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Abstract—This paper presents a heuristic algorithm for mini-
mizing the makespan required to route a set of agents inhabiting
a shared guidepath network from their initial locations to their
respective destinations, while observing a set of regulations that
seek to ensure the safety and the integrity of the generated traffic.
From an application standpoint, the presented developments are
motivated by the traffic coordination challenges that arise in the
context of many automated unit-load material handling systems,
and also in the transport of the ionized atoms that takes place
in the context of quantum computing. From a methodological
standpoint, our developments constitute a customization of the
general “local-search” framework of combinatorial optimization
theory to the traffic management problem that is considered
in this work. Hence, the presented results include a rigorous
characterization of the considered problem and its solution space,
detailed algorithms for the construction of the necessary initial
solutions and the improving step for the pursued search, a
complexity analysis of these algorithms, and a set of compu-
tational experiments that reveal and assess the computational
efficiency of the presented algorithms and the efficacy of the
derived solutions. The paper concludes with some suggestions
for potential extensions of the presented results.

Note to Practitioners – In many contemporary applications of
automation science and engineering, a number of entities – or
“agents” – must be transported expediently from their initial
locations to certain destinations using a set of links that define
the underlying “guidepath network”. Furthermore, various safety
considerations require that the agents must be adequately sepa-
rated during these transports, and the imposed restrictions turn
the corresponding traffic coordination problem into a complex
resource allocation problem where the contested resources are the
guidepath-network links. This paper presents a set of algorithms
that can provide high-quality schedules for the resulting traffic-
scheduling problems in a computationally efficient manner.
These properties of our algorithms are established through the
necessary theoretical analysis, but they are also demonstrated
through a series of numerical experiments where they are shown
capable to provide near-optimal solutions for some very complex
problem instances in no more than a few seconds. In addition, our
algorithms are “complete”, i.e., they will always provide a feasible
schedule for any instantiation of the traffic-scheduling problem
considered in this work. Hence, they can effectively address the
needs for “real-time” traffic management that arise in the context
of the considered applications.

Index Terms—Guidepath-based transport systems, multi-agent
routing, multi-robot path planning, combinatorial scheduling,
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I. INTRODUCTION

In this work, we consider a class of traffic scheduling
problems that concern the circulation of a set of “agents”
on the edges of a connected graph, which is known as the
“(supporting) guidepath network”. The edges of the guidepath
network define “zones” for the supported traffic that can be
occupied by at most one agent at a time. Access to the
guidepath zones is granted by a central controller, and in this
way, the trip of any given agent from an “origin” location to a
“destination” location becomes a “resource allocation process”
where the necessary zones that support the various legs of this
trip, are requested and acquired one zone at a time. Additional
constraints regulate the agent transitioning between zones, and
the behavior of the agents upon reaching their destinations.
Our main concern is to enable all traveling agents to reach their
destinations in a way that (i) respects the imposed regulations,
and (ii) minimizes the “(time) makespan” of the corresponding
traffic schedule.1

From a practical standpoint, the aforementioned problem
arises in a broad spectrum of applications, that includes various
robotics [1] and automated industrial material-handling [2]
applications, the design and the analysis of various classical
games [3] and animated computer-game [4] applications, and
the efficient processing of the ionized atoms that are the
elementary information carriers in the context of quantum
computing [5]. Each of these application contexts gives rise
to different detailed formulations of the considered traffic
scheduling problem, with the corresponding formulations be-
ing differentiated in terms of, both, (i) the zone-allocation con-
straints that define the dynamics of the generated traffic, and
(ii) the performance objective that characterizes the notions of
the “traffic expediency” and ”efficiency”. Furthermore, as it
happens with many other classes of combinatorial optimization
/ scheduling problems, each of these formulations can vary
substantially in terms of the computational complexity of the
corresponding optimization problem, but also in terms of the
feasibility of its various instantiations and the complexity of
the construction of a feasible – or “satisficing” – solution for
it.

