
On the liveness of guidepath-based, zone-controlled
dynamically routed, closed traffic systems

Elzbieta Roszkowska and Spyros A. Reveliotis

Abstract—Zone-controlled, guidepath-based, dynamically routed,
closed traffic systems constitute the modelling abstraction for a large set
of industrial and public transport systems, including automated guided
vehicle and monorail-based material handling systems, railway and urban
monorail systems, and also, the complex elevator systems envisioned for
the future residential compounds. An important requirement for the
traffic flow of these systems is that the vehicles maintain their ability to
access every location in the underlying guidepath-network, throughout
the entire, presumably infinite, length of the system operation. States
in which the system preserves the aforementioned property are said to
be live. The work presented in this paper provides a novel structural
characterization of state liveness for the considered traffic systems that
(i) enables the identification of live states while foregoing an extensive
enumeration of the underlying behavioral space and (ii) facilitates the
design of computationally efficient liveness-enforcing supervisors.

I. INTRODUCTION

Guidepath-based, zone-controlled, dynamically routed, closed
traffic systems and their behavioral modeling: As indicated by
its title, this paper deals with the characterization of the liveness
of a particular class of traffic systems characterized as guidepath-
based, zone-controlled, dynamically routed and closed. In its general
definition, a guidepath-based traffic system consists of a number of
vehicles that travel among a number of locations while following
some predetermined paths; these paths are either physically imple-
mented through the system hardware or virtually enforced through the
controlling software, and they form a connected guidepath network.
Links of this guidepath network can be traversed in both directions,
but the motion of the vehicles on these links is unidirectional, i.e.,
a vehicle cannot reverse the direction of its motion while on any
certain link. The traffic experienced in such a system is driven
by a set of emerging requests for vehicle trips between various
pairs of locations in the guidepath network. Vehicles can travel
between these location pairs either by following pre-specified routes
in the guidepath network, or by developing their route in real-time,
based on the prevailing congestion conditions in the network. In the
former case, the resultant traffic system is characterized as “statically
routed”; in the latter, it is said to be “dynamically routed”. Another
classification of these systems takes place on the basis of the vehicle
behavior between two consecutive trip assignments: According to a
first scheme, idle vehicles will retire to a particular location of the
guidepath network known as the system docking station, and the
resulting guidepath-based traffic system is characterized as “open”.
In the opposite case, vehicles remain in the guidepath network during
their idling period, either idling on some guidepath link or moving
among various links in order to clear the way for some other vehicles;
such a guidepath-based traffic system is characterized as “closed”.
Finally, in order to avoid the physical collision of the various vehicles,
the entire guidepath network is partitioned into a number of segments,
and only one vehicle is allowed in any segment at any point in time;
in the relevant terminology, these segments are known as “zones”

Elzbieta Roszkowska is with the Institute of Computer Engineering,
Control, and Robotics at Wroclaw University of Technology, email:
ekr@pwr.wroc.pl

Spyros A. Reveliotis is with the School of Industrial & Systems Engineer-
ing, Georgia Institute of Technology, email: spyros@isye.gatech.edu

The work of the first author was supported by the Polish Ministry of
Scientific Research and Information Technology under grant no. 5-T12C-
02625.

v1 z1
v2 z2

v3

z3

v4

z4

v5

z5

v6

z6 z7

<h >1

<h >2<h >3

v1 z1
v2 z2

v3

z3

v4

z4

v5

z5

v6

z6 z7

<h >1

<h >2<h >3

e = (z ,z ,h)1 2 1

Fig. 1. Transition of vehicle h1 from zone z1 to zone z2.

and the resulting guidepath-based traffic system is said to be “zone-
controlled”.

Under the operational scheme described above, vehicles will al-
ways reside in some exclusively allocated zone of the guidepath
network, and they will abandon this zone only in order to transition
to a neighboring free zone. Furthermore, the vehicle travel through
the node of the guidepath network corresponding to the physical
intersection between these two zones is only a transient event in the
overall evolution of the system traffic. Hence, controlling the traffic
flow in such a system in order to maintain liveness can be abstracted
to the problem of managing the allocation of the guidepath zones to
the various vehicles circulating in it. To facilitate the characterization
and the management of this allocation, in the following we shall
represent the state s of the considered traffic systems with a labeled,
partially directed graph (PDG), where (i) the graph topology is
determined by the zoning of the underlying guidepath network, (ii)
directed edges correspond to occupied zones and the edge directions
indicate the sense of the vehicle motion in these zones, and (iii) the
labeling function ls() is defined on the set of directed edges and it
labels each such edge with the identity of the corresponding vehicle.
Under this representation, the system state can change through the
advancement of a vehicle h from its currently allocated zone, z,
to a neighboring unoccupied zone, z′. This advancement will be
characterized by the event e = (z, z′, h), and it is exemplified in
Figure 1. The set of states that can be reached from a given state s
through an event sequence < ei = (z[i], z

′
[i], h[i]), i = 1, 2, . . . , >

will be denoted by R(s), and it will be characterized as the set
of reachable states from state s. The behavioral subspace induced
by R(s) admits a graphical representation where the graph nodes
correspond to the states in R(s) and the graph edges correspond to
the feasible transitions among these states; we shall denote this graph
by RG(s) and we shall refer to it as the reachability graph of s.

