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A basic positioning of the presented developments.
The main problem addressed in this document concerns
the coordinated allocation of a finite set of reusable re-
sources to a set of concurrently running processes. These
processes execute in a staged manner, and each stage
requires a different subset of the system resources for
its support. Furthermore, processes will hold upon the
resources currently allocated to them until they will secure
the necessary resources for their next processing stage.

Such resource allocation dynamics frequently arise in the
context of various flexibly automated operations. Some
of these operations include: (i) the workflow that takes
place in various production shop floors; (ii) the internet-
supported platforms that seek to automate certain ser-
vice operations; (iii) various guidepath-based transport
systems, like industrial monorail and urban railway sys-
tems; and (iv) the resource allocation that takes place
in the context of the contemporary multi-core computer
architectures and in quantum computing.

From a theoretical standpoint, the resource allocation
problems that are abstracted from the aforementioned
applications, correspond to the problem of scheduling a
stochastic network with blocking and deadlocking effects.
This is an area of the modern scheduling theory with very
limited results in the context of the Operations Research
(OR) and the Industrial Engineering communities (IE),
which are some of the most prominent communities study-
ing resource allocation and scheduling problems. In the
author’s opinion, this lack of results for the aforemen-
tioned class of scheduling problems within the OR and
IE communities is due, to a large extent, to the opera-
tional complications and the intricacies that arise from
the blocking, and especially the deadlocking effects that
take place in the underlying class of resource allocation
systems (RAS), and prevent a tractable analysis of the
corresponding scheduling problems through the modeling
and analysis frameworks that have been pursued by those
communities.

On the other hand, the control problem of deadlock avoid-
ance and liveness-enforcing supervision for the considered
RAS has been systematically investigated within the Dis-
crete Event Systems (DES) community for an extensive
time. The main role of this document is to characterize
the state of art of these investigations, and to reveal
the ability of the corresponding developments to provide
effective and very efficient solutions to the supervisory
control problem of RAS deadlock avoidance (also known as
liveness-enforcing supervision) that is addressed by them.

Furthermore, as indicated in Figure 1, the availability of
the aforementioned results can also enable the resolution
of the broader scheduling problem for the considered RAS.
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Fig. 1. An event-driven control scheme for the real-time manage-
ment of the considered RAS. The depicted controller responds
to the various events taking place in the “plant” RAS by
first updating a state model that defines the feasible behavior
generated by this RAS, and subsequently filtering this feasible
behavior through a “logical” controller in order to obtain the
admissible behavior, i.e., the behavior that is consistent with
certain specifications imposed on the RAS operation, including
the requirement for deadlock-freedom (or “liveness”). Finally,
the admissible behavior is processed through the “performance-
oriented” controller in order to select the particular action(s)
among the admissible ones that eventually will be commanded
upon the RAS.

The controller that is depicted in that figure is based
on a two-stage control scheme that decomposes the RAS
scheduling problem to (i) the “logical” control problem of
deadlock avoidance, and (ii) the subsequent problem of
the performance optimization of the logically controlled
RAS with respect to (w.r.t.) some typical time-based
performance objectives, like the maximization of the long-
term throughput or the minimization of various indices of
the experienced congestion.

When viewed from a broader methodological standpoint,
the presented developments also reveal very vividly the sig-
nificance of understanding and exploiting, through perti-
nent representations and customized algorithms, any “spe-
cial structure” that might be present in the pursued DES
applications. At the same time, we believe that many of the
key ideas and techniques that have been pursued by the
research program presented in this work, hold considerable
potential for applicability in other application domains
that fall within the scope of DES theory and practice.

Finally, we should also notice that the page limits imposed
for this document do not allow the provision of a complete
list of references to all the developments that are outlined
in this work. But we refer the reader to the recent publi-
cation of Reveliotis (2017) for this set of references and for



Table 1. A RAS taxonomy

Based on the structure of Based on the structure of
Process Sequential Logic Resource Requirements
Linear: Each process is defined Single-Unit: Each stage
by a linear sequence of stages requires a single unit
Disjunctive: A number of from a single resource
alternative process plans Single-Type: Each stage
encoded by an acyclic digraph requires an arbitrary
Merge-Split: Each process is number of units, but all
a fork-join network from a single resource
Complex: A combination of Conjunctive: Stages re-
the above behaviors quire different resources

at arbitrary levels

a much more expansive and systematic exposition of the
material that is overviewed in the rest of this document.

The RAS abstraction and the corresponding prob-
lem of (maximally permissive) liveness-enforcing
supervision. An important step for the systematic study
of the resource allocation problems that were outlined in
the previous part of this document, was the systematic
characterization of these problems through the formal ab-
straction of the (sequential) Resource Allocation System
(RAS). The RAS abstraction is essentially defined by: (i)
the “resource” types that are managed by the underlying
resource allocation function and their availability; (ii) the
sequential logic that defines the various “process” types
that are supported by the underlying system; (iii) the
resource “requests” that are posed by the different process-
ing stages of the various process types; and (iv) the “pro-
tocol” that regulates the allocation of the system resources
to the requesting processes. Furthermore, when these RAS
models are also used for performance modeling, evaluation
and control, the aforementioned information must be fur-
ther augmented by additional information regarding the
timing of the execution of the different processing stages.

Table 1 provides more concrete characterizations of some
of the aforementioned informational elements that define
the considered RAS. But apart from this expository role,
Table 1 has also played a much more fundamental role
in the relevant literature, in that the particular RAS
structure that is identified in this table defines some of
the most prominent RAS classes that have been studied
in this literature. Furthermore, it should be clear that the
RAS subclasses that are defined in each of the two parts of
this table present an increasing conceptual and operational
complexity in their underlying dynamics, and therefore,
Table 1 has also been a very effective instrument for man-
aging the representational and computational complexity
in the development of the relevant theory, and for the
systematic classification and understanding of the derived
results.

From a more analytical standpoint, the qualitative /
behavioral dynamics of the considered RAS w.r.t. their
supervisory control problem of deadlock avoidance have
been studied primarily through the modeling frameworks
of (Extended) Finite State Automata (E-FSA) and Petri
nets (PNs). In the PN modeling framework, the PN
N (Φ) that models any given RAS Φ, essentially consists
of a set of subnets that model the sequential logic of
the supported process types, and a set of “monitor”
places that model the resource allocation function to
the contesting processes and the re-usable and invariant
nature of the corresponding resource units. In the (E-
)FSA modeling framework, the state of the corresponding
(E-)FSA G(Φ) is a nonnegative integer vector s that
reports the distribution of the active process instances

to the various processing stages that are supported by
the underlying RAS Φ. State s evolves through (a) the
initiation / “loading” of a new process instance, (b)
the advancement of a process instance to a subsequent
processing stage, and (c) the termination / “unloading”
of a completed process instance. The feasibility of any
of these events at a particular state s is determined by
the corresponding resource availability and the imposed
resource allocation protocol.

Under, both, the (E-)FSA and the PN representations, the
RAS is supposed to start empty, and it is also required to
reach this empty state from any state that is reachable by
it. Hence, the initial and the only marked state of the (E-
)FSA G(Φ) is the state s0 = 0. However, state s0 might
not be reachable in the uncontrolled dynamics of G(Φ)
due to the formation of deadlocks. Therefore, there is a
need for a “liveness-enforcing” supervisor (LES) C that
will confine the G(Φ) dynamics to a strongly connected
component of the corresponding state transition diagram
(STD) that contains state s0. Ideally, we should aim for the
maximally permissive LES C∗(Φ) that will confine G(Φ) in
its maximal strongly connected component that contains
state s0.

Clearly, for any given RAS Φ, the set of the reachable
states of G(Φ) that are admitted by the corresponding
supervisor C∗(Φ) is well-defined and unique. In the relevant
literature, this set is known as the set of reachable “safe”
states of Φ, and in the following it will be denoted by Srs.
Reachable states of G(Φ) that are rejected by C∗(Φ) are
characterized as “unsafe”, and the corresponding set will
be denoted by Sru. Hence, a practical realization of the
supervisor C∗(Φ) must recognize and block any attempted
transition of RAS Φ from subspace Srs to subspace Sru.

But the decision problem s ∈ Srs is NP-complete, even
for the simplest RAS class of Table 1, i.e., the class of
Linear, Single-Unit (L-SU) RAS. Hence, unless P = NP ,
the deployment of the target supervisor C∗(Φ) will be
of super-polynomial complexity w.r.t. the “size” of the
underlying RAS Φ, where the latter is defined by the
size of any parsimonious representation of its constituent
elements. In view of this realization, most of the past work
on the considered supervisory control problem of RAS
deadlock avoidance has been expended on the specification
of sub-optimal (i.e., non-maximally permissive) LES C
that can be designed and implemented with a manageable
computational effort; in fact, in certain cases, this effort is
polynomially related to the size of the underlying RAS
Φ. Furthermore, the literature has also identified some
RAS subclasses, of considerable practical interest, for
which even the maximally permissive LES C∗(Φ) can be
deployed with computational cost that is polynomially
related to the size of the underlying RAS Φ. But in the
rest of this document, we focus on a set of results from a
more recent research program that has managed to obtain
effective and computationally efficient implementations of
the maximally permissive LES C∗(Φ) for RAS Φ that come
from much more general RAS classes and possess very
large structures and state spaces.

Designing and implementing the maximally per-
missive LES C∗(Φ) through classification theory.
The new approach for the effective and computationally
tractable deployment of the maximally permissive LES,
C∗(Φ), for a very broad set of the RAS instances Φ falling
into the taxonomy of Table 1, is based on the realization
that, in the considered application context, the sought
supervisor acts as a “classifier” for the vectors s that



constitute the reachable state space, Sr, of the (E-)FSA
G(Φ); the corresponding classification classes are the two
subsets Srs and Sru that partition Sr. Furthermore, the
finiteness of Sr, together with the definition of the sets Srs
and Sru in the earlier parts of this document, imply that
the sets Srs and Sru are effectively computable through
standard enumerative algorithms that are provided the
classical DES supervisory control (SC) theory. Hence, with
these two sets fully available, one can subsequently con-
sider the design of a “classification mechanism” that will
be able to resolve efficiently the decision problem “s ∈ Srs
?” (or, equivalently, the complementary problem “s ∈ Sru

?”), for any given s ∈ Sr, during the real-time operation
of the considered RAS Φ.

The effective implementation of the above approach re-
quires (i) the detailed specification of the representations
to be employed by the sought classifiers, and (ii) the design
of the particular computational methods that will provide
the corresponding representations for any given (Srs, Sru)
pair. The employed representations must be “complete”,
i.e., they must be able to provide effective representation of
the partition of Sr that is defined by the pair (Srs, Sru), for
any instance Φ of the targeted RAS classes. Furthermore,
the “on line” classification mechanism that is defined by
these representations must involve a minimal computa-
tional cost, a requirement that further defines a notion
of “structural minimality” for these representations. Fi-
nally, the necessary algorithms for developing these target
representations, for any given RAS instance Φ, must be
computationally tractable in spite of the very large size of
the underlying state space Sr.

The considered theory has addressed the above require-
ments by pursuing two primary types of representations
for the sought classifiers: (a) parametric, and (b) non-
parametric. One of the simplest parametric representa-
tions that can be contemplated for the sought classifiers, is
that of a linear system of inequalities that must be satisfied
by the states s ∈ Srs and violated by each state s ∈ Sru;
such a classifier is characterized as “linear” in the relevant
literature. In the context of linear classifiers, structural
minimality implies the minimization of the number of the
employed inequalities. Then, the design of a structurally
minimal linear classifier for any pair (Srs, Sru) can be
formulated as a mixed integer program (MIP). But this
basic formulation is challenged by the very large size
of the sets Srs and Sru, that results in extremely large
numbers of decision variables and constraints for this for-
mulation. Nevertheless, this complexity problem has been
effectively addressed for many RAS classes of Table 1
by taking advantage of a “monotonicity” property that
is possessed by the concept of state (un-)safety in these
classes, and gives to the corresponding partition (Srs, Sru)
the topological structure that is depicted in Figure 2. A
first implication of this topological structure is that all the
inequalities employed by the sought classifier can be of the
“≤” type and with all their coefficients being nonnegative.
But even more importantly, the topological structure that
is depicted in Figure 2 also implies that, in the design of
the sought classifier, one can consider explicitly only the
maximal elements of the set Srs and the minimal elements
of the set Sru; for further reference we shall represent these
two subsets by S̄rs and S̄ru. Typically, the sets S̄rs and S̄ru
are smaller than their respective “parent” sets Srs and
Sru by many orders of magnitude, and this fact renders
much more tractable the aforementioned MIP formulation
for the design of the sought classifiers. Finally, additional
computational efficiencies in the design of a linear classifier
that will represent the partition (Srs, Sru) for a given RAS
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Fig. 2. A drawing characterizing the relative placement of the
safe and the (boundary) unsafe states that is implied by the
“monotonicity” property of the state safety, for a hypothetical
RAS instance Φ with a 2-dim state space. Safe states, identified
by while circles, are in the left-lower part of the first orthant of
the corresponding 2-dim space, while the unsafe states, depicted
by black circles, are in the right-upper part of this orthant.

Φ, can be attained by the realization that each linear
inequality employed by the sought classifier acts as a
“cover” for the corresponding elements of the set S̄ru that
are recognized as “unsafe” by it; this realization enables (i)
the adaptation to the considered optimization problem of
efficient heuristics that are offered by the existing theory
for the classical “minimal set-covering” problem, and (ii)
the design of additional customized algorithms for this
problem.

On the other hand, linear classifiers are not complete
since, in general, the convex hull of the set Srs might
contain elements of the set S̄ru. Complete classifiers for the
considered classification problem can be provided by the
broader classification theory that concerns the dichotomy
of any given finite vector set to two non-overlapping
subsets. Yet, for the considered classification problem,
a particular complete classifier can also be obtained by
considering the aforementioned “monotonicity” property
of state safety and the corresponding topological structure
that is depicted in Figure 2. The representation that is
employed by this classifier is a disjunction of some linear
systems of inequalities, and although non-linear in its basic
structure and in the employed classification logic, this
representation maintains some conceptual affinity to the
linear classifier. This affinity has subsequently enabled the
extension of many of the aforementioned results on the
characterization of the structural complexity and on the
computational design of linear classifiers, to this new class
of classifiers; these extensions even include the connection
of the design of structurally minimal instances from these
new classifiers to the minimal set-covering problem.

As for the non-parametric classifiers, they essentially seek
to identify and block transitions from Srs to Sru by main-
taining an enumeration of the set Sb

ru that consists of the
“boundary” reachable unsafe states, i.e., those reachable
unsafe states that can be reached from the set Srs through
a single transition. Furthermore, due to the aforemen-
tioned “monotonicity” of the (un-)safety concept, the set
Sb
ru is “right-closed” and it can be effectively represented

by an enumeration of its minimal elements; the corre-
sponding set will be denoted by S̄b

ru. A major achievement
of the relevant theory is the enumeration of the target set
S̄b
ru for RAS instances Φ from some major RAS classes of

Table 1, without the need for an exhaustive enumeration
of the corresponding set Sr. This enumeration relies on a
programmatic construction of (i) the minimal deadlocks of
the corresponding RAS Φ, and (ii) the minimal deadlock-
free unsafe states that can be reached through a pertinent



(but highly non-trivial) “backtracing” process from these
minimal deadlocks. Besides the extensive computational
efficiency that is established by this procedure, its avail-
ability has also enabled the effective deployment of the
maximally permissive LES C∗(Φ) even for RAS Φ with
infinite state spaces, like those RAS that involve resources
that can be accessed either in a “reader” or in a “writer”
mode, and with the “reader” mode allowing for an arbi-
trarily large number of readers.

Some additional efforts towards enhancing the representa-
tional and computational efficiencies in the construction of
a non-parametric representation of the maximally permis-
sive LES C∗(Φ) have also sought the employment of BDD-
based methods in this construction. And there have also
been some attempts to construct incrementally a linear
representation of the maximally permissive LES C∗(Φ)
while foregoing an explicit enumeration of the underlying
state space Sr, through an implicit search process that
seeks to iteratively identify and block deadlock states that
remain potentially reachable in the state space of the
underlying RAS Φ. The search for these deadlock states
is performed through the development and solution of
a mathematical programming (typically a MIP, but in
a certain case even a SAT) formulation. But as already
mentioned, there are many RAS Φ that will not admit a
linear representation for the target LES C∗(Φ). And even
in the case where such a linear representation of the LES
C∗(Φ) is possible, the last set of methods mentioned above
seem to be challenged by an inability to attain structural
minimality for the constructed LES.

Finally, it is also worth-noticing that the aforementioned
theory for representing the sought supervisors for the
various RAS classes of Table 1 as a classifier, recently
has been extended through the concept of the “maximal”
linear classifier . A maximal linear classifier is a sub-
optimal LES C for those RAS Φ that will not admit
a linear representation for the corresponding maximally
permissive LES C∗(Φ), which possesses a linear structure
and attains a notion of “maximal permissiveness” within
the scope of linear classifiers. The corresponding theory
also provides complete algorithms for the computation of
such maximal linear classifiers with a minimized structure,
that build upon the previously developed theory and
methods for the computation of a (structurally minimal)
linear representation for the maximally permissive LES
C∗(Φ), whenever such a representation is possible.

Ongoing and future work. All the above discussion
has revealed the richness, and also the extensive potential
for practical applicability, of the existing results on the
liveness-enforcing supervision for the various RAS classes
of Table 1. A remaining important issue is the complemen-
tation of these results with an additional set of results that
will address the “performance-control” part of Figure 1.
Some important developments along this direction are as
follows:

For RAS exhibiting a stationary nature for their under-
lying timed dynamics, the scheduling problem of the logi-
cally controlled RAS can be modeled as an average-reward
Markov decision process (AR-MDP), and this model ex-
tends even to non-Markovian timed dynamics through the
method of stages. Furthermore, the confinement of the
RAS dynamics into a single strongly connected component
of the underlying state space by means of the employed
LES C, places the aforementioned MDP into the class of
“communicating” MDPs, and renders it solvable through
extensively studied and well understood algorithms.

But the effective application of these classical MDP al-
gorithms is practically limited by the very large size of
the underlying state spaces. In fact, the size of these
state spaces, when combined with their discrete nature,
renders prohibitive not only the computation, but even
the mere enumeration of an optimal scheduling policy for
the considered RAS.

Two possible ways to circumvent this high representational
and computational complexity are: (i) the employment
of some parameterized policy spaces that admit a more
parsimonious representation than the standard tabular
representation of the optimal DAP, and the solution of
the corresponding scheduling problem over these parame-
terized policy spaces; and (ii) the “on-line” determination
of an optimized scheduling policy for the underlying RAS
through the exploitation of the information that is pro-
vided in the optimal solution of a simplified version of the
original scheduling problem, which is typically known as
the corresponding “fluid relaxation”. Preliminary investi-
gations with both of these classes of methods have shown
quite promising results.

Finally, for the scheduling of non-stationary RAS, one
can consider the adaptation of model predictive control
(MPC) type of methods, where the “stability” concept in
the classical MPC theory is substituted by the notion of
the RAS liveness. Results along these lines have recently
been developed in the context of the effective and efficient
scheduling of some guidepath-based traffic systems that
are encountered in modern production and distribution
environments and in quantum computing.
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