The particular problem version that is considered in this
work arises in the operational context of a very broad class
of automated material handling systems (MHS), known as
“unit-load, zone-controlled” MHS [2], and also in the afore-
mentioned operational context of quantum computing. More
specifically, in many industrial settings, the necessary material

1This high-level description of the considered traffic systems becomes much
more detailed in the subsequent, more technical parts of this work.
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handling operations are supported by a fleet of autonomous
agents that transport material among a set of locations while
moving on a set of very detailed pathways that link these
locations and define the corresponding “guidepath network”.
Particular instantiations of this basic description include the
automated guided vehicle (AGV) systems that are used in
many production and distribution environments [2], the over-
head monorail systems that have been the typical MHS in
semiconductor manufacturing [6], [7], and the complex gantry
crane systems that are used in some large ports and railway
yards [2]. In all these environments, in order to avoid collisions
among the system agents, the links of the guidepath network
are split up into “zones”, and it is required that, at any time
point, each zone is occupied by at most one vehicle. This
requirement is enforced by a traffic supervisor that monitors
the zone occupancy by the traveling vehicles and grants
accessibility to these zones. Additional safety concerns and
other practical considerations define further conditions that
must be satisfied by an admissible transition of an agent from
its current zone to a neighboring one on the guidepath network.
A typical such condition is that an agent can move from
its current zone to a neighboring one only if the requested
zone is currently unoccupied; this requirement (i) ensures
the agent separation in the face of the uncertainty that is
introduced by the asynchronous nature of the agent transitions
between their consecutive zones, and (ii) it also prevents zone
“swapping” by agents that occupy neighboring zones, since in
the context of the considered environments such zone swaps
are not physically possible.

In the aforementioned settings, the agent traveling can be
perceived as a set of “mission trips” corresponding to a
transport operation between an origin and a destination node
of the guidepath network. The transport requirements arise in
a dynamic manner, and they are assigned to the system agents
according to certain logic that will be taken as pre-specified
and outside the scope of the considered work. Furthermore,
the system configuration possesses a “resting area” where
agents that have completed their previously assigned missions
are retired and potentially recharge their batteries. Hence, in
this operational setting, the task of the traffic controller is
to enable each agent to complete its current mission in an
expedient manner, and reach successfully the resting area.2

In particular, under an arbitrary topology for the underlying
guidepath network, and certain further assumptions about the
agent maneuverability while traversing the various zones of
this network, the aforementioned restrictions on the zone
allocation process can also give rise to “deadlock” formations
where a subset of agents blocks each other’s advancement
towards the completion of their mission trips in a permanent
manner [8]; in these cases, the traffic controller must also
effectively predict and prevent such potential deadlocks.

The traffic coordination problem for the unit-load, zone-
controlled MHS that was described in the previous paragraphs,
arises essentially identical in the physical operations that take
place in the context of quantum computing. In this case, the
traveling agents are the ionized atoms that hold the elementary

2In fact, agents that have completed their mission and are heading to the
resting area, can also be re-assigned to a new mission before actually returning
to the resting area.

information that is processed in those computational platforms,
and are known as “qubits” [5]. These qubits must have their
quantum state altered in a controlled manner by bringing them
in certain locations where they will interact with certain local
fields, and possibly with each other. The qubit circulation
among these locations is facilitated by a “maze” of “ion traps”
that contain physically the qubits and isolate them from their
surrounding environment and from each other. Hence, the
ion traps play the role of the zones in the MHS that were
described in the previous paragraphs, and their allocation to
the traveling qubits obeys restrictions and concerns similar
to those that arise in those earlier cases. Furthermore, the
role of the resting area is played in this case by the physical
medium implementing the “memory” that holds qubits that
are not currently participating in the running computation,
while the mission trips for the traveling qubits are defined
by the underlying program code and its decomposition to the
elementary computational operations that are recognized by
quantum computing. Finally, in this new application setting,
traveling agents might also need to satisfy “rendezvous”
requirements at certain locations, a fact that raises additional
synchronization concerns and implicit precedence constraints
for the underlying “zone allocation” problem.

It should be clear from all the above discussion that the
traffic coordination problem arising in the context of the
described operational settings is pretty complex. Indeed, the
agent contest for the zones of the guidepath network and the
corresponding sequential resource allocation process possess
all the operational characteristics of the notorious “job shop
scheduling” problem [9]. At the same time, this new problem
version is further complicated by (i) the extensive routing
flexibility that is defined by the underlying guidepath net-
work, (ii) the new spatio-temporal constraints that must be
observed by the zone allocation process, (iii) the potential
“rendezvous” requirements among the traveling agents, and
(iv) the dynamic specification of the various mission trips. In
view of all this complexity and the dynamic evolution of the
underlying requirements, we propose to address the resulting
traffic scheduling problem through a “rolling horizon” scheme
that decomposes the overall problem into a number of sub-
problems seeking to transport all the traveling agents to their
immediate destinations as fast as possible. More specifically,
these subproblems will be specified each time that an agent
reaches its current destination or it is assigned to a new
mission trip, and they will seek to move all the traveling
agents from their current locations to their next immediate
destination in their mission trips, while minimizing the time
that is necessary for all these transports; this time is known
as the “makespan” of the corresponding traffic schedule in
the relevant terminology [9]. Additional care must be taken to
ensure that the specification of the intermediate destinations of
the traveling agents, and the resulting problem decomposition,
will guarantee the “liveness” of the generated traffic, i.e., the
ability of the traveling agents to complete successfully their
mission trips and retire to the provided resting area while
avoiding potential deadlocks. Finally, it is also important to
notice that the subproblems defined by the outlined rolling-
horizon scheme remain pretty hard, as they maintain all four
features of the overall traffic scheduling problem that were
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enumerated at the beginning of this paragraph.
In an effort to provide a complete characterization of the