Characterizing liveness of the considered traffic systems: In this
paper, we are especially interested in the characterization of those
zone-allocation schemes under which every vehicle h ∈ H maintains
its capability to reach any zone z ∈ Z of the guidepath network
throughout a presumably infinite horizon of the system operation.
Zone allocations possessing this property correspond to live system
states. A complete formal characterization of this concept is as
follows:

Definition 1: A state s ∈ S is live if and only if (iff) the
reachability graph RG(s) has a strongly connected component that
for each vehicle h ∈ H and each zone z ∈ Z contains a vertex s′

such that ls′(z) = h.
The following property establishes that the notion of state liveness

provided in Definition 1 is in agreement with the more intuitive char-
acterization of liveness provided at the beginning of this paragraph.
It also offers an alternative characterization of liveness that will be
useful in the subsequent developments.

Property 1: State s ∈ S is live iff (i) for each vehicle h ∈ H and
each zone z ∈ Z there exists a state s′ ∈ R(s) such that ls′(z) = h,
and (ii) state s′ is live.

Proof: First consider a state s ∈ S that is live. Then, according
to Definition 1, the reachability graph RG(s) contains a strongly

2

Fig. 2. Examples of an impending deadlock, a deadlock, a livelock, and a
live state (clockwise from left top corner).

connected component that for each vehicle h ∈ H and each zone
z ∈ Z contains a vertex s′ such that ls′(z) = h. Furthermore, each
of these states s′ is live, since RG(s′) contains the strongly connected
component contained in RG(s). Next, consider a state s ∈ S such
that (i) for each vehicle h ∈ H and each zone z ∈ Z there exists a
state s′ ∈ R(s) with ls′(z) = h, and (ii) state s′ is live. Since s′ is
live, RG(s′) will contain a strongly connected component that for
each vehicle h ∈ H and each zone z ∈ Z contains a vertex s′′ with
ls′′(z) = h. But RG(s′) is a subgraph of RG(s), and therefore, state
s is also live. �

If the traffic system starts its operation in or transitions to a state
that is not live, then the ability of its vehicles to visit all the zones of
the guidepath network is compromised. The natural cause for this loss
of liveness are the phenomena of deadlock and livelock. A deadlock
occurs when two or more vehicles permanently block each other, with
the resulting effect that no event associated with any of these vehicles
will ever be enabled in any state reachable from the current one.
Furthermore, we shall say that a state s is an impending deadlock,
if it is a deadlock-free state, but there is no infinite event sequence
emanating from it that will lead the system only through deadlock-
free states; i.e., deadlock is unavoidable from s. On the other hand, a
livelock is a state s where there are infinite event sequences emanating
from it that allow each vehicle h ∈ H to circulate ad infinitum in
some specific subset of zones, Zh, but any attempt by h to enter a
zone in Z\Zh results in a (impending) deadlock. Examples of a live
state and of states that are not live are given in Figure 2.

Motivation of the presented research: It should be clear from
the above discussion that the liveness of the guidepath-based, zone-
controlled traffic systems can be studied through the tools offered
by qualitative discrete event systems (DES) theory [1], and its
specialization in the modelling framework of sequential resource
allocation systems (RAS) [2], [3]. Indeed a series of results concerning
the characterization of liveness and the liveness-enforcing supervision
of open guidepath-based, zone-controlled traffic systems have already
been developed in, e.g., [4], [5], [6]. The open structure of these
environments enables the effective characterization of their liveness
through the reachability of a target “home” state, namely, the state
where all vehicles have successfully completed all their missions
and are parked in the system docking station. This characterization
subsequently enables the episodic decomposition of the system
behavior based on its consecutive visits to this “home” state, and
the application of results concerning the liveness and the liveness-
enforcing supervision of RAS with finite processes [2], [3]. On the
other hand, closed, zone-controlled, dynamically routed, guidepath-
based traffic systems do not possess such easily identifiable “home”
states. The perpetual circulation of the various vehicles in the
guidepath network renders the identification of a target “home” state
that would be appropriate for this class of systems, a challenging, if
not a vacuous, proposition. Hence, the characterization of liveness
for closed traffic systems must be based on novel concepts and
techniques, that will extend the existing RAS theory so that it can

model, analyze and eventually control the behavior of RAS with non-
terminating processes. The work presented in this paper addresses the
aforementioned gap and sets the basis for a formal RAS theory for
closed, zone-controlled, dynamically routed, guidepath-based traffic
systems. At the same time, the key result of this work can be
interpreted as an extension of the notion of “home” state to the
considered class of traffic systems. From a methodological standpoint,
the presented results build upon concepts and techniques concerning
the study and manipulation of the PDG structure that was proposed
as a natural representational framework of the underlying system
dynamics. Hence, in the next section we introduce the PDG theory
that is necessary for the subsequent developments. The main body
of these developments are presented in Section III, which provides
the new criterion for state liveness of the considered class of traffic
systems. Finally, Section IV concludes the paper, by summarizing
its key contributions and briefly discussing their implications for the
design of effective and computationally efficient liveness-enforcing
supervisors for these environments. Closing this introductory section,
we also notice that preliminary versions of (some of) the presented
results can be traced in [7], [8].1

II. PARTIALLY DIRECTED GRAPHS

In this section we formally introduce the concept of the partially
directed graph (PDG), and establish some of its properties that will
be necessary in the subsequent developments.

