: The stochastic subgraph G′, that is ob-

tained by the elimination of the transitions emanating from
all xj ∈ XT , has an acyclic structure, with node x0 defin-
ing its unique “root” node and the target nodes xj ∈ XT

being a subset of the “terminal” nodes.
It is easy to see that the ONV problem instances sat-

isfying Assumptions 1–3 are in reduced form. Also, the
traversal of graph G′, between two consecutive visits to the
node x0, can satisfy at most one visitation requirement
with respect to a single node. Therefore, the parameters
erelx0,j x

j ∈ XT , essentially express the probability that tar-
get node xj will be visited during a single traversal of G′
under policy πrel. The next theorem builds upon these ob-
servations in order to provide a closed-form evaluation of
πrel.

Theorem 4: Consider the implementation of policy πrel

on an ONV problem instance E = (X,x0, x
0, XT ,A,P,N )

satisfying Assumptions 1–3. Then we have:

V π
rel

= E[ max
j:Nj>0

{ 1
erelx0,j

Nj∑
i=1

Ξij}] (30)

where Ξij are independent identically distributed exponen-
tial random variables with rate λ = 1.

Proof: Consider a continuous-time variation of the prob-
lem where the graph traversals are guided by policy πrel,
and their durations, Yi, are generated by a Poisson pro-
cess with rate λ = 1. Then, the visits to each target node
xj ∈ XT define a Poisson process with rate erelx0,j , and these
Poisson processes are independent [6]. Let Tj denote the
time until target node xj has satisfied its visitation require-
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ments, and N denote the total number of graph traver-
sals required until every visitation requirement is satisfied.
Then, (i) each Tj is distributed according to a Gamma dis-
tribution with parameters Nj and erelx0,j , and (ii) the Tj ’s
are independent [6]. Set T = maxj:Nj>0{Tj}. Then

E[ max
j:Nj>0

{Tj}] = E[T ]

= E[
N∑
i=1

Yi]

= E[E[
N∑
i=1

Yi|N ]]

= E[N · E[Y1]]
= E[N ]

= V π
rel

(31)

Since each Tj is equal in distribution to 1
erel

x0,j

∑Nj

i=1 Ξij , we

have that

E[ max
j:Nj>0

{Tj}] = E[ max
j:Nj>0

{ 1
erelx0,j

Nj∑
i=1

Ξij}] (32)

The result now follows by combining Equations 31 and 32.
2

Theorem 4 further implies that V π
rel

can be obtained
through the numerical integration of a continuous function
since

V π
rel

= E[ max
j:Nj>0

{ 1
erelx0,j

Nj∑
i=1

Ξij}]

=
∫ ∞

0

P ( max
j:Nj>0

{ 1
erelx0,j

Nj∑
i=1

Ξij} > t)dt

=
∫ ∞

0

(1−
∏

j:Nj>0

P (
1

erelx0,j

Nj∑
i=1

Ξij ≤ t))dt

=
∫ ∞

0

(1−
∏

j:Nj>0

FNj
(erelx0,j · t))dt (33)

where FNj
(t) is the cumulative distribution function of the

Gamma(Nj , 1) distribution. Equation 33 can be especially
useful in a rollout implementation of πrel along the lines
suggested in Section V.

Furthermore, it is easy to see that the above analysis
applies to any other randomized policy π that, similar to
πrel, (i) bases the action selection probabilities at every
state s = (x,N c) only upon the component x of s,10 and
(ii) maintains a positive probability, eπx0,j , for reaching each
target node xj ∈ XT during a single traversal of G′. It
can be easily shown [18] that the space ΠS of these static
randomized policies is in one-to-one correspondence with

10We remind the reader that we have referred to these policies as
static

the space of vectors X = {χa| a ∈ A(x), x ∈ X\XT }
satisfying ∑

a∈A(x0)

χa = 1 (34)

∀x ∈ X\{x0, XT },∑
a:x∈S(a)

χa · p(x, a) =
∑

a∈A(x)

χa (35)

