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Abstract.  Deadlock is a major problem for systems that allocate resources in real-time. The key

issue in deadlock avoidance is whether or not a given resource allocation state is safe, that is,

whether or not there exists a sequence of resource allocations that completes all processes.

Although safety is established as NP-complete for certain broad resource allocation classes,

newly emerging resource allocation scenarios often exhibit unique features not considered in

previous work. In these cases, establishing the underlying complexity of the safety problem is

essential for developing the best deadlock avoidance approach. This work investigates the

complexity of safe resource allocation for a class of systems relevant in automated

manufacturing. For this class, the resource needs of each process are expressed as a well defined

sequence. Each request is for a single unit of a single resource and is accompanied by a promise

to release the previously allocated resource. Manufacturing researchers have generally accepted

that safety is computationally hard, and numerous sub-optimal deadlock avoidance solutions

have been proposed for this class. Recent results, however, indicate that safety is often

computationally easy. The objective of this paper is to settle this question by formally

establishing the NP-completeness of safety for this class and investigating the boundary between

the hard and easy cases. We discuss several special structures that lead to computationally

tractable safety characteristics.
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1. Introduction

Real-time resource allocation is a fundamental control responsibility in many types of automated

systems. A resource allocation system (RAS) consists of a finite set of resources that must be

allocated to competing processes. The processes enter the system, request, acquire, use, and

release their required resources, and then exit the system. Many types of RASs are prone to

deadlock, an insidious halting condition in which there exists a set of processes with every

process in the set awaiting the allocation of resources held by other processes in the set.

Deadlock is a well known problem in many technological areas such as computer operating

systems, distributed databases, and automated manufacturing systems. Well known strategies for

handling deadlock are (1) prevention, (2) detection-resolution, and (3) avoidance. Prevention

restrains the request structure of processes so that deadlock is impossible. Because it limits

process concurrency, prevention tends to be overly restrictive and typically achieves poor

resource utilization. Detection-resolution approaches allow deadlock to occur and then

concentrate on expedient resolution. This approach achieves the greatest flexibility in resource

allocation at the cost of system stoppage and resolution procedures, which may involve aborting

processes or the time consuming transport and reshuffling of physical entities. Avoidance uses

current state information along with knowledge of process request and release structures to

restrain the way resources are allocated so that deadlock never occurs. Avoidance achieves a

middle ground in terms of allocation flexibility, being more flexible than prevention but less

flexible than detection. It does not incur the cost of system stoppage and resolution and thus is

the preferred method when the incremental increase in allocation flexibility does not merit the

cost of allowing deadlock to occur. A more complete discussion of fundamental deadlock
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concepts can be found in most books on computer operating systems, for example, see

Silberschatz and Peterson (1991).

This paper deals exclusively with implementing deadlock avoidance methods in computer-

based, real-time control of automated manufacturing systems. As given by Gold (1978), the key

issue in deadlock avoidance is whether, for a given resource allocation state, say ‘S’, there exists

a sequence of resource allocations that completes all processes. In other words, is ‘S’ safe? A

deadlock avoidance policy (DAP) that restricts resource allocation based on the safety of the

resulting state is maximally permissive and is therefore referred to as ‘optimal’. In general, the

optimal DAP cannot be implemented in a real-time controller since safety is established as NP-

complete for certain broad classes of resource allocation systems.1 This does not, however, imply

that safety is hard in all  resource allocation classes. Newly emerging classes often exhibit unique

features, not considered in previous work, that can be used to make avoidance more permissive.

When dealing with a new allocation class, it is therefore desirable to establish the complexity of

the safety problem before preceding with the development of deadlock avoidance approaches.

More specifically, this work investigates the complexity of optimal deadlock avoidance for a

class of resource allocation systems that has recently arisen in automated manufacturing, which

we refer to as sequential single-unit (SU-RAS). For this class, the resource needs of each process

are expressed as a well defined sequence. Each request is for a single unit of a single resource

type and is accompanied by a promise to release the previously allocated resource. Thus, a

process requests, holds, and releases only one resource at a time. Over the past decade, numerous

researchers have proposed sub-optimal deadlock avoidance solutions for the SU-RAS, notably

                                                       
1 Real-time controllers do not have the temporal resources to solve computationally hard problems.
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Banasak and Roszkowska (1988), Viswanadham, Narahari, and Johnson (1990), Banasak and

Krogh (1990), Wysk, Yang, and Joshi (1991), Leung and Sheen (1993), Hsieh and Chang

(1994), Fanti, Maione, Mascolo, and Turchiano (1997), and Lawley, Reveliotis, and Ferreira

(1997, 1998a, 1998b). Although researchers have generally accepted that safety in the SU-RAS

is computationally hard, recent results indicate that safety is often computationally easy (Fanti et

al., 1997, Reveliotis, Lawley, and Ferreira 1997, Roszkowska and Jentink 1993, and Xing, Hu,

and Chen 1996). The objective of this paper is to settle this question by formally establishing the

NP-completeness of safety in the SU-RAS. We then want to investigate the boundary between

the hard and easy cases and discuss several SU-RAS sub-classes for which safety is

computationally easy.

The paper is organized as follows: section 2 defines the notion of a resource allocation

system and briefly reviews earlier work on the complexity of deadlock avoidance. Section 3

formally defines the SU-RAS and establishes that, even for this more restricted class, the safety

question remains NP-complete. Section 4 characterizes the boundary between hard and easy

cases, while Section 5 discusses several special structures for the SU-RAS that exhibit

polynomial safety characteristics. Section 6 provides a summary and conclusion.