Definition 2: A partially directed graph G is formally defined by
the triplet (V, Z,D), where: (i) V is the set of the graph vertices;
(ii) Z is the set of the graph edges, with each edge z ∈ Z being a
multi-set of V with cardinality equal to two; and (iii) D is a partial
function on Z such that D(z) is an element of the multi-set that
defines z, for every z that the function is defined.

Edges z ∈ Z belonging to the domain of function D() are directed,
with their direction pointing to the vertex D(z); the remaining edges
are undirected. Furthermore, in the following we shall let U = (V, Z)
denote the undirected graph induced by PDG G.

Definition 3: Given a partially directed graph G = (V, Z,D):

1) A path in G is a sequence π = v0, z1, v1, z2, . . . , vn−1, zn, vn,
n ≥ 0, such that, for each i ∈ 1, . . . , n, zi = {vi−1, vi},
and either edge zi is undirected or it is directed and points to
D(zi) = vi. A path is simple if all vertices on the path, except
possibly for the first and last vertices, are distinct.

2) A cycle in G, denoted by c, is a simple path such that n > 0
and v0 = vn.

3) A joint between two cycles c and c′ is a simple path that is a
sub-path of both c and c′.

4) A pass between two cycles c and c′ is a simple path such that
its first vertex lies on c, its last vertex on c′, and all of its edges
are undirected and are not components of either c or c′.

5) A chain in G is the subgraph defined by a sequence ch =<
c1, π2, c2, π3, . . . , πn, cn >, n ≥ 1, such that (i) ci, i ∈
1, . . . , n, are cycles, (ii) πi, i = 2, . . . , n, are simple paths,
and (iii) each path πi is a joint or a pass between cycles ci−1

and ci.

The concepts introduced by Definition 3 are exemplified in Fig-
ure 3. The reader should notice that, according to this definition, all

1It should also be noticed that, in principle, the liveness criterion of
Definition 1 can be assessed through model checking algorithms [9]. However,
the complexity of these algorithms is polynomial in the size of the underlying
state space, and in spite the fact that symbolic model checking has enabled
their execution on very large state spaces, they do not seem to be particularly
amenable to the considered application context, where (i) the underlying state
spaces explode extremely fast and (ii) they must be executed in real time.

3

c
1 ch

1
c

2

ch
2c

3 ch
3 c

4

c
5

s
1

s
2

v
1

v
2

v
3

v
4

v
5

Fig. 3. Chains in an example PDG G.

iv)

z’

z’z’

z’’

z’’

B

A

D

A

B

D

C

A

B

C

D

C

A

B

C

D

z’’

z’

z’’

i) ii)

iii)

Fig. 4. The sub-case enumeration considered in the proof of Property 2.

the directed edges in a PDG path, π, must point in the same direction,
which constitutes the path direction. Also, a vertex can be considered
as a singular path of zero length. Furthermore, the notion of chain
establishes a connectivity relation on the edges of graph G.

Definition 4: Two edges z, z′ ∈ Z in graph G are chain-connected
or chained iff there exists a chain that contains both z and z′. Graph
G is chained iff every two edges z, z′ ∈ Z are chained.

Chained PDG’s have the following properties.

Property 2: The chain-connectivity relation is symmetric and tran-
sitive.

Proof: The symmetry of the chain-connectivity follows directly
from its definition. To show its transitivity, consider three edges
z, z′, z′′ of a PDG G such that z and z′ are chained, and z′ and
z′′ are chained. Then, by Definition 4, there exist two chains in G:
ch = c1, π2, . . . , πn, cn and ch′ = c′1, π

′
2, . . . , π

′
m, c′m such that z

is contained by c1 or π2, z′ is contained by cn or πn and by c′1
or π′2, and z′′ is contained by c′m or π′m. Thus, z′ can only occur
in one of the following configurations: (a) cn and c′1 or (b) cn and
π′2 or (c) πn and c′1 or (d) πn and π′2. In each of these cases, we
can build a chain that contains both z and z′′. Next we detail this
construction for case (a); the other three cases can be addressed by
similar arguments and they are left to the reader.