∀x ∈ XT with Nx > 0,∑
a:x∈S(a)

χa · p(x, a) > 0 (36)

The variables χa, a ∈ A(x), x ∈ X\XT , that appear in
the above formulation, denote the probability of executing
action a during any single traversal of graph G′ under the
corresponding policy π, and therefore,

eπx0,j =
∑

a:xj∈S(a)

χπa · p(xj , a), xj ∈ XT (37)

Hence, the optimization problem minπ∈ΠS V π can be ex-
pressed as

minV (eπx0,j) (38)

s.t. eπx0,j = eπx0,j(χa), χa ∈ X

Equations 34–37 imply that the solution space of this last
problem is convex, while the convexity of its objective func-
tion is implied by Equation 33. Hence, the optimization
problem defined by Equation 38 possesses a convex smooth
structure and therefore it can be effectively addressed by
standard solution techniques coming from the area of non-
linear programming; we refer to [19] for the relevant details.
An optimal solution for the formulation of Equation 38 will
be denoted by χopt, and the corresponding randomized pol-
icy by πopt. Clearly, V π

opt ≤ V π
rel

.
As a last result we show that the definition of πopt

through the formulation of Equation 38 enables also an
effective characterization of the gains achieved through its
adaptive implementation according to an adaptation mech-
anism similar to that applied by policy πadrel; i.e., under
this adaptive implementation of πopt, the action selection
probabilities are re-computed, by resolving the formulation
of Equation 38, every time that another visitation require-
ment is satisfied, and the underlying process enters a new
macro-state. We shall refer to the resulting randomized
policy as πadopt. For πadopt, we have the following theo-
rem:11

Theorem 5: For any ONV problem instance E = (X,x0,
x0, XT ,A,P,N ) satisfying Assumptions 1–3, V π

adopt ≤
V π

opt

Proof: We prove this result by induction on |N |, i.e.,
the total number of visitation requirements. For |N | =
1, the process will visit only one macro-state before its
termination, and therefore, V π

adopt

= V π
opt

. Next, we

11We remind the reader that, as remarked in Section V, currently
we lack a similar result for policy πadrel.
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assume that the inequality of Theorem 5 holds for |N | ≤ n,
and we show that it will also hold for |N | = n + 1. To
obtain this result, we first notice that the value function of
any proper policy π will satisfy the following recursion:

V π(x0,N ) =
1∑

xj∈XT :Nj>0 e
π(N )
x0,j

· [1 +

∑
xj∈XT :Nj>0

e
π(N )
x0,j · V π(x0,N − 1xj )] (39)

where (i) eπ(N )
x0,j denotes the probability of reaching node

x ∈ XT in any single traversal of graph G′ under policy π,
while starting from state (x0,N ) (cf. Equation 37), and
(ii) 1xj denotes the unit vector of dimensionality equal to
|XT | and with its non-zero component corresponding to
node xj . Application of Equation 39 to πadopt gives that

V π
adopt(N )(x0,N ) =

1∑
xj∈XT :Nj>0 e

πadopt(N )
x0,j

· [1 +

∑
xj∈XT :Nj>0

e
πadopt(N )
x0,j · V π

adopt(N )(x0,N − 1xj )] (40)

However, the definition of πadopt implies that eπ
adopt(N )
x0,j =

e
πopt(N )
x0,j and V π

adopt(N )(x0,N −1xj ) = V π
adopt(N−1xj )(x0,

N − 1xj ), for all xj ∈ XT . Furthermore,
V π

adopt(N−1xj )(x0,N−1xj ) ≤ V π
opt(N−1xj )(x0,N−1xj ) ≤

V π
opt(N )(x0,N − 1xj ), ∀xj ∈ XT : Nj > 0, where the first

inequality results from the induction hypothesis and the
second from the definition of πopt. But then, Equation 40
implies that

V π
adopt(N )(x0,N ) ≤ 1∑

xj∈XT :Nj>0 e
πopt(N )
x0,j

· [1 +

∑
xj∈XT :Nj>0

e
πopt(N )
x0,j · V π

opt(N )(x0,N − 1xj )] =

V π
opt(N )(x0,N ) (41)