subproblems that arise in the context of the aforementioned
rolling-horizon scheme, in [10], [11] we presented a mixed in-
teger programming (MIP) formulation for these subproblems,
and we also formulated and investigated a Lagrangian “dual”
problem for that formulation. This “dual” problem can provide
some good lower bounds for the performance of any optimal
traffic schedule, but the computation of such an optimal traffic
schedule through the solution of the MIP formulation itself
will not be tractable for many practical problem instances.
Furthermore, the MIP nature of this formulation implies that
the optimal solutions of the “dual” problem will not specify
any solutions for the original MIP formulation [12], [13].3

Hence, there is a remaining need for some methodology that
will provide efficient, near-optimal solutions for the traffic
scheduling problem that was formulated in [10], [11]. This
need is addressed in this paper.

More specifically, in this paper we provide a heuristic
algorithm for the traffic scheduling problem that constitutes
the core subproblem of the aforementioned rolling-horizon
framework, by adapting to this problem ideas and techniques
borrowed from the broader area of combinatorial optimization
[14]. In more technical terms, the presented algorithm can
be perceived as a “local-search” scheme that starts with the
construction of a feasible routing schedule, and subsequently
it searches for improved solutions over pertinently defined
“neighborhoods” of the underlying solution space. It is well
known that the effective implementation of such a local-search
scheme depends significantly upon the employed represen-
tations of the underlying solution space and the imposed
“neighborhood” structures. We provide these representations
as well as the procedures that will effect the search for
improved solutions.

Furthermore, in the context of the considered traffic schedul-
ing problems, the construction of an initial feasible traffic
schedule can be a challenging task in itself. In fact, for
many instantiations of these problems, the decision problem
of assessing the existence of a feasible routing schedule is
NP-complete [15]. However, the particular class of guidepath-
based traffic systems that is the primary focus of this work
is defined by a set of operational assumptions regarding the
maneuverability of the traveling agents that (i) ensure the
feasibility of all the instantiations of the considered traffic
scheduling problem, and (ii) enable the design of effective
and efficient computational algorithms for the construction of
the necessary initial solutions. When viewed in the context
of the aforementioned rolling-horizon framework, these prop-
erties further imply the liveness of the generated traffic, and
therefore, the provided solution is complete in that sense, as
well. Moreover, in the closing discussion of the paper, we also
outline some ideas and guidelines for extending the presented
methodological framework to guidepath-based traffic systems
that might not satisfy the complete set of the operational
assumptions that are considered in this work.

The aforementioned theoretical developments are comple-
mented by a series of computational experiments. The corre-

3In general, the solution of the Lagrangian “dual” problem might not
provide even a feasible solution for the original MIP formulation.

sponding results reveal that (i) the traffic schedules generated
by the presented algorithm are very efficient in terms of the
specified objective of minimizing the corresponding makespan,
and (ii) they can be obtained very fast. Both of these properties
are very important for the practical applicability of the pro-
posed algorithm in the aforementioned application contexts.
Furthermore, additional discussion provided in the last part
of the paper suggests various modifications for the presented
algorithm that can further enhance the quality of the derived
solutions, and facilitate a more explicit trade-off between (a)
the representational and the computational complexity of this
algorithm, and (b) the operational efficiency of the generated
traffic schedules.