For case (a), first notice that if edge z′′ happens to belong in the
intersection of cycles cn and c′1, then, the sought chain is actually the
original chain ch. The opposite case can be analyzed through the four
sub-cases enumerated in Figure 4. In all of the presented sub-cases,
cycle cn is depicted in solid lines, while cycle c′1 is depicted in dashed
lines, except for its parts that intersect with cycle cn. Furthermore,
the line segments and half-circles depicted in this figure should be
interpreted as sequences of guidepath edges that contain the edges

annotated next to them.2 Then, for sub-cases (i) and (ii), the sought
chain can be obtained by appending cycle c′1 to chain ch, through
the joint AB shared by cycles cn and c′1. For the sub-cases (iii)
and (iv), first notice that the intersecting parts of cycles cn and c′1
must consist of undirected edges. Furthermore, the external cycle
ADA and the internal cycle BCB are directed. Hence, for sub-case
(iii), the sought chain can be obtained by first replacing cycle cn in
chain ch by cycle ADA, and subsequently appending cycle BCB,
connected to ADA through any of the passes AB or DC. For sub-
case (iv), the sought chain is obtained by replacing cycle cn in ch
by cycle ADA. Finally, the proof for case (a) concludes by noticing
that the further sub-case where edge z′′ does not belong on c′1 is
effectively covered by constructions similar to those in sub-cases (ii)
and (iv). �

Property 3: In a chained PDG G = (V, Z,D), each edge z ∈ Z
lies on a cycle iff z is not a bridge3.

Proof: To see the necessity part of this statement, notice that,
if z is a bridge, then there is no cycle in the undirected graph U that
contains z, so there is no cycle in G either. To prove the sufficiency
part, notice that, if z is not a bridge, then there are two possible cases:
(i) z is a directed edge, and (ii) z is an undirected edge. Since graph
G is chained, then, for each edge z ∈ Z, there exists a chain ch that
contains z. If edge z is directed, then it is not an element of a pass
in ch, thus it lies on a cycle. If edge z is undirected, then, since z is
not a bridge, there exists a cycle cu in U that contains z. Moreover,
the chained structure of G implies that each edge z′ that belongs to
cu and is directed in G, lies on a cycle cz′ in G. But then, one can
identify a cycle in G consisting of edge z, all undirected edges of
cu, and the parts of each cz′ that go in the same direction. �

Property 4: Let b and n denote respectively the number of the
bridge edges and the number of the directed edges in a PDG G =
(V, Z,D). If G is chained then n ≤ |Z| − b.

Proof: The definitions of a chain and of a bridge imply that, in
any chained graph G, a bridge edge will lie on a pass between two
cycles. As a pass consists of undirected edges, there is no chained
PDG with n > |Z| − b directed edges. �

The symmetry and transitivity of the chain-connectivity established
by Property 2, further imply that, for any given PDG G, we can
distinguish its maximally chained subgraphs, called the chained com-
ponents of G, and establish the notion of condensation, C = C(G).

Definition 5: A chained component of a PDG, G, is a connected
subgraph of G, Gc = (Vc, Zc,D), such that each edge z ∈ Zc is
chained with edge z′ ∈ Z iff z′ ∈ Zc. The PDG C = C(G) that is
obtained from graph G by replacing each chained component with a
single vertex, will be called the condensation of G. Vertices of C(G)
that correspond to chained components will be characterized as the
nodes of C(G), while the remaining vertices will be characterized as
simple.

It follows that the condensed graph C(G) consists of all the edges
of G that do not lie on a chain, and two types of vertices: (i) nodes,
that substitute the chained components of G, and (ii) simple vertices,
v ∈ V , that are only incident to edges which do not lie on any chain in
G. Figure 5 exemplifies these concepts by providing the condensation
of the PDG depicted in Figure 3. To understand the structure of

2Also, the segment CD in the depicted drawings emphasizes the fact that
the (undirected) cycles cn and c′1 might intersect through more than one
subsets of their edges. The cases where cn and c′1 intersect through only one
or through more than two segments are covered by trivial modifications of
the provided arguments.

3We remind the reader that, according to the standard graph-theoretic
terminology, a bridge of an undirected graph is an edge whose removal
disconnects the remaining subgraph. Equivalently, an edge is a bridge if and
only if it is not contained in any cycle.

4

1
GC

2
GC

3
GC

v1

v2

v3

v4

v5

4U
c

3U
c

2Uc

1Uc

Fig. 5. The condensation, C(G), of the PDG G depicted in Figure 3, and
the u-components of C(G).

the PDG depicted in Figure 5, notice that each of the three chains
depicted in Figure 3 is also a chained component of that PDG; hence,
the resulting condensation consists of the five simple vertices, v1 -
v5, and the three nodes, Gc1 , Gc2 , and Gc3 that condense the three
chained components. Next we establish some additional properties
and structure exhibited by condensation graphs.

Property 5: Condensation C = C(G) is an acyclic graph. Further-
more, each non-singular path in C that starts and ends with a node
contains a directed edge.

Proof: If two edges in G lie on a common cycle, then they are
covered by some node of C; thus, C has no cycles. If two chained
subgraphs of G are connected by a path that has only undirected
edges, then there exists a chain that includes elements that belong
to both subgraphs. Thus, in condensation C they are covered by the
same node. Consequently, each non-singular path in C that starts and
ends with a node contains a directed edge. �

We will distinguish the subgraphs of condensation C(G) that (i)
contain no directed edges and (ii) are connected to the complement
part of C(G) by directed edges only.

Definition 6: An undirected component (or u-component) in con-
densation C(G) is a maximal connected subgraph Cu that contains
no directed edges. The edges of C(G) that point to Cu are the inputs
of Cu, and those that point from Cu, are the outputs of Cu. Cu is a
source if it has no inputs, and a sink if it has no outputs. Cu is a
complex u-component if it contains a node, and a simple u-component
otherwise.