2. Literature review

This section reviews relevant literature on the complexity of optimal deadlock avoidance. We

begin by noting that a resource allocation system is composed of a set of resource types, R={R1,

R2, … , Rm} and a set of processes, P={P1,P2,… ,Pn}. Each resource type has an associated

‘capacity’ indicating the number of identical instances of the resource type that exists in the

system. Resources are either reusable or consumable, depending on the situation. Reusable

resources are released (deallocated) by the process when it is finishes, whereas consumable
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resources are never released. We assume that resource instances are not sharable, i.e., the same

resource instance cannot be simultaneously allocated to multiple processes, and that resource

instances cannot be preempted from the processes that are using them. A process makes one or

more requests for the resources that it needs, and the allocation manager, often referred to as the

‘banker’, decides which requests to grant. The banker’s objective is to allocate resources so that

all requests are satisfied and all processes finish; a task that is complicated by overlapping,

conflicting resource requirements. More specifically, the computational difficulty of the banker’s

problem depends on the structure, sequence, and magnitude of resource requests and releases, the

capacities of resource types, and the reusability of the resource instances. We now discuss

relevant literature on the complexity of the safety problem.

Because of its importance, we provide a brief discussion of the banker’s algorithm

(Habermann 1969), perhaps the most widely recognized and understood deadlock avoidance

algorithm. The algorithm assumes that as each process enters the system, it declares the

maximum number of each resource that it might ever require at one time. It further assumes that

if a process is simultaneously allocated its stated maximum of each resource, then the process

will terminate without additional requests and will release all reusable resources allocated to it.

These resources then become available for allocation to other processes. The banker’s algorithm

avoids deadlock by allowing an allocation only if, in the resulting allocation state, the processes

can be ordered so that the maximal resource needs of the ith process, Pi, can be met by pooling

available resources with those already held by Pi and those returned by processes P1,P2,...,Pi-1

upon their termination. The order defines a sequence in which all processes in the system can be

terminated successfully. Clearly, this approach is conservative since this ordering mechanism

limits the complexity of process interaction and because it assumes that each process
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simultaneously requires its stated maximum. A process might not require its stated maximum or

might not again require resources already requested, allocated, and released. On the other hand,

banker’s algorithm is polynomial (Holt 1972) and thus suitable for use in real time system

controllers. Further, banker’s algorithm provides a tool for identifying special structures with

polynomial safety characteristics, that is, if a RAS class contains sufficient structure so that every

safe state can be ordered by banker’s algorithm, then banker’s will accept all safe and reject all

unsafe states, and thus safety is polynomial. We now briefly review two papers that identify

several resource allocation structures for which banker’s algorithm decides safety.

Gold (1978) analyzes a RAS in which a process, say Pu, makes a ‘termination’ request, ρuo,

and a sequence of ‘partial’ requests {ρu1… ρuv}. Each request is of the form ‘give me these

resources and I will return these resources’. The termination request is for the maximum number

of each resource that the process will need to terminate, while a partial request is for a set of

resources that will cause the process to release some other set of resources. The requests are

sequenced so that satisfying one request, say ρuj, also satisfies all requests following ρuj in the

sequence. If a partial request of a process is met, and the process frees some resources, then those

resources will eventually have to be returned to the process before it can terminate. In other

words, the resources freed upon allocation of a partial request are freed temporarily and must

eventually be re-allocated to the process before it can terminate. Thus, the termination request

must eventually be met, that is, the process must be allocated its stated maximum requirement of

each resource before it can terminate.

After describing this model, Gold states and proves the conditions under which safety is NP-

complete and polynomial for this resource allocation model. For systems with no partial

requests, major results are: if each termination request is either a ‘producer’ (increases the
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availability of every resource type) or ‘consumer’ (decreases the availability of every resource

type), then safety is decided by banker’s algorithm and is therefore polynomial; on the other

hand, if some termination requests are ‘mixed’ (neither producers nor consumers), then safety is

NP-complete. For systems allowing partial requests, major results are: if resources are reusable,

then safety is NP-complete; but if every request is either a ‘producer’ or ‘consumer’ and the

profitability vectors of a process’ request sequence can be fully ordered,2 then safety is decided

by banker’s algorithm and is therefore polynomial.

Araki, Sugiyama, and Kasami (1977) address the complexity of deadlock avoidance for

systems with sequential processes and reusable resources. The resource needs of each process are

expressed as sequences of allocation and deallocation macros. An allocation macro represents

the allocation of a set of requested resources to the process, while a deallocation macro

represents the release of a set of resources by the process. Each resource type has a number of

identical instances, and each process is in one of two states, either executing or awaiting resource

allocation. The system state consists of the set of states of all processes along with a listing of

unallocated resources.

The authors identify four significant restrictions on the process flows: (1) single unit, (2)

single parameter, (3) straight line, and (4) nested. The single unit restriction implies that there is

only one unit of each resource type in the system (note that this differs from our usage). Single

parameter implies that only one resource may be specified by a macro, that is, only one resource

may be requested or released at a time (note that a process is still able to accumulate resources

through a sequence of requests with no releases). Straight line implies that there are no

                                                       
2 The profitability vector of a request is the resources returned less the resources requested.
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 conditional branches in the process flows, and finally, nested structure implies that any pair of

resource scopes are either mutually disjoint or one scope subsumes the other in the process flow.

After describing the model and presenting these definitions, the paper states and proves

conditions under which safety for this resource allocation model is NP-complete and

polynomially computable. Major results are that under a nested structure with single parameter

macros, safety is polynomial, whereas, if no nested structure is present, safety is NP-complete.