2

Example We conclude this section by reporting a com-
putational study on two ONV problem instances that ex-
emplifies and highlights the results presented in this paper.
The two considered problem instances satisfy the Assump-
tions 1–3 stated at the beginning of this section, and they
are defined by the acyclic stochastic graph G′ depicted in
Figure 5 and the respective visitation requirement vectors
N = (3, 1, 1, 0, 0) and N = (1, 2, 2, 2, 1), which associate
a visitation requirement to each of the terminal nodes,
xj , j = 4, . . . , 8. The solution of the corresponding re-
laxing LPs indicates that the problem instance defined by
N = (3, 1, 1, 0, 0) satisfies the condition of Equation 12
in Theorem 3, with the most difficult visitation require-
ment determined by the terminal node x4. On the other
hand, the problem instance defined by N = (1, 2, 2, 2, 1)
has a constant ratio Nj/erelx0,j across all j = 4, . . . , 8. Fig-
ures 6 and 7 report the performance of the policies πrel,
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Fig. 5. Exampe – The stochastic graph for the considered problem
instances
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Fig. 6. Example – The performance of various simple and adaptive
randomized policies compared to the lower bound V ∗

rel(n), for the
basic visitation requirement vector N = (3, 1, 1, 0, 0) and n = 1, . . . , 7

πadrel and πroll in each of these two cases, as the corre-
sponding vector N is scaled to increasingly larger values.
The reported values for the policy πrel were obtained from
Equation 33. The performance of the policies πadrel and
πroll was estimated through simulation. As expected from
Theorem 3, in the case of the visitation requirement vec-
tor N = (3, 1, 1, 0, 0), the performance of all three policies
converges very fast to the lower bound V ∗rel(n) – cf. Fig-
ure 6.12 On the other hand, the ties of the ratios Nj/erelx0,j ,
j = 4, . . . , 8, in the case of the visitation requirement vec-
tor N = (1, 2, 2, 2, 1), result in the divergence of the per-
formance of the considered policies from the lower bound
V ∗rel(n) – cf. Figure 7. However, as expected, the distance
of the performance of these policies from V ∗rel(n) increases
in a slow, sub-linear manner with respect to n, so that the
corresponding ratios V π(n)/V ∗rel(n) decrease to one. Fi-

12A closer examination of the proof of Theorem 3 will reveal that for
ONV problem instances satisfying Assumptions 1–3 and the condition

of Equation 12, V πrel
(n)− V ∗

rel(n) → 0, as n →∞.
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Fig. 7. Example – The performance of various simple and adaptive
randomized policies compared to the lower bound V ∗

rel(n), for the ba-
sic visitation requirement vector N = (1, 2, 2, 2, 1) and n = 1, . . . , 15

nally, it is worth-noticing that πadrel outperforms the other
two policies, demonstrating a performance that is pretty
close to the lower bound V ∗rel(n).

VII. Conclusions

This paper revisited the problem of optimal node visita-
tion in stochastic digraphs, that was originally introduced
in [1], and it extended the relevant theory (i) by address-
ing a much broader set of problem structures, and (ii) by
enriching and improving the class of asymptotically opti-
mal policies available for it. In addition, a series of novel
and/or stronger properties for the performance of these
policies were derived. The presented results are motivated
by and are similar in spirit to some recent developments
in stochastic scheduling theory and the suboptimal control
of Markov Decision Processes. Future work will seek to
(i) formally analyze the computational complexity of the
considered problem; (ii) capitalize upon further insights
and results from stochastic scheduling theory, like those
presented in [20], in order to identify additional structure
and properties for it; and (iii) extend the results and the
policies developed herein to other problem variations, like
in the case that each graph traversal might generate more
than one threads executing in parallel on the underlying
stochastic graph G that defines the problem.

Appendix

Lemma 1: Let X1, X2, . . . be i.i.d. random variables
such that E[Xr

1 ] exists for every r ≥ 1 and µ = E[X1]. Set
S0 = 0, Sk =

∑k
i=1Xi and define ψn = max{k : Sk ≤ n·c}.

Then

{n−r/2(ψn −
n · c
µ

)r, n ≥ 1} (42)

is uniformly integrable for every r ≥ 1.

Proof: Let ψ′n = min{k : Sk > n · c}. Then ψ′n is a
stopping time and, from Lemma 2.3 of [17], we have that

E[(
ψ′

n∑
i=1

(Xi − µ))r] ≤ C(r, E[Xr]) · E[(ψ′n)
r/2] (43)

where C(r, E[Xr]) is a constant depending only on r and
E[Xr]. Equation 43 further implies that

E[n−r/2 · (
ψ′

n∑
i=1

(Xi − µ))r] ≤

C(r, E[Xr]) · E[(
ψ′n
n

)r/2] (44)

From Equation 44 and Theorem 2.3 of [17], we get

sup
n≥1

E[n−r/2 · (
ψ′

n∑
i=1

(Xi − µ))r] <∞ (45)

which implies the uniform integrability of {n−r/2 ·
(
∑ψ′

n
i=1(Xi − µ))r, n ≥ 1} [21].

Next, consider the quantity Sψ′
n
− n · c, i.e., the excess

over the boundary for the renewal process ψn, and notice
that for every r ≥ 1,

|Sψ′
n
− n · c|r ≤ |Xψ′

n
|r ≤

ψ′
n∑

i=1

|Xi|r (46)

When combined with Wald’s equation [6], Equation 46 fur-
ther implies that

E[|Sψ′
n
− n · c|r] ≤ E[ψ′n]E[|X1|r] (47)

and for r > 2, we have that

E[|Sψ′
n
− n · c|r]

nr/2
≤ E[ψ′n]

n

E[|X1|r]
nr/2−1

(48)

Since from Corollary 2.3.1 of [17] we know that
supnE[ψ′n]/n <∞, we can also claim that

sup
n

E[|Sψ′
n
− n · c|r+ε]

n(r+ε)/2
<∞ (49)

and therefore, the sequence {n−r/2 · |Sψ′
n
− n · c|r, n ≥ 1}

is uniformly integrable.
By the definition of the renewal process ψ′n,

n−1/2 ·
ψ′

n∑
i=1

(Xi − µ) ≤

n−1/2 · (n · c− µ · ψ′n) ≤

n−1/2 ·
ψ′

n∑
i=1

(Xi − µ) + n−1/2 · (Sψ′
n
− n · c) (50)

which further implies that

|n−1/2 · (n · c− µ · ψ′n)| ≤

|n−1/2 ·
ψ′

n∑
i=1

(Xi − µ)|+ |n−1/2 · (Sψ′
n
− n · c)| (51)
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Combined with the inequality (a + b)r ≤ 2r−1 · (|a|r +
|b|r), a, b ∈ R, Equation 51 gives

|n−1/2(n · c− µ · ψ′n)|r ≤

2r−1 · (|n−1/2

ψ′
n∑

i=1

(Xi − µ)|r + |n−1/2 · (Sψ′
n
− n · c)|r) (52)

But then, the uniform integrability of {n−r/2 · (
∑ψ′

n
i=1(Xi−

µ))r, n ≥ 1} and {n−r/2 · |Sψ′
n
− n · c|r, n ≥ 1} and Equa-

tion 52 imply the uniform integrability of {n−r/2 · (n · c−
µ · ψ′n)r, n ≥ 1}. Since ψ′n = ψn + 1 we have that,

n−1/2 · (n · c− µ · ψn) =
n−1/2 · (n · c− µ · ψ′n) + n−1/2 · µ (53)

which gives

n−r/2 · |n · c− µ · ψn|r ≤
2r−1 · (n−r/2 · |n · c− µ · ψ′n|r + n−r/2 · µr) (54)

and implies the uniform integrability of {n−r/2 · (n · c− µ ·
ψn)r, n ≥ 1}. 2
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