Note that a particular case of a simple u-component is a single
vertex t such that each edge incident to t is directed. Figure 5 also
shows the undirected components of the condensation C(G) obtained
from the graph depicted in Figure 3. Component Cu4 is a simple sink,
Cu2 is a complex sink, and Cu3 is a complex source. Two useful
properties of u-components are as follows:

Property 6: Each u-component, Cu, is an undirected tree and
contains at most one node. Moreover, the u-components are partially
ordered by the directed edges of condensation C(G).

Proof: Since, by Property 5, each non-singular path between
any two nodes contains a directed edge, and all the edges of any
u-component are undirected, it must contain at most one node. Since
condensation C = C(G) is an acyclic graph, any subgraph of C is
also acyclic. An undirected, connected graph is acyclic iff it is a tree.
Since each path between any two u-components consists of directed
edges only and C is acyclic, the u-components are partially ordered.
�

We conclude this section on PDG concepts and properties by
outlining an algorithm for assessing the chain connectivity of a given
PDG G = (V, Z,D). This algorithm proceeds as follows:

1) First, it converts the given PDG, G, to a digraph, G′, by
replacing each undirected edge z of it with two directed edges

(1) (2)

(3) (4)

condensation��C(G)

PDG��G

Fig. 6. Assessing the chain connectivity of the PDG of Figure 3.

z′ and z′′ of the opposite directions.
2) Subsequently, it extracts the strongly connected components

G′
1, G′

2, . . . , G′
n of G′.

3) Next, it converts each digraph G′
i computed in Step 2 to a PDG

Gi by replacing each edge pair (z′, z′′), introduced in Step 1,
by a single undirected edge z.

4) Finally, at each graph Gi, it removes iteratively all one-degree
vertices and their incident edges, until no such vertex is left.
The resulting PDGs are the chained components of the original
PDG G.

Figure 6 depicts the application of the above algorithm to the PDG
of Figure 3. To see the algorithm correctness, it suffices to notice that
each PDG Gi obtained in Step 3 above is the subgraph of PDG G
that corresponds to an undirected component of the condensation
C(G), according to Definition 6. Subsequently, Step 4 derives the
node of each detected u-component, which essentially constitutes its
chained part. Obviously, a given PDG G is chained iff the execution
of Step 2 in the above algorithm returns only a single strongly
connected component G′

1 = G′, and the subsequent execution of
Step 4 removes no edges from PDG G1. Furthermore, since the
strongly connected components of digraph G′ can be calculated with
polynomial complexity [10], it is clear from the above that the chain
connectivity of a given PGD G can be resolved in polynomial time
with respect to the size of G.

The next section builds upon the previously introduced PDG
concepts and properties in order to provide an alternative, structural
characterization of state liveness for the considered traffic systems,
that, in general, will be more easily testable than the characterization
provided by Definition 1. The derivation of this new characterization
will also suggest a novel and computationally efficient policy for
enforcing liveness in the considered class of traffic systems.

III. STRUCTURAL CHARACTERIZATIONS OF STATE LIVENESS

The results presented in this section establish that, under the PDG-
based representation of the system dynamics that was introduced in
the opening section, the liveness of any given state s is strongly
related to the reachability from s of another state s′ such that the
corresponding PDG graph G(s′) is chained. The next definition
provides a formal characterization of this target structure:

Definition 7: In the considered traffic systems, state s ∈ S is
chained iff the condensation C(s) of the corresponding PDG graph
G(s) is a single node (i.e., if G(s) is chained).

5

1

Uc

2

Uc

V
c

V
c

z

z

z

z'

z'

z'

z'z

v v

vv

vv

2

Uc

GC
GC

GCGC

1

Uc

a)

b)

Fig. 7. Illustration of Lemma 2 – in both cases, the transition from state s
to state s′ results in a simple sink.

Furthermore, in the following it is natural to assume that every
vertex v ∈ V in the underlying guidepath network has a degree at
least equal to two, i.e., there are at least two vehicle zones incident
to that vertex. The subsequent developments proceed in two stages:
In the first stage, we derive the sought liveness characterization in
an inductive form, which is very general, but not easily amenable to
computation. Hence, in the second stage, we further operationalize
the original characterization, by investigating its implications for the
state liveness of traffic systems belonging in various sub-classes of
practical interest; the derived results are of non-inductive nature, and
they enable an effective and straightforward evaluation. The last part
of the section also provides a brief discussion on how the obtained
results enable the effective and computationally efficient liveness-
enforcing supervision of the considered class of traffic systems.

A general structural condition for state-liveness in the consid-
ered traffic systems: The next two lemmas are the necessary stepping
stones for establishing the key result of this section.

Lemma 1: In the considered traffic systems, if state s ∈ S is live,
then there are no simple sinks in condensation C(s).

Proof: Let s ∈ S be a state such that the condensation C(s)
contains a simple sink Cu. Since Cu contains no nodes, it is a
subgraph of G(s), let’s say Gu = Cu. Then, according to Property 6,
Gu is an undirected tree, and therefore, the vehicles on the directed
edges pointing to Cu are destined to an unavoidable deadlock. �

Lemma 2: Let Cu be a complex sink in the condensation C(s)
corresponding to the state s ∈ S. Let Gc be the node of Cu, and
z′ be a directed edge in G(s) that points to the vertex v that is
shared with an edge z in Cu. Consider the event e = (z′, z, h),
where h = ls(z

′), and note that it can occur in state s. Then, if there
is no path π = v, z, . . . , Gc in the graph C(s), the state s′ that results
from the execution of event e in state s, is not live.

Proof: Let Cu = C1
u, and note that the occurrence of event e

causes the transition of vehicle h from zone z′ to zone z. There are
two possible cases: (a) edge z′ is an input of C1

u, and (b) z′ lies in the
node of C1

u (see Figure 7 for some corresponding examples). Since,
by Property 6, any u-component is an undirected tree, if there is no
path π = v, z, . . . , Gc in graph C(s), then, in both cases, there will
be a simple sink, Cv , in graph C(s′). Thus, by Lemma 1, state s′ is
not live. �

Note that Lemma 2 implies that a vehicle located on an input of a
sink, Cu, can only head towards its node, Gc, and a vehicle located in
the node of a sink cannot leave it, if the resulting state is going to be
live. Since the number of undirected edges in node Gc is finite, only
a finite number of vehicles can be additionally accommodated in Gc.
Thus, the only possibility for the vehicles to proceed is by enlarging
the sink node so that it covers a bigger subgraph of graph U . This

2

Uc

2
GC

1
GC

1

Uc

a)

c)

b)

1z

2

Uc

2
GC

1z

2

Uc

2
GC

1z

Fig. 8. Illustration of Theorem 1 – in cases (a) and (c) the number of
u-components does not change, and in case (b) this number decreases.

only happens when a path between the sink Cu and a preceding u-
component, say Cu′ with node Gc′ , becomes undirected. Then, in
the condensation C(s′), of the new state s′, Cu and Cu′ become one
u-component Cuu′ with node Gcc′ that covers at least the area of Gc,
G′

c, and the undirected path that connects them. The next theorem
establishes that a necessary condition for any given state s to be
live, is the reachability from state s of a live state s′ in which all
u-components become merged into one.

Theorem 1: In the considered traffic systems, state s ∈ S is live
iff the reachability set R(s) contains a live chained state s′.

Proof: For the sufficiency part, simply notice that, if there exists
a live state s′ ∈ R(s), then, by Definition 1, state s is also live. To
prove the necessity part of this theorem, consider a live state s ≡ s1.
If condensation C(G(s1)) has only one u-component then the lemma
holds. Otherwise, by Property 6, condensation C(s1) has a nonempty
set of sinks, each of which has at least one input edge z and, by
Lemma 1, it is a complex u-component. From Lemma 2, no vehicle
can leave the sink and the vehicles located on the inputs of the sink
can only move towards its node, if the resulting state is going to be
live. However, by Property 1, if state s is live, then a transition from
s to a live state s′ is always possible. Thus, there exists a sink C1

u

with an input zone occupied by a vehicle h, such that the transition
of h to the zone z1 that lies either in C1

u or in the node G1
c of C1

u,
is feasible. There are three possible cases of such a transition: (a)
If edge z1 lies in C1

u (see Figure 8.a) then, in the resulting state s2,
the original sink reduces to C2

u that is a subgraph of C1
u, and edge

z1 becomes an input of C2
u, while the structure of node G1

c does not
change, that is, G2

c = G1
c . It follows that, in state s2, the number

of u-components in graph C(s2), k(s2), is equal to the number of
u-components in C(s1), k(s1). If edge z1 lies in the node G1

c , then,
either (b) G2

c = G1
c (see Figure 8.b) or (c) the node G1

c gets split by
edge z1 into two subgraphs (see Figure 8.c). In case (b), since the
edge left by the vehicle becomes undirected, the u-component that
contained its tail in graph C(s) and C1

u unite into one u-component
C2

u. Consequently, k(s2) < k(s1). In case (c), edge z1 becomes
an input to a new complex sink C2

u, which is a subgraph of C1
u.

Hence, in this case, k(s2) = k(s1). Since the number of edges in
any sink is finite, a sink cannot get split indefinitely, and therefore,
in graph C(s1), there exists a sink, C1

u, such that, in some state sn

reachable from s1, a vehicle enters its node according to case (b),
and k(sn) < k(s1). Then, it follows by induction that there exists a
live state s′ ∈ R(s) such that the condensation C(s′) has only one
u-component. Since by Property 6, Cu is a tree, and it is assumed
that graph U has no terminal vertices, condensation C(s′) is a tree

6

without any edges, that is, a single node. Consequently, graph G(s′)
is chained. �

