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Efficient enumeration of minimal unsafe
states in complex resource allocation

systems
Ahmed Nazeem and Spyros Reveliotis

Abstract – An earlier work of ours has proposed a
novel approach for the deployment of the maximally
permissive deadlock avoidance policy for complex re-
source allocation systems (RAS), that is based on the
identification and the efficient storage of a critical
subset of states of the underlying RAS state space; the
availability of this information enables an expedient
one-step-lookahead scheme for the identification and
blockage of transitions that will take the system be-
havior outside its safe region. This paper complements
the aforementioned results by introducing a novel algo-
rithm that provides those critical states while avoiding
the complete enumeration of the RAS state space.

Note to Practitioners – The establishment of deadlock-
free resource allocation is a prominent problem that un-
derlies the behavioral dynamics of many contemporary
applications of automation science and engineering.
Ideally, one would like to establish the aforementioned
deadlock freedom while imposing the minimum pos-
sible restriction to the underlying resource allocation
function. The results presented in this paper facilitate
the deployment of such minimally restrictive solutions
to the deadlock avoidance problem for applications of
practical size and behavioral complexity.

Keywords – Deadlock Avoidance, Sequential Resource
Allocation Systems, Minimal Deadlocks, Minimal Un-
safe States

I. Introduction

The problem of deadlock avoidance in sequential, com-
plex resource allocation systems is well-established in the
Discrete Event Systems (DES) literature. Some quite com-
prehensive expositions of the past results on this problem
can be found in [15], [17], [6]. The work presented in
this paper is part of an ongoing, more recent endeavor to
deploy effective and computationally efficient realizations
of the maximally permissive deadlock avoidance policy
(DAP) for various classes of resource allocation systems
(RAS), in spite of the fact that the computation of this
policy can be an NP-Hard task in the context of the
considered RAS classes [15]. Specific examples of this
endeavor are the works presented in [3], [5], [10], [8],
[9], [13]. The key idea underlying all those approaches
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is (i) to distinguish the computation that is involved in
the deployment of the target policy into an “off-line”
part, that concerns all the preliminary steps that are
necessary for the policy specification, and the “on-line”
part that involves the computation that takes place during
the real-time implementation of the policy, and (ii) to
isolate the high computational complexity in the off-line
part of the performed computation. More specifically, in
the aforementioned approaches, the on-line part of the
policy implementation is streamlined through the selec-
tion of a pertinent, efficient representation for the policy-
defining logic. In general, these efficient representations
can be constructed by treating the considered DAP as
a “classifier” that dichotomizes the RAS state space into
the admissible and inadmissible subspaces defined by the
policy; in the relevant terminology, these two subspaces
are respectively referred to as the “safe” and “unsafe”
subspaces. Hence, the “off-line” part of the aforementioned
computation eventually boils down to (a) the enumeration
of the safe and unsafe subspaces and (b) the encoding of
this classification in a pertinently designed “mechanism”
that will function as the “on-line classifier”. The construc-
tion of the sought classifiers is further facilitated by an
important “monotonicity” property of the “safety” and
“unsafety” concepts. This property implies that the set
of “unsafe” states is structurally similar to an “upwards-
closed” set [2], and enables the effective representation
of the aforementioned dichotomy of the RAS state space
by focusing only on some extreme elements of the two
subspaces, namely, the minimal unsafe states, and, in
certain cases, the maximal safe states.

In the context of the aforementioned developments, of
particular relevance to this work is the approach presented
in [9]. Under that approach, the (on-line) safety assessment
of the encountered RAS states is effected by the explicit
storage of the minimal unsafe states that are on the
boundary between the safe and unsafe subspaces, and the
comparison of the assessed states against the elements
of the stored data-set: according to the aforementioned
monotonicity property of state-unsafety, an assessed state
will be unsafe if and only if (iff ) it dominates (com-
ponentwise) some element in the stored data-set. From
a computational standpoint, this classification scheme is
further facilitated by the employment of some variation
of the “TRIE” data structure [4], that enables substantial
gains for the storage of the aforementioned state set and
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for the performance of the delineated state-safety test.

Yet, a substantial computational “bottleneck” in all the
aforementioned developments results from the fact that
they pre-suppose the availability of the enumerations of
the RAS safe and unsafe subspaces. Currently, these enu-
merations are typically produced through the “trimming”
of the finite state automaton (FSA) that models the RAS
behavior, according to techniques that are borrowed from
DES theory [1]. But it is well-known that the aforemen-
tioned FSA is of super-polynomial size with respect to
(w.r.t.) the size of the more parsimonious representations
of the underlying RAS structure, and, in fact, it can grow
prohibitively large for the purposes of the aforementioned
computations, even for moderate RAS sizes. On the other
hand, it should be evident from the above description of
the considered methodology that what is really necessary
for the construction of the sought classifiers is only a subset
of the entire state space. This state subset is smaller than
the size of the entire state space, usually by many orders
of magnitude [10], [8], [9], [13].

Motivated by the above remarks, this paper proposes a
new algorithm that can enumerate the minimal unsafe
states for the RAS classes that are considered in the
aforementioned works, while foregoing the complete enu-
meration of the state space of the underlying FSA. In the
process of developing this algorithm, the presented work
also derives new results and insights regarding the notion
of minimality as it pertains to unsafe and deadlock states.
The key idea for the proposed algorithm stems from the
remark that, in the considered RAS dynamics, unsafety is
defined by unavoidable absorption into the system dead-
locks. Hence, the unsafe states of interest can be retrieved
by a localized computation that starts from the RAS
deadlocks and “backtraces” the RAS dynamics until it hits
the boundary between the safe and unsafe subspaces. In
particular, our interest in minimal unsafe states implies
that we can focus this backtracing only to minimal dead-
locks. Hence, the proposed algorithm decomposes into a
two-stage computation, with the first stage identifying the
minimal deadlock states, and the second stage performing
the aforementioned backtracing process in order to identify
the broader set of minimal unsafe states. Together with
the results of [9] that were described in the previous
paragraphs, the presented algorithm provides a powerful
method for the deployment of the maximally permissive
DAP even for RAS with extremely large state spaces,
and it effectively “shifts the boundary” regarding the
applicability of the aforementioned methods.

In the light of the above discussion, the rest of the paper
is organized as follows: Section II provides a formal charac-
terization of the RAS class considered in this paper and of
the problem of maximally permissive deadlock avoidance
that arises in this class. Section III presents and analyzes
the algorithm utilized for enumerating the minimal dead-
lock states. Section IV presents and analyzes the algorithm
that enumerates the remaining minimal unsafe states. Sec-
tion V reports a series of computational experiments that

demonstrate the extensive computational gains obtained
by the proposed algorithm. Finally, Section VI concludes
the paper by summarizing its contributions and outlining
some possible extensions of the work. We also notice that
a preliminary version of these results has appeared in [11].

II. The considered RAS class and the
corresponding deadlock avoidance problem

The considered RAS class We begin the technical
discussion of the paper developments, by providing a
formal characterization of the RAS class to be considered
in this work. An instance Φ from this class is defined as
a 4-tuple 〈R,C,P,A〉1 where: (i) R= {R1, . . . ,Rm} is the
set of the system resources. (ii) C : R→ Z+ – i.e., the
set of strictly positive integers– is the system capacity
function, with C(Ri) ≡ Ci characterizing the number of
identical units from resource type Ri that are available in
the system. Resources are considered to be reusable, i.e.,
they are engaged by the various processes according to
an allocation/de-allocation cycle, and each such cycle does
not affect their functional status or subsequent availability.
(iii) P = {J1, . . . ,Jn} is the set of the system process types
supported by the considered system configuration. Each
process type Jj is a composite element itself; in particu-
lar, Jj = < Sj ,Gj >, where: (a) Sj = {Ξj1, . . . ,Ξj,l(j)} is
the set of processing stages involved in the definition of
process type Jj , and (b) Gj is a connected acyclic digraph
(Vj ,Ej) that defines the sequential logic of process type
Jj , j = 1, . . . ,n. More specifically, the node set Vj of graph
Gj is in one-to-one correspondence with the processing
stage set, Sj , and furthermore, there are two subsets V↗j
and V↘j of Vj respectively defining the sets of initiating
and terminating processing stages for process type Jj . The
connectivity of digraph Gj is such that every node v ∈ Vj
is accessible from the node set V↗j and co-accessible to
the node set V↘j . Finally, any directed path of Gj leading
from a node of V↗j to a node of V↘j constitutes a complete
execution sequence – or a “route” – for process type Jj .
(iv) A :

⋃n
j=1Sj →

∏m
i=1{0, . . . ,Ci} is the resource al-

location function, which associates every processing stage
Ξjk with a resource allocation request A(j,k)≡Ajk. More
specifically, each Ajk is an m-dimensional vector, with its
i-th component indicating the number of resource units
of resource type Ri necessary to support the execution
of stage Ξjk. Furthermore, it is assumed that Ajk 6= 0,
i.e., every processing stage requires at least one resource
unit for its execution. Finally, according to the applying

1The complete definition of a RAS, according to [15], involves
an additional component that characterizes the time-based – or
quantitative – dynamics of the RAS, but this component is not
relevant in the modeling and analysis to be pursued in the following
developments, and therefore, it is omitted. We also notice that
the RAS class defined in this section corresponds to the class of
Conjunctive / Disjunctive RAS in [15]. This class allows for arbitrary
resource allocation at the various process stages and process routing
flexibility, but process instances must preserve their atomic nature
throughout their execution, i.e., this class does not allow for merging
or splitting operations.
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resource allocation protocol, a process instance executing a
processing stage Ξjk will be able to advance to a successor
processing stage Ξj,k+1, only after it is allocated the
resource differential (Aj,k+1−Ajk)+. 2 And it is only upon
this advancement that the process will release the resource
units |(Aj,k+1−Ajk)−|, that are not needed anymore.

In order to facilitate the subsequent developments, we
also introduce the following additional notation: In the
sequel, we shall set ξ ≡

∑n
j=1 |Sj |; i.e., ξ denotes the

number of distinct processing stages supported by the
considered RAS, across the entire set of its process types.
Furthermore, in some of the subsequent developments, the
various processing stages Ξjk, j = 1, . . . ,n, k = 1, . . . , l(j),
will be considered in the context of a total ordering
imposed on the set

⋃n
j=1Sj ; in that case, the processing

stages themselves and their corresponding attributes will
be indexed by a single index q that runs over the set
{1, . . . , ξ} and indicates the position of the processing stage
in the considered total order. Given an edge e∈ Gj linking
Ξjk to Ξj,k+1, we define e.src ≡ Ξjk and e.dst ≡ Ξj,k+1;
i.e., e.src and e.dst denote respectively the source and
the destination nodes of edge e. The number of edges
in process graph Gj that emanate from its node that
corresponds to stage Ξjk will be denoted D(Ξjk). Also,
in the following, we shall use the notation G to refer
to the “union” of process graphs Gj , j = 1, . . . ,n, i.e.,
G ≡ (V,E), with V = ∪nj=1Vj and E = ∪nj=1Ej . Finally,
ηkl, l = 1, . . . ,Ck, will denote the number of processing
stages that require the allocation of l units from resource
type Rk.

Modeling the RAS dynamics as a Finite State
Automaton The dynamics of the RAS Φ = 〈R,C,P,A〉,
introduced in the previous paragraph, can be formally
described by a Deterministic Finite State Automaton
(DFSA) ([1]), G(Φ) = (S,E,f,s0,SM ), that is defined as
follows:

1. The state set S consists of ξ-dimensional vectors s.
The components s[q], q = 1, . . . , ξ, of s are in one-to-one
correspondence with the RAS processing stages, and they
indicate the number of process instances executing the
corresponding stage in the RAS state modeled by s. Hence,
S consists of all the vectors s ∈ (Z+

0 )ξ that further satisfy

∀i= 1, . . . ,m,
ξ∑
q=1

s[q] ·A(Ξq)[i]≤ Ci (1)

where A(Ξq)[i] denotes the allocation request for resource
Ri that is posed by stage Ξq.

2. The event set E is the union of the disjoint event
sets E↗, Ē and E↘, where: (i) E↗ = {erp : r = 0, Ξp ∈⋃n
j=1V

↗
j }, i.e., event erp ∈ E↗ represents the load-

ing of a new process instance that starts from stage
Ξp. (ii) Ē = {erp : ∃j ∈ 1, . . . ,n s.t. Ξp is a successor of
Ξr in digraph Gj}, i.e., event erp ∈ Ē represents the ad-
vancement of a process instance executing stage Ξr to a

2We remind the reader that a+ ≡max{a,0} and a− ≡min{a,0}.

successor stage Ξp. (iii)E↘ = {erp : Ξr ∈
⋃n
j=1V

↘
j , p= 0},

i.e, event erp ∈ E↘ represents the unloading of a finished
process instance after executing its last stage Ξr.

3. The state transition function f : S×E→ S is defined
by s′ = f(s,erp), where the components s′[q] of the result-
ing state s′ are given by:

s′[q] =

 s[q]−1 if q = r
s[q] + 1 if q = p
s[q] otherwise

Furthermore, f(s,erp) is a partial function defined only
if the resulting state s′ ∈ S.

4. The initial state s0 is set equal to 0.

5. The set of marked states SM is the singleton {s0},
indicating the request for complete process runs.

The target behavior of G(Φ) and the maximally
permissive DAP In the following, the set of states Sr ⊆S
that are accessible from state s0 through a sequence of
feasible transitions will be referred to as the reachable
subspace of Φ. We shall also denote by Ss ⊆ S the set of
states that are co-accessible to s0; i.e., Ss contains those
states from which s0 is reachable through a sequence of
feasible transitions. In addition, we define Sr̄ ≡ S \ Sr,
Ss̄ ≡ S \ Ss and Sxy ≡ Sx ∩ Sy, x = r, r̄, y = s, s̄. As
mentioned in the introductory section, in the deadlock
avoidance literature, the sets Srs and Srs̄ are respectively
characterized as the reachable safe and unsafe subspaces;
following standard practice, in the sequel, sometimes we
shall drop the characterization “reachable” if it is implied
by the context.

The RAS unsafety characterized in the previous para-
graph results from the formation of RAS deadlocks, i.e.,
RAS states where a subset of the running processes are
entangled in a circular waiting pattern for resources that
are held by other processes in this set, blocking, thus, the
advancement of each other in a permanent manner. The
RAS unsafe states are essentially those RAS states from
which the formation of deadlock is unavoidable. In the
following, the set of deadlock states will be denoted by
Sd, while Srd will denote the set of reachable deadlock
states. Finally, it is clear from the above that Sd ⊆ Ss̄ and
Srd ⊆ Srs̄.

A maximally permissive deadlock avoidance policy (DAP)
for RAS Φ is a supervisory control policy that restricts the
system operation within the subspace Srs, guaranteeing,
thus, that every initiated process can complete success-
fully. This definition further implies that the maximally
permissive DAP is unique and it can be implemented
by an one-step-lookahead mechanism that recognizes and
prevents transitions to unsafe states.

Some monotonicities observed by the state un-
safety concept Next we review some additional structure
possessed by the set Ss̄, that was introduced in [13],
and enables the effective representation of the maximally
permissive DAP through the explicit storage of a very
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small subset of unsafe states of the underlying state space.
It should be clear from the above that the ability of
the activated processes in a given state s ∈ S to proceed
to completion, depends on the existence of a sequence
< s(0) ≡ s,e(1),s(1),e(2),s(2), . . . ,s(N−1),e(N),s(N) ≡ s0 >,
such that at every state s(i), i= 0,1 . . . ,N−1, the free (or
“slack”) resource capacities at that state enable the job
advancement corresponding to event e(i+1). Furthermore,
if such a terminating sequence exists for a given state s,
then the event feasibility condition defined by Equation 1
implies that this sequence will also provide a terminating
sequence for every other state s′ ≤ s, where the inequality
is taken component-wise. On the other hand, if state s
possesses no terminating sequences, then it can be safely
inferred that no such terminating sequences will exist
for any other state s ≤ s′ (since, otherwise, there should
also exist a terminating sequence for s, according to the
previous remark). The next proposition provides a formal
statement of the above observation; these results are well
known in the literature, and therefore, their formal proof
is omitted.3

Proposition 1: Consider the (partial) ordering relation-
ship “≤” imposed on the state space S of a given RAS Φ
that is defined as follows:
∀s,s′ ∈ S, s≤ s′ ⇐⇒ (∀q = 1, . . . ξ, s[q]≤ s′[q]) (2)

Then,

1) s ∈ Ss ∧ s′ ≤ s =⇒ s′ ∈ Ss
2) s ∈ Ss̄ ∧ s≤ s′ =⇒ s′ ∈ Ss̄

�

In the following, we shall use the notation ‘s < s′’ to
denote that the condition of Eq. 2 holds as strict inequality
for at least one component q ∈ {1, . . . , ξ}. In the light of
Proposition 1, we define the set of minimal reachable un-
safe states S̄rs̄ ≡ {s∈ Srs̄ | @s′ ∈ Srs̄ s.t. s′ ≤ s}. Similarly,
we define the set of minimal reachable deadlocks S̄rd ≡
{s∈ Srd | @s′ ∈ Srd s.t. s′ ≤ s}. Proposition 1 implies that,
for the considered RAS class, the maximally permissive
DAP can be implemented as follows: First, we compute
and store S̄rs̄ in an appropriate data structure. Then,
during the online stage, given a contemplated transition
to a state s, we assess the unsafety of s by searching the
stored data for a state u ∈ S̄rs̄ such that s ≥ u; if such
a state u is found, state s is unsafe; hence, the contem-
plated transition is blocked by the supervisory controller.
Otherwise, s is safe and the contemplated transition is
allowed. As explained in the introductory discussion, this
implementation of the maximally permissive DAP has
already been proposed in [9], where the “TRIE” data
structure has been used for the efficient storage of S̄rs̄.
In the next sections, we propose an efficient algorithm for
the initial enumeration / extraction of the set S̄rs̄ from
the underlying RAS dynamics.

3We notice, for completeness, that a formal proof for these results
can be obtained, for instance, through the analytical characterization
of state safety that is presented in [16], [14].

TABLE I
The RAS considered in the example

Resource Types: {R1, . . . ,R8}
Resource Capacities: Ci = 1,∀i ∈ {1, . . . ,7}, C8 = 2
Process Type 1: Ξ11(R1)→ Ξ12(R2)→ Ξ13(R3)
Process Type 2: Ξ21(R3)→ Ξ22(R2,R5)→ Ξ23(R4)
Process Type 3: Ξ31(R4)→ Ξ32(R2)→ Ξ33(R1)
Process Type 4: Ξ41(R5)→ Ξ42(R1)→

Ξ43(R6) or Ξ44(R7)→ Ξ45(R8)
Process Type 5: Ξ51(R8)→ Ξ52(R1)

Example We shall use the RAS configuration depicted
in Table I as a running example in the rest of the paper to
demonstrate the application of the steps of the introduced
algorithm. The considered RAS has eight resource types,
{R1, . . . ,R8}, all with single unit capacities, except for
resource R8, which has a capacity of two units. The
considered RAS also has five process types, {J1, . . . ,J5}.
The reader should notice that process J4 presents routing
flexibility. More specifically, a job at the second processing
stage Ξ42 can advance to stage Ξ43 (acquiring one unit
of R6), or to stage Ξ44 (acquiring one unit of R7). On
the other hand, all the other processes have simple linear
structures. We also notice that all the processing stages
have single-type resource allocation, except for stage Ξ22
which requests the allocation of both R2 and R5. For
representational economy, in the subsequent discussion a
state will be represented by the multi-set of the processing
stages with non-zero process content in it. Applying the
FSA-based analysis introduced in this section to the con-
sidered RAS, reveals that S̄rd = {u1,u2,u3,u4} and that
S̄rs̄ = {u1,u2,u3,u4,u5,u6}, where the states u1, . . . ,u6
are depicted in Table IV. Space limitations prohibit the
depiction of the entire state transition diagram (STD) of
the underlying FSA, but we report that it includes 1008
reachable states, of which 638 are safe and the remaining
unsafe. In the next two sections, we shall demonstrate how
the introduced algorithms construct the two state sets S̄rd
and S̄rs̄ while visiting only a very small subset of the
aforementioned STD.

III. Enumerating S̄rd

As pointed out in the introductory section, the first step
towards the enumeration of the minimal unsafe states is
the enumeration of the minimal deadlocks. This is the
content of this section. First, we define some terms and
notation that will be used throughout the rest of the
paper. Next, we proceed to describe the detailed flow of
the proposed algorithm.

A. Preamble

Let s.Ri, i = 1, . . . ,m, denote the total number of units
from resource Ri that are allocated at state s. Then, given
an edge e∈ G, we shall say that e is “blocked” at state s iff
s[e.src]> 0, and ∃Rk ∈R s.t. s.Rk+Ae.dst[k]−Ae.src[k]>
Ck. We shall say that edge e ∈ G is “enabled” at state s iff
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s[e.src] > 0 and e is not blocked. Similarly, a processing
stage q is blocked at state s iff all its outgoing edges
are blocked, whereas it is enabled iff at least one of its
outgoing edges is enabled. The set of enabled edges at s
will be denoted by g(s).

Definition 1: Given a set of states X, define the state λX
by λX [q]≡maxx∈Xx[q], q = 1 . . . ξ. In the sequel, we shall
refer to λX as the “combination” of the states of X.

By its definition, a minimal deadlock state sd is a state
at which all the processing stages with non-zero process
content are blocked. Let {q1, . . . , qt} refer to this set of
processing stages. Then, we have the following lemma:

Lemma 1: A minimal deadlock state sd with active pro-
cessing stages {q1, . . . , qt} can be expressed as the combi-
nation of a set of minimal states {x1, . . . ,xt} such that qi
is blocked at xi.

Proof: Consider the vectors xi, i = 1, . . . , t, that are ob-
tained by starting from the deadlock state sd and itera-
tively removing processes from this state, one at a time,
until no further process can be removed without unblock-
ing stage qi. Then, clearly, each state xi is a minimal
state at which processing stage qi is blocked. Furthermore,
by the construction of {xi, i = 1, . . . , t}, λ{x1,...,xt} ≤ sd,
and λ{x1,...,xt} is itself a deadlock state. But then, the
minimality of sd implies that λ{x1,...,xt} = sd. �

Let {ei1, . . . ,eiD(qi)} refer to the set of edges emanating
from node qi in graph Gi, where D(qi), as defined in Sec-
tion II, is the number of edges emanating from the node qi
in the graph. Then, by an argument similar to that in the
proof of Lemma 1, we can perceive each state xi appearing
in the statement of Lemma 1 as a combination of a set of
minimal states {xi1, . . . ,xiD(qi)} such that eij is blocked
at state xij , i.e., xi = λ{xi1,...,xiD(qi)}. Each xij is a state
that has active processes at stage eij .src, and for some
resource type Rk s.t. Aeij .dst[k]−Aeij .src[k]> 0, xij .Rk >
Ck−Aeij .dst[k]+Aeij .src[k]≡ l. Hence, the minimal states
that block eij through Rk can be obtained by enumerating
all the minimal states that allocate l+1, . . . ,Ck units of Rk
(i.e., the minimal states s for which s.Rk ∈ {l+1, . . . ,Ck}).

B. Outline of the proposed algorithm

The proposed algorithm for the enumeration of the min-
imal deadlocks is motivated by the analysis presented in
the pervious subsection, and it can be outlined as follows:

1) For each resource type Rk, and for each occupancy
level l, 1≤ l≤Ck, compute the set of minimal states
that allocate l units of Rk; call it MinStR[k][l].

2) Use the results obtained in Step 1 in order to com-
pute, for each edge e, the set of minimal states at
which e is blocked; call it BlockEd[e].

3) Use the results obtained in Step 2 in order to com-
pute, for each processing stage q, the set of minimal
states at which q is blocked; call it BlockPs[q].

4) Finally, enumerate the set of minimal deadlocks
through the following recursive scheme that, for
each processing stage q and each minimal state
s ∈ BlockPs[q], does the following: It sets p1 := s,
and then searches for an enabled processing stage
q′ at p1. Next, it branches for each minimal state
x at which q′ is blocked (i.e., x ∈ BlockPs[q′]),
combining such a state with p1 (i.e., it computes
the combination λ{p1,x}). Let p2 be a feasible state
generated at one of those branches; i.e., p2 =λ{p1,x′}
for some x′ ∈BlockPs[q′], and furthermore, p2 ∈ S.
State p2 is processed in a similar manner with state
p1 above, and the branching continues across all the
generated paths of the resulting search graph until
a deadlock state is reached on each path.

The rest of this section discusses further the various
steps in the above outline. A complete algorithmic im-
plementation of all these steps together with a detailed
complexity analysis of these algorithms can be found in
[7]. Closing this introductory discussion on the presented
algorithms, we also notice that a process instance execut-
ing a terminal processing stage can immediately exit the
system upon completion; hence terminal processing stages
do not have any active process instances at any minimal
deadlock state. Therefore, these stages will be ignored in
the subsequent constructions.

C. Computing MinStR[k]

A minimal state s that allocates l units of resource type
Rk may be either a unit vector state with s[q] = 1 for
some component q ∈ {1, . . . , ξ}, s[q′] = 0, ∀q 6= q′, and
Aq[k] = l, or a vector equal to s1 + s2 where s1 is a
minimal state using j units of Rk and s2 is a minimal
state using l− j units of Rk. Based on the above remark,
MinStR[k][l] is initialized with the ηkl unit vector states
corresponding to the stages that request l units of Rk.
In particular, MinStR[k][1] will contain only these ηk1
unit vector states. Proceeding inductively for l > 1, and
assuming that, ∀j ≤ bl/2c, MinStR[k][j] has been already
computed, we add each state inMinStR[k][j] to each state
in MinStR[k][l− j], and insert the resultant states into
MinStR[k][l], provided that they satisfy the feasibility
conditions of Eq. 1.

Example (cont.) Consider the resource type R2. Only
stages Ξ12, Ξ22, and Ξ32 occupy one unit of R2. Hence,
MinStR[2][1] contains only the states {Ξ12},{Ξ22}, and
{Ξ32}. On the other hand, consider the resource type
R8. Only stage Ξ51 occupies one unit of R8. Hence
MinStR[8][1] contains only the state {Ξ51}. Moreover,
to obtain a minimal state that occupies two units of R8,
we can add any two members of MinStR[8][1]. Since the
state {Ξ51} is the only member in MinStR[8][1], adding
it to itself results in the state {2Ξ51} which is the only
member of MinStR[8][2]. The complete array MinStR
computed for the resource types in this example is depicted
in Table II.



6

TABLE II
The array MinStR for the example

MinStR[1][1] {Ξ11}, {Ξ42}
MinStR[2][1] {Ξ12},{Ξ22},{Ξ32}
MinStR[3][1] {Ξ21}
MinStR[4][1] {Ξ31}
MinStR[5][1] {Ξ41}, {Ξ22}
MinStR[6][1] {Ξ43}
MinStR[7][1] {Ξ44}
MinStR[8][1] {Ξ51}
MinStR[8][2] {2Ξ51}

TABLE III
The array BlockEd for the example

BlockEd[Ξ11→ Ξ12] es1 = {Ξ11,Ξ12}, es2 = {Ξ11,Ξ22},
es3 = {Ξ11,Ξ32}

BlockEd[Ξ12→ Ξ13] es4 = {Ξ12,Ξ21}
BlockEd[Ξ21→ Ξ22] es5 = {Ξ21,Ξ12}, es6 = {Ξ21,Ξ22},

es7 = {Ξ21,Ξ32}, es8 = {Ξ21,Ξ41}
BlockEd[Ξ22→ Ξ23] es9 = {Ξ22,Ξ31}
BlockEd[Ξ31→ Ξ32] es10 = {Ξ31,Ξ12}, es11 = {Ξ31,Ξ22},

es12 = {Ξ31,Ξ32}
BlockEd[Ξ32→ Ξ33] es13 = {Ξ32,Ξ11}, es14 = {Ξ32,Ξ42}
BlockEd[Ξ41→ Ξ42] es15 = {Ξ41,Ξ11}, es16 = {Ξ41,Ξ42}
BlockEd[Ξ42→ Ξ43] es17 = {Ξ42,Ξ43}
BlockEd[Ξ42→ Ξ44] es18 = {Ξ42,Ξ44}
BlockEd[Ξ43→ Ξ45] es19 = {Ξ43,2Ξ51}
BlockEd[Ξ44→ Ξ45] es20 = {Ξ44,2Ξ51}
BlockEd[Ξ51→ Ξ52] es21 = {Ξ51,Ξ11}, es22 = {Ξ51,Ξ42}

D. Computing BlockEd[e]

According to the remarks that were provided in Sub-
section III-A, the computation of this data structure
can be organized as follows: For each resource Rk s.t.
Ae.dst[k]−Ae.src[k]> 0, and for each occupancy level l s.t.
l > Ck−Ae.dst[k]+Ae.src[k], we insert all the states from
MinStR[k][l] into BlockEd[e] after adding one process at
e.src, if needed; in this last case, the resulting state must
also be checked for feasibility. Finally, the non-minimal
states are removed from BlockEd[e].

Example (cont.) Consider the edge Ξ11 → Ξ12. Ad-
vancement across this edge requires the allocation of
the single unit of resource R2. Hence, only states where
the unit of R2 is allocated, can be used to block the
edge; i.e., the states that can block this edge are those
in MinStR[2][1]. Thus, BlockEd[Ξ11 → Ξ12] contains
the states es1 = {Ξ11,Ξ12}, es2 = {Ξ11,Ξ22}, and es3 =
{Ξ11,Ξ32}. On the other hand, consider the edge Ξ44 →
Ξ45. Advancement across this edge requires the allocation
of one unit from resource R8. Since the capacity of R8
equals two, the states that can be used to block this
edge are those in MinStR[8][2]. Thus, BlockEd[Ξ44 →
Ξ45] contains the state {Ξ44,2Ξ51}. The complete array
BlockEd computed for this example is depicted in Ta-
ble III.

E. Computing BlockPs[q]

Let {eq1, . . . ,e
q
D(q)} be the set of edges emanating from q.

Then, BlockPs[q] is computed by taking all the feasible

combinations of states from BlockEd[eq1]×BlockEd[eq2]×
. . .BlockEd[eqD(q)], while eliminating those combinations
that result in non-minimal elements.

Example (cont.) Consider the processing stage Ξ42. It
has two outgoing edges, Ξ42→ Ξ43 and Ξ42→ Ξ44. It can
be seen from Table III that es17 (resp., es18) is the only
member of BlockEd[Ξ42 → Ξ43] (resp., BlockEd[Ξ42 →
Ξ44]). Hence, the combination operation (c.f. Definition 1)
is applied to states es17 and es18 to generate the state
ps1 ≡ {Ξ42,Ξ43,Ξ44}, which is a minimal state at which
Ξ42 is blocked. Hence BlockPs[Ξ42] = {Ξ42,Ξ43,Ξ44}. Ex-
cept for Ξ42, each processing stage has only one outgoing
edge. Hence ∀ Ξjk 6= Ξ42, BlockPs[Ξjk] =BlockEd[Ξjk→
Ξj,k+1].

F. Enumerating the minimal deadlock states

The complete algorithm for enumerating the minimal
reachable deadlock states is depicted in Procedure 1.
Lines 2-10 involve the computation of the lists MinStR,
BlockEd, and BlockPs. For each processing stage q, all
the minimal deadlock states at which q has non-zero
processes are enumerated by Lines 11-28. In particular,
for a given processing stage q, we start by inserting into
the list workingQueue each minimal state at which q is
blocked. In the “While” loop of Lines 14-26, we extract
(dequeue) every state p from this queue and examine p for
enabled processing stages. If p has no enabled processing
stages, the function getAnEnabledProcStg at Line 16
returns a value of 0; hence, it is inferred that p is a
deadlock state at which q has non-zero processes, and
it is inserted into the hash table deadlockHT (c.f. Line
18). Otherwise, getAnEnabledProcStg returns an enabled
processing stage q∗. In this case, Lines 20-24 generate
every feasible combination of state p with the mini-
mal states blocking q∗ and add them to workingQueue.
workingQueue becomes empty when all the deadlock
states at which q has non-zero processes have been enu-
merated across all the paths of the generated search graph.
Finally, Line 29 removes the non-minimal and unreachable
deadlock states from deadlockHT .

Example (cont.) Consider the iteration of Procedure 1
that starts from stage Ξ42 and state ps1 = {Ξ42,Ξ43,Ξ44}
(ps1 ∈ BlockPs[Ξ42]). To block Ξ43, we combine ps1
with state es19 ∈ BlockPs[Ξ43], resulting in state u1 ≡
{Ξ42,Ξ43,Ξ44,2Ξ51} which is a state at which all the
active processing stages are blocked; hence it is a dead-
lock state. Continuing the application of the algorithm
yields the minimal deadlock states u2 ≡ {Ξ11,Ξ32}, u3 ≡
{Ξ12,Ξ21}, u4 ≡ {Ξ22,Ξ31}. Hence, S̄rd = {u1,u2,u3,u4},
as reported at the end of Section II. �

The next theorem establishes the correctness of Proce-
dure 1.

Theorem 1: Procedure 1 enumerates all the minimal
reachable deadlock states of its input RAS Φ.

Proof: Let sd be an arbitrary minimal deadlock state, and
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Procedure 1 EnumMinReachDeadlocks(Φ)
Input: A RAS instance Φ
Output: the list deadlockHT containing all the reachable
minimal deadlocks of Φ

1: deadlockHT ←∅
2: for k = 1 :m do
3: Compute MinStR[k]
4: end for
5: for all e ∈ E do
6: Compute BlockEd[e]
7: end for
8: for q = 1 : ξ do
9: Compute BlockPs[q]
10: end for
11: for q = 1 : ξ do
12: for s ∈BlockPs[q] do
13: workingQueue← s
14: while workingQueue 6= ∅ do
15: p← dequeue(workingQueue)
16: q∗← getAnEnabledProcStg(p)
17: if q∗ = 0 then
18: Insert p into deadlockHT
19: else
20: for all x ∈BlockPs[q∗] do
21: if Feasible(λ{x,p}) then
22: Insert λ{x,p} into workingQueue
23: end if
24: end for
25: end if
26: end while
27: end for
28: end for
29: Remove non-minimal states and unreachable states

from deadlockHT
30: return deadlockHT

{q1, . . . , qt} be the set of processing stages that have active
processes at sd. Then, according to Lemma 1, there exists
a set of states {x1, . . . ,xt} such that xj ∈ BlockPs[qj ],
xj ≤ sd, and sd = λ{x1,...,xt}. x1 will be picked by Line
12. W.l.o.g., assume that q2 = getAnEnabledProcStg(x1).
Then, Line 22 implies that the state p2 = λ{x1,x2} is in-
serted into workingQueue; hence, it will be eventually ex-
tracted at Line 15. Repeating the same argument, assume
that q3 = getAnEnabledProcStg(p2); then, we will have
the state p3 = λ{x1,x2,x3} inserted into workingQueue.
Let t′ ≤ t be the last processing stage in this tracing
sequence. Thus, pt′ = λ{x1,...,xt′} is a deadlock state.
But, pt′ = λ{x1,...,xt′} ≤ λ{x1,...,xt} = sd. Therefore, by the
minimality of sd, it must be that sd = pt′ . Hence sd is
enumerated. �

Complexity Considerations As already mentioned,
a complete complexity analysis of Procedure 1 and of
its supporting subroutines can be found in [7], where it
is shown that the overall computational complexity of
Procedure 1 can be characterized as O(ξ ·m2·|E| ·η2·C·|E|+

|Sr|). In this expression, m denotes the number of the
resources types in the input RAS Φ, C ≡maxmk=1Ck, and
η ≡ maxmk=1 maxCk

l=1 ηkl.
4 The term |Sr| appears in the

above expression due to the state reachability analysis that
is performed in Line 29 of Procedure 1. However, while this
term provides a worst-case bound for the corresponding
operation, the practical run-time for this operation is
typically very small, due to the small process content of
the assessed states. Hence, based on the above discussion,
we can conclude that the algorithm complexity is most
sensitive to the capacity of the resource types and to the
number of the distinct event types that take place in the
underlying RAS.

IV. Enumerating S̄rs̄

In this section, we provide an algorithm that enumerates
the subspace S̄rs̄ without enumerating the entire reachable
state space. We proceed as follows: First, we introduce
all the necessary definitions for the description of the
algorithm. Next, we introduce the algorithm itself. Finally,
we prove the correctness of the algorithm.

A. Preamble

Given a minimal deadlock-free unsafe state u, we notice
the following: (i) No unloading event is enabled at u,
since otherwise u would not be minimal. (ii) The unsafety
of u is a consequence of its current process content and
it does not require the loading of any new processes in
order to manifest itself. (iii) The advancement of any
unblocked process at u leads to another unsafe state;
however, this new unsafe state can be minimal or non-
minimal. The following definition characterizes further the
dynamics that result from the advancement of unblocked
processes in a minimal unsafe state.

Definition 2: Given a minimal unsafe state u such that
g(u) = {e1, . . . ,eK}, let h1, . . . ,hK be the respective states
that result from executing events e1, . . . ,eK at u. Then,
∀i = 1 : K, nextMin(u,ei) ≡ {zi1, . . . ,ziw(i)} where ∀j =
1 : w(i), zij ≤ hi is a minimal unsafe state. We also set
nextMin(u)≡

⋃K
i=1nextMin(u,ei). Finally, we denote by

sij the result of backtracing ei at zij .

It is easy to see that if hi, in the above definition, is
a minimal unsafe state, then w(i) = 1, zi1 = hi, si1 = u.
Otherwise, to show that sij is well-defined, it suffices to
show that: (i) zij [ei.dst] = hi[ei.dst], and (ii) state sij is
a feasible state according to Eq. 1. To establish item (i),
first notice that ei.dst is the unique entry for which hi
is greater than u. Hence, if item (i) was not true, then
zij < u, a result that violates the minimality of u. On
the other hand, item (ii) is established by the fact that
zij < hi. It can also be seen that if zij < hi, then sij < u.
Combined with the minimality of u as an unsafe state, this

4We also remind the reader that ξ denotes the total number of
stages and |E| denotes the number of distinct event types in RAS Φ.
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Fig. 1. A schematic diagram of the RAS transitional structure that
is leveraged by the proposed algorithm for the enumeration of S̄rs̄.

last result implies that sij is a safe state in this case. The
structure revealed by Definition 2 and the above discussion
is depicted schematically in Figure 1.

Example (cont.) Consider state u5 ≡ {Ξ11,Ξ21,Ξ31}.
It can be easily checked that this state is minimal un-
safe but deadlock-free. The set of enabled edges in u5
is g(u5) = {Ξ11 → Ξ12,Ξ21 → Ξ22,Ξ31 → Ξ32}, and the
resulting states are respectively h1 ≡{Ξ12,Ξ21,Ξ31}, h2 ≡
{Ξ11,Ξ22,Ξ31}, and h3 ≡ {Ξ11,Ξ21,Ξ32}. It can be easily
seen that u3 <h1, u4 <h2, and u2 <h3, where the defini-
tion of states u2, u3 and u4 is provided in Table IV. Hence,
z11 = u3, z21 = u4, and z31 = u2. Backtracing the edge
Ξ11→ Ξ12 from z11 yields the safe state s11 ≡ {Ξ11,Ξ21}.
Similarly, backtracing the corresponding edges from z21
and z31 yields respectively the safe states s21 ≡ {Ξ21,Ξ31}
and s31 ≡ {Ξ11,Ξ31}. �

As explained in the introductory section, the algorithm
proposed in this work seeks to enumerate all the minimal
reachable unsafe states starting from the minimal reach-
able deadlocks, and tracing backwards the dynamics that
are described in Definition 2. This reconstructive process
can be described as follows: Let us first characterize a safe
state a as a “boundary safe” state iff it is one-transition
away from reaching some unsafe state. During the course
of its execution, the proposed algorithm generates, both,
unsafe and safe states. The generated safe states are all
boundary safe states, and they are used as “stepping
stones” to reach further parts of the unsafe state space.
More specifically, the proposed algorithm employs three
different mechanisms to generate states in its exploration
process: (i) backtracing from an unsafe state; (ii) com-
bining two boundary safe states according to the logic of
Definition 1 (i.e., taking the maximum number of processes
at each processing stage); and (iii) adding some processes
to a boundary safe state to make it unsafe. The first
two mechanisms can return, both, safe and unsafe states,
whereas the last mechanism returns only unsafe states. In
the case of the first two mechanisms, once a state a has
been generated, its potential unsafety will be identified by
running upon it a search-type algorithm that assesses the
state co-reachability w.r.t. the target state s0. If a is found
to be unsafe, it is also tested for non-minimality w.r.t.

the previously generated unsafe states; if it is minimal, it
is backtraced to generate its immediate predecessors, and
then it is saved. On the other hand, if the generated state
a is safe, then, it is endowed by an additional attribute
that is computed upon its generation; this attribute will
be denoted by τa and it constitutes a set of edges that
emanate from state a and are known to lead to unsafe
states. The set of the unsafe states that are reached from
a through the edges in τa will be denoted by U(a). The
detailed logic for the computation of the set τa depends
on the particular mechanism that generated safe state a,
and it can be described as follows:

• If state a was generated by tracing back upon edge e
from unsafe state u, then, the algorithm sets τa = {e}.
Clearly, firing e at a leads to unsafety.

• If a was generated by combining two previously
generated boundary safe states a1 and a2 (i.e., a =
λ{a1,a2}), then, τa = (τa1 ∪ τa2)∩ g(a). Indeed, it is
easy to see that firing any enabled transition among
τa1 ∪ τa2 at state λ{a1,a2} will lead to a state that
dominates a state in U(a1) ∪ U(a2); hence to an
unsafe state.

Furthermore, it is possible that a boundary safe state a
will be generated more than once in the execution of the
proposed algorithm. In fact, it might happen that a′1 =
a′2, but τa′1 6= τa′2 . This will happen if a′1 and a′2 are
generated by different mechanisms, by backtracing from
different unsafe states, or by combining different pairs of
boundary safe states. Assuming w.l.o.g. that state a′1 was
generated first in the course of the algorithm execution,
state a′2 will be discarded upon its generation, but τa′1
will be updated to τa′1 := τa′1 ∪ τa′2 .

Example (cont.) Consider the minimal deadlock state
u1 ≡ {Ξ42,Ξ43,Ξ44,2Ξ51}. The jobs at Ξ51 can not be
backtraced because Ξ51 is an initiating stage. Also, the
jobs at Ξ43 and Ξ44 can not be backtraced because
there is no slack capacity for resource type R1, which
is held by Ξ42. On the other hand, backtracing the job
at Ξ42 across the edge Ξ41 → Ξ42 yields the safe state
a1 ≡ {Ξ41,Ξ43,Ξ44,2Ξ51}, where τa1 ≡ {Ξ41→ Ξ42}.

The second column in Table IV depicts the states that re-
sult while backtracing from each of the minimal deadlocks,
u1, u2, u3 and u4, that were identified in the previous
section. The boldfaced processing stages in the listed states
ai, i= 1, . . . ,4, indicate the source nodes on the backtraced
edges that provided these states. Also, it is easy to check
that all states ai, i= 1, . . . ,4, that were obtained from this
backtracing, are safe. �

The rationale for basing the overall search process for
minimal unsafe states upon the three state-generation
mechanisms that were described above, can be explained
as follows: The first mechanism is the primary backtracing
mechanism employed by the proposed algorithm, and its
role is self-explanatory. On the other hand, in order to
explain the role of the second and the third mechanisms,
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TABLE IV
The results of Algorithm 3 for the considered example

u Backtrace(u)

u1 = {Ξ42,Ξ43,Ξ44,2Ξ51} a1 = {Ξ41,Ξ43,Ξ44,2Ξ51}
u2 = {Ξ11,Ξ32} a2 = {Ξ11,Ξ31}
u3 = {Ξ12,Ξ21} a3 = {Ξ11,Ξ21}
u4 = {Ξ22,Ξ31} a4 = {Ξ21,Ξ31}

u5 = {Ξ11,Ξ21,Ξ31} ∅
u6 = {Ξ11,Ξ21,Ξ41} ∅

u7 = {Ξ41,Ξ43,Ξ44,2Ξ51,Ξ11,Ξ21} ∅

we remind the reader that Definition 2 implies that a
boundary safe state a might be dominated by another min-
imal unsafe state leading to unsafe states that dominate
some state(s) in U(a) (c.f. also Figure 1); these two state-
generation mechanisms enable the proposed algorithm
to reach these additional minimal unsafe states. More
specifically, by applying the second mechanism on any
pair of boundary safe states a1 and a2, we obtain the
state λ{a1,a2} that dominates both a1 and a2 w.r.t. the
partial state order that is established by “≤ ”. This dom-
ination further implies that g(λ{a1,a2}) ⊆ g(a1)∪ g(a2).
If τλ{a1,a2}

≡ {τa1 ∪ τa2}∩ g(λ{a1,a2}) 6= ∅, the aforemen-
tioned domination also implies that g(λ{a1,a2}) contains
transitions to states that dominate unsafe states and,
therefore, they are themselves unsafe. Hence, the con-
structed state λ{a1,a2} is either an unsafe state, or if
it is safe, it remains boundary. In the former case, the
mechanism has succeeded in its objective of reaching a
new part of the unsafe region, as described above. In the
second case, the mechanism provides another boundary
safe state that can be used for the generation of new
unsafe states through the second and the third mechanism.
Finally, when using the third mechanism, we seek to add
some processes to a boundary safe state a, in order to
obtain a state y such that g(y) ⊆ τa. Thus, any enabled
transition at y leads to a state that dominates a state in
U(a); hence to an unsafe state. Therefore, y is also unsafe.

The following definitions provide a more formal charac-
terization for the second and the third mechanisms.

Definition 3: Consider a pair of boundary safe states a1
and a2. The pair (a1,a2) is “combinable” iff (i) λ{a1,a2}
satisfies Equation 1, and (ii) τλ{a1,a2}

≡ {τa1 ∪ τa2} ∩
g(λ{a1,a2}) 6= ∅.

Example (cont.) Consider the pair of boundary safe
states a2 and a3 in Table IV. Assessing their combinabil-
ity, we can see that λ{a2,a3} = {Ξ11,Ξ21,Ξ31}, with the
enabled edges g(λ{a2,a3}) = {Ξ11→Ξ12,Ξ21→Ξ22,Ξ31→
Ξ32} and τλ{a2,a3}

= {Ξ11 → Ξ12,Ξ31 → Ξ32}. Hence a2
and a3 are combinable. Moreover, as discussed in a pre-
vious step of this example, the state u5 ≡ λ{a2,a3} is an
unsafe state.

Next, consider the pair of boundary safe states a1 and
a2. λ{a1,a2} = {Ξ11,Ξ31,Ξ41,Ξ43,Ξ44,2Ξ51}, with the en-
abled edges g(λ{a1,a2}) = {Ξ11 → Ξ12,Ξ31 → Ξ32} and
τλ{a1,a2}

= {Ξ31 → Ξ32}. Hence a1 and a2 are combin-

able. Let a5 ≡ λ{a1,a2}. Among the edges in g(a5) edge
Ξ31→ Ξ32 belongs to τλ{a1,a2}

, and therefore, it leads to
unsafety. On the other hand, it can be checked that there is
a transition sequence that starts with the edge Ξ11→ Ξ12
and leads from state a5 to the empty state s0. Hence, the
constructed state a5 is a boundary safe state. �

Definition 4: Given a boundary safe state a, de-
fine the set of states Confine(a, τa) as follows: x′ ∈
Confine(a, τa) iff (i) x′ > a, (ii) g(x′) ⊆ τa, (iii) @y < x′
that satisfies (i) and (ii).

Condition (iii) in Definition 4 eliminates non-minimal
unsafe states. The next proposition shows that any state
in Confine(a, τa) is an unsafe state.

Proposition 2: If x′ ∈ Confine(a, τa), then x′ is an
unsafe state.

Proof: Consider a transition t1 ∈ g(x′). Definition 4 implies
that t1 ∈ τa. Hence, firing t1 at a leads to an unsafe state
u1. By Definition 4 again, x′ > a. Therefore, firing t1 at
x′ leads to a state that dominates u1, and therefore, to
an unsafe state. Since t1 was chosen arbitrarily among
the transitions of g(x′), it follows that all the enabled
transitions at x′ lead to unsafety. Hence, x′ is an unsafe
state. �

Example (cont.) Consider the boundary safe state a3
in Table IV. τa3 = {Ξ11 → Ξ12} and g(a3) = {Ξ11 →
Ξ12,Ξ21 → Ξ22}. Hence, to apply Confine(a3, τa3), we
need to block the edge Ξ21 → Ξ22. This can be done
using any of the states in BlockEd[Ξ21 → Ξ22]. Com-
bining each of the states es5, es6, es7, and es8 (c.f.
Table III) with a3 results respectively in the states y1 ≡
{Ξ11,Ξ21,Ξ12}, y2 ≡{Ξ11,Ξ21,Ξ22}, y3 ≡{Ξ11,Ξ21,Ξ32},
and y4 ≡ {Ξ11,Ξ21,Ξ41}. It can be seen that y1 > u3
and that y3 > u2, where states u2 and u3 are defined
in Table IV. On the other hand, state y2 enables edge
Ξ22→ Ξ23. Thus, to block this edge, y2 is combined with
es9 ∈ BlockEd[Ξ22 → Ξ23], resulting in the state y5 ≡
{Ξ11,Ξ21,Ξ22,Ξ31}. Again, it can be seen that y5 > u4,
where u4 is the corresponding state in Table IV. Hence,
it follows from the above discussion that y1, y2, y3, and
y5 do not belong to Confine(a3, τa3). On the other hand,
at state y4, g(y4) = {Ξ11→ Ξ12} = τa3 , and y4 does not
dominate any unsafe state. Hence u6 = y4 is a minimal
unsafe state, and Confine(a3, τa3) = {u6}.

B. The proposed algorithm

We start the presentation of the proposed algorithm for
the enumeration of S̄rs̄ by introducing two supporting
subroutines for this algorithm. The first one is the pro-
cedure Insert_Non_Min(U, Q1, Q2) and it is used for
removing the non-minimal unsafe states that are generated
during the course of the execution of the algorithm. More
specifically, procedure Insert_Non_Min(U, Q1, Q2) is
invoked to insert the states in U into Q1, while removing
any non-minimal state vectors from Q1∪Q2. A state u∈U
is inserted into Q1 iff the set Q1∪Q2 does not contain any
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Procedure 2 Confine( a, τa)
Input: a, τa
Output: U∗

1: workingQueue← a;
2: while workingQueue 6= ∅ do
3: p← dequeue(workingQueue)
4: e∗← getAnEnabledEdge(p, τa)
5: if e∗ = 0 then
6: Insert p into U∗
7: else
8: for all x ∈BlockEd[e∗] do
9: if Feasible(λ{x,p}) then
10: Insert λ{x,p} into workingQueue
11: end if
12: end for
13: end if
14: end while
15: return U∗

state dominated by u. Furthermore, if u is dominated by
a state x ∈Q1∪Q2, x is removed from Q1∪Q2.

The second subroutine supports the Confine operation
that was introduced in Definition 4. The algorithmic steps
of the Confine operation are depicted in Procedure 2,
and the logic that is implemented by this procedure is
very similar to that of Lines 12-27 in Procedure 1. But
instead of seeking to block enabled processing stages,
the Confine procedure seeks to block the enabled edges
that do not belong to τa. In particular, the function
getAnEnabledEdge at Line 4 returns an enabled edge at
state p that does not belong to τa. If no such edge exists,
the function returns a value of 0, and thus, p is added
to U∗ at Line 6. On the other hand, if an enabled edge
e∗ is found, then the code of Lines 8-11 generates and
processes every feasible combination of state p with the
minimal states blocking e∗.

Now, we present the main content of the section, which
is the algorithm used to enumerate the minimal reachable
unsafe states. The complete logic of this algorithm is
detailed in Algorithm 3. Algorithm 3 employs the queue
Q to store unprocessed unsafe states, the list U̇ to store
processed unsafe states, and the hash table Ȧ to store
boundary safe states. The algorithm starts by enumerating
all the minimal reachable deadlock states using Proce-
dure 1, and adds the returned states to Q. For each state
u in Q, u is traced back by one transition in Line 6. Then,
in Line 7, the states generated in Line 6 are partitioned
into the sets Safe_Prev and Unsafe_Prev (i.e., the
safe and unsafe state subsets of Prev(u)), using standard
reachability analysis w.r.t. the target state s0. In Line 8,
the elements of Unsafe_Prev are inserted into Q to be
processed later. On the other hand, the function Combine
in Line 12 returns λa,ȧ if a and ȧ are combinable according
to Definition 3. Otherwise, it returns ∅. Hence, in Lines 9-
17, for each state a ∈ Safe_Prev, the Combine function
is applied with every state ȧ ∈ Ȧ, and the result is inserted
in Za. In Line 14, Za is partitioned using standard reacha-

Algorithm 3
Input: A RAS instance Φ
Output: the list U̇ containing all the reachable minimal
unsafe states of Φ

1: U̇ , Ȧ←∅; k← 0;
2: Q← EnumMinReachDeadlocks(Φ)
3: while Q 6= ∅ or k < |Ȧ| do
4: if Q 6= ∅ then
5: u← dequeue(Q);
6: Prev(u)← Backtrace(u);
7: (Safe_Prev, Unsafe_Prev)←

Classify(Prev(u))
8: Insert_Non_Min(Unsafe_Prev, Q, U̇)
9: for each a ∈ Safe_Prev do
10: Za←∅
11: for all ȧ ∈ Ȧ do
12: Za← Za∪Combine(ȧ,a)
13: end for
14: (Safe(Za),Unsafe(Za))← Classify(Za)
15: Insert a, Safe(Za) into Ȧ
16: Insert_Non_Min( Unsafe(Za), Q, U̇)
17: end for
18: Insert_Non_Min(u, U̇ , Q)
19: else
20: while k < |Ȧ| do
21: ak← Ȧ[k+ +];
22: U∗← Confine(ak, τak

)
23: Insert_Non_Min(U∗, Q, U̇)
24: end while
25: end if
26: end while
27: Remove_Unreachable(U̇)
28: return U̇

bility analysis into its subset of safe states, Safe(Za), and
its subset of unsafe states, Unsafe(Za). As explained in
the opening part of this section, the states of Safe(Za)
are boundary safe states by construction; hence, they are
inserted into Ȧ at Line 15. Whenever a boundary state a′
is inserted into Ȧ, we check first if ∃ȧ∈ Ȧ s.t. a′= ȧ; in this
case τȧ is updated to τȧ∪τa′ , and a′ is discarded. On the
other hand, the states of Unsafe(Za) are unsafe; hence
they are inserted into Q. If Q is empty, then we apply
the Confine operation described in Procedure 2 to every
state in Ȧ that has not been subjected to this operation
yet.

Complexity Considerations In [7], it is shown that
the overall complexity of Algorithm 3 can be characterized
as O(m|E|+1 · ηC·|E| · ξ · |E| · 2α·|E|+ |Sr|). The quantity α
that appears in this expression denotes the total number
of unsafe states that are added to list Q throughout the
entire execution of the algorithm; the remaining quantities
appearing in this expression are defined in the same way
as in the complexity characterization of Procedure 1.

Furthermore, the role of |Sr| in the above expression
is moderated by remarks similar to those that apply in
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the complexity analysis of Procedure 1. More specifically,
the (co-)reachability analysis that is performed in Lines
7, 14 and 27, is implemented using depth-first search
supported with hash tables to mark visited states, and the
empirical complexity of the corresponding computation is
much smaller than that suggested by the term |Sr|. In
fact, we can forego the co-reachability analysis of Lines
7 and 14. This variant of the proposed algorithm will
assume that each state x that results from backtracing
(Line 6) or Combine (Lines 10-13) is a safe state, unless
g(x) = τx, in which case all the enabled events (g(x)) lead
to unsafety. To describe the algorithm modifications in
this alternative approach, let x1 be a state that results
from backtracing u, and let x2 be a state that results from
the Combine operation. If g(x1) = τx1 , then x1 is added
to Unsafe_Prev. Otherwise, it is added to Safe_Prev,
i.e., it is assumed to be safe. Similarly, if g(x2) = τx2 ,
then x2 is added to Unsafe(Za). Otherwise, it is added
to Safe(Za). It was shown in [11] that this alternative
approach enumerates correctly all the minimal reachable
unsafe states.

In our experimental work, we tried both approaches, and
it turned out that the first one – i.e., the one presented
in the main statement of Algorithm 3 – is much more
computationally efficient. This can be explained by the
following two reasons: (i) As already mentioned, the states
that are evaluated for co-reachability, are either minimal
unsafe states or few steps away from minimal unsafe states.
Thus, the examined states are characterized by a low
process content, and the applied depth-first search method
is computationally very efficient. (ii) At the same time,
as revealed in the sequel, the empirical complexity of
Algorithm 3 is highly dependent on |Ȧ|. In the second
approach that is outlined above, the list Ȧ grows much
larger because it contains both safe and unsafe states
and their combinations, whereas in the first approach, Ȧ
contains only safe states.

From the above discussion, it can be concluded that
the computational complexity of Algorithm 3 is partic-
ularly sensitive to the capacities of the resource types,
the number of the distinct event types, and the number
of enumerated unsafe states. In addition, as remarked in
the previous paragraph, the computational experiments
presented in Section V will reveal that, statistically, the
algorithm running time is mostly correlated with the size
of list Ȧ.

Example (cont.) As it was previously mentioned, the
application of Procedure 1 on the considered RAS re-
sults in the minimal deadlock states u1, u2, u3, and
u4. Table IV depicts the unsafe states generated by
Algorithm 3,and the results of backtracing these states.
The algorithm starts by inserting the four identified
minimal deadlocks, u1, u2, u3, and u4, into Q. Back-
tracing these states results in adding the states a1, a2,
a3, and a4 to Ȧ. As illustrated in an earlier part of
this example, Combine(a1,a2) results in adding a5 =
{Ξ11,Ξ31,Ξ41,Ξ43,Ξ44,2Ξ51} to Safe(Za) and conse-

quently to Ȧ. Similarly, Combine(a1,a4) results in adding
a6 = {Ξ21,Ξ31,Ξ41,Ξ43,Ξ44,2Ξ51} to Ȧ. On the other
hand, Combine(a1,a3) results in adding the unsafe state
u7 to Unsafe(Za) and consequently to Q. Similarly,
Combine(a2,a3) results in adding the unsafe state u5 to
Q. Combining a4 with each of a2 and a3 yields u5 again.
Hence, u5 can be constructed by applying the Combine
operation to any pair of {a2,a3,a4}. On the other hand,
combining each of a5 and a6 with the other members of
Ȧ does not yield any minimal unsafe states or boundary
safe states. Finally, u5 and u7 can not be traced back.
Thus, after the sixth iteration, Q= ∅ and Ȧ= {a1, . . . ,a6}.
As illustrated in an earlier part of this example, applying
the Confine operation to a3 adds the state u6 to Q.
It can be seen that u6 < u7. Thus, u7 is a non-minimal
unsafe state and it is removed from U̇ by the procedure
Insert_Non_Min. On the other hand, the application of
the Confine operation to the other elements of Ȧ does
not generate any minimal unsafe state. Since the newly
generated state u6 can not be traced back, the algorithm
terminates.

Before we conclude the example, we also consider the
alternative approach that skips the co-reachability anal-
ysis of the generated states. After the generation of
u5 by Combine(a2,a3), u5 is inserted into Ȧ because
g(λ{a2,a3}) 6⊆ τλ{a2,a3}

. Also, τu5 = {Ξ11 → Ξ12,Ξ31 →
Ξ32}. In the next iteration, u5 is generated three more
times as a result of Combine(a4,a2), Combine(a4,a3)
and Combine(a4,u5). But only at u5 = λ{a4,u5} we get
g(λ{a4,u5}) = τλ{a4,u5}

; at that point, u5 is eventually
classified as an unsafe state. Thus, it took the alternative
approach one more iteration, one more element in Ȧ,
and three more Combine operations to realize that u5 is
unsafe.

C. Proving the correctness of Algorithm 3

In this part we establish the correctness of Algorithm 3.
More specifically, first we show that Algorithm 3 termi-
nates in a finite number of steps, and subsequently, we
establish that upon its termination, the algorithm will
have enumerated correctly all the minimal unsafe states
of its input RAS Φ.

Proposition 3: When applied on any well-defined in-
stance Φ from the RAS class considered in this work,
Algorithm 3 will terminate in a finite number of steps.

Proof:We first notice that the algorithm terminates when
there are no more unsafe states to be traced back nor
any states to be confined. As illustrated in the previous
subsection, a state s is inserted in L = U̇ ∪Q via the
procedure Insert_Non_Min, only if it does not dominate
an element of L. Furthermore, a state s′ that is deleted
from L due to such dominance considerations, will never
enter L again. But then, the finiteness of the computation
of Algorithm 3 results from the above remarks and the
finiteness of the underlying state space. �
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To establish that the algorithm enumerates correctly all
the minimal reachable unsafe states, we start by observing
that Theorem 1 establishes that Procedure 1 enumerates
correctly all the minimal deadlock states. Thus, our goal
is to show that Algorithm 3 enumerates also all the
deadlock-free minimal unsafe states. The main idea is
to show that a minimal unsafe state is missed only if a
“next” minimal unsafe state – i.e., a member of the set
nextMin introduced in Definition 2 – is also missed by the
algorithm. Then, the algorithm correctness can be based
upon the elimination of the possibility of having cyclical
dependencies in the relationship that is defined by the
nextMin operator. In particular, it will be shown that
every chain of dependencies among the minimal unsafe
states that is defined by operator nextMin, will end up in
a minimal deadlock, and the sought result will be obtained
from Theorem 1.

Proposition 4: A deadlock-free minimal unsafe state u
is missed by Algorithm 3 only if an entire set of states
nextMin(u,ei) is missed by the algorithm.