In view of all the above discussion, the rest of the paper is
organized as follows: Section II provides a systematic review
of the current literature on the control of guidepath-based
traffic systems, and positions the developments presented in
this work in the context of that literature. Section III presents
a formal characterization of the considered traffic system, the
generated traffic dynamics, and the particular traffic scheduling
problem addressed in this work. Subsequently, Section IV
presents the key results of the paper, i.e., the proposed al-
gorithm, together with a formal analysis of its correctness and
its computational complexity. Section V reports the computa-
tional results that demonstrate and assess the aforementioned
efficacies of the presented algorithm. Section VI discusses
potential extensions of the results that are presented in Sec-
tion IV, in an effort to expand the applicability of these results
and to further control the trade-off between the complexity
of the presented algorithm and the efficiency of the derived
solutions. Finally, Section VII concludes the paper. We also
notice, for completeness, that an abridged version of this
material was presented at the IFAC World Congress 2017.4

II. LITERATURE REVIEW

Because of their very broad applicability that was discussed
in the previous section, guidepath-based transport systems
have drawn attention in a number of scientific and engineering
communities. In fact, some of the first studies regarding the
dynamics of this class of traffic systems have been performed
by the computer science (CS) community, in the context of
the, so-called, 15-puzzle. The objective of this puzzle is to
re-organize 15 labeled pieces, that are positioned on a 4×4
grid, in a row-major arrangement, by using the single empty
slot of the grid. A first feasibility study of this problem
was presented in [3], which studied a generalized version of
the problem that involved n − 1 labelled pebbles located on
the vertices of an n-vertex 2-connected graph G. Using per-
mutation group theory, [3] established that, for non-bipartite
graphs G, the original pebble configuration can be re-arranged
to any target configuration, while in the case of bipartite
graphs, the corresponding reachability requirement divides all
possible pebble configurations into two equivalence classes.

4That manuscript was developed in a more casual style, and it lacks (i)
the detailed positioning of the work and the expansive literature review
that are provided in the current manuscript, (ii) the more formal arguments
of Section IV, (iii) the more extensive computational experiments that are
reported in Section V, and (iv) the second and the third parts of the discussion
that is provided in Section VI.
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This feasibility study was subsequently extended in [16],
which addressed a more general problem version involving (i)
more general connectivity conditions for the underlying graph
G, and (ii) pebble distributions with more than one empty
vertices. This last paper also provided an O(n3) algorithm that
either returns a feasible solution for the considered problem
instance, in the form of a pebble move-sequence, or determines
its infeasibility.

More recently, guidepath-based transport systems similar
to those studied in [3], [16] have been revisited by the
artificial intelligence (AI) and the robotics communities un-
der the theme of “multirobot path planning (MPP)”. These
studies have introduced additional assumptions regarding (i)
the topologies of the supporting graph G, (ii) the allowed
moves that transform the pebble allocation (or, in this case,
the robot positioning) in this graph, and (iii) they have have
also converted the original feasibility studies to optimization
problems that seek to optimize the generated move-sequence
in terms of some of its attributes. Some interesting works along
the aforementioned lines (i) and (ii) are those presented in [17],
[18], [19], [20], [21], [22]. More specifically, when viewed
from a collective standpoint, these works have specialized the
original results of [3], [16] for tree topologies of the underlying
graph G, and they have also considered variations of the origi-
nal problem versions that allow for robot substitutability in the
specification of the target configuration, synchronized robot
moves that allow their repositioning and advancement towards
their destinations even in totally congested graphs, and robot
collaboration for the transport of their assigned payloads to the
corresponding destinations. These studies have also provided
feasibility conditions for the corresponding problem instances,
rigorous complexity analyses of the decision problems that are
defined by these feasibility tests, and also complexity analyses
of the various optimization formulations that are defined for
all the above problem versions. Perhaps not surprisingly, most
of these optimization problems turn out to be NP-hard [23].

The negative complexity results for the aforementioned
optimization problems have subsequently determined the algo-
rithmic approaches that have been pursued for their solution.
In the context of the MPP literature, these approaches are
broadly classified into “coupled” and “decoupled” methods
[24]. Decoupled methods seek to control the underlying prob-
lem complexity by decomposing the overall path-planning
problem across the different agents, and addressing the result-
ing subproblems sequentially. Path plans that are generated
earlier in this sequence define constraints to be observed
by the remaining subproblems. However, as observed in [4],
[25], [24], such a decomposition scheme is not guaranteed to
generate a feasible traffic schedule, even if such a schedule
exists, and the algorithm’s ability to generate a feasible so-
lution, as well as the quality of this solution, will generally
depend on the particular sequence that was adopted for the
solution of the single-agent path-planning problems. In many
cases, these issues can be (partially) addressed through the
iterative execution of the employed algorithm with pertinently
modified sequences for the solution of the single-agent prob-
lems, and/or a localized perturbation of the generated agent
plans at their segments with experienced conflicts [4]. In
some other works of the MPP literature, the aforementioned

limitations of the decoupled methods are partially addressed
through the specification of the entire traffic schedule as a
concatenation of “single-agent [motion] primitives” that seek
to attain certain positions for judiciously selected agents while
possibly incurring the relocation of the remaining agents in this
process. The effectiveness and the completeness of the result-
ing algorithms usually depends on the presumed topology of
the underlying guidepath network. Also, the typical objective
of these algorithms is only the synthesis of a satisficing
solution. Some of the most sophisticated examples of this last
line of work are presented in [24], [26].

Coupled methods of the MPP literature seek to provide
(near-)optimal solutions to the corresponding scheduling prob-
lems by taking a more holistic view of these problems and
their solution spaces. These methods essentially represent the
dynamics of the underlying traffic as a finite state automaton
(FSA) [27] where (i) the system states are defined by the
various distributions of the traveling robots to the vertices
(or, in some other cases, the edges) of the guidepath network,
and (ii) the transitions of the automaton among its various
states are defined by the various “elementary moves” that are
allowable in the considered operational context. Under such
a representation, the resulting optimization problem can be
expressed either as a (mixed) integer program (MIP) [21], or
as a dynamic programming (DP) problem [25], or even as
a “satisfiability (SAT)” problem [28]. The resulting methods
are complete, i.e., they can provide, in principle, an optimal
solution to the considered traffic scheduling problem, if such
a solution exists. But their applicability is severely limited by
the state space explosion of the underlying FSA and/or the
NP-hardness of the employed formulations.5

On the other hand, some works, like those of [25], [29],
[30], [31], have tried to develop in the middle ground between
the coupled and decoupled methods, coming up with what
has been characterized as a “hybrid” method. This alternative
method uses a complete algorithm (frequently an adaptation
of the A∗ algorithm [32] to the considered problems) in
order to determine optimized routing plans for each single
agent, and progressively it couples these agents into larger
groups every time that the original decoupled approach fails to
generate a complete solution for the underlying subgroups. The
aforementioned papers also propose a number of additional

5To circumvent these computational limitations, the coupled methods that
were mentioned in the previous paragraph are typically embedded in a
decomposing scheme that seeks to mitigate the computational complexity
of the eventually solved formulations. Hence, when it comes to the de-
velopments of [28] and [21], it is proposed to cope with the potential
intractability of the respective SAT and MIP formulations by specifying a
sequence of intermediate destinations for each traveling agent, and employing
a sequence of simpler SAT and/or MIP-based formulations that will seek to
route the traveling agents to the various configurations that are defined by
these intermediate destinations. By employing a dense set of intermediate
destinations and keeping these destinations sufficiently apart from each other,
it is possible to establish a “locality” for the intermediate agent trips that
decouples the corresponding routing problems, simplifies substantially the
empirical complexity of the involved SAT and MIP formulations in terms of
the numbers of variables and constraints involved, and reduces the experienced
solution times. But these simplifications come with a sub-optimality for
the resulting traffic schedule that is incurred by the myopic nature of the
eventually employed formulations. Even more importantly, the works of [28]
and [21] essentially “hide” a substantial part of the underlying problem
complexity in the specification of the intermediate destinations, for which
they fail to provide systematic algorithmic procedures.
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heuristics that seek to trade off the optimality of the generated
solution for some control of the complexity of the generated
subproblems and their solution through the employed varia-
tions of the A∗ algorithm. The resulting hybrid schemes will
work effectively for fairly sparse problem instances, where it
is possible to identify optimized nonconflicting robot paths
across small groups of robots; but they will not scale up to
more congested environments where the pursued decomposi-
tion is not possible [21]. Furthermore, in these harder cases,
the premature termination of the executed algorithm will fail
to provide any feasible solution for the overall optimization
problem.

The problem of the real-time traffic management in
guidepath-based traffic systems, as it materializes in the con-
text of the automated, unit-load, zone-controlled MHS that are
considered in this work, has also been addressed, although
rather sporadically, by the IE/OR community. More specifi-
cally, the works of [33], [34] have formulated the problem of
managing the AGV traffic that takes place over some com-
plex network topologies by seeking to adapt to this problem
perspectives and formulations that were originally developed
by the IE/OR communities for the more traditional “vehicle
routing” problem [35]. Like the coupled methods discussed
in the previous paragraphs, the developed approaches provide
a complete characterization of the considered problem and
its solution space, and they can return an optimal solution
when applicable. But their practical applicability, especially
in real-time settings, is severely limited by the extensive
computational times that are needed for the solution of the
pursued formulations. On the other hand, the work presented
in [36] is essentially a decoupled method that employs a “DP
with time-windows” model for the generation of the traffic
schedules of the various traveling vehicles. Hence, it possesses
all the advantages and limitations that were discussed for these
methods in the previous paragraphs. Furthermore, all three of
the aforementioned methods have failed to consider system-
atically the problem of deadlock that might be encountered
in the generated schedules, and they tend to treat it more
as a “nuance” that must be faced at the end, in the context
of the generated schedules, instead of an integral issue to
be systematically addressed during the generation of these
solutions.

Deadlock avoidance and liveness-enforcing supervision for
the traffic that is generated by the various MHS classes
considered in this work have been studied quite thoroughly
and extensively by a group of researchers that come from
the controls community, and especially a group working in
the area of Discrete Event Systems (DES) [37], [38]. Using
linguistic modeling frameworks and abstractions coming from
qualitative DES theory [37], [38], and its specialization to
the problem of the liveness-enforcing supervision of complex
resource allocation systems (RAS) [39], [40], this group has
studied the “behavioral” – or “untimed” – dynamics of the con-
sidered traffic systems, and it has provided (i) a formal charac-
terization of the corresponding traffic coordination problems,
(ii) a notion of “optimal control” for these problems in the
form of “maximal (behavioral) permissiveness” of the derived
solutions, (iii) a formal establishment of the computability but
also the NP-hardness of the corresponding optimal control

policies, and (iv) a set of suboptimal but computationally
tractable “deadlock avoidance” policies (DAPs) that can ensure
the liveness of the underlying traffic while retaining extensive
levels of the concurrency and the operational flexibilities that
are provided by the underlying system. Characteristic samples
of these works can be found in [8], [41], [42], [43], [44],
while the works of [45], [46] extend the aforementioned results
even in “free-ranging” traffic systems where the system agents
travel over a compact 2-dim or 3-dim region. But all these
results constitute “preventive” control [37]; i.e., the derived
DAPs essentially confine the uncontrolled system behavior in
order to prevent deadlock formations.6

Finally, when it comes to the current industrial practice, the
considered traffic management problems have been addressed
through the adoption of configurations for the underlying
guidepath networks that minimize the need for traffic control
and coordination. As a characteristic example of this attitude,
one can mention the popular “tandem” AGV systems, which
decompose the overall traffic into a set of unidirectional
loops that are interconnected by a set of interfacing buffers
[53]. Such a layout essentially abolishes the entire traffic
coordination problem since, at each loop, vehicles are filing
behind each other in a perpetual cyclical motion over that
particular loop. But, on the other hand, the resulting operation
involves (a) unnecessarily long trips for transfers that take
place between closely located stations, (b) an operational speed
for each loop that, for the most part, is regulated by the slowest
vehicles, and (c) the need for “double-handling” in the case of
transfers involving stations that are located on different loops.

All the above discussion has substantiated, in much more
concrete terms, the remark that was made in the opening part
of this section that the problem of the (real-time) traffic man-
agement in guidepath-based traffic systems has been studied
by many different communities, under different modeling as-
sumptions and (performance) objectives that are motivated and
defined by the particular needs of those communities. Further-
more, while the resulting models are conceptually similar, they
can vary substantially in terms of the reachability properties of
the generated traffic, and also in terms of the theoretical and
empirical complexity of the feasibility analysis of the posed
operational requirements. On the other hand, when it comes
to the optimization of the traffic that is generated by these
models, most of the resulting formulations end up being NP-
hard. Finally, in view of all these subtleties and computational
challenges, the existing algorithms that have been developed

6A few works within the DES community that have tried to develop a more
comprehensive approach to the considered scheduling problem by seeking
optimized traffic schedules while considering explicitly the issues of traffic
liveness and liveness-enforcing supervision, are those presented in [47], [48],
[49], [50]. More specifically, the works of [49], [50] essentially pursue some of
the decoupled and the coupled methods that were discussed in the earlier parts
of this section, while employing a Petri net (PN) [51] based representation of
the traffic dynamics that enables a more explicit representation of the notions
of “conflict” that arise in the underlying traffic systems. Hence, the algorithms
developed in those works maintain a more proactive and systematic attitude
regarding the issue of conflict management in the generated traffic, but they
also suffer from the completeness and/or scalability limitations that were
discussed in the previous parts of this section. On the other hand, the works of
[47], [48] have tried to extend to the traffic scheduling problems considered in
this work some methodology that was previously developed for the “job-shop”
scheduling problem, and was based on the notion of “(augmented) Lagrangian
relaxation” [52] for the corresponding MIP formulations.
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for managing the traffic in various subclasses of guidepath-
based traffic systems are generally limited in terms of their
completeness and/or their scalability.

The work that is presented in the rest of this document
extends the current state-of-art, by developing a new class
of algorithms for the real-time traffic management in the
particular class of guidepath-based transport systems that are
considered in it. These algorithms are motivated by, and adapt
to the considered problem, some of the broader theory on the
design of heuristic algorithms for hard combinatorial optimiza-
tion problems [14]. A particularly important characteristic of
these algorithms is that, (i) in the context of the traffic systems
that are considered in this work, they are complete, and, at
the same time, (ii) they are able to provide efficient solutions
for some very hard problem instances while retaining their
computational tractability.7 Furthermore, the last part of the
paper discusses some additional potential that is defined by
the presented algorithms for other classes of guidepath-based
traffic systems, and the corresponding traffic management
problems, that will not satisfy all the operational assumptions
that are considered in this work.

III. A FORMAL DESCRIPTION OF THE CONSIDERED
TRAFFIC SYSTEM AND THE CORRESPONDING TRAFFIC

SCHEDULING PROBLEM

The traffic system that is considered in this work can
be formally abstracted as follows: The system consists of a
guidepath graph G = (V,E∪{h}) that is traversed by a set of
agents, A. G is assumed connected and undirected. The edges
e ∈ E of G model the “zones” of the underlying quidepath
network. These edges can be traversed by a traveling agent
a ∈ A in either direction, and, in general, they can hold
no more than one agent at any time. An exception to this
last rule is the case of edge h, which models a “storage”
(or “home”) location that can hold an arbitrary number of
agents that either have not initiated or have completed their
intended trips and, thus, they are essentially retired from the
underlying traffic system. For notational convenience, we also
define E ∪ {h} ≡ Ê.

In the more general model of the considered operations that
was outlined in the introductory section, a trip for some agent
a is defined by a sequence of edges Σa = 〈e ∈ E〉 that
must be visited by a in the specified order, before the agent
eventually retires in edge h.8 However, since in the context of
the work that is presented in this document we consider only
the core (sub-)problem of the “rolling-horizon” scheme that
was outlined in Section I, in the following we shall assume
that each agent a ∈ A is associated with a single destination
edge, da, and the posed problem is to transfer each agent a
from its current edge, sa, to its destination edge, da, while
minimizing the required transfer time w; i.e., w denotes the
“makespan” of the corresponding traffic schedule.

7This claim is substantiated in Section V that presents our computational
experiments on a series of instantiations of the considered traffic problem.

8As explained in Section I, in the AGV operational setting, the edges e ∈
Σa model pairs of pick-up and deposition locations that must be visited by
the vehicle during its trip. In the application context of quantum computing,
the edges of Σa are the locations where the corresponding qubit will have
its informational content processed, possibly through (controlled) interaction
with some other qubits.

Furthermore, in order to simplify the exposition of our key
results, in the main presentation of our algorithm in Section IV
we shall assume that the traversal time for any given edge
e ∈ E by any agent a ∈ A is deterministic and uniform across
all edge-agent pairs (e, a) ∈ E × A.9 This constant traversal
time defines a “time unit” for the resulting traffic model, and it
induces a natural discretization of the motion dynamics of the
considered traffic system. In the context of these discretized
dynamics, it is further stipulated that an agent cannot move
into an edge e at time t from a neighboring edge, unless e
was empty at time t−1. 10 Also, some additional assumptions
that define the considered traffic coordination problem are as
follows: A subset of agents might share the same destination
location, an effect that models a “rendezvous” requirement for
these agents. And since, in the “rolling-horizon” framework
that defines the broader context for the traffic-scheduling prob-
lem addressed in this work, the initial locations of the traveling
agents in any given problem instance can be their destinations
in some earlier iteration, this “rendezvous” possibility further
implies the potential coincidence of the initial locations, sa,
for certain agents, as well.

Finally, different traffic models will impose different as-
sumptions regarding the potential (immediate) reversibility of
the agent motion on any given edge e ∈ E. In this work,
we shall assume that the traveling agents can reverse freely
the direction of their motion on any given edge e ∈ E of
the guidepath network. This assumption is practically justified
by the motion dynamics materialized in many contemporary
MHS, and also by the motion dynamics that govern the
traversal of the ion traps by their resident qubits in the context
of quantum computing. In the next section we shall also see
that the above assumption regarding the reversibility of the
motion of the traveling agents within their allocated edges
has a critical role in the synthesis of the presented solution
to the resulting traffic coordination problem, and therefore,
it defines, in a substantial manner, the class of the zone-
controlled, guidepath-based traffic systems that are amenable
to the results that are presented in this paper.11

Example: An example instance of the traffic scheduling
problem that is considered in this work is depicted in Figure 1.
This problem instance concerns the transport of three agents,

9This assumption will be removed in Section VI, where we discuss the
necessary modifications for the presented algorithm that enable it to cope
with the broader case of non-uniform traversal times for the various edge-
agent pairs (e, a).

10As remarked in Section I, this assumption ensures the required separation
of the different agents in lack of a perfect synchronization of the agent
transitioning across their various zones, and it also implies the agent inability
to swap their occupying edges. Also, as it will be discussed in later parts
of this document, in certain variants of the considered traffic systems, this
particular condition on the agent motion, when combined with the arbitrary
topology of the guidepath graph G and the bidirectional traversal of its edges
by the traveling agents, can be the source of deadlocks that will permanently
stall the further advancement of the agents involved, and necessitates the
proactive management of the underlying traffic with the additional objective
of deadlock avoidance [8], [44].

11To help the reader obtain a better appreciation of the significance of
the assumption of the agent motion reversibility for the presented results,
we notice that, under this assumption, the generated traffic will always be
deadlock-free, irrespective of how the agents select their routes and advance in
them. Hence, the corresponding traffic retains its liveness without any further
need for a supervisory control policy. This fact is formally established in
Section IV-B.
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Fig. 1: The problem instance employed in the examples of
Sections III and IV.

ai, i = 1, 2, 3, from the corresponding edges that are indicated
by si in the figure, to the destination edges indicated by di.
Agents can move by at most one edge at a time, and they
can reverse the direction of their motion in their current edge.
Furthermore, the “home” edge in the considered configuration
is the edge labelled by ‘h’ in the depicted graph.

It is interesting to notice that the relative positioning of
the source and the destination edges for each of the three
agents in the underlying guidepath network implies that agent
a1 cannot occupy its destination edge before agents a2 and a3
have gone through it, and a similar remark applies to the pair
of agents a2 and a3. Furthermore, due to the initial placement
of the three agents on the depicted guidepath network, it is
not possible to route these agents from their current locations
to their destinations using the corresponding shortest paths
for each agent. In fact, it is easy to see that the synthesis
of a feasible solution for this problem instance will require
the proactive “sidestepping” of agents a1 and a2 to one of
the “spears” of the guidepath network that are respectively
defined by the edge sets {h, e1, e2, e3} and {e13, e14, e15, e16},
in order to allow the agents behind them to pass ahead.

The above remarks further imply that the considered prob-
lem instance cannot be addressed though the sequential logic
of the decoupled approaches that were discussed in Section II.
On the other hand, as we discuss in the next section, the
algorithm that is presented in this work was able to derive an
optimal traffic schedule for this problem in a few milliseconds
while running on a very simple MacBook Pro.

IV. THE PROPOSED ALGORITHM

In this section we present a canonical version of our
heuristic algorithm for the traffic coordination problem that
was defined in Section III. We start by introducing a formal
representation for the solution space of the considered prob-
lem, and subsequently, the presented algorithm is motivated
and discussed as a “local-search” scheme [14] on this solu-
tion space. The presented developments include a worst-case
complexity analysis for the basic version of the algorithm,
and they also establish formally the algorithm completeness

and the correctness of the derived solutions. An extensive
numerical evaluation of the presented algorithm is provided
in Section V. In addition, Section VI outlines some variations
of this algorithm that can enhance the quality of the derived
solutions and provide better control of the trade-off between
the quality of these solutions and the computational effort that
is required for their derivation.

A. A formal representation for the sought traffic schedules
We start the presentation of our algorithm by discussing

the key (data) structures that are employed by it for the
representation of the sought traffic schedules and some other
data sets that are crucial for the performed computations.
Hence, let T denote an upper bound to the optimal makespan,
w∗; in the subsequent developments of this section we shall
show that the traffic-scheduling problem that is defined in
Section III is always feasible, and therefore, both T and w∗

will be finite positive integers.12 For any given T , a complete
schedule for the considