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Throughput maximization of capacitated re-entrant
lines through fluid relaxation

Michael Ibrahim and Spyros Reveliotis

Abstract—This paper extends the scheduling methodology for
complex stochastic networks that is based on the solution of a
“fluid” relaxation at each decision point of the original scheduling
problem, to stochastic networks with blocking and deadlocking
effects. For a clearer and more concrete treatment, the presented
results are developed in the operational context of a re-entrant
line with finite buffering capacity at each workstation; these re-
entrant lines are characterized as “capacitated re-entrant lines
(CRLs)”. From a methodological standpoint, the paper results are
enabled by a pre-established ability to control the underlying re-
source allocation for deadlock freedom, and by the further ability
to express the corresponding deadlock avoidance policy as a set of
linear inequalities on the system state. Also, the employed “fluid”
relaxation for this new regime differs from the “fluid” relaxations
that have been employed in past implementations of the method,
since it must account for the blocking effects that take place in the
considered CRLs. The efficacy the presented scheduling method
is assessed through numerical experimentation that compares, for
a set of “benchmark” CRLs, the performance of the scheduling
policies obtained through this method, to (i) the performance of
the corresponding optimal scheduling policies, and also to (ii) the
performance of some other heuristic scheduling policies for these
systems that are adapted from the relevant literature. Finally,
an additional set of experiments demonstrates and assesses the
scalability of the presented method by applying it to some pretty
large system configurations.

Note to Practitioners – While the real-time management /
scheduling of complex resource allocation systems (RAS) is a
thriving area in general, the particular problem of scheduling
such systems with extensive blocking and deadlocking effects in
their operation has received very limited attention. To a large
extent, this is due to the fact that the effective scheduling of
this particular RAS class requires the initial resolution of an
additional problem, of a more combinatorial type, that concerns
the establishment of “liveness” for the underlying workflow,
i.e., the ability of all the activated jobs to proceed to their
completion securing successfully all the required resources for
the execution of their various processing stages, and avoiding
the formation of any deadlocks or livelocks. On the other hand,
this problem of liveness-enforcement for the considered RAS
has received extensive attention within a certain part of the
controls community during the past decades, and the currently
available results provide a broad range of methods and policies
for supporting the necessary supervision. This paper combines
the aforementioned results on RAS liveness-enforcing supervision
with a scheduling methodology that has been very popular in
the context of other hard scheduling problems, in order to
develop a complete scheduling methodology for the considered
RAS. Extensive numerical experimentation reported in the paper
demonstrates and assesses the efficacy of the presented method.
Finally, in an effort to provide more concrete and simpler expo-
sition for the presented developments, the results are presented
in the operational context of a “capacitated re-entrant line”, i.e.,
a particular RAS class modeling the operation of re-entrant lines
with finite buffering capacity at its various workstations.
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This work was partially supported by the NSF grant ECCS-1405156.
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systems, liveness-enforcing supervision, fluid relaxation

I. INTRODUCTION

This paper deals with the problem of the effective and
efficient real-time management of complex resource allocation
systems (RAS) with blocking and deadlocking effects. This is
a particular class of scheduling problems that has received very
limited attention by the classical and even the more modern
scheduling theory [1], [2], [3]. We believe that a primary
reason for this reality is the fact that the effective scheduling
of this particular class of systems requires the resolution of
an additional type of problem that concerns the establishment
of “liveness” for the underlying workflow, i.e., the ability of
all the activated jobs to proceed to their completion securing
successfully all the required resources for the execution of
their various processing stages, and avoiding the formation of
any deadlocks or livelocks.

On the other hand, the problem of the coordination of
the complex, sequential resource allocation that takes place
in many contemporary applications, in order to prevent the
formation of the potential deadlocks and livelocks that were
mentioned in the previous paragraph, has been studied exten-
sively within the Discrete Event Systems (DES) community,
as a particular application of DES Supervisory Control (SC)
theory [4], [5]. The currently available results from these
studies are very powerful, and they can provide SC policies
– known as Deadlock Avoidance Policies (DAPs) or Liveness
Enforcing Supervisors (LES) in the corresponding application
settings – that can ensure deadlock freedom and live operation
for the target applications while remaining very tractable as
these applications scale up with respect to (w.r.t.) their size
and their operational complexity. A comprehensive and sys-
tematic exposition of the current theory on liveness analysis of
complex RAS, and the liveness enforcing supervision of these
systems through the effective synthesis and the deployment of
the aforementioned DAPs, can be found in [6].

However, as pointed out in the introductory chapter of
[6], the currently available SC theory for RAS deadlock
avoidance constitutes preventive – also known as “behav-
ioral” or ‘logical” – control for the underlying RAS; i.e.,
the corresponding SC policies essentially seek only to block
decisions or actions that could be detrimental for the liveness
of this system. Hence, at each decision point of the considered
resource allocation function, the DAPs that are offered by the
aforementioned theory of [6], act as “filters” that restrain the
original set of available decisions / actions to an admissible
subset, weeding out the elements of the original set that might
lead to problematic behavior. But there is a remaining need for
additional control logic that will select a particular decision or
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Fig. 1: An event-driven control scheme for the real-time management
of the considered RAS [7]. The controller responds to the various
events taking place in the controlled RAS by updating a state model
that defines the feasible behavior of this system. This behavior
is “filtered” through the logical controller in order to obtain the
admissible behavior, i.e., the behavior that is consistent with certain
specifications imposed on the RAS operation, including the require-
ments for deadlock-freedom and liveness. Finally, the admissible
behavior is processed through the performance-oriented controller in
order to select the particular action(s) among the admissible behavior
that eventually will be commanded upon the RAS.

action from the admissible set that is defined by the applied
DAP, to be commanded eventually on the plant RAS. This
additional control logic must observe certain “performance”
requirements for the underlying RAS that are typically ex-
pressed by some time-based criteria, like the maximization of
some notion of throughput, or the control of the congestion
that is experienced by the different entities that go through
the considered operations. The corresponding control problem
is complementary to the RAS logical control problem for
deadlock avoidance, and it essentially constitutes a scheduling
problem for the logically controlled RAS. The DES-based
real-time controller for the considered RAS that results from
the above decoupling of the corresponding decision-making
process into (i) behavioral (or logical) and (ii) performance-
oriented control (or scheduling), is depicted schematically in
Figure 1, and it is further elaborated in the legend of this
figure.

When it comes to the systematic investigation of the
performance-control problem of the logically controlled RAS,
the currently available results are very limited. In [8], [7], [9]
it is shown that this problem can be modeled as a Markov
Decision Process (MDP), and the applied liveness-enforcing
supervision establishes a communication structure for the
underlying state space that renders this MDP analyzable and
solvable through some very powerful results and algorithms
from the broader MDP theory [10]. But the practical appli-
cability of all these algorithms is substantially limited by the
very large sizes of the involved state spaces. In fact, the size of
these state spaces, when combined with their discrete nature,
further implies that even the mere enumeration of an optimal
(deterministic) scheduling policy for the considered MDPs is
an intractable task, since this enumeration must specify an

optimal action for every single state.
In view of the aforementioned complications, in some past

works we have tried to address the considered RAS scheduling
problem by adapting to it ideas and techniques that come from
the burgeoning area of Approximate Dynamic Programming
(ADP) [11]. Thus, in [8], [12] we have pursued the idea of
developing a “feature”-based approximation of the relative
value function of the underlying MDP, along the corresponding
theory that is discussed in [13]. But the selection of a good set
of “features” – or, more formally, a set of “basis” functions
for supporting the sought approximation – is currently an
ad hoc process, and a naive definition of these features,
based on some elementary concepts that are provided by
the corresponding queueing and scheduling disciplines, does
not enable an effective, controllable trade-off between the
computational complexity of the derived policies and their
attained performance. Hence, more recently, in [9], [14], [15],
we have sought to circumvent this difficulty by pursuing an
ADP approximation method that is known as “approximation
in the policy space” [11]. Under this new approach, the
selection of the sought scheduling policy is optimized over
a predefined policy space that (a) admits a parsimonious
representation, and (b) is naturally motivated by the underlying
problem structure and the prevailing industrial practice. But
this approach implies that the quality of the obtained policy
is drastically (pre-)determined by the selected policy space.
Additional challenges for this method arise from (i) the fact
that it uses stochastic approximation [16] for the selection of
an optimal parameter setting for the sought policy, which is a
computationally intensive proposition, and (ii) the possibility
of entrapment in local optima during the policy optimization
process.

This paper complements and extends the aforementioned
endeavors by introducing a third approach for determining
a near-optimal scheduling policy for the considered RAS
and the corresponding MDP formulation. This new approach
seeks to overcome the limitations of the previously pursued
methods, that were discussed in the previous paragraph, by
adapting to the considered problem setting an alternative
scheduling method that has been employed with extensive
success by the OR and IE communities for other classes of
complex scheduling problems, that do not present, however,
the behavioral problems of deadlock and livelock that are at
the core of the resource allocation functions considered in this
work; some specific examples of such earlier implementations
can be found in [17], [18], [19], [20]. From a methodological
standpoint, this new approach will resolve the performance-
control problem that is addressed at each decision epoch by
the real-time control framework of Figure 1, by

1) first defining and solving a linear programming (LP)
formulation that is known as the corresponding “(fluid)
LP relaxation” in the relevant terminology, and

2) subsequently utilizing the obtained optimal solution for
this LP in order to define a selection criterion among
the set of decisions / actions that are admissible by the
applied DAP at the current decision point.

The aforementioned LP relaxation to be solved at each
decision epoch is determined by (i) the structure of the
underlying RAS, (ii) the RAS state at the current decision
epoch, and (iiii) the control logic of the applied DAP. The
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last dependency further implies that the applied DAP must be
expressible as a set of linear inequalities on the RAS state;
such DAPs are characterized as “linear” in the corresponding
literature, and the theory presented in [6] can provide effective
and parsimonious realizations of these policies for any given
instance from the RAS class(es) to be considered in this work.
On the other hand, the considered paper provides

1) a complete definition of the LP relaxation to be formu-
lated and solved at each decision epoch in the context
of the considered RAS;

2) the necessary logic for converting the obtained optimal
solution of the LP relaxation to specific criteria that
will drive the selection of the admissible actions to be
commanded upon the underlying RAS at these decision
epochs; and

3) extensive numerical experimentation that (i) establishes
the ability of the presented method to provide very effi-
cient scheduling policies, while (ii) remaining tractable
under the stringent time budgets that must be typically
observed in the real-time operational settings of the
underlying applications.

In an effort to concretize the presented results and control
the expository complexity of the subsequent developments,
in the following we shall restrict our consideration to the
particular RAS class of the capacitated re-entrant line (CRL),
seeking to develop a detailed scheduling methodology that
will maximize the long-term throughput of any given CRL
instantiation. This choice is also in line with a similar practice
that was adopted in the aforementioned developments of [8],
[12], [9], [14], [15],

We remind the reader that, in the context of the existing
scheduling literature, the classical (uncapacitated) re-entrant
line (RL) essentially constitutes a “linear” (i.e., strictly sequen-
tial) workflow where some of the supported processing stages
share the same workstation [21]. Furthermore, this classical
re-entrant line has been the object of extensive study by the
past scheduling theory since it is one of the simplest workflow
layouts that gives rise to many of the challenging scheduling
problems that are also encountered in more complex opera-
tions.1 Hence, the current literature avails of some very strong
analytical results characterizing and assessing the stability of
any instantiation of the uncapacitated RL model under any
given scheduling policy [23], [24], [25], [26], [27], and it
also provides some very efficient policies that can ensure
stable operation while retaining the operational simplicity of
the dispatching rules that are frequently used in the relevant
production environments [28], [29].

On the other hand, the CRL model that is considered in
this work modifies the original RL model by imposing a finite
buffering capacity at each of the line workstations. In [30],
[31], it is shown that the blocking and deadlocking effects
that are introduced by this modification in the underlying
workflow dynamics, negate the applicability to the CRL model
of the aforementioned results of scheduling theory for the
original RL model, and define a need for new scheduling

1In addition, from a more practical standpoint, the uncapacitated “re-
entrant line” model has been extensively promoted as a pertinent abstraction
for the representation of the basic workflow that is encountered in many
semiconductor manufacturing fabs [22].

methodologies for this model, like the ones that are pursued
in this work.

Finally, in the context of the RAS models and their LES the-
ory that are presented in [6], a CRL constitutes a RAS where
the primary administered resources are the finite buffering
capacities of the line workstations.2 Hence, for the purposes
of deadlock avoidance, this CRL can be abstracted to a Linear,
Single-Unit (L-SU) RAS in the corresponding RAS taxonomy
that is presented in [6], with the additional restriction that this
RAS supports only one process type. From a more practical
standpoint, the CRL classification as an L-SU RAS specifies
further the theory that is available for its liveness enforcing
supervision, while the fact that it supports only a single
process type is very useful for simplifying the subsequent
developments since it enables a straightforward definition of
the notion of “throughput maximization” that is pursued in the
later parts of this document.3

In view of the above positioning of the paper content
and its intended contribution, the rest of it is organized as
follows: Section II introduces the considered CRL model
and the corresponding throughput-maximization problem. This
section also reviews the main results from the RAS SC
theory of liveness-enforcing supervision that are necessary
for the complete definition of the addressed CRL scheduling
problem, and expresses this scheduling problem as an average-
reward continuous-time MDP. A small but elucidating example
distributed across the various parts of this section highlights
and concretizes the different concepts and structures that are
introduced in these parts. Section III presents the scheduling
methodology that is pursued in this work, and demonstrates
its application through the example problem instance that
was introduced in Section II. On the other hand, the efficacy
of the presented scheduling method, in terms of the quality
of the derived schedules and its scalability, is demonstrated
and assessed more thoroughly in Section IV. More specifi-
cally, this section reports a series of numerical experiments
that implement the presented method on a number of CRL
configurations taken from some respective experiments that
are reported in [15], and enable us to assess the efficacy of
the method in terms of the quality of the derived solutions.
At the same time, a complementary set of experiments on
larger CRL configurations also demonstrates the scalability of
the presented method in terms of the involved computations.
Section V concludes the paper, summarizing its developments,
highlighting further their broader significance in the context
of the existing literature and for the underlying practice, and
pointing out some directions for future work. Finally, we also
notice, for completeness, that an abridged version of this work

2Strictly speaking, the workstation servers are additional resources that
must be allocated to the running processes for the execution of their various
processing stages. But the local nature of these allocations, in terms of the
corresponding workstations, implies that they cannot be a source for deadlock
or livelock; hence, they are ignored when it comes to the RAS logical control
problem of liveness-enforcing supervision. On the other hand, the server
allocations are central in the performance-oriented control of these models.

3In RAS that support more than one process types, throughput-
maximization problems must be addressed under additional constraints that
relativize / distribute the attained throughput along the various supported
process types; while practically relevant, the inclusion of this additional
feature in the subsequent discussion would complicate the exposition of the
underlying models and formulations without adding anything substantial to
the pursued ideas and methods.
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has been accepted for presentation at ACC 2018.4

II. THE CAPACITATED RE-ENTRANT LINE AND THE
CORRESPONDING THROUGHPUT-MAXIMIZATION PROBLEM

This section introduces the considered CRL model, and
provides the necessary background material for a detailed char-
acterization of (i) the corresponding logical control problem
of deadlock avoidance, and (ii) the complementary schedul-
ing problem of Figure 1; this last problem is posed as the
throughput-maximization of the considered CRLs, and it is
eventually formulated as an average-reward MDP. The section
also highlights / provides pointers to the key results for the
synthesis of linear DAPs for Linear Single-Unit RAS, that are
necessary in the context of this work.

A. The considered CRL model

Since the considered CRL model can be perceived as a
linear, single-unit RAS with a single process type, its basic
structure and functionality can be defined in terms of the
structure and functionality that characterizes the broader RAS
abstraction in the corresponding literature [6].

Hence, in the CRL case, the primary resource types are L
single-server workstations, W1,W2, . . . ,WL, each possessing
finite buffering capacity Bi, i = 1, . . . , L. On the other hand,
the process type that is supported by this line is defined by a
sequence of M processing stages, J1, J2, . . . , JM . Each pro-
cessing stage Jj is carried out at one of the line workstations
and it requires a slot of the station buffering capacity during its
entire sojourn in it. This station will be denoted by W (Jj), and
the function W (·) constitutes the resource allocation function
for the corresponding L-SU RAS. Furthermore, it is assumed
that L < M , an assumption that manifests the re-entrant nature
of the line.

Some additional assumptions that detail the line operation,
are as follows:

A part visiting the workstation W (Jj) for the processing
of the corresponding processing stage Jj will receive service
from the station server by having the server visiting the buffer
slot that accommodates this part. Hence, any part visiting this
workstation will remain in its allocated slot during its entire
sojourn at the station, and at any time point during this sojourn,
the part will either be waiting for processing, be in processing,
or will have completed processing and it will be waiting for
transfer to the next required workstation.

Furthermore, in line with the corresponding resource alloca-
tion theory, a part that has completed the processing of stage
Jj , can move to the next required workstation W (Jj+1) for the
execution of its next processing stage, only when there is an
available buffer slot at this workstation. Hence, the processed
parts are subjected to blocking effects, and when combined
with the re-entrant nature of the considered workflow, these

4The ACC 2018 write-up constitutes a much more concise development
of Sections II and III, and includes neither the experimental results that are
reported in Section IV, nor the expansive introductory discussion of this work
that connects the presented results to the RAS real-time control problem of
Figure 1.

WS 1 WS 2

I/O Port

Process route:
WS1 -> WS2 -> WS1

Fig. 2: An example CRL.

blocking effects can also give rise to deadlocks.5

The processing times for the processing stages Jj , j =
1, . . . ,M , are assumed to be exponentially distributed with
mean processing time τj . And we shall also set µj ≡
1/τj , ∀j.6 Furthermore, part loading and transfer times be-
tween the line workstations are assumed to be negligible w.r.t.
processing times.7

Finally, since in the following developments our primary
objective is the throughput maximization of the considered
CRL model, we also assume the existence of an “infinite
backlog” of parts waiting for processing in front of the line;
i.e., the line never starves for work.

Example: We concretize the definition of the CRL model
that was provided in the previous paragraphs, through the
example manufacturing system that is depicted in Figure 2.
This system consists of two workstations, labeled as WS1

and WS2 in Figure 2, and an I/O port that interfaces it with
the rest of its operational environment. Each workstation has
a single server, depicted as a grey ellipse in Figure 2, and two
buffer slots, depicted by the corresponding rectangles. Parts
visiting each of the two workstations are accommodated at
one of the available buffer slots, and they are processed by
the workstation server by having the server visiting the cor-
responding slot. A robotic manipulator supports the necessary
material handling functions, and integrates the entire facility
to a fully automated cell. Figure 2 also provides the process
route for the parts that are processed through this CRL; since
workstation WS1 is visited twice by each part, the consid-
ered layout constitutes a re-entrant line. Furthermore, letting
Jj , j = 1, 2, 3, denote the three processing stages of this CRL,

5We also want to notice that while the adopted service model for the
line workstations intends to provide a concrete base for the exposition of
the presented developments, it is not restrictive in any strong sense, since
the presented method can be easily adapted to other service models that are
employed by such workstations. From a more practical standpoint, this service
model for the line workstations is a quite faithful abstraction of the workflow
that is materialized at the various chambers of the, so called, “cluster tools”
[32], that constitute a prevailing technology in the current semiconductor
manufacturing.

6While the assumption of exponential processing times is meant to simplify
the exposition of the theory that is developed in this paper, more generally
distributed processing times can be handled by approximating them by phase-
type distributions to any desired degree of accuracy; please, c.f. to [33] for
an introduction to phase-type distributions, and to [5] for a brief introduction
on the modeling of non-Markovian dynamics by phase-type distributions.

7Non-zero loading and transfer times can be included easily in the consid-
ered model through the addition of further stages in the underlying process
plan.
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under the notation that was introduced in the earlier parts of
this section we shall also have W (J1) = W (J3) = WS1

and W (J2) = WS2. Finally, we assume that the processing
times for each of the three processing stages are exponentially
distributed with corresponding instantaneous rates µj and
corresponding expected values τj = 1/µj , j = 1, 2, 3.

B. Abstracting the CRL “untimed” dynamics through a finite
state automaton

Following the relevant theory presented in [6], we model
the basic structure of the workflow dynamics of the intro-
duced CRL model, and the corresponding resource alloca-
tion function, by means of a finite state automaton (FSA)
Φ ≡ (S,E, f, s0, SM ). Next, we define the various elements
of this automaton Φ.

State and state space: A pertinent definition of a notion
of state for this automaton can be based on the number of
the parts waiting for processing, being processed or having
completed processing of the different processing stages, Jj ,
of the supported process type. More specifically:

Definition 1: The state s of the CRL model considered in
this work is a 3M -dimensional vector with component 3j +
k, j = 0, . . . ,M − 1, k = 1, 2, 3, denoting respectively the
number of parts that are waiting for processing, executing, or
having completed processing stage Jj . �

The state set S of the aforementioned automaton Φ consists
of all vectors s that admit an interpretation according to Defini-
tion 1, and are compatible with (i) the single-server assumption
for the line workstations, and (ii) the available buffering and
capacities Bi, i = 1, . . . , L, at these workstations. Then, the
finite buffering capacity of all workstations implies that the
resulting state set S of Φ is, indeed, finite.

Furthermore, since, in the considered CRL model, (a) part
loading and unloading require zero time, and (b) there is an
infinite backlog of jobs waiting for processing, it is possible
to simplify the state concept introduced in Definition 1 by
dropping the first and the last component of the state vector
s; i.e., parts seeking to execute their first processing stage can
be loaded into the line only when the corresponding server
is available, and parts having completed processing of the
last processing stage can be unloaded immediately. In the
following, we shall adopt this simplified state model, with the
necessary adjustments in the corresponding notation.

Example: The (simplified) state s of the FSA Φ correspond-
ing to the CRL of Figure 2 is a 7-dim integer vector. The
first two components of this vector s, s1 and s2, report, re-
spectively, the number of parts at workstation WS1 executing
processing stage J1 and having completed the processing of
this stage; components s3, s4 and s5 report the number of
parts in workstation WS2 that are, respectively, waiting for
the execution of stage J2, executing this stage, and having
completed execution of this stage; finally, components s6

and s7 of state s report the number of parts at workstation
WS1 respectively waiting for the execution of stage J3 and
executing this stage. �

Events and their controllability: The set of events, E, that
advance state s, consists of (i) the event el that loads a new
part on the line; (ii) the events eaj , j = 1, . . . ,M − 1, that
advance a part from workstation W (Jj) to the next requested
workstation, W (Jj+1), allocating to this part a free buffer slot

of the new workstation; (iii) the events epj , j = 1, . . . ,M ,
that initiate the processing of a part at workstation W (Jj)
by allocating to it the corresponding server; (iv) the events
edj , j = 1, . . . ,M , that de-allocate the server upon completion
of the part processing; and (v) the event eu that unloads a
completed part from the line.

Furthermore, for the needs of the subsequent developments,
it is also pertinent to distinguish the various event types that
were defined in the previous paragraph into “controllable”
and “uncontrollable” events. More specifically, the events
of type (i), (ii), (iii) and (v) are controllable by the line
supervisor. Furthermore, under the aforestated assumptions,
these events are executed in zero time when commanded by
the supervisor. On the other hand, the events of type (iv)
occur spontaneously upon the completion of the processing
of the corresponding part, and therefore, they will be treated
as uncontrollable events. The reader should also notice that,
in the timed dynamics of the considered CRL, there is a
nonzero lag between a type (iii) event and the execution of
the corresponding type (iv) event, that corresponds to the
necessary processing time.

The state transition function: The state transition function
f : S × E of automaton Φ is a partial function encoding
the evolution of the system state s upon the execution of the
different events e ∈ E. In particular, function f is defined only
on those pairs (s, e) ∈ S ×E where the considered event e is
feasible in the corresponding state s. Furthermore, f extends
on S × E∗ in the natural manner.8

Initial and marked states: For the initial state s0 of FSA
Φ, we set s0 = 0, i.e., the state where the line is empty of
any parts. We also set SM = {s0}, signifying the fact that an
accepting run of FSA Φ should complete all the activated jobs
and bring the system back to its initial state.

Deadlock and the need for deadlock avoidance: As
remarked in the introductory section, the ability of the consid-
ered CRL to reach its marked state s0 can be compromised by
the formation of deadlock. In the abstracting representational
framework of FSA Φ, deadlock is formally defined as follows:

Definition 2: A CRL deadlock is a state s of the correspond-
ing FSA Φ where there is a subset I ⊆ {1, . . . , L} such that (i)
each workstation Wi, i ∈ I, has its buffer slots fully allocated,
and (ii) each part p accommodated in the workstation subset
that is defined by the index set I requests transfer to another
workstation in this subset. �

Example: In the FSA Φ that corresponds to the CRL of
Figure 2, any state s that has (a) the buffer slots of workstation
W1 fully allocated to parts executing or having completed their
first processing stage, and (b) the buffer slots of workstation
W2 also fully allocated (obviously to parts waiting for the
execution / executing / having completed the execution of
their second processing stage), is a deadlock. Formally, these
deadlock states are represented by the set

Sd ≡ {s ∈ S : s1 + s2 = 2 ∧ s3 + s4 + s5 = 2} (1)

The reader can also check that the states contained in the above
set Sd are the only deadlock states of the CRL considered in
this example. �

8We remind the reader that, in the relevant automata theory, E∗ denotes
the Kleene closure of the event set E; i.e., E∗ contains all the finite-length
sequences σ of the elements of E, including the empty sequence ε.
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It is clear that under the operational assumptions that
were stated in Section II-A, parts that are involved in a
deadlock formation will be permanently stalled in their current
workstations, and at the same time, they will prevent the
advancement of any further parts through these workstations.
Hence, CRL states containing such deadlock formations must
be proactively identified and blocked during the line operation.
This task necessitates the deployment of an additional control
function on the considered CRL that takes the form of a
pertinent deadlock avoidance policy (DAP). As mentioned in
the introductory section, the design of a pertinent DAP for
any given CRL configuration is supported by the existing
supervisory control theory for complex resource allocation
systems [6]. Next, we overview some basic developments in
this theory that are particularly relevant to the needs of this
work; the reader is referred to [6] for a much more expansive
exposition of this material.

C. Establishing deadlock freedom for the considered CRL
model

An alternative, more compressed representation of the
underlying CRL dynamics: It is clear from Definition 2
and its accompanying example that CRL deadlock is due
only to the allocation of the workstation buffering capacity,
and not to the allocation of the processing capacity of the
line servers. Hence, the corresponding problem of deadlock
avoidance can be focused on this particular allocation. This
can be achieved by considering the further abstraction of
the FSA Φ, that was introduced in the previous subsection,
to the FSA Φ̂ = (Ŝ, Ê, f̂ , ŝ0, ŜM ), with a (vector) state ŝ
that considers collectively all the parts located at workstation
W (Jj), j = 1, . . . ,M , for the execution of the corresponding
processing stage Jj ; in other words, each component of the
new state ŝ will report the number of parts located at some
workstation W (Jj), j = 1, . . . ,M , for the execution of
the corresponding processing stage Jj , without discriminating
whether these parts are waiting for processing, are in process-
ing, or have completed processing of this stage and are waiting
for transfer to the next required workstation. Furthermore, the
event set Ê of Φ̂ will consist only of the type (i), type (ii)
and type (v) events of the original FSA Φ. Finally, we also
set ŝ0 = 0, and ŜM = {ŝ0}.

Example: For the example CRL of Figure 2, the correspond-
ing FSA Φ̂ has a 3-dim state ŝ. Furthermore, for any state
s of the original FSA Φ that was defined in Section II-B,
the corresponding state ŝ is obtained through the following
equations:

ŝ1 ≡ s1 + s2

ŝ2 ≡ s3 + s4 + s5

ŝ3 ≡ s6 + s7 (2)

Clearly, state ŝ changes only when a part enters or leaves
one of the line workstations, and it ignores completely the
server allocation at these workstations, as well as the specific
processing status of the various parts that are located at these
workstations.

It is also interesting to notice that, according to Equations 1
and 2, in the more abstracted representation of the CRL
dynamics that is provided by FSA Φ̂, all deadlock formations

taking place in the CRL of Figure 2 are represented by
the single state ŝd = (2, 2, 0). It is this representational
compression attained by FSA Φ̂ that renders it useful in the
analysis of the corresponding deadlock avoidance problem and
in the subsequent developments. �

State reachability, safety and maximally permissive
deadlock avoidance: In the notational semantics that are
associated with FSA Φ̂, we shall further denote by Ŝr the
set of reachable states of Φ̂, i.e., the states ŝ ∈ Ŝ that are
accessible from state ŝ0 through some feasible event sequence
σ ∈ Ê∗. On the other hand, state set Ŝs will denote the set
of co-reachable – or “safe” – states of Φ̂, i.e., the states
ŝ ∈ Ŝ from which state ŝ0 is accessible through some feasible
event sequence σ′ ∈ Ê∗. We shall also set Ŝr̄ ≡ Ŝ \ Ŝr and
Ŝs̄ ≡ Ŝ \ Ŝs, and we shall refer to these two sets, respectively,
as the sets of the unreachable and the unsafe states. Finally,
we shall also use the notation Ŝxy ≡ Ŝx ∩ Ŝy , for x ∈ {r, r̄}
and y ∈ {s, s̄}.

It should be clear from the definition of the set Ŝrs in
the previous paragraph that it comprises all the reachable
states s ∈ Ŝr for which there exist feasible event sequences,
σ ∈ E∗, leading to the completion of all the parts that are in
execution in these states. In the state transition diagram (STD)
Ĝ representing the dynamics of FSA Φ̂, this property of Ŝrs is
manifested by the fact that the subgraph induced by its states
is the maximal strongly connected component of Ĝ containing
the empty state ŝ0. These remarks subsequently imply the
following characterization of the maximally permissive DAP
for the considered CRL model:

Theorem 1: In the representational semantics of FSA Φ̂,
deadlock can be avoided while imposing the minimal possible
restriction on the workflow dynamics of the underlying CRL,
by identifying and blocking attempted transitions from sub-
space Ŝrs to subspace Ŝrs̄. The resulting DAP is characterized
as maximally permissive in the corresponding literature, it is
uniquely defined, and, in the following, it will be denoted by
∆∗. �

Theorem 1 is a specialization to the considered CRL model
of some broader developments of [6] concerning the char-
acterization of maximally permissive deadlock avoidance in
complex resource allocation systems. In fact, the work of
[6] provides also a complete methodology for the effective
deployment of the optimal DAP ∆∗ for any instantiation of
the CRL model that is considered in this work.

Furthermore, the works of [6], [34] present an additional
set of results which establish that for a very large subclass
– in fact, the majority of the practical instantiations – of
the considered CRL model, the optimal DAP ∆∗ admits a
representation as a set of linear inequalities on the state ŝ.

Example: For the example CRL of Figure 2, the reader can
check that

Ŝs̄ = Ŝd = {(2, 2, 0)} (3)

Hence, for this simple CRL, deadlock can be effectively
avoided by enforcing the constraint

ŝ1 + ŝ2 ≤ 3 (4)

in underlying workflow dynamics. Furthermore, this constraint
attains deadlock freedom for the line operation in a maximally
permissive manner, since, starting from the initial state ŝ0, the
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only reachable state that violates this inequality is the deadlock
state ŝd = (2, 2, 0). �

Correct linear DAPs and policy “lifting” to FSA Φ:
As we shall see in the next section, the ability to represent
the employed DAP ∆ through a set of linear inequalities on
the state ŝ is instrumental for developing the LP relaxation
and the corresponding scheduling method that are pursued
in this work. In order to address CRL instances where the
corresponding maximally permissive DAP does not admit a
representation as a set of linear inequalities on state ŝ, we
also introduce the broader concept of a “correct linear DAP”:

Definition 3: A set of linear inequalities imposed on the
state ŝ of any given instantiation of the considered CRL model
defines a correct linear DAP ∆ for this CRL if and only if the
set Ŝa(∆) ⊆ Ŝr containing the reachable states that satisfy
these inequalities, induces a strongly connected component,
Ĝa(∆), of the corresponding STD Ĝ, that contains the initial
state ŝ0.

Also, the aforementioned state set Ŝa(∆) that is induced
by a correct linear DAP ∆, is characterized as the (reachable)
state (sub-)space that is admissible by this policy.9 �

The developments of [6] also enable the computation of
efficient approximations of the optimal DAP ∆∗ that take the
form of a correct linear DAP ∆, when the optimal DAP ∆∗

does not admit a linear representation.
Furthermore, the eventually employed DAP ∆ can be

“lifted” to the original FSA Φ, that models more completely
the operation of the underlying CRL, through a state admission
rule that will admit a state s ∈ S if and only if (iff )
the corresponding state ŝ belongs in Ŝa(∆). The resulting
admissible subspace of S will be denoted by Sa(∆), and
the subgraph Ga(∆) induced by the state set Sa(∆) in the
STD G of the FSA Φ has similar connectivity properties to
the connectivity properties of the subgraph Ĝa(∆) w.r.t. the
STD Ĝ. Furthermore, the notions of “(state) reachability” and
“co-reachability / safety” are naturally extended to the CRL
dynamics that are described by the FSA Φ.

Example: Figure 3 depicts the reachable and safe state
space, Srs, for the example CRL of Figure 2. Srs is also the
subspace admitted by the maximally permissive, correct, linear
DAP, ∆∗, that is defined by Eq. 4. A complete characterization
of the various states depicted in this figure is provided in
Table I. In the next section, we shall show how to formulate
the scheduling problem of the throughput maximization for
this CRL as an MDP, by introducing additional information to
the STD of Figure 3 that pertains to the “timed” dynamics of
the considered CRL.

D. The problem of throughput maximization of the considered
CRL model and the corresponding MDP formulation

Introducing “timed” dynamics to FSA Φ – tangible
and vanishing states: In this subsection we consider the
problem of maximizing the throughput of the considered CRL
model, under the supervision of a correct DAP ∆. To fully
characterize this problem, and proceed with the corresponding
MDP formulation of it, we must augment the FSA-based
representation of the workflow dynamics of the considered

9This reader should notice that Definition 3 further implies that, for any
correct linear DAP ∆, Ŝa(∆) ⊆ Ŝrs.

TABLE I: The state description for the STD of Figure 3.

s s1s2 s3s4s5 s6s7 s s1s2 s3s4s5 s6s7
0 0 0 0 0 0 0 0 33 0 0 0 0 1 1 0
1 1 0 0 0 0 0 0 34 0 0 0 0 0 2 0
2 0 1 0 0 0 0 0 35 1 0 1 0 1 1 0
3 1 1 0 0 0 0 0 36 0 0 0 1 1 1 0
4 0 0 1 0 0 0 0 37 0 0 1 0 0 2 0
5 1 0 1 0 0 0 0 38 0 0 0 1 0 2 0
6 0 0 0 1 0 0 0 39 1 0 0 1 1 1 0
7 1 0 0 1 0 0 0 40 0 1 0 1 1 1 0
8 0 1 0 1 0 0 0 41 1 0 0 0 2 1 0
9 1 0 0 0 1 0 0 42 0 1 0 0 2 1 0

10 1 0 0 0 0 1 0 43 0 1 0 0 2 0 1
11 0 1 0 0 0 1 0 44 0 1 0 0 2 0 0
12 0 0 1 0 0 1 0 45 0 1 0 1 1 0 1
13 0 1 0 0 0 0 1 46 0 1 0 1 1 0 0
14 0 0 1 0 0 0 1 47 0 0 1 1 0 1 0
15 0 0 0 1 0 0 1 48 0 1 0 1 0 0 1
16 0 0 0 0 1 0 1 49 0 0 1 1 0 0 1
17 0 0 0 0 0 1 1 50 0 0 1 1 0 0 0
18 0 0 0 0 0 1 0 51 1 0 1 1 0 0 0
19 0 0 0 0 0 0 1 52 0 1 1 1 0 0 0
20 1 0 1 0 0 1 0 53 1 0 1 0 1 0 0
21 0 0 0 1 0 1 0 54 1 0 0 1 1 0 0
22 1 0 0 1 0 1 0 55 0 1 1 0 1 0 0
23 0 1 0 1 0 1 0 56 0 1 1 0 0 1 0
24 1 0 0 0 1 1 0 57 0 0 2 0 0 1 0
25 0 1 0 0 1 1 0 58 0 1 1 0 0 0 1
26 0 0 1 0 1 1 0 59 0 0 2 0 0 0 1
27 0 1 0 0 1 0 1 60 1 0 2 0 0 1 0
28 0 0 1 0 1 0 1 61 1 0 1 1 0 1 0
29 0 0 0 1 1 0 1 62 0 1 1 1 0 1 0
30 0 0 1 0 0 1 1 63 0 1 1 1 0 0 1
31 0 0 0 1 0 1 1 64 0 1 1 0 1 0 1
32 0 0 0 0 1 1 1 65 1 1 0 1 0 0 0

CRLs with time-related elements. An effective way to perform
this augmentation is by differentiating the states s in the ∆-
admissible state space Sa

10 into (a) states where the only
enabled events are some uncontrollable events edj , and (b)
states that enable controllable events as well,11 according to
the following definition:

Definition 4: Consider a CRL instance controlled by a
correct DAP ∆. Then, a state s ∈ Sa is characterized as tan-
gible iff the only enabled events in s are some uncontrollable
events edj ; otherwise, state s will be characterized as vanishing.
Furthermore, the entire set of tangible states will be denoted
by STa , and the set of vanishing states will be denoted by SVa .
�

We demonstrate the concepts of “tangible” and “vanishing”
states that were introduced in the previous definition, and
highlight the significance of these concepts for the subsequent
developments, through the following example.

Example: In the example STD of Figure 3, tangible states
are depicted as double-circled, while vanishing states are
single-circled.

Next, let us focus on tangible state #7. From Table I, it is
clear that this state contains two parts: a part p1 executing

10In order to avoid an “over-loading” of the employed notation, in the
following we shall use Sa instead of Sa(∆), assuming that this set is defined
by an appropriately selected DAP ∆.

11The application of the employed DAP ∆ ensures that every state s ∈ Sa

will possess at least one enabled event that is also admissible by the applied
DAP ∆.
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Fig. 3: The reachable and safe state space Srs for the CRL of Figure 2, and some further structure that defines the MDP
characterizing the corresponding throughput-maximization problem.

processing stage J1, and a part p2 executing processing stage
J2. The earlier completion of each of these two parts w.r.t. the
other one leads respectively to states #8 and #9. Furthermore,
since processing times for these two parts are exponentially
distributed with respective instantaneous rates µ1 and µ2, the
respective probabilities for each of these two transitions are
those annotated in the figure. Finally, the expected sojourn
time for state #7 is 1/(µ1 + µ2) > 0.

On the other hand, states #8 and #9 are vanishing states,
since in each case, the completed part can be advanced to its
next processing stage, obtaining, respectively, states #65 and
# 10. Furthermore, under the stated operational assumptions
for the considered CRL, these part advancements require zero
time; hence, the sojourn time for states #8 and #9 is zero. �

As revealed in the previous example, tangible states essen-
tially define an “exponential race” among its enabled events
edj , and therefore, it possesses a non-zero sojourn time. On the
other hand, since (i) vanishing states enable some controllable
event, according to Definition 4, and (ii) any controllable
event in the considered CRL model executes in zero time,
the sojourn times of these states will be consistently equal to
zero.12

12These remarks also justify the respective names of these two state
classes as “tangible” and “vanishing”; the corresponding terminology has been
borrowed from [35].

Furthermore, it is important to notice that, while in the
case of tangible states the selection of the executed events
is resolved endogenously, by the corresponding exponential
race, in the case of vanishing states, there is a further need for
an extraneous mechanism that will select a particular enabled
controllable event for execution. This mechanism must bias
the underlying selection in a way that it supports the pursued
objective of throughput maximization, and it will be provided
by the sought scheduling policy. Next we discuss how this
scheduling policy can be obtained, at least in principle, through
the formulation and solution of a Continuous-Time, Average-
Reward (CT-AR) MDP [10] that is defined by means of the
various structural elements that have been introduced in this
section.

Formulating the considered scheduling problem as an
MDP: According to the general MDP theory [10], in order
to obtain a complete MDP formulation of the considered
scheduling problem in the context of the timed CRL dynamics
that were presented in the previous part of this subsection, we
need to define: (i) the decision states of this MDP; (ii) the
set of actions that are available at each decision state; (iii) the
transitional dynamics that are incurred by the execution of a
particular action at a decision state; (iv) the immediate rewards
that result from these executions; and (v) the function of
these rewards that formalizes the problem objective. Next, we
provide a detailed characterization of all these elements; our
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discussion relies heavily on the various concepts and insights
that were provided in the earlier parts of this section.

When it comes to the “decision states” of the considered
MDP, it should be evident from the discussion that was
provided in the previous part of this subsection, that these
states are the vanishing states that result from the occurrence
of an event edj at any of the admissible tangible states s ∈ STa .
The following definition formalizes this remark.

Definition 5: Let X ⊆ Sa denote the set of states that result
from the execution of an event edj at some state s ∈ STa .
Then, set X constitutes the set of the decision states of the
considered MDP. �

Next, we define the set of the available “actions” (or “de-
cisions”) at any given state s′ ∈ X . From a more conceptual
standpoint, each of these decisions will take the considered
MDP to a new admissible tangible state s′′ ∈ STa , in zero
time, and then, the process will wait for the next completion
event, edj , at that state. It is also important to notice that in
order to reach a next admissible tangible state s′′ ∈ STa from
the current decision state s′, the underlying process might have
to pass through a cascade of vanishing states that are reached
through a sequence of controllable events, σ; the reader is
referred to Figure 3 and the accompanying Table I for some
concrete examples of this last statement. Furthermore, the
above remarks motivate the following definition:

Definition 6: For any decision state s′ ∈ X , define the
corresponding “tangible reach” of s′, T R(s′), as the set
of the admissible tangible states s′′ that are reachable from
state s′ through an event sequence σ ∈ E∗ that contains
only controllable events. Then, the set of actions, A(s′),
of the considered MDP at decision state s′ is defined as
A(s′) ≡ T R(s′). �

For any state s′′ ∈ T R(s′), the corresponding action can
be materialized through the execution of any controllable-event
sequence σ leading from state s′ to state s′′.

We also notice, for completeness, that the set of vanishing
states s′′′ which are reachable from state s′ through the
aforementioned event sequences σ that lead to some state
s′′ ∈ T R(s), is characterized as the “vanishing reach” of
state s′. This set of states is denoted by VR(s′), and it can be
empty for some states s′.

The “transitional dynamics” for the considered CT-MDP
model that result from the execution of an action a ≡ s′′ ∈
T R(s′) at some decision state s′, are determined by the
exponential race that takes place in the tangible state s′′.

On the other hand, since our stated objective is the maxi-
mization of the long-term throughput of the line, the expected
immediate reward, r(s′, a), from executing action a at state s′

is defined as follows:
Definition 7: For the considered MDP, the expected imme-

diate reward from executing action a at state s′ is denoted
by r(s′, a), and it is equal to the probability that the next
decision state will be defined by the occurrence of event edM
that corresponds to the completion of the last processing stage
by a running part and the unloading of this part from the
line. Hence, letting s′′ ∈ T R(s′) denote the tangible state
that corresponds to action a, and E(s′′) denote the set of
the events edj enabled in s′′, the expected immediate reward
r(s′, a) will be equal to µM/

∑
edj∈E(s′′) µj if edM ∈ E(s′′),

and zero otherwise.

Finally, in view of the above definitions of the decision
states and actions of the considered MDP, the induced tran-
sitional dynamics, and the expected immediate rewards, the
problem of maximizing the throughput of the considered
CRLs is reduced to the problem of maximizing the (long-
term) average reward of this MDP.13 The communicating
structure of the admissible state space Sa for the underlying
stochastic process that was established in the earlier parts of
this section, further implies that this CT-MDP formulation is
well defined, and it will have an optimal solution that takes the
form of a deterministic, stationary policy [10]. Hence, letting
Π denote the set of deterministic stationary policies for the
considered MDP, an optimal schedule for the considered CRL
is represented by a policy π∗ ∈ Π that, at each state s′ ∈ X ,
will select a single action a ∈ T R(s′) so that

π∗ = arg max
π∈Π

lim
N→∞

1

E[tN ]
E

[
N∑
i=1

r(s′i, ai)
∣∣∣ s0, π

]
In the above equation, tN denotes the time of the N -th state

transition of the underlying stochastic process. Furthermore,
some simplification of this CT-MDP formulation, and some
methodology for its solution through uniformization [5], are
presented in Appendix A of [15]. But, as remarked in the
introductory section, in most practical cases the solution of
this CT-MDP model will be intractable due to the very large
size of the involved state spaces. Hence, there is a remaining
need for the computation of suboptimal scheduling policies
that will trade off some of the performance of the underlying
system for computational tractability. Such a methodology is
developed in the rest of this work. But before we delve into
these developments, we conclude this section by discussing
the MDP formulation and its optimal solution for the example
CRL of Figure 2.

Example: As already discussed in the previous parts of this
section, the STD of Figure 3 highlights the classification of the
depicted states into tangible and vanishing, and it also reports
the transitional dynamics that are defined by the exponential
races that take place at each tangible state. An additional
development in Figure 3 is a proposed “thinning” of the
presented STD through the elimination of the vanishing states
and their interconnected transitions that are depicted in dashed
lines. This simplification is justified by the facts that (i) the
timed performance of the considered CRL is determined by
the sojourn times that are spent by this line at the tangible
states only, and (ii) the proposed “thinning” does not alter the
reachability among the various tangible states, and also among
the decision states s ∈ X that result from the execution of an

13The specification of the set of actions at each decision state s′ of this
CT-MDP through the corresponding tangible reach T R(s′) implies a non-
idling scheduling policy for the underlying CRL; i.e., under such a policy,
no server that could be engaged in the processing of some available part will
remain idle. Due to the blocking experienced in the operation of the considered
CRLs, such a non-idling scheme might be suboptimal [36], [30]. We have
opted to confine the presented developments within the class of the non-idling
scheduling policies, in an effort to attain some simplicity for the presentation
of the main concepts and ideas involved. But it is possible to extend the
presented methodology to deliberately idling schemes, by introducing further
actions at the states s′ that correspond to decision epochs; these actions will
correspond to controllable-event sequences σ leading to some state s′′ in the
vanishing reach VR(s′) of the considered state s′, that contains some enabled
events edj .
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edj–type event.14

The vanishing states that involve choice in the remaining
STD structure are the seven states colored in grey in Figure 3.
More specifically, in the remaining STD, each of these seven
states possesses two enabled transitions, and any selection
between these two transitions can be represented by setting
the corresponding variable ξk, k = 1, . . . , 7, either to the
value of 0 or 1. In the context of the corresponding MDP
terminology, any possible pricing of the variables ξk depicted
in Figure 3 defines a complete deterministic stationary policy
for the considered MDP.15

On the other hand, to fully specify this MPD, we must also
specify the immediate-reward function. Under the previously
introduced notation, this function is fully defined by associ-
ating with every pair (s′, s′′) ∈ X × T R(s′), an immediate
reward equal to the occurrence probability of event ed3(≡ eu)
in state s′′.

For a better understanding of the semantics of the MDP that
was defined in the previous paragraphs, we also notice that,
in the operational context of the CRL depicted in Figure 2,
each of the variables ξk that define the various deterministic
stationary policies for this MDP, essentially models the choice
between (i) allocating the server of workstation WS1 to a
part that will execute processing stage J3 (by setting ξk = 0),
and (ii) allocating this server to a newly loaded part for the
execution of its first processing stage (by setting ξk = 1).

Finally, according to the computational results that are
reported in [9], in the case where τj = 1.0, ∀j, the optimal
policy for the aforementioned MDP is uniquely defined by
ξk = 1, ∀k, a result that can be interpreted as a “First-Buffer-
First-Serve” policy for the considered operational context.

III. THE PROPOSED SCHEDULING METHOD

This section presents the heuristic scheduling method for the
considered CRL model that is proposed in this work. In the
subsequent developments, the considered CRL is assumed to
be controlled by a correct linear DAP ∆ obtained, for instance,
through the corresponding methodology that is presented in
[6]. Hence, in the context of the RAS real-time control frame-
work of Figure 1, the methodology that is developed in this
section supports essentially the function of the performance-
oriented controller / scheduler in that figure.

From an organizational standpoint, the section consists of
three major subsections, with the first subsection introducing
the proposed method itself. The second subsection demon-
strates the application and the efficacy of the method through
the example CRL of Figure 2. And, finally, the last subsection

14A complete analysis that formalizes this “thinning” process, provides a
more rigorous justification for it, and supports it with computationally efficient
algorithms, is presented in [14].

15In more accurate terms, the suggested pricing of the variables ξk defines
a deterministic stationary policy of the considered MDP because of the
following two additional facts: (I) For any vanishing state s′ ∈ X , that
results from the execution of an edj –type event at some tangible state s,
the aforementioned pricing of the variables ξk defines completely the next
tangible state s′′ to be reached from state s′. (II) In addition, for any pair of
states s′1 and s′2 in X , the pricing of the variables ξk does not introduce any
“coupling” in the resulting transitional dynamics from these two states.

We also notice that allowing the variables ξk to take values in the interval
[0, 1] would result in a randomized stationary scheduling policy. But in the
considered problem setting, enabling such a randomization will not lead to
any performance enhancement for the underlying CRL [10], [31].

provides some complexity analysis of the proposed method,
highlighting the primary factors that determine this complex-
ity, and establishing, thus, the tractability of the method.
Further empirical assessment of the tractability of the method
and of the quality of the scheduling policies that are derived
by it, are provided in the next section.

A. The proposed scheduling method

The basic structure and rationale of the proposed
method: As discussed in the introductory section, the consid-
ered scheduling method effects its decisions at each decision
state reached by the underlying CRL by (i) first formulating
and solving an LP that is known as the corresponding “(fluid)
LP relaxation”, and (ii) subsequently utilizing the information
that is contained in the optimal solution of this LP in order to
select an optimized action at that decision point.

The employed LP relaxation can be perceived as a simpli-
fication of the underlying scheduling problem that is obtained
by treating the material processed through the considered CRL
as a continuous flow that is constrained by the processing
capacities of the line servers. Additional constraints restrict the
spatial distribution of this flow across the line workstations and
its time-based and evolution so that it observes (i) the buffering
capacities of these workstations, and (ii) the additional bounds
that are imposed by the applied DAP. In this new operational
setting, the considered LP seeks to maximize the line output
over a predetermined time horizon T , further assuming that
(a) the line workstations are initialized with the fluid levels
corresponding to the current decision state s, and (b) there
exists an “infinite backlog” of fluid that can be fed into the
line.

As demonstrated in the following, assuming that the em-
ployed time horizon T is sufficiently long, any optimal so-
lution of the considered LP will seek to drive the line to a
“steady-state” operational regime that maximizes its output
flow rate, while minimizing the losses that will be experienced
during the transient phase. This realization further suggests
that the scheduler of Figure 1 can utilize the information about
the server allocation that is encoded in the very first part of any
optimal solution of the considered LP formulation, as guidance
for resolving the action selection at the decision state s under
consideration. The detailed logic for translating the obtained
solution of the LP relaxation to an action-selection scheme is
the second major component of this method.

As mentioned in the introductory section, LP relaxations
similar to that outlined in the previous paragraphs have been
employed in the past for the scheduling of uncapacitated re-
entrant lines and other more general multi-class queueing
networks [17], [18], [20]. On the other hand, the particular
implementation of this general method in the CRL (or the
more general RAS) context that is presented in this work, is
differentiated from the previous instantiations of the method
in the aforementioned references by (i) the integration of this
scheduling methodology with the necessary LES policies in
the real-time control framework of Figure 1, and (ii) the
ensuing need for further modification of the method in order to
accommodate effectively the spatio-temporal constraints that
are imposed by the workstation buffering capacities and the
employed DAP.
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In the rest of this subsection we provide all the neces-
sary details fo a complete implementation of the considered
scheduling method in the CRL context. This discussion will
also show that the sought integration to the employed LP re-
laxation of the spatio-temporal restrictions that are imposed by
the workstation buffering capacities and the employed DAP, in
a way that captures effectively the impact of these restrictions
on the underlying operation of the line, requires some special
care. Hence, one first differentiation of our implementation
of the method compared to its past implementations in [17],
[18], [20] that results from the aforementioned consideration,
is the modeling of the fluidized operation of the line, and the
definition of the corresponding LP formulation, in a discrete-
time setting. We turn to this issue next.

Time discretization: In an effort to capture more effectively
the impact of the blocking effects that are caused by the
finite buffers and the imposed DAP, our LP relaxation is
formulated in discrete and not in continuous time. More
specifically, assuming that the processing times τj for the
different processing stages Jj , j = 1, . . . ,M , are rationally
valued, we set the discretizing time interval ∆t equal to the
greatest common divisor (GCD) of τj . In this way, the mean
processing time, τj , of any processing stage Jj , corresponds
to an integral multiple of ∆t, which will be denoted by τ̂j .
In the following discussion, we also scale time by further
assuming that ∆t = 1.00, and thus, τ̂j also denotes the mean
processing time of processing stage Jj in this new time scale.
The significance of this discretization in the context of the
pursued modeling will be revealed in the detailed discussion
of the employed LP formulation, which is the topic to be
considered next.

The employed LP relaxation: We start the detailed presen-
tation of the employed LP relaxation, by introducing first some
supporting notation. Subsequently, we introduce the decision
variables, the constraints, and the objective function, in this
order.

Supporting notation:
• Jl, l = 1, ..., L: The set of all processing stages executed

on workstation WSl; i.e., Jl = {j : W (Jj) = l, j =
1, . . . ,M}.

• T : The total time horizon over which we are maximizing
the line throughput; as explained in the opening part of
this section, T is expressed in terms of the discretizing
time interval ∆t.

• sinit: The CRL vanishing state that corresponds to the
current decision state.

• v: A 2M -dim vector with its components v1+2j , j =
0, . . . ,M − 1, representing the volume of “fluid” waiting
for the execution of processing stage Jj+1 at the cor-
responding workstation W (Jj+1), and the components
v2+2j , j = 0, . . . ,M − 1, representing the volume of
“fluid” that has completed the execution of processing
stage Jj+1 but it is still located at the corresponding
workstation W (Jj+1). We shall refer to the components
of vector v as the corresponding “fluid buffers”.

• vinit: The initial value for the “buffer fluid” vector v as
defined by the state vector sinit. Due to the presumed
exponential nature for the distribution of the various pro-
cessing times, components v1+2j , j = 0, . . . ,M−1, will
aggregate all the parts that either wait for the initiation of

the execution of the corresponding processing stage Jj+1

or have already initiated the execution of this processing
stage.

• f : A fictitious “fluid feeder” at the beginning of the line
representing an “infinite backlog”.

• d: A fictitious “fluid buffer” at the end of the CRL, of
unlimited capacity, that collects all the “fluid” that is
output by this line over the considered time horizon T .

Decision Variables:
• xj,t, j = 1, . . . , 2M, t = 1, . . . , T : The “fluid” volume in

“fluid buffer” vj at the end of period t.
• uj,t, j = 1, . . . , 2M + 1, t = 1, . . . , T : The amount of

the “fluid” that is added, during period t, to the “fluid”
buffer vj or, in the case of j = 2M + 1, to the “output
fluid buffer” d. More specifically:

– u1,t represents the amount of “fluid” that is added
to the “fluid buffer” v1 at period t. This “fluid” is
drawn from the external “fluid feeder” f , during the
same period, and its addition to the “fluid buffer” v1

is equivalent to the action of loading new material
to the CRL.

– u2+2i,t, i = 0, ...,M − 1, represent the amount of
“fluid” that is added to the corresponding “fluid
buffer” v2+2i at period t. This “fluid” corresponds
to material completing the processing of processing
stage Ji+1, and it was drawn from “fluid buffer”
v1+2i at period t− τ̂i+1 + 1.

– u1+2i,t, i = 1, . . . ,M − 1, represent the amount
of “fluid” that is added to the corresponding “fluid
buffer” v1+2i at period t. This “fluid” corresponds to
material transferred to this “fluid buffer” from “fluid
buffer” v2i−1 during this period.

– u2M+1,t represents the amount of “fluid” that is
transferred from the “fluid buffer” v2M to the “out-
put fluid buffer” d during period t.

Constraints:
1) The first set of constraints expresses the limited

processing capacity at each workstation; namely, the
server at each workstation cannot process more than a
unit amount of work during a single time unit.

∑
j∈Sl

min{t+τ̂j−1,T}∑
q=t

u2j,q ≤ 1, l = 1, ..., L, t = 1, ..., T

2) The second set of constraints expresses the material
flow conservation; these constraints break down into the
following two parts:

a) Material flow conservation constraints for period
t = 1:
x1+2i,1 = vinit1+2i + u1+2i,1 − u2+2i,τ̂i+1

1{τ̂i+1≤T},
i = 0 . . . ,M − 1
x2i,1 = vinit2i + u2i,1 − u1+2i,1, i = 1 . . . ,M

b) Material flow conservation constraints for periods
t = 2, . . . , T :
x1+2i,t = x1+2i,t−1 + u1+2i,t −
u2+2i,t+τ̂i+1−11{t+τ̂i+1−1≤T}, i = 0 . . . ,M − 1
x2i,t = x2i,t−1 + u2i,t − u1+2i,t, i = 1 . . . ,M
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3) This set of constraints expresses the fact that a server
cannot work on an empty buffer, while also acknowledg-
ing the availability of the “infinite backlog” that provides
the input material for processing stage J1; similar to the
second set of constraints, we express these constraints
separately for period 1 and for the remaining periods:

a) For period t = 1:
vinit1+2i + vinit2i − u2+2i,τ̂i+1

1{τ̂i+1≤T} ≥ 0,
i = 1 . . . ,M − 1

b) For periods t = 2, . . . , T :
x1+2i,t−1 − u2+2i,t+τ̂i+1−11{t+τ̂i+1−1≤T} ≥ 0,
i = 1 . . . ,M − 1

4) These constraints express the finite buffering capacity of
the line workstations.∑
j∈Sl

x2j−1,t + x2j,t +
∑min{t+τ̂j−1,T}
q=t+1 u2j,q ≤ Bl,

l = 1, ..., L, t = 1, ..., T
5) These constraints account for the imposed deadlock

avoidance policy ∆. The presumed linear structure of
the applied DAP ∆ implies that the state-admissibility
condition of the policy can be expressed as a set of K
inequalities having the form

A · ŝ ≤ b (5)

where: (i) ŝ is the condensed state of the considered
CRL, (ii) A is a K ×M matrix, and (iii) b is a K-dim
positive vector. The constraints of Eq. 5 can be intro-
duced in the considered LP relaxation by substituting
each component ŝj , j = 1, . . . ,M , of the state vector ŝ
by the quantity

x2j−1,t + x2j,t +

min{t+τ̂j−1,T}∑
q=t+1

u2j,q

6) We also want to prevent activity that will not contribute
to the total output volume by the end of the time
horizon T . For this, we enforce the condition that the
total outflow from the network equals the total inflow
to it plus the initial “fluid buffer” contents as defined
by the vector vinit.

2M∑
j=1

vinitj +

T∑
t=1

u1,t −
T∑
t=1

u2M+1,t = 0

7) This constraint recognizes the fact that “fluid buffer”
contents cannot be negative.

xj,t ≥ 0, j = 1, ..., 2M, t = 1, ..., T

8) Also, the “material flows” uj,t cannot be negative either.

uj,t ≥ 0, j = 1, ..., 2M + 1, t = 1, ..., T

9) Finally, the next constraint accounts for the non-
preemptive nature of our scheduling policies.16

u2j,τ̂j = 1, j ∈ {1, . . . ,M : sinit1+3(j−1) = 1}

Objective Function:

16In the MDP formulation of Section II-D, the non-preemptive character of
the pursued policies is implied by the structure of the underlying state space
S and the dynamics that are induced by this structure for that formulation.

As already stated, we want to maximize the total outflow
of the considered CRL over the employed time horizon T ,
assuming that (i) the line is operated under the relaxed
modeling assumptions that are expressed by the constraints
of the considered LP, and (ii) its initial “fluid buffer” contents
are set to the levels that are defined by the state sinit of the
original CRL model. Hence, the objective function takes the
form:

max

T∑
t=1

u2M+1,t

The induced scheduling policy: After we have solved the
LP relaxation, the next step is to interpret the solution of
the linear program to a scheduling policy for the underlying
CRL. In particular, we want to use the solution of this LP
as a “guide” in the selection of the next tangible state s
among the set of tangible states that is defined by the tangible
reach, T R(sinit), of the state sinit that constitutes the current
decision point.

To effect this selection, let us denote by u∗1 the vector that
is defined by the obtained optimal values for the variables
u1,1, u2,τ1 , u3,1, u4,τ2 . . . , u2M,1, and by v the “fluid buffer”
vector that corresponds to any state s ∈ T R(sinit). Then, the
proposed scheduling policy will select the next tangible state,
s̃, through the following rule:

s̃ ∈ arg min
s∈T R(sinit)

M−1∑
j=0

|s1+3j − u∗1,2+2j | (6)

In more natural terms, the criterion of Eq. 6 seeks to select a
tangible state s ∈ T R(sinit) that has a server allocation w.r.t.
the various processing stages Jj , j = 1, . . . ,M , that is most
similar to the server allocation that is implied by the vector
u∗1.

Furthermore, a secondary criterion that we have used to
break any ties that are generated through the criterion of Eq. 6,
is as follows:

s̃ ∈ arg min
s∈T R(sinit)

|v − vinit − u∗1|1 (7)

This new criterion perturbs the initial “buffer fluid” vector
vinit by the “flow” vector u∗1, and eventually selects a tangible
state s ∈ T R(sinit) with a “fluid buffer” vector v that has
the smallest l1-distance from the aforementioned perturbation
vinit+u∗1; hence, this secondary criterion considers also state
similarity in terms of buffer occupancy.

Selecting an appropriate time-horizon length T : One
last parameter that needs to be further specified for the
complete definition of the CRL scheduling methodology that
was presented in the previous parts of this section, is the value
of the parameter T to be employed in the LP relaxation, i.e.,
the time-horizon over which the line output will be maximized.
This selection is driven by the realization that the optimal
solution of the considered LP will essentially lead the system
to an operational regime that provides the maximal possible
output of the system as defined by the bottleneck stations
of the line and the applied DAP bounds, and it will divert
from this operational regime only towards the end of the
operational horizon, in an effort to satisfy the termination
condition of Constraint #6 above. Furthermore, the numerical
experimentation that is reported in the last part of this paper,
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TABLE II: Comparing the policy specified for he example
CRL of Figure 2 by the methodology that is presented in this
work to the optimal policy for this re-entrant line.

s Vanishing State Tangible Reach Opti- Select. Crit.
s1s2 s3s4s5 s6s7 s1s2 s3s4s5 s6s7 mal of Eq. 6

12 00 100 10 10 010 10 YES 1.0626
00 010 01 NO 1.4439

18 00 000 10 10 000 10 YES 0.7693
00 000 01 NO 2.3220

21 00 010 10 10 010 10 YES 0.7285
00 010 01 NO 1.2715

26 00 101 10 10 011 10 NO 1.7492
00 010 11 YES 1.2365

33 00 001 10 10 001 10 YES 0.8282
00 000 11 NO 1.7219

47 00 110 10 00 110 01 YES 0.6529
10 110 10 NO 1.3471

57 00 200 10 00 110 01 YES 0.6826
10 110 10 NO 1.5370

has shown that as long as the selected T value is adequately
large to let the line reach the aforementioned operational
regime, the returned vector u∗1 that is used in the determination
of the induced scheduling policy, will be quite insensitive to
the exact T value. So, with these insights and findings, we
propose to set T = (

∑L
i=1Bi)(

∑M
j=1 τ̂j), since this is an

upper bound of the time that is necessary to empty the line
from the entire workload that is defined by the state sinit under
any globally nonidling policy.

B. Example

The application of the “fluid” LP relaxation that was
presented in the earlier parts of this section at any of the
seven vanishing states sl, l ∈ {12, 18, 21, 26, 33, 47, 57}, that
constitute decision points for the CRL of Figure 2 (c.f. also
the STD of Figure 3), results in the following LP formulation:

max
x,u

T∑
t=1

u7,t

s.t.

u2,t + u6,t ≤ 1, t = 1, . . . , T

u4,t ≤ 1, t = 1, . . . , T

x1+2i,1 − u1+2i,1 + u2+2i,τ̂i+1 = vinit1+2i, i = 0, . . . , 2

x2i,1 − u2i,1 + u1+2i,1 = vinit2i , i = 1, . . . , 3

x1+2i,t − x1+2i,t−1 − u1+2i,t + u2+2i,t+τ̂i+1−1 = 0,

i = 0, . . . , 2, t = 2, . . . , T

x2i,t − x2i,t−1 − u2i,t + u1+2i,t = 0,

i = 1, . . . , 3, t = 2, . . . , T

u2+2i,1 ≤ vinit1+2i + vinit2+2i, i = 1, 2

u2+2i,t − x1+2i,t−1 ≤ 0, i = 1, 2, t = 2, . . . , T

x1,t + x2,t + x5,t + x6,t ≤ 2, t = 1, . . . , T

x3,t + x4,t ≤ 2, t = 1, . . . , T

x1,t + x2,t + x3,t + x4,t ≤ 3, t = 1, . . . , T
T∑
t=1

u7,t −
T∑
t=1

u1,t =

6∑
j=1

vinitj

xi,t ≥ 0, i = 1, . . . , 6, t = 1, . . . , T

ui,t ≥ 0, i = 1, . . . , 7, t = 1, . . . , T

u2j,τ̂j = 1, j ∈ {1, 2, 3 : sinit1+3(j−1) = 1}

Fig. 4: The optimal server allocation, over the entire time
horizon T , that is returned by the solution of the “fluid”
relaxation for the example CRL of Figure 2 at the vanishing
state s12.

Fig. 5: The average throughput obtained through the solution
of the “fluid” relaxation for the example CRL of Figure 2 over
different time horizons T ; the starting state of the line is the
vanishing state s12.

The parameters sinit· and vinit· that appear in the right-hand-
side of the above formulation, are determined by the consid-
ered vanishing state sl according to the defining logic for these
parameters that was discussed during their introduction in the
earlier parts of this section.

Table II presents the policy that is defined by the solution
of the above LP formulation at the seven vanishing states
sl, l ∈ {12, 18, 21, 26, 33, 47, 57}, of this example CRL when
τj = 1.0, ∀j. Also, in line with our earlier recommendations,
in the corresponding computations the parameter T was set
equal to 4×3 = 12. Each primary row in Table II corresponds
to one of the considered vanishing states sl, and the first
two parts of the row provide a complete characterization of
state sl and its tangible reach, T R(sl). On the other hand,
the row entry in the column entitled “Optimal” provides the
choice for the next tangible state s′l ∈ T R(sl) specified by
the optimal policy that is obtained through the solution of
the throughput-maximizing MDP formulation for this CRL of
Section II-D. Finally, the last column of Table II provides
the values for the “action”-selection criterion of Equation 6
that are obtained from the solution of the corresponding LP
relaxations. It can be checked that, for each state sl, l ∈
{12, 18, 21, 26, 33, 47, 57}, the minimum value for this crite-
rion corresponds to the tangible state s′l ∈ T R(sl) that is the
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Fig. 6: The values of the vector u∗1 obtained from the solution
of the “fluid” relaxation for the example CRL of Figure 2,
over different time horizons T ; the starting state of the line is
the vanishing state s12.

optimal choice according to column “Optimal”. Hence, for this
example CRL, our scheduling methodology is able to identify
an optimal policy.17

Figure 4 depicts the evolution of the variable sequences
u∗j,t, t ∈ {0, . . . , 12}, j = 2, 4, 6, that constitute part of the
optimal solution of the “fluid” relaxation for the example CRL
of Figure 2 when this line is started at the vanishing state
s12. In the operational context of the considered CRL, these
three sequences essentially represent the server allocation that
is implied by the optimal solution of the “fluid” relaxation.
The three plots of Figure 4 exhibit clearly that the optimal
solution of this relaxation drives the line to a workflow
configuration where all servers maintain a constant allocation
for the most part of the corresponding time horizon, except
for some starting and ending phases where the solution must
satisfy the specified boundary conditions. Similar behavior is
exhibited for the remaining vanishing states sl that constitute
decision points for this line. Also, Figure 5 corroborates to
the above remarks, by showing that as the value of the time
horizon T is increased to ever higher values, the average line
throughput, under the optimal solutions of the corresponding
LP formulations, converges to the value of 0.5, which is the
production rate of the “bottleneck” workstation WS1. Finally,
Figure 6 exhibits the server allocation for period t = 1 that is
specified by the optimal solution of the “fluid” relaxation for
the considered CRL, using a set of values for T that ranges
from 12 to 500 periods. It is clearly seen in the provided plots
that the corresponding u∗1 vectors are practically insensitive to
this variation of the parameter T ; this fact further implies that
the scheduling policy specified by the criterion of Equation 6
will be insensitive to this variation of T , as well.

C. Complexity considerations

In this subsection we provide some remarks that establish
the tractability of the proposed scheduling method, and also

17We emphasize, however, that the considered methodology does not pre-
compute the applied scheduling policy in the form that is communicated in
Table II. At each decision state, the action that is selected by this policy
is determined in real-time through (i) the formulation and solution of the
corresponding LP relaxation, and (ii) the post-processing of the obtained
optimal solution for this relaxation through the selection logic of Equations 6
and 7.

reveal the primary factors that determine its computational
efficiency. Also, the last part of the section outlines some ad-
ditional possibilities that can be employed during the method
implementation, in case that there is a need to alleviate
the computational overhead that is incurred by the involved
computation.

We start the overall discussion by noticing that at core of
the proposed method is the solution, at each decision epoch,
of the LP relaxation that was developed in Section III-A. This
LP formulation involves

• (4M + 1)T = (4M + 1)(
∑L
i=1Bi)(

∑M
j=1 τ̂j) variables,

and
• (2L+ 2M − 1 +K)T + x+ 1 technological constraints.

To help the reader parse the above expressions, we also
remind her that, according to the adopted notation, M stands
for the number of processing stages, L stands for the number
of the line workstations, T is the length of the employed time
horizon in the discretizing time unit ∆t, Bl, l = 1, . . . , L, is
the buffer size at the workstation Wl, and τ̂j , j = 1, . . . ,M ,
is the mean processing time of processing stage Jj under the
time discretization and normalization that were introduced in
Section III-A. Also, x implies the number of active servers at
the current decision state sinit.

Then, when we also consider the computational capabilities
of the current commercial LP solvers, it is clear from the
above expressions, that the generated LPs will be effectively
solvable by these LP solvers for a very broad spectrum of CRL
configurations. This is especially true when we realize that
the values τ̂j that appear in the computation of the employed
time horizon T , are normalized w.r.t. the gcd of the actual
mean processing times τj , j = 1, . . . ,M ; hence, as long as
the original mean processing times do not have a very large
spread, then the τ̂j values that are employed in the formulation
can be pretty small.18 The above remarks are corroborated by a
series of numerical experiments that are reported in Section IV
and reveal that the necessary solution times for the proposed
LP relaxation are in the order of a few seconds even for some
pretty sizeable CRL configurations.

Yet, an additional concern arises from the fact that the
considered LP relaxation must be solved “on-line” and in a
repetitive fashion, i.e., at each decision point that is encoun-
tered during the real-time operation of the underlying CRL.
The repetitive solution of this LP defines a computational
overhead that can be significant, especially in the case that
the processing times involved are pretty small, and therefore,
the solution times of the formulated LPs are comparable to
these processing times. If this happens to be the case, then the
resulting computational overhead can be controlled through
the “hashing” of the LP solutions in combination with some
approximating / interpolating schemes similar to those that are
outlined in [20] for the implementation of the LP-relaxation-
based scheduling method that is discussed in that work; we
refer the reader to [20] for some discussion on these schemes
and the corresponding implementational details.

18As a more vivid example of this statement, in the case of CRLs where
the original mean processing times τj , j = 1, . . . ,M , are equal to some
constant value C, all the corresponding τ̂j will be equal to 1.0, irrespective
of what is the actual value of C.
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IV. SOME NUMERICAL EXPERIMENTS

In this section we report two series of experiments. The
first set of experiments intends to further demonstrate and
assess the ability of the proposed scheduling method to return
scheduling policies that are (a) of comparable quality to the
corresponding optimal scheduling policies, and (b) very com-
petitive w.r.t. some other heuristic scheduling policies that are
adapted from the corresponding literature. On the other hand,
the second set demonstrates and assesses the computational
tractability of the presented method. We organize the relevant
material into two separate subsections.

A. Demonstrating and assessing the quality of the obtained
schedules

In this part of the presented experiments, we used the 20
CRL configurations that are listed in Table III in order to assess
the performance of the scheduling methodology that has been
developed in this work against (i) the optimized performance
that can be obtained (at least, in principle) through the solution
of the corresponding MDP formulation of Section II-D, and
also (ii) the performance of some heuristic scheduling policies
for these lines, that have been adapted from the relevant
literature on the throughput maximization of uncapacitated re-
entrant lines [28], [29], [37]. More specifically, for each of the
CRL configurations 1 to 16 in Table III, we generated 30 prob-
lem instances by varying randomly the processing rates for the
corresponding processing stages over the interval [1-10]. On
the other hand, for each of the CRL configurations 17 to 20 of
Table III, we generated only 5 problem instances, with similar
ranges for the random processing rates of their processing
stages, since the state spaces for these configurations are very
large, and therefore, the computation of these state spaces and
the performance evaluation of the corresponding scheduling
policies took a very long time. Furthermore, in the employed
“fluid” relaxations, we set the length of the employed time
horizon T = 20

∑M
i=1 τ̂j .

The heuristic scheduling policies that are considered in this
experiment, are described as follows:19

• “Fluid”-Relaxation(-based) Policy – FR: This is the
policy defined by the scheduling method that is developed
in this work.

• First-Buffer-First-Serve Policy– FBFS: At any van-
ishing state s that constitutes a decision point for the
underlying CRL, this policy gives priority to the state
s′ ∈ T R(s) that has the line working at the earliest
possible processing stage of the line. If there are many
such tangible states in T R(s), the selected state is the
one that incurs the largest number of part advancements
from their current processing stage to the next one.

19As already mentioned in the opening paragraph of this section, the
heuristic policies that have been used as “benchmarks” for the presented
experiment, constitute adaptations to the CRL operational setting of some
simple policies that have been shown to be throughput-optimal for the
uncapacitated re-entrant lines. The performed adaptation seeks to fit the
procedural logic that defines the original policies to the operational setting
that is considered in this paper. But, of course, these modifications do not
extend the original optimality analysis for these policies to this new setting.
On the other hand, to the best of our knowledge, there are no other heuristic
scheduling policies that are known to be (near-)optimal for the considered
operational setting and could have defined a more appropriate “benchmark”
for the results that are presented in this paper.

• Last-Buffer-First-Serve Policy – LBFS: At any van-
ishing state s that constitutes a decision point for the
underlying CRL, this policy gives priority to the state
s′ ∈ T R(s) that has the line working at the latest
possible processing stage of the line. If there are many
such tangible states in T R(s), the selected state is the
one that incurs the largest number of part advancements
from their current processing stage to the next one.

• Shortest-Processing-Time-FBFS – SPT-FBFS: At any
vanishing state s that constitutes a decision point for the
underlying CRL, this policy gives priority to the state
s′ ∈ T R(s) that leads to the processing of one of the
parts with the smallest expected processing time among
the parts that can receive processing in the next decision
epoch. In case of many such tangible states in T R(s),
the final state is selected according to the FBFS logic that
was defined in the first item above.

• Shortest-Processing-Time-LBFS – SPT-LBFS: At any
vanishing state s that constitutes a decision point for the
underlying CRL, this policy gives priority to the state
s′ ∈ T R(s) that leads to the processing of one of the
parts with the smallest expected processing time among
the parts that can receive processing in the next decision
epoch. In case of many such tangible states in T R(s),
the final state is selected according to the LBFS logic that
was defined in the second item above.

• Maximum-Pressure Policy – MP: For any state s ∈ S
and any processing stage Jj , j = 1, . . . ,M , we define
the “pressure” associated with processing stage Jj at state
s as

P(s, Jj) ≡ µj [(s3(j−1) + s3(j−1)−1)I{j>1}+

s1+3(j−1) − (s2+3(j−1) + s3j + s1+3j)I{j<M}]

Also, we define the “(total) pressure” associated with
state s by

P(s) ≡
M∑
j=1

s1+3(j−1)P(s, Jj)

i.e., P(s) is the total pressure across all processing stages
that receive processing at state s.
Then, at any vanishing state s that constitutes a decision
point for the underlying CRL, and for any tangible state
s′ ∈ T R(s), this policy selects a state s′ that has the
highest total pressure among the states in T R(s).

The performance of each of these heuristic policies for
each CRL instantiation that was generated in the considered
experiment, was evaluated by solving the LP that is obtained
from the corresponding Bellman equation [10] by fixing the
selected actions at each decision state s ∈ X to the actions that
are specified by this policy. In this way, we can characterize
the level of sub-optimality for each of these policies, for any
given CRL instantiation, through a “percentage (%-) error”
that is defined by:

%-error =
optimal throughput - policy throughput

optimal throughput
× 100

Table IV reports the average, minimum and maximum
%-errors that were observed during the application of the
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TABLE III: The CRL configurations considered in the numerical experiment of Section IV-A (borrowed from [15]).

Configuration Number Of Number of Job Stages (JS) Buffer Capacities
Workstations and Job Routes

Conf 1 (B1, B2) = (1, 2)
Conf 2 (B1, B2) = (2, 2)
Conf 3 2 3JS (W1 →W2 →W1) (B1, B2) = (3, 2)
Conf 4 (B1, B2) = (4, 4)
Conf 5 (B1, B2) = (9, 9)
Conf 6 (B1, B2, B3) = (1, 2, 2)
Conf 7 (B1, B2, B3) = (3, 2, 2)
Conf 8 3 4JS(W1 →W2 →W3 →W1) (B1, B2, B3) = (4, 3, 2)
Conf 9 (B1, B2, B3) = (5, 5, 6)

Conf 10 4 7JS(W1 →W2 →W4 →W1 (B1, B2, B3, B4) = (3, 2, 1, 2)
→W2 →W3 →W1)

Conf 11 3 5JS(W1 →W2 →W3 →W1 (B1, B2, B3) = (3, 4, 3)
→W2 )

Conf 12 3 5JS(W1 →W2 →W3 →W2 (B1, B2, B3) = (3, 3, 3)
→W3 )

Conf 13 3 5JS(W1 →W2 →W1 →W3 (B1, B2, B3) = (3, 4, 1)
Conf 14 →W2 ) (B1, B2, B3) = (2, 2, 2)
Conf 15 3 6JS(W1 →W2 →W3 →W1 (B1, B2, B3) = (2, 3, 2)
Conf 16 →W2 →W3 ) (B1, B2, B3) = (2, 2, 2)
Conf 17 4 7JS(W1 →W2 →W4 →W1 Bi = 3, i = 1, . . . , 4

→W2 →W3 →W1 )
Conf 18 5 7JS(W1 →W2 →W1 →W3 B1 = B2 = B3 = 2

→W4 →W5 →W4 ) B4 = B5 = 3
Conf 19 4 8JS(W1 →W2 →W3 →W2 Bi = 3, i = 1, . . . , 5

→W3 →W4 →W3 →W4 )
Conf 20 5 8JS(W1 →W2 →W3 →W2 Bi = 3, i = 1, . . . , 5

→W3 →W4 →W5 →W3 )

considered scheduling policies on the generated instances from
the 20 CRL configurations of Table III. It can be seen that the
FR policy results in pretty small %-errors. This policy also
outperforms the other heuristic policies in terms of, both, the
average and the maximal values of these errors, a result that
suggests an ability of this policy to obtain better performance
than the other policies in a consistent manner. This assessment
was further substantiated by performing a paired t-test [38] and
a paired Wilcoxon test [39] on the %-error values that were
obtained in the considered experiment. The p-values that were
obtained through these two tests, assessing the dominance of
the FR policy over each of the remaining heuristic policies,
are reported in Table V. It is clear from the values reported in
this table that the difference between (a) the %-errors attained
by the FR policy and (b) the %-errors that are attained by
the other scheduling policies, is statistically significant. This
finding further implies that the “fluid” relaxation developed in
this work, and the accompanying logic of Equations 6 and 7,
manage to capture effectively the basic workflow dynamics of
the considered CRLs that shape their performance.

Finally, we also report that the largest LP formulations
resulting from the “fluid” relaxation of the CRL configurations
of Table III were solved in less than 3 seconds. Hence, unless
the scale of the processing times involved is very small (i.e.,
in the order of a few seconds), the presented methodology will

be very comfortably implemented in the context of the CRLs
that are considered in this experiment. But in the next section,
we also consider more explicitly the scaling of the LP solution
times as the size of the underlying CRL increases.

B. Demonstrating and assessing the tractability of the pre-
sented method

In this section we report and discuss the results from
an additional set of numerical experiments that intended to
investigate empirically the increase of the solution time of the
proposed LP relaxation as the underlying CRLs are scaled
up to some pretty sizable configurations. These results are
reported in Table VI.

More specifically, the considered LP relaxation was formu-
lated and solved for 20 configurations, with each configuration
being defined by the first two columns of Table VI. In
particular, the first column of this table reports the number of
workstations of the corresponding configurations, the buffer
size of each workstation, and the mean processing time of
the involved processing stages. On the other hand, the second
column of Table VI reports the number of times that the line
is traversed by each part, and therefore it also determines the
number of stages of the corresponding process plan. Finally,
the third column of Table VI reports the solution times for
the corresponding LP relaxations; for each of the 20 CRL
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TABLE IV: An empirical characterization of the performance
that is attained by the various heuristic policies considered in
the experiment of Section IV-A.

Config. % FR FBFS LBFS SPT- SPT- MP
error FBFS LBFS

Avg. 0 2.323356 0 1.049778 0.581273 0
Conf 1 Min. 0 0.230038 0 0 0 0

Max. 0 7.453339 0 3.863308 3.486496 0
Avg. 0 2.563791 0 1.24137 0.765513 0

Conf 2 Min. 0 0.02166 0 0 0 0
Max. 0 7.803391 0 4.640675 3.682091 0
Avg. 0.558299 4.281953 0.986135 2.446898 2.3089 1.580789

Conf 3 Min. 0 0.00912 0 0.00048 0 0.00112
Max. 1.604902 12.173708 2.566975 5.517447 4.551116 3.45924
Avg. 0.424129 2.53043 0.116397 0.893047 0.868761 1.627846

Conf 4 Min. 0 0 0 0 0 0
Max. 1.603027 11.14905 0.503845 3.707549 3.707549 6.765885
Avg. 0.056252 1.072059 0.000941 0.250837 0.189375 0.845842

Conf 5 Min. 0 0 0 0 0 0
Max. 0.627573 8.386695 0.011211 1.843072 1.248081 5.951457
Avg. 0.787126 3.087116 0.424329 1.501644 1.074064 2.058273

Conf 6 Min. 0 0.045081 0.000827 0.00506 0.000827 0.01904
Max. 2.468721 10.00878 1.711332 6.370564 4.164482 7.04788
Avg. 0.262069 2.921857 2.242041 2.497875 2.538068 1.514924

Conf 7 Min. 0 0.0143 0.009941 0.0143 0.0147 0.045611
Max. 1.077797 9.432003 7.589988 8.149082 7.843766 5.124153
Avg. 0.348257 2.601589 1.797056 2.174541 2.152668 2.067119

Conf 8 Min. 0.00012 0.00948 0.00022 0.00948 0.01296 0.013749
Max. 1.365613 12.276351 9.255655 7.782629 7.782629 8.948562
Avg. 0.074912 1.331306 0.341868 0.668099 0.640542 0.586824

Conf 9 Min. 0 0 0 0 0 0
Max. 0.353171 9.699296 2.322959 4.391537 4.391537 5.283458
Avg. 3.318123 5.666601 4.888519 5.035612 4.983614 4.061828

Conf 10 Min. 0.160619 0.781178 0.372858 0.954592 0.94859 0.445644
Max. 6.94834 14.570786 12.520645 15.677988 15.684631 9.899285
Avg. 0.837663 2.777581 3.677889 1.303101 1.69863 1.633319

Conf 11 Min. 0.032066 0.017783 0.257924 0.017783 0.092037 0.161028
Max. 1.800238 12.551314 10.558961 4.213472 7.117571 4.232176
Avg. 1.121402 1.750244 2.452877 0.513728 0.583221 2.630212

Conf 12 Min. 0.008642 0.032489 0.001541 0.001401 0.001541 0.019846
Max. 2.579237 6.878605 8.388345 0.984445 1.650506 8.486197
Avg. 1.153944 2.264382 4.354457 2.158219 2.663196 2.176783

Conf 13 Min. 0.034693 0.056632 0.222106 0.158161 0.2213 0.030272
Max. 2.823261 8.684196 10.984664 8.385657 9.550511 5.152178
Avg. 1.330487 4.610859 1.528115 2.281134 2.089135 3.060204

Conf 14 Min. 0.009692 0.047781 0.058834 0.058834 0.059004 0.099643
Max. 2.752433 8.670543 4.278931 4.618316 5.159253 5.3891
Avg. 1.087259 2.441627 3.636966 0.92349 1.102124 2.274138

Conf 15 Min. 0.484144 0.448128 1.277105 0.143185 0.143185 0.662133
Max. 2.075733 9.279909 10.152834 3.754415 3.754415 5.461083
Avg. 1.485586 2.141188 3.186278 0.876134 1.005724 2.443547

Conf 16 Min. 0.077542 0.025837 0.43741 0.025837 0.025837 0.195422
Max. 3.165834 7.171983 8.032857 2.690495 2.823853 4.837758
Avg. 1.23399 3.190605 6.283274 3.711618 4.010187 3.144512

Conf 17 Min. 0 0.490636 0.030681 0.490636 0.030681 0.067602
Max. 3.581841 6.302036 15.98632 7.48842 7.48842 7.174882
Avg. 3.431575 8.666107 10.35568 8.993217 8.655773 11.74234

Conf 18 Min. 1.294327 6.396949 6.432713 6.396949 6.432713 7.038907
Max. 4.468809 11.394275 16.312115 12.035385 10.939199 16.799726
Avg. 3.372908 8.528441 10.312104 8.869568 8.533083 11.517266

Conf 19 Min. 1.07888 5.816134 6.021595 5.816134 5.638849 7.232241
Max. 4.546285 10.8824 16.257885 11.561644 10.519218 16.014564
Avg. 3.35003 8.658793 10.693207 9.087125 8.751012 11.758839

Conf 20 Min. 0.77972 5.625051 8.035321 6.695957 6.205683 7.809635
Max. 5.313402 12.155388 16.182583 12.155388 11.16347 17.40793

TABLE V: A statistical comparison of the performance of
the proposed scheduling methodology to the performance of
the other heuristic policies considered in the experiment of
Section IV-A.

Method FBFS LBFS SPT-FBFS SPT-LBFS MP
t-test 4.405229e-48 1.071112e-16 4.142378e-12 5.152820e-11 9.354007e-22
w-test 5.339791e-52 6.755720e-15 4.400029e-14 1.003275e-12 2.285927e-35

configurations, the LP relaxation was formulated and solved
at 10 randomly selected decision states, and this column
of Table VI reports the minimum, maximum and average
values of the corresponding solution times. We also notice
that the formulated LPs were solved through the CPLEX
Studio IDE 12.8 package, that was running on a Windows
10 computational platform with an Intel Core i5, 2.2 GHz,
2-core processor, and 8GB DDR3 memory.

As it can be seen in Table VI, the solution times for
the proposed LP relaxation can be in the order of a few
seconds even for some pretty large configurations. This fact is
especially true as long as the “spread” of the mean processing
times involved is quite small; the corresponding cases are those
in blocks #1 and #3 of Table VI.

TABLE VI: An empirical characterization of the computa-
tional tractability of the proposed scheduling method.

Basic configuration # of passes LP sol. time (sec)
(min, mean, max)

5 workstations 2 (10 stages) (0.23, 0.27, 0.34)
Bl = 5, ∀l 3 (15 stages) (0.34, 0.37, 0.42)
τj = 1, ∀j 4 (20 stages) (0.46, 0.50, 0.59)

5 (25 stages) (0.71, 0.82, 0.91)
6 (30 stages) (0.93, 1.06,1,34)

5 workstations 2 (10 stages) (7.71, 8.16, 8.74)
Bl = 5, ∀l 3 (15 stages) (15.53, 16.51, 17.76)
τ1 = 1 4 (20 stages) (26.52, 27.51, 28.42)

τj = 10, ∀j 6= 1 5 (25 stages) (36.33, 40.14, 44.22)
6 (30 stages) (59.98, 59.29, 60.72)

20 workstations 2 (40 stages) (0.47,0.52,0.70)
Bl = 5, ∀l 3 (60 stages) (1.30, 1.46, 1.71)
τj = 1, ∀j 4 (80 stages) (1.67, 1.80, 2.05)

5 (100 stages) (2.42, 2.55, 2.69)
6 (120 stages) (2.81, 3.12, 3.42)

20 workstations 2 (40 stages) (31.46, 34.25, 38.20)
Bl = 5, ∀l 3 (60 stages) (56.94, 68.72, 80.39)
τ1 = 1 4 (80 stages) (95.39, 99.58, 106.38)

τj = 10, ∀j 6= 1 5 (100 stages) (136.19, 142.29, 151.85)
6 (120 stages) (189.25, 197.34, 203.49)

On the other hand, the results of Table VI also suggest
that the considered solution times can be severely impacted
by a larger “spread” among the underlying processing times.
This can be seen by juxtaposing the results of block #2 to
those of block #1, and similarly, the results of block #4 to
those of block #3. In particular, the configurations of block
#4 in Table VI correspond to a “worst-case” scenario where
the underlying CRL is pretty sizeable in terms of numbers
of workstations and processing stages, and at the same time,
all mean processing times involved having very large values
except for one. Then, as indicated by the provided formulae in
Section III-C, the resulting LPs will be pretty large in terms of
the numbers of variables and constraints involved, and there-
fore, their solution times might scale up to the order of a few
minutes. Whether these solution times will be tolerable or not,
will depend on the magnitude of the actual processing times
involved. If these times are also pretty small, then it might be
necessary to control further the computational overhead that
is incurred by the presented method, by employing some of
the mechanisms that were suggested in the closing part of
Section III-C.

V. CONCLUSIONS

This paper has extended a scheduling methodology that
is based on the solution of a pertinent “fluid” relaxation
of the addressed scheduling problem, to complex RAS with
blocking and deadlocking effects. For better specificity, the
results were presented in the operational context of a re-entrant
line with finite buffering capacity at each workstation. This
class of re-entrant lines is characterized as “capacitated re-
entrant lines (CRL)”, and the particular scheduling problem
that was addressed in the CRL context, is the maximization of
the long-term throughput. But the presented methodology can
be adapted to other classes of sequential resource allocation
systems (RAS) with blocking and deadlocking effects similar
to those studied in [6], and it can also consider additional per-
formance indices, like expected cycle times for the processed
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parts, and inventory concentrations at various segments of the
line.

From a more methodological standpoint, the presented
approach to the considered scheduling problem is substantially
enabled and facilitated by a pre-established ability to control
the underlying resource allocation for deadlock freedom, and
by the further ability to express the corresponding DAP as
a set of linear inequalities on the system state. At the same
time, the presented developments differ considerably from past
implementations of the considered scheduling method, since
they must effectively address the blocking and deadlocking
effects that take place in the considered CRLs.

Finally, the efficacy of the presented developments has
been demonstrated and assessed through extensive numerical
experimentation that compared, for a set of “benchmark”
CRLs, the performance of the scheduling policies obtained
through the presented method, to (i) the performance of the
corresponding optimal scheduling policies, and also to (ii) the
performance of some other heuristic scheduling policies for
these systems that were adapted from the relevant literature
for the more traditional re-entrant lines. An additional set of
experiments demonstrated and assessed the scalability of the
presented method for larger CRL configurations. The results
obtained from these experiments suggest that, when combined
with the existing LES theory for the considered RAS, the
proposed “fluid” relaxation–based method provides an effec-
tive instrument for obtaining near-optimal scheduling policies
for the considered CRLs, while maintaining the computational
tractability that is necessary for the real-time operation of these
systems.

Our future work will seek to develop a more structured char-
acterization of the dynamics that are encoded in the proposed
“fluid” relaxation, by means of some formal, DES-theoretic
modeling frameworks. Besides its inherent theoretical interest,
this characterization will enable the further analysis of the
structure of the optimal solutions of the corresponding LP,
and thus, it can lead to more informed decisions regarding
the selection of important parameters like the employed time
horizon T for the LP formulation. It will also facilitate the ex-
tension of the presented method to more complex RAS classes
and/or additional performance considerations, as discussed in
the previous paragraphs; these extensions are also part of our
ongoing investigations. Finally, an additional line of our future
work will seek to bring into the aforementioned analysis the
notion of “robustness” that has been pursued w.r.t. such “fluid”
relaxations in [20].
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