We draw two important distinctions between the work discussed above and that presented in

the following sections. First, the NP-completeness proofs presented in the above literature rely

on the fact that processes accumulate resources, that is, the resource allocation and use is

conjunctive. This is not true for the resource allocation system considered in this paper, and thus,

the SU-RAS represents a new subclass. Second, the polynomial subcases presented in the above

literature have sufficient structure so that banker’s algorithm determines safety. The additional

structure of these cases causes the resource availability to increase monotonically as the search

for a safe allocation sequence progresses. This monotonicity eliminates the need for backtracking

and fosters a fundamental reduction in complexity. In contrast, banker’s algorithm does not

determine safety in the SU-RAS (Lawley et al., 1998a). The method developed in this paper to

demonstrate the polynomial complexity for certain special cases of the SU-RAS relies on the fact

that deadlock detection is polynomial while safety is NP-complete. These two results together

imply the existence of unsafe states that do not exhibit deadlock. Thus, if some special structure

eliminates the possibility of deadlock-free unsafe states, then safety must be polynomial. We

discuss this point further in section 4 after establishing the NP-completeness of SU-RAS safety

in section 3.
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3. Complexity of safety in the SU-RAS

This section establishes the NP-completeness of the safety problem for the SU-RAS. We begin

by giving a formulation of the safety question for the SU-RAS, call it SU-SAFE, and then

present a polynomial reduction from the well known 3-SAT problem (Garey and Johnson 1978)

to SU-SAFE.

SU-SAFE

Let R be a finite set of reusable resources and P be a set of processes. Each Rt∈R can be

allocated to only one process at a time, and each Pu∈P requires a sequence of resources

〈Ru(1),Ru(2),… ,Ru(v)〉. Pu releases Ru(k) upon being allocated Ru(k+1). Thus, the sequence of

allocations/deallocations for Pu is 〈A(Ru(1)) A(Ru(2)) D(Ru(1)) A(Ru(3)) D(Ru(2))… A(Ru(v)) D(Ru(v-1))

D(Ru(v))〉 (where A denotes ‘allocation’ and D denotes ‘deallocation’). The safety question is as

follows: Given a set of resources, a set of partially completed processes, and their corresponding

resource sequences, is there a sequence of resource allocations that completes every process and

deallocates all resources?

Theorem 1  SU-SAFE is NP-complete.

Proof: SU-SAFE belongs to NP since we can verify a candidate sequence in polynomial time. To

see this, let Rmax represent the maximum length resource sequence required by processes in P. To

determine whether a given sequence of resource allocations is safe or unsafe, we need only

simulate the sequence and see if it completes all processes. This is O(|Rmax|x|P|), and thus, SU-

SAFE has the property of polynomial verifiability, which indicates the problem belongs to NP.

We now provide a polynomial reduction from 3-SAT to SU-SAFE. We will use a variety of

indexed symbols such as A, B, C, D, Y, etc., to represent resources in our RAS. Further, we will

use the following formulation of 3-SAT provided by Araki et al., (1977):
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Three Satisfiability (3-SAT)

Let χ={X1, X1, X2, X2, …  ,Xm, Xm} be a set of literals and C=C1∧C2∧… ∧Cn be a conjunction of

clauses of the form Cj=〈Yj1∨Yj2∨Yj3〉 where Yjk∈χ, that is each Yjk is one of the literals

belonging to χ. Let K⊆χ such that (1) either Xi∈K or Xi∈K but not both. Then Cj is ‘true’ if and

only if K∩ Cj≠∅ . The satisfiability question is as follows: Given χ and C, does there exist K⊆χ

satisfying condition (1) such that K∩ Cj≠∅  ∀ j=1… n?

For each clause, Cj∈C, define seven processes Pj1 to Pj7, which require the following

resource sequences (refer to figure 1):

for j=1… n

Pj1 〈Cj1,Cj4,Cj5,Cj6,Cj8,Yj1〉 Pj2  〈Cj2,Cj4,Cj5,Cj6,Cj8,Yj2〉 Pj3  〈Cj3,Cj4,Cj5,Cj6,Cj8,Yj3〉

Pj4  〈Cj7,Cj6,Cj8,Cj1,Cj2,Cj3〉 Pj5  〈Cj6,Cj8,Cj1,Cj2,Cj3〉 Pj6  〈Cj8,Cj1,Cj2,Cj3〉

Pj7  〈Aj,Cj8,Cj6,Cj7〉

Note that for each clause, Cj, we define twelve resources, { Cj1, Cj2, Cj3, Cj4, Cj5, Cj6, Cj7,Cj8,

Yj1, Yj2, Yj3, Aj }. As noted in the definition of 3-SAT, Yjk∈χ, that is, Yjk represents some X or X

in χ.  Next, for each pair of 3-SAT literals, Xi and Xi, define a pair of processes, Pi1 and Pi2, with

the following resource sequences:

for i=1… m

Pi1  〈 Xi, Bi, D1, D2〉 Pi2  〈 Xi, Bi, D1, D2〉

Note that for each i, we define resources { Xi, Xi, Bi }. We also define the two ‘global’

resources {D1, D2}. Next, define two processes, P01 and P02, with resource sequences:

P01  〈 D1, A1, A2, A3, … , An-1, An〉 P02  〈 D2, D1, An, An-1, An-2, … , A2, A1〉
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Finally, advance every process to the state shown in figure 1. Note that the number of

processes defined is 2m+7n+2, and the number of resources is 3m+10n+2 (m and n are given in

the definition of 3-SAT), and thus, the reduction is polynomial.

Now, suppose C is satisfiable. Then there exists K such that K∩ Cj≠∅  for j=1… n. For each

i=1… m, if Xi∈K, advance Pi1 to Bi, otherwise advance Pi2 to Bi. (Note that by definition of 3-

SAT either Xi or Xi will be in K, but not both.) Figure 2 gives the resultant state. Thus, for every

j=1… n, at least one resource in the set {Yj1,Yj2, Yj3} is free. For each j=1… n, we now show that

the processes {Pj1, Pj2, Pj3, Pj4, Pj5, Pj6, Pj7 } can be advanced to a point where Aj is released

without incurring unsafeness. We consider three cases:

Case 1 Yj1∈K∩ Cj

If Yj1 is free, advance processes {Pj1, Pj2, Pj3, Pj4, Pj5, Pj6, Pj7 } as follows:  Pj1 to Cj4 to Cj5;  Pj2 to

Cj4;  Pj6 to Cj1 to Cj2;  Pj5 to Cj8 to Cj1;  Pj1 to Cj6 to Cj8 to Yj1 and out of the system;  Pj2 to Cj5;

Pj3 to Cj4;  Pj6 to Cj3 and out of the system; Pj5 to Cj2 to Cj3 and out of the system;  Pj4 to Cj6 to Cj8

to Cj1 to Cj2 to Cj3 and out of the system;  Pj7 to Cj8 to Cj6 to Cj7 and out of the system. Figure 3(a)

shows the resulting state. Note that every Pj has finished except Pj2 and Pj3, and that Aj is free.

Case 2 Yj2∈K∩ Cj

If Yj2 is free, advance processes {Pj1, Pj2, Pj3, Pj4, Pj5, Pj6, Pj7 } as follows:  Pj2 to Cj4 to Cj5;  Pj1 to

Cj4;  Pj6 to Cj1 to Cj2;  Pj5 to Cj8 to Cj1;  Pj2 to Cj6 to Cj8 to Yj2 and out of the system;  Pj1 to Cj5;

Pj3 to Cj4;  Pj6 to Cj3 and out of the system;  Pj5 to Cj2 to Cj3 and out of the system;  Pj4 to Cj6 to

Cj8 to Cj1 to Cj2 to Cj3 and out of the system;  Pj7 to Cj8 to Cj6 to Cj7 and out of the system. Figure

3(b) shows the resulting state. Note that every Pj has finished except Pj1 and Pj3, and that Aj is

free.
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Case 3 Yj3∈K∩ Cj

If Yj3 is free, advance processes {Pj1, Pj2, Pj3, Pj4, Pj5, Pj6, Pj7 } as follows:  Pj3 to Cj4 to Cj5;  Pj1 to

Cj4;  Pj6 to Cj1;  Pj5 to Cj8;  Pj3 to Cj6;  Pj1 to Cj5;  Pj2 to Cj4;  Pj6 to Cj2 to Cj3 and out of the system;

Pj5 to Cj1 to Cj2 to Cj3 and out of the system;  Pj3 to Cj8 to Yj3 and out of the system;  Pj4 to Cj6 to

Cj8 to Cj1 to Cj2 to Cj3 and out of the system;  Pj7 to Cj8 to Cj6 to Cj7 and out of the system. Figure

3(c) shows the resulting state. Note that every Pj has finished except Pj1 and Pj2, and that Aj is

free.

Thus, for j=1… n, it is possible to complete all processes in the set {Pj4, Pj5, Pj6, Pj7 }, thus

releasing resource Aj. Furthermore, it is possible to complete at least one of {Pj1, Pj2, Pj3}, with

the remaining processes being in one of the states of figure 3.

Since Aj is now free for j=1… n, advance P01 to A1,A2,… ,An and out of the system. Next,

advance P02 to D1,An,An-1,… ,A1 and out of the system. Now, since D1 and D2 are free, each Pi1

and Pi2 can be advanced to D1, D2, and out of the system for i=1… m, thus releasing all Xi and Xi

resources. Thus, every resource in the set {Yj1,Yj2, Yj3} is free for j=1… n. For j=1… n, advance

all remaining Pjk’s on Cj5 to Cj6,Cj8,Yjk, and out of the system. Then advance all remaining Pjk’s

on Cj4 to Cj5, Cj6, Cj8, Yjk, and out of the system. Since all processes are completed and all

resources are deallocated, the state of figure 1 is safe.  Thus, satisfiable implies safe.

Now suppose C is not satisfiable. (We show the contrapositive of safe implies satisfiable, that

is, not satisfiable implies not safe.)  If C is not satisfiable, then for every K⊆χ, there exists Cj

such that K∩ Cj=∅ . Without loss of generality, consider a given K and i=1… m. If Xi∈K,

advance Pi1 to Bi, otherwise advance Pi2 to Bi. Starting from the state of figure 2, we show that if

Pj7 releases Aj before a Yjk is available, then deadlock results. Note that if Pj7 advances to Cj8

(and releases Aj) before Pj4 advances to Cj1, then deadlock involving Pj7 and Pj4 is inevitable.

Thus, we must advance processes so that Pj4 can gain Cj1. Starting from the state given in figure
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2 and without loss of generality, advance the processes as follows:  Pj1 to Cj4 to Cj5;  Pj2 to Cj4;

Pj6 to Cj1 to Cj2;  Pj5 to Cj8 to Cj1;  Pj4 to Cj6 to Cj8;  Pj1 to Cj6;   Pj2 to Cj5;   Pj3 to Cj4;   Pj6 to Cj3

and out of the system;  Pj5 to Cj2 to Cj3 and out of the system;  Pj4 to Cj1 to Cj2 to Cj3 and out of

the system. These advancements yield the state of figure 4. Note that Pj1 cannot proceed beyond

Cj8 since none of the Yjk’s are available. At this point, if Pj7 advances to Cj8 and releases Aj, then

it deadlocks with Pj1. Thus, if K∩ Cj=∅ , Aj must not be released, otherwise Pj7 becomes involved

in deadlock.

Thus, in the state of figure 2, there exists at least one set of processes { Pj1, Pj2, Pj3, Pj7 } that

cannot be completed until additional Yjk’s are released. Furthermore, the corresponding Aj will

not be released. To release additional Yjk’s, we must free some Bi resources by advancing P01. If

K∩ C1=∅ , then A1 is not available, P01 cannot be advanced, no other Yjk’s can be released, at

least one set of processes of the form { Pj1, Pj2, Pj3, Pj7 } cannot be completed, and the system is

unsafe. If A1 is available, advance P01 to A1. We must now advance P02 to D1, for if we advance

any Pi from Bi to D1, it deadlocks with P02. Our only next choice is to advance P02 to An, thus

freeing D1. If K∩ Cn=∅ , then An is not available, P02 cannot be advanced, no other Yjk’s can be

released, at least one set of processes of the form { Pj1, Pj2, Pj3, Pj7 } cannot be completed, and the

system is unsafe. If An is available, advance P02 to An. D1 and D2 are now free, so all Pi processes

can finish, one at a time, and all Xi and Xi resources can be released. Thus, for j=1… n, all

process sets {Pj1, Pj2, Pj3, Pj4, Pj5, Pj6, Pj7 } can be completed, and all Aj resources can be released.

Only P01 and P02 remain to be completed (see figure 5). Unfortunately, P01 and P02 are headed for

inevitable deadlock. To see this, note that P01 holds A1 and requires the resource sequence

〈A2,A3,… ,An-1,An〉, while P02 holds An and requires the resource sequence 〈An-1,An-2,… ,A2,A1〉.

Thus, it is impossible to finish these two processes, and the system is unsafe. �
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Although Theorem 1 establishes the intractability of safety for the SU-RAS, other recent

results show that the problem of deciding whether an allocation state is deadlock or deadlock-

free is polynomial for the SU-RAS (see Reveliotis et al., 1997). Taken together, these results

imply that the intractability of SU-SAFE is related to the existence of allocation states that are

both deadlock-free and unsafe, as we saw in figure 5. The implications of this result are

discussed more fully in the following section.

4. On the boundary between hard and easy cases

This section discusses the complexity boundary between classes of SU-RAS systems that exhibit

tractable safety and those for which safety is intractable. We consider a subclass to be a subset of

SU-RAS systems with some common feature that is not artificially constraining in measures of

system size. For example, the set of SU-RAS systems with acyclic resource sequences forms a

subclass, whereas the set of SU-RAS systems with three resource types does not.

Because detecting deadlock in the SU-RAS is a polynomial computation (Reveliotis et al.,

1997), safety is computationally easy for those SU-RAS subclasses that exhibit no reachable3

deadlock-free unsafe states. For these systems, every allocation state encountered under normal

system operation is either safe or deadlock, and thus single step look-ahead for deadlock is the

optimal deadlock avoidance policy. These observations lead to the following proposition:

Proposition 2  If SU-SAFE is intractable for a given class of SU-RAS, then that class exhibits

deadlock-free unsafe states.

Five papers have appeared in the recent literature that discuss the existence of deadlock-free

unsafe states (Fanti et al., 1997, 1998, Reveliotis et al., 1997, Roszkowska et .al, 1993, and Xing

                                                       
3 A state is ‘reachable’ if, starting from the state in which no resources are allocated, there exists a sequence of
resource allocations and deallocations that takes the system to that state.
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et al., 1996). The strongest conditions are given by Fanti et al., (1997,1998). The proposed

procedure is based on the enumeration and analysis of cycles in a working procedure digraph,

Dw. This is a directed graph with each resource serving as a node and a directed edge (Ri,Rj)

being present if Rj immediately follows Ri in the resource sequence of some process. After

constructing Dw for a given set of processes, the authors enumerate all cycles contained in Dw

and establish a new digraph, Dw
2, with the vertices being the cycles of Dw. (A cycle of Dw is

denoted with the symbol γ.) An edge (γi, γj) is present in Dw
2  if (1) the two cycles intersect at

exactly one resource, say Rv, and (2) some process requires a sequence of resources Ru,Rv,Rw

where Ru∈γi, Rv∈γi∩ γj, and Rw∈γj. Thus, in some system state, a process holds Ru in cycle γi and

requests Rv in the intersection of γi and γj. Upon being allocated Rv, it releases Ru, enters cycle γj,

and requests Rw∈γj. If this allocation of Rv completes the cycle, γj, then deadlock results. The

basic structure of a deadlock-free unsafe state one step from deadlock is characterized as a

critical cycle of Dw
2. A cycle of Dw

2, γi
2 ={γu, γu+1 , …  , γv}, is critical if (1) card{ γu ∩  γu+1 ∩  …

∩  γv } = 1, and (2) every pair of cycles in γi
2 intersects at exactly one resource, say Ru. This

situation is illustrated in figure 6. Fanti et al., (1998) discusses the effect of multi-capacity

resources and adds a third condition, namely (3) Ru must be single capacity. This implies that if

every resource in the intersection of a set of cycles satisfying (1) and (2) is multi-capacity, then

deadlock-free unsafe states will not exist. For example, in figure 6, if R7 is multi-capacity, then

the system will exhibit no deadlock-free unsafe state.

We emphasize that a critical cycle in Dw
2 is a necessary condition for the existence of

deadlock-free unsafe states in the SU-RAS operational state space. The condition is not sufficient

because the deadlock-free unsafe states implied by the presence of a critical cycle might not be

reachable under normal system operation. Figure 7 provides a simple example. The graphs Dw
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and Dw
2 for the SU-RAS of figure 7(a) are depicted in figure 7(c). Notice that Dw

2 contains a

critical cycle {C2,C3} that corresponds to the deadlock-free unsafe state of figure 7(b). The

reader should be able to verify that this state is unreachable when the SU-RAS of figure 7(a)

starts from the empty state and operates according to the assumptions stated in section 3.

Finally, the test described above requires exponential computation since it enumerates all the

cycles in Dw and Dw
2.  For smaller systems, this increased complexity might not be a very critical

issue, particularly if addressed in an off-line mode. However, for larger more dynamic systems,

we believe that a series of easily testable conditions is more practical in application. The

following section provides a set of such conditions that can function as useful guidelines for the

manufacturing system designer.

5. SU-RAS structures exhibiting polynomial safety

The objective of this section is to gather and categorize existing results from the field literature

regarding polynomially computable conditions for the non-existence of deadlock-free unsafe

states. Furthermore, it introduces two new conditions that do not appear elsewhere. We classify

these polynomial structures into three different categories of features leading to reduced

complexity: (1) resource capacity, RC, (2) sequence restrictions, SR, and (3) central buffering,

CB.

To support our discussion, we make use of the resource allocation graph (RAG), a common

structure in the deadlock literature. It is defined as follows: RAG={R∪ P, Ar∪ Aa} where R is the

set of resource types, P is the set of processes, Ar = {(Pi,Ru) : Pi is requesting an instance of Ru},

and Aa = {(Rv,Pk) : an instance of Rv is allocated to Pk}. Recall that the SU-RAS uses reuseable

resource types, each type having an associated ‘capacity’ indicating the number of identical

instances of the resource type that exists in the system. Thus, the maximum out-degree of Rv∈R
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is the capacity of Rv, Cv. Define the reachable set of vertices of v∈{R∪ P} to be Rc(v) = {u :

u∈{R∪ P} and RAG contains a directed path from v to u}. Then, a knot in RAG is a set of

vertices, K⊆{R∪ P}, such that  ∀  v ∈  K, Rc(v) = K. A knot can be thought of as a strongly

connected component with no emerging arcs. It is easily established that the SU-RAS is

deadlocked if and only if the associated RAG contains a capacitated4 knot (Reveliotis et al.,

1997).

Resource Capacity

The existence of deadlock-free unsafe states in the SU-RAS is closely related to the existence of

resource types that have a single instance only. RC1 provides a capacity based sufficient

condition for the non-existence of deadlock-free unsafe states. This result is given by Xing et al.,

(1996) and Reveliotis et al., (1997). It is also implied by the conditions developed in Fanti,

Maione, and Turchiano (1998).

RC1. In the SU-RAS, if every resource type has capacity exceeding one, then deadlock-free

unsafe states do not exist.

RC1 guarantees that if a SU-RAS has no single capacity resources, optimal deadlock

avoidance is achieved through single step look-ahead for capacitated knots in RAG. It has

significant impact for those SU-RAS systems where equipping each resource type with at least

two units of capacity is economically feasible.

Sequence Restrictions

Deadlock-free unsafe states require complex interactions between process sequences. This

section examines sequence restrictions that impose sufficient limitation on sequence interaction

                                                       
4 By capacitated, we mean that every resource in the knot is allocated to capacity.
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so that deadlock-free unsafe states do not arise. The first of these restrictions, referred to as SR1,

uses the notions of immediate predecessors and successors of a resource,  defined as follows:

predj ={Ru : Ru immediately precedes Rj in some resource sequence}, in words, some process

holds Ru and requests the allocation Rj.

succj = {Rv : Rv immediately follows Rj in some resource sequence}, in words, some process

holds Rj and requests the allocation Rv.

This restriction was initially observed by Fanti et al., (1997) as a consequence of their

characterization of deadlock-free unsafe states one step from deadlock. Here we provide an

alternative proof for this result that is based on contradiction arising from the assumption of the

existence of deadlock-free unsafe states one step away from deadlock in the RAS state space.

The basic logic of this approach was first developed in Reveliotis et al., (1997) for proving result

RC1, stated above, and it constitutes a generic scheme for establishing the results of this section.

SR1. In the SU-RAS, if for every Rj∈R, either predj or succj is a singleton, then deadlock-free

unsafe states do not exist.

Proof: Assume that all terminal parts are completed and removed from the system. Further,

suppose that the SU-RAS is in a deadlock-free unsafe state, so, one step away from deadlock and

that for every Rj∈R, either predj or succj is a singleton. Thus, if any available resource is

allocated, deadlock results. Let πu represent the set of processes requesting available resource

type Ru in so, and let ρu represent the set of resources these processes hold in so. Let si be the state

that results if Ru is allocated to Pi∈πu. We have two cases:

Case 1,  | predu | = 1 :  Suppose predu={Rv}. This implies ρu = {Rv}, and thus every Pi∈πu holds

an instance of Rv. Because (1) every process requesting Ru must be holding Rv, and (2) allocating

Ru to Pi∈πu in state so must result in deadlock state si, we must have Rv∈Rc(Ru) in si. Clearly,
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however, Rv cannot be allocated to capacity in si, since Pi releases an instance of Rv upon

receiving Ru. Thus, Rc(Ru) has available capacity at Rv and no capacitated knot exists.

Case 2, | succu | = 1 : Suppose succu={Rw}. Because allocating Ru to any Pi∈πu in state so must

result in deadlock state si, we conclude (1) Rw is allocated to capacity in so, (2) Ru∈Rc(Rw) in si,

and (3) ρu
 ∩  Rc(Rw)=∅  in so (for if ρu

 ∩  Rc(Rw)≠∅  in so, ∃ Pi∈πu in state so that releases Rv∈ρu ∩

Rc(Rw) upon being allocated Ru, and thus Rc(Rw) has available capacity at Rv in si). To see the

contradiction between (2) and (3), note that allocating Ru to Pi∈πu in state so deletes allocation

arc (Rv,Pi), converts request arc (Pi,Ru) to allocation arc (Ru,Pi), and adds request arc (Pi,Rw).

None of these affect Rc(Rw) if ρu
 ∩  Rc(Rw)=∅ , and thus no deadlock-free unsafe state exists. ÿ

Kumar and Ferreira (1998) combine RC1 and SR1 to yield the following result (which is

established using a proof argument similar to that employed in the proof of SR1): For the SU-

RAS, if for every Rj∈R, either Cj>1, |predj |=1, or |succj|=1, then deadlock-free unsafe states do

not exist. The most common application of SR1 is in systems where every machine is equipped

with input and output buffers. Parts coming to the machine enter the input buffer, then proceed to

a processing location, and when finished, enter the output buffer where they await transport to

the next required machine’s input buffer (see Roszkowska et al., 1993 for a detailed analysis).

We next consider sequence restrictions imposed in reentrant flowline systems. Reentrant

systems are important in semi-conductor manufacturing where certain processing sequences need

to be repeated several times, see for example Narahari and Khan (1996). Although reentrant

flowline deadlock has received some research attention (Lewis, Gurel, Bogdan, Doganalp, and

Pastravanu, 1998), the following is, to the best of our knowledge, a new result.

Let the following restriction be referred to as the ‘reentrant restriction’: The resources can be

ordered 〈R1,R2,… ,Rm〉 such that for every Rj∈R, succj = {R(j+1) } ∪  {Rv : j > v }. In words, the
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resources can be ordered so that any process holding Rj requests either R(j+1) or Rv with v<j for

its next operation. We will say that process, Pi, requires a ‘right’ move if it holds Rj and requests

R(j+1), and that Pi requires a ‘left’ move if it holds Rj and requests Rv such that v<j.

SR2. Given an SU-RAS with the reentrant restriction, if every left move is followed by at least

one right move, then deadlock-free unsafe states do not exist.

Proof: Make the usual assumptions that that all terminal parts are completed and removed from

the system, and that the SU-RAS is in a deadlock-free unsafe state, so, one step away from

deadlock. Further, suppose that reentrant restrictions apply and that every left move is followed

by at least one right move. If any available resource is allocated, deadlock results. Let πu

represent the set of processes requesting available resource type Ru in so, and let ρu represent the

set of resources these processes hold in so. Let si be the state that results if Ru is allocated to

Pi∈πu. By the reentrant restriction, ρu and πu can each be partitioned into two sets, ρu = ρu′ ∪  ρu′′,

where ρu′ ={R(u-1)} and ρu′′ = {Rv : Rv∈ρu and v>u}, and πu = πu′ ∪ πu′′, where πu′ = {Pk : Pk

holds R(u-1)} and πu′′={Pi : Pi holds Rv∈ρu′′}. We now examine three cases.

Case 1: Suppose ρu′= ∅  and ρu′′≠∅  in so. As established in the proof of RC1, Ru∉ Rc(Ru) in so,

and Ru∈Rc(Ru) in si. Let Rv = min{ Rw : Rw∈ρu′′} and suppose that Rv is held by Pi∈πu′′.

Allocating Ru to Pi causes the following changes to the RAG of so: (i) converting the request arc

(Pi,Ru) to the allocation arc (Ru,Pi), (ii) deleting the allocation arc (Rv,Pi), and (iii) adding a new

request arc for Pi, (Pi, R(u+1)), since Pi cannot make two consecutive left moves. Adding the arcs

(Ru,Pi), (Pi,R(u+1)) can result in Ru∈Rc(Ru) with Rc(Ru) being a capacitated knot only if there is a

pre-existing path in so from R(u+1) to Ru that does not include Rv (for if the path contains Rv, Rv

will be reachable from Ru in state si, implying that Rc(Ru) is not a capacitated knot). This implies
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{R(u+1), …  ,R(v-1)} ∩  ρu′′ ≠ ∅  (since ρu′=∅ ), which contradicts our choice of Pi. Thus, a deadlock-

free unsafe state one step from deadlock cannot have ρu′= ∅  and ρu′′≠∅ .

Case 2: Suppose ρu′≠ ∅  and ρu′′= ∅  in so. Since ρu′={R(u-1)}, ∃ Pk∈πu′ such that Pk holds R(u-1) in

so. Further, ρu′′= ∅  in so implies ρu′′= ∅  in si, since allocating Ru to Pk does not cause any

additional request for Ru. Thus, any deadlock in si involving Ru must also involve R(u-1), since all

processes requesting Ru will be holding R(u-1). But Rc(Ru) will have available capacity at R(u-1) in

si, since Pi releases an instance of R(u-1) upon allocation of Ru. Thus, a deadlock-free unsafe state

one step from deadlock cannot have ρu′≠ ∅  and ρu′′= ∅ .

Case 3: Suppose that ρu′≠∅  and ρu′′≠∅  in so. Let Pi∈πu′′ such that Pi holds Rv = min{ Rw :

Rw∈ρu′′} and let Pk∈πu′ such that Pk holds R(u-1) in so. As noted in case 1, allocating Ru to Pi can

result in Ru∈Rc(Ru) with Rc(Ru) being a capacitated knot only if there is a pre-existing path in so

from R(u+1) to Ru that does not include Rv. This path must include R(u-1), since {R(u+1), …  ,R(v-1)}

∩  ρu′′ = ∅ . Allocating Ru to Pk can result in Ru∈Rc(Ru) with Rc(Ru) being a capacitated knot only

if there is a path in si from Ru to Ru that does not include R(u-1) (since R(u-1)∈Rc(Ru) implies

Rc(Ru) has available capacity at R(u-1)). This implies that the path must include Rv. Clearly, these

two conditions are in contradiction. Thus, a deadlock-free unsafe state one step from deadlock

cannot have ρu′≠ ∅  and ρu′′≠∅ .

Since we have enumerated all possibilities for ρu′ and ρu′′, we conclude that a deadlock-free

unsafe state one step from deadlock does not exist.  �

As previously stated, SR2 has potential application in the semi-conductor industry where

automated reentrant lines are commonly used  (e.g., cluster tools).  We believe the conditions

imposed by SR2 are reasonably met in most reentrant systems.



23

Central Buffering

In this final section, we develop complexity results for two resource allocation models based on

‘central buffering’. In automated manufacturing systems, central buffers are sometimes used to

free up capacity on bottleneck machines. Note that parts finished with their currently allocated

machine continue to occupy that machine’s capacity until they are allocated capacity at their next

required machine. This blocking effect can result in very poor system performance, particularly

when processing times are highly variable. Under central buffering, such parts typically have the

option of moving to and awaiting their next allocation at a centrally located buffer, if the buffer

is not full. Properly used, this ‘optional’ central buffer enhances resource utilization and fosters

better system throughput. Alternatively, some systems use a centralized material handler, such as

a robot, to move parts from machine to machine. In this case, the material handler is equivalent

to a ‘requisite’ central buffer, a central buffer to which every part must return after every

operation.

In this section, we discuss how these central buffer models affect the complexity of deadlock

avoidance. Let β represent the central buffer. Under the optional central buffer, the RAG has the

following structure. Suppose that Pi holds resource Rv while requesting resource Ru. Then (Pi,Ru)

in RAG implies (Pi,β) in RAG, in words, any requesting process also requests the central buffer.

Allocating β to Pi results in the deletion of the request arc (Pi,β) and allocation arc (Rv,Pi), the

addition of allocation arc (β,Pi), and, since β performs no processing function, the request arc

(Pi,Ru) remains unchanged. For the requisite central buffer, (Rv,Pi) in RAG implies that (Pi,β) is

the lone request of Pi in RAG. In words, if Pi is allocated a resource other than β, then its next

required resource is β and β alone. The first result regarding the effect of SU-RAS central
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buffering on the complexity of the optimal DAP appeared in Lawley (1999) and can be stated as

follows:

CB1. For the SU-RAS under optional central buffering, deadlock-free unsafe states do not exist.

Thus, in systems with an optional central buffer, single step look-ahead for deadlock guarantees

deadlock-free operation. Note that the capacity of the central buffer is not important and that it

need not be treated in any special way, that is, it should be treated just like any other resource.

CB2 provides the condition under which safety is polynomial for the requisite central buffer.

CB2. For the SU-RAS with requisite central buffering, if the capacity of the central buffer

exceeds one, then deadlock-free unsafe states do not exist.

CB2 is directly implied by the result of Kumar et al., (1998) mentioned earlier, i.e., in the SU-

RAS, if for every Rj∈R, either Cj>1, |predj |=1, or |succj|=1, then deadlock-free unsafe states do

not exist.  Note that for every resource other than the central buffer, we have predj = succj= {β},

and for the central buffer Cβ>1.

CB1 and CB2 achieve optimal deadlock avoidance by ensuring that a ‘swapping’ mechanism

is always available. While CB1 is most suitable for those systems where transfer times are small

compared to processing times, CB2 applies to any system with a single centralized material

handler, such as a robot moving parts about in a cell.

6. Conclusion

In this paper, we investigated the computational complexity of the safety question for the SU-

RAS, a very important resource allocation model for automated manufacturing systems. After

showing safety to be NP-complete, we established the existence of deadlock-free unsafe states as

being a necessary (but not sufficient) condition for this intractability. We further established that,
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using presently available methods, deciding whether or not a given SU-RAS instance or class

exhibits hard safety characteristics is intractable due to the computational cost of establishing the

existence of reachable deadlock-free unsafe states. Finally, we reviewed all currently known

(polynomially identifiable) SU-RAS classes that exhibit no deadlock-free unsafe states, and thus

admit polynomial optimal deadlock avoidance policies. From a practical standpoint,

characterizing special structures that exhibit polynomial safety is an important research

contribution since these structures serve as explicit guidelines in the system design process.
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Figure 1.  SU-RAS construction with partially completed processes
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Figure 2.  SU-RAS state after release of all resources in K

A1 A2 A3 AnAn-1

D1 D2

P01 P02

X1∈K

B1

X1
P11

P12

X2

Bi

X2∈K P22

P21

Xm∈K

Bm

Xm
Pi1

Pi2

Cj7

Cj8 Aj

Cj5

Cj4

Cj1 Cj2 Cj3

Cj6

Yj1 Yj2 Yj3

Pj3

Pj6

Pj5 Pj4

For j=1… n

Pj1 Pj2

Pj7

At least one of these is now  free.



30

(a) Case 1 Yj1∈K∩ Cj    (b) Case 2 Yj2∈K∩ Cj        (c) Case 3 Yj3∈K∩ Cj

Figure 3.  Freeing Aj without unsafeness
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Figure 4.  Case where Cj ∩  K=∅
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Figure 5.  Unsafe state involving P01 and P02
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Figure 6.  Fanti’s first and second level digraphs
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Process                 Resource Sequence
   P1 <R1,R3,R2,R1>
   P2 <R3,R1,R2,R3>

(a)  SU-RAS

(b)  Unreachable deadlock-free unsafe state

(c) Fanti’s digraphs

Figure 7.  SU-RAS with all deadlock-free unsafe states unreachable
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