Further structural characterizations of state liveness – specific
cases: In this paragraph we refine the state-liveness characterization
of Theorem 1 by establishing a partition of the considered class of
traffic systems into four sub-classes, distinguished on the basis of
the relative size of the vehicle set H with respect to the number
of the non-bridge edges in the underlying guidepath network. More
specifically, letting b denote the number of the bridge edges in the
graph U = (V, Z) that models the guidepath network, the four
considered sub-classes are defined by the following relationships: 1)
|H| > |Z| − b, 2) |H| = |Z| − b, 3) |H| = |Z| − b − 1, and 4)
|H| < |Z|−b−1. Then, by inferring from Theorem 1 and Property 4,
it can be easily seen that traffic systems satisfying Condition 1 have
no live states, as no state s ∈ S is chained. Similarly, a little
reflection will reveal that traffic systems satisfying Condition 2 have
no live states either, since any chained state s ∈ S in them will
not be live. In essence, Conditions 1 and 2 above characterize over-
congested systems. On the other hand, for traffic systems satisfying
Condition 3, it can be shown that some of their chained states can
present livelocks, an element that complicates the assessment of the
criterion of Theorem 1. However, it can be argued that traffic systems
satisfying Condition 3 can be easily converted to systems satisfying
Condition 4, by splitting one of their zones into two new ones; hence,
these systems present rather little practical interest. Motivated by the
above observations, in the rest of this section we focus on the study
of state liveness for traffic systems satisfying Condition 4. The state
liveness characterization developed for this system sub-class can be
succinctly stated as follows:

Theorem 2: In a traffic system with |H| < |Z| − b − 1 vehicles,
state s ∈ S is live iff the reachability set R(s) contains a chained
state s′.

Proof: The necessity part of this theorem results immediately
from Theorem 1. In order to prove the sufficiency part, we shall show
that in a traffic system with |H| < |Z| − b − 1 vehicles, for every
chained state s′ ∈ S and for each pair (h, z) ∈ H × Z, there exist
(i) a state s′′ ∈ R(s) such that h = ls′′(z), and (ii) a chained state
s′′′ reachable from s′′. This result further implies that, starting from
chained state s′, each vehicle h can visit infinitely many times each
zone z, and since the reachability set R(s′) is finite, this can happen if
and only if the reachability graph RG(s′) has a strongly connected
component that for each vehicle h ∈ H and each zone z ∈ Z,
contains a vertex s′′ such that ls′′(z) = h. But then, Definition 1
implies that state s′ is live, and since s′ ∈ R(s), state s is also live.

In order to show the intermediary result mentioned above, it
is convenient to follow the movement of not only the vehicles,
but also of the empty zones – or “holes” – in the cycles of the
guidepath network of the underlying traffic system. These “holes”
will be considered as indistinguishable, and they move in the direction
opposite to the vehicles; i.e., when vehicle h moves from zone z to
zone z′, a “hole” moves from zone z′ to zone z. Then, we can make
the following observations:

1) Since state s′ is chained and |H| < |Z| − b− 1, there exist at
least two holes that are located on cycles in G(s′).

2) A hole located on a cycle c can be transfered to any edge
of the cycle, while maintaining the structure of the cycle, by
advancing an appropriately selected subset of the vehicles on
the cycle. Furthermore, if cycle c is connected with cycle c′

by a joint π, then the hole can move to π, and thus reach
c′. Similarly, if cycle c is connected by a pass π to another
cycle c′, then, the hole can be transferred from c to c′, and in
the resulting configuration, both c and c′ maintain their cyclic
structure, and path π remains empty. Furthermore, an induction

h
2

h
2

h
2

h
2

<o>
<o>

<o>
<o>

h
3

h
3 h

3
h

3

h
1

h
1

h
1

h
1

Fig. 9. Illustration of Theorem 2: Transfer of vehicle h1 to a neighboring
zone on a cycle with one hole.

h
2 h

2

h
2h

2h
2

<o>

<o>

<o>

<o>

<o>

<o><o>

<o>

<o>

<o>

<o>

<o><o>

<o>

<o>

h
1

h
1 h

1

h
1

h
1

Fig. 10. Illustration of Theorem 2: Transfer of vehicle h1 between two
neighboring cycles, each of which has one hole.

based on the above observations can easily establish that a hole
in the chained state s′ can move to any zone in the guidepath
network so that the resulting state preserves the chain structure
of G(s′).

Next consider the vehicle h and the target zone z, and also let
z′ be the zone allocated to vehicle h in state s′. If zones z and z′

belong to the same cycle c, then, according to Observation 1, there
exists at least one hole in G(s′) and, according to Observation 2,
this hole can be transferred to cycle c in a way that preserves the
underlying chain structure of G(s′). But then, vehicle h can move to
any zone in cycle h while preserving the cyclical structure of c, and
therefore, it can reach zone z while the resulting state s′′ is chained
(see Figure 9). If zones z and z′ do not belong to a common cycle c,
then there must be a chain < c1, π2, . . . , cn−1, πn, cn > such that z′

belongs on c1 and z belongs on cn or on πn. Consider first the case
where n = 2. Then, according to Observation 1, there are at least
two holes in state s′, and according to Observation 2, these holes can
be transferred so that one of them is located in cycle c1 and the other
on cycle c2, while preserving the chain structure of s′. But then, the
reader should be able to convince herself that the presence of a hole
in cycle c1 allows vehicle h to enter the path π2 and, subsequently,
the presence of a hole in c2 enables it to enter c2 (see Figure 10). If
edge z belongs to the path π2, it will have been reached by vehicle
h by the time it enters c2. Otherwise, once the vehicle is in c2, the
transfer of a hole back in c2, if necessary, will allow it to reach
zone z. Furthermore, the state s′′′ resulting from all the above steps
maintains the chain structure of G(s′). The case where n > 2 is
addressed by noticing that the above argument for n = 2 implies the
ability to advance the vehicle between any two consecutive cycles in
the chain, while maintaining the underlying chain structure, until the
vehicle reaches the final cycle of the chain. �

Liveness-enforcing supervision of the considered traffic systems:
In principle, the result of Theorem 2 provides also a characterization
of the one-step-lookahead, maximally permissive, liveness-enforcing
supervisor (LES), ∆∗, for the subclass of the considered traffic
systems with |H| < |Z| − b− 1, which, as observed in the previous
paragraph, is the subclass of main practical interest. However, the
practical significance of this result is partially compromised by the
fact that currently we lack an efficient algorithm for determining the
reachability of a chained state from any arbitrary state s. On the
other hand, a careful study of the arguments underlying the proof
of Theorem 2 will reveal that it is possible to maintain the system
liveness while constraining its operation only in those states that are
chained or they are generated from chained states by transferring a

7

single vehicle between two cycles, ci and ci+1, connected by pass
πi+1 in some given chain ch; states possessing this last structure are
characterized as semi-chained. As discussed in Section II, chained
states are polynomially recognizable with respect to the structure of
the underlying PDG. Furthermore, the definition of the class of semi-
chained states implies that for each such state there exists a chained
state that can be reached from it through an event sequence that
concerns the advancement of a single vehicle by no more than l̄ zones,
where l̄ is the length of the maximal simple path in the underlying
guidepath network. Therefore, the combined class of chained and
semi-chained states can be efficiently (i.e., polynomially) recognized
through a controlled partial search for reachable chained states, where
the search depth is bounded by l̄ and the search is confined to event
sequences concerning the advancement of only one vehicle at a time.
The resulting supervisor will be denoted by ∆0. Furthermore, one
can envision additional LES, Ψi, i = 0, 2, . . ., that will enhance the
discriminatory capability of LES ∆0 by (i) removing the restriction
of the single-vehicle-advancement from the search process applied by
∆0, and (ii) increasing the depth of that search to l̄ + i. Obviously,
the complexity of LES Ψi, i = 0, 2, . . ., is super-polynomial with
respect to the search depth l̄ + i. On the other hand, the parameter i
defines a notion of “order” on the resulting LES class, and it enables
some explicit control of the trade-off between operational efficiency
and computational tractability.

IV. CONCLUSIONS

The key contribution of the work presented in this paper is a
novel structural characterization of state liveness for the considered
traffic systems, which enables the identification of live states while
foregoing an extensive enumeration of the underlying behavioral
space. When viewed from a more practical standpoint, the presented
results also enable the design of computationally efficient liveness-
enforcing supervisors for the considered environments.

Future work will seek (i) to formally analyze the complexity of the
decision problem implied by Theorem 2, an important issue since it
underlies the efficient implementation of maximally permissive super-
vision for the considered class of systems, (ii) to empirically assess
the operational efficiency of the suboptimal supervisors introduced
above, and (iii) to explore the implications of the results and the
techniques developed in this paper for other classes of guidepath-
based traffic systems.

REFERENCES

[1] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems, Klumwer Academic Pub., Boston, MA, 1999.

[2] S. A. Reveliotis, Real-time Management of Resource Allocation Systems:
A Discrete Event Systems Approach, Springer, NY, NY, 2005.

[3] M. Zhou and M. P. Fanti (editors), Deadlock Resolution in Computer-
Integrated Systems, Marcel Dekker, Inc., Singapore, 2004.

[4] S. A. Reveliotis, “Conflict resolution in AGV systems,” IIE Trans., vol.
32(7), pp. 647–659, 2000.

[5] M. P. Fanti, “Event-based controller to avoid deadlock and collisions in
zone-controlled AGVS,” IJPR, vol. 40, pp. –, 2002.

[6] N. Wu and M. Zhou, “Resource-oriented Petri nets in deadlock
avoidance of AGV systems,” in Proceedings of the ICRA’01. IEEE,
2001, pp. 64–69.

[7] E. Roszkowska, “Liveness of states in closed AGV systems with
dynamic routing,” in Proceedings of MMAR’02. IEEE, 2002, pp. 947–
952.

[8] E. Roszkowska, “Undirected colored Petri nets for modelling and
supervisory control of AGV systems,” in WODES’02. IEEE, 2002, pp.
135–142.

[9] E. Clarke, O. Grumberg, and D. Peled, Model Checking, The MIT Press,
1999.

[10] A. Aho, J. Hopcroft, and J. Ullman, The design and analysis of
computer algorithms, Adison-Wesley Publishing Company, Reading,
Massachusetts, 1974.