Proof: Suppose that the algorithm generates at least one
element from each set nextMin(u,ei), and w.l.o.g further
assume that {h1, . . . ,hk} are minimal unsafe states and
{hk+1, . . . ,hK} are non-minimal unsafe states, 0≤ k ≤K.
By the working assumption, we can consider that the al-
gorithm generates the states {h1, . . . ,hk,zk+1,1, . . . ,zK,1},
where the notation of Definition 2 has been ap-
plied. The set Y = {u(1), . . . ,u(k),sk+1,1, . . . ,sK,1} col-
lects the corresponding predecessors of the states in
the set {h1, . . . ,hk,zk+1,1, . . . ,zK,1}, that are obtained
by tracing back from each of the elements of the set
{h1, . . . ,hk,zk+1,1, . . . ,zK,1} respectively across the edges
e1, . . . ,eK . It can be seen that u(1) = . . . = u(k) = u,
τu(i) = {ei}, i≤ k, and τsi1 = {ei}, i > k. If k ≥ 1, then u
is the predecessor of h1 that is obtained by tracing back
e1; hence u is generated by Lines 6-7 of Algorithm 3,
and we are done. On the other hand, if k = 0, then
∀i= 1 :K, si1 is a boundary safe state obtained by tracing
back ei from the unsafe state zi1. Definition 2 and its
accompanying discussion reveal that si1 < u, ∀i. Hence,
a2 = λ{s11,s21} ≤ u. Therefore, we can infer that e1 and
e2 are enabled at a2. Hence, s11 and s21 are combinable,
and τa2 = (τsi1 ∪ τsi2)∩ g(a2) = {e1,e2}. If a2 is unsafe,
then, by the minimality of u, a2 = u. Hence, u is added
to Unsafe(Za) at Line 14, and consequently to Q at Line
16. Otherwise, a2 is added to Safe(Za) at Line 14, and
consequently to Ȧ at Line 15. In a subsequent iteration,
Line 12 will find that s31 and a2 are also combinable,
yielding a3 = λ{s31,a2}. The same argument is repeated
until either u or aK ≡λ{s11,...,sK1}<u is generated. It also
holds that τaK

= {e1, . . . ,eK}. Hence, we can see that, if u
has not been generated during the K−1 “combine” itera-
tions that generate aK , by the definition of the Confine
operation, it will be contained in the set of states returned
by Confine(aK , τaK

), and it is thereby generated by Line
22. �

The next lemma eliminates the possibility of having
cyclical dependencies in the relationship among minimal
unsafe states that is defined by the nextMin operator.

Lemma 2: Consider a sequence of minimal unsafe states
{uk}lk=1 such that uk ∈ nextMin(uk−1), k = 2 : l. Then
u1 6∈ nextMin(ul).

Proof: Let e1 = (Ξij ,Ξij∗) be the transition edge between
u1 and its next state in the considered sequence. Let ~Ξij
denote the processing stages in Gi that are co-reachable to
Ξij ; by definition, Ξij ∈ ~Ξij . The acyclicity of Gi implies
that

∑
Ξij′∈~Ξij

u2(Ξij′) ≤
∑

Ξij′∈~Ξij
u1(Ξij′)− 1. Due to

the absence of loading events from the considered sequence
and the acyclicity of Gi, there does not exist a state uk, k≥
2, in this sequence where

∑
Ξij′∈~Ξij

uk(Ξij′) is restored to
its original level at u1. Therefore, u1 6∈ nextMin(ul). �

Now we are ready to present the main result regarding
the correctness of Algorithm 3.

Theorem 2: Algorithm 3 generates all the minimal reach-
able unsafe states of its input RAS Φ.

Proof: Assume that the minimal reachable unsafe state
u1 is missed by the algorithm. Proposition 4 ensures
that this is due to missing another minimal unsafe state
u2 ∈nextMin(u1). Repeating the same argument with u2,
we get that the algorithm missed the minimal unsafe states
u1,u2, . . . ,ul, where uk ∈ nextMin(uk−1). But Lemma 2
eliminates the possibility of having a cycle in this path
and l is bounded from above by |S̄s̄|. Hence, ul is a missed
minimal deadlock state. ul is also reachable, by the speci-
fication of the sequence u1,u2, . . . ,ul, and the fact that, in
the considered RAS class, s ∈ Sr ∧ s′ ≤ s =⇒ s′ ∈ Sr. But
when combined with Lines 2 and 18 of Algorithm 3, the
above results contradict Theorem 1.

V. Computational results

In this section we report the results from a series of com-
putational experiments, in which we applied Algorithm 3
upon a number of randomly generated instantiations of
the RAS class that was defined in Section II. Moreover,
we compare the performance of this algorithm with the
algorithm of [9] that relies on the exhaustive enumeration
of the underlying state space. Each of the generated
instances was further specified by:

• The number of resource types in the system; the range
of this parameter was between 3 and 16.

• The capacities of the resource types in the system;
the range of this parameter was between 1 to 4.

• The number of process types in the system; the range
of this parameter was between 3 and 5.

• The structure of the process graphs Gi and of the
resource request vectors that were supported by the
resource allocation function A. In terms of the first
attribute, the generated instances contain RAS where
all their processes presented a simple linear structure,
and RAS where some of their processes possessed
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routing flexibility (Disjunctive RAS). In terms of
the second attribute mentioned above, the gener-
ated instances contain RAS with single-type resource
allocation and instances with conjunctive resource
allocation (Conjunctive RAS).

• The number of processing stages in each process;
the range of this parameter was between 3 and 16.
Furthermore, in order to remain consistent with the
RAS structure defined in Section II, no processing
stage has a zero resource-allocation vector.

The employed RAS generator was encoded and compiled
in C++. For each generated RAS instance, Φ, we enu-
merated the reachable minimal unsafe states by applying,
both, (i) the algorithm of [9] and (ii) Algorithm 3. We
imposed a hard limit of 48 hours for the solution of
these instances. All our computational experiments were
performed on a 2.66 GHz quad-core Intel Xeon 5430
processor with 6 MB of cache memory and 32 GB RAM;
however, each job ran on a single core. Both Algorithm 3
and the algorithm of [9] were encoded in C++, compiled
and linked by the GNU g++ compiler under Unix. 5

Table V reports a representative sample of the results
that we obtained in our experiments. The first section of
the table is for RAS instances with simple linear structure
and single-type resource allocation. The second section
is for RAS instances with simple linear structure and
conjunctive resource allocation. Finally, the last section of
the table is for RAS instances with routing flexibility and
conjunctive resource allocation. Columns 1 – 3 in Table V
report, respectively, the cardinalities of the set of reachable
states, the set of the reachable unsafe states, and the set
of reachable minimal unsafe states. Column 4 (γ) reports
the number of minimal unsafe states generated by Algo-
rithm 3 without performing the reachability evaluation of
the generated states (Line 27). Column 5 (α) reports the
total number of unsafe states added to Q throughout the
course of the execution of Algorithm 3. Column 6 reports
the cardinality of the list Ȧ at the end of the execution
of Algorithm 3. Column 7 (to) reports the amount of
computing time (in seconds) that was required to compute
the minimal unsafe states through the algorithm of [9].
Finally, Columns 8 (tn) and 9 (tr) report, respectively,
the amount of time (in seconds) spanned by Lines 1-26
and Line 27 of Algorithm 3. The rows that have some
unreported entries correspond to RAS instances for which
the algorithm of [9] did not conclude within 48 hours. The
reported cases are ordered in increasing magnitude of the
corresponding to.

As mentioned in the previous paragraph, the data pro-
vided in Table V are representative of a more extensive
sample that was collected in our experiments. The perusal
of these data reveals very clearly the computational effi-
cacy of Algorithm 3 in computing the reachable minimal

5The implementation of the algorithms and the RAS configura-
tions used for these experiments can be obtained by contacting the
authors.

unsafe states, especially when compared to the algorithm
of [9]. The presented data also indicate that (i) the com-
putational complexity of Algorithm 3 is mostly dependent
on the cardinality of the set Ȧ, and that (ii) Algorithm 3
demonstrates more computational efficacy compared to
the algorithm of [9] for RAS configurations with routing
flexibility; this last effect can be explained by the relative
scarcity of unsafe states in RAS with routing flexibility.
Finally, the last column of Table V highlights the fact that,
in spite of the high theoretical worst-case complexity of
the computation in Line 26 of Algorithm 3 (assessing state
reachability), the practical complexity of this computation
is very benign.

VI. Conclusion

This work has presented a novel algorithm for the enu-
meration of the set of reachable minimal unsafe states
for the complex RAS that were described in Section II.
A defining feature of this algorithm is that it avoids
the complete enumeration of the underlying state space.
Furthermore, a series of computational experiments has
manifested the superiority of this algorithm w.r.t. the
existing approaches that rely on a complete state space
enumeration.

A companion research endeavor to this work has sought
to adapt the presented algorithm to some RAS classes
whose state space is infinite. The dynamics of these classes
cannot be modeled by a Finite State Automaton, and
therefore, their behavioral analysis is not amenable to the
elementary, enumerative techniques that can provide the
basic characterizations for deadlock and deadlock avoid-
ance along the lines discussed in Section II. Some relevant
results are reported in [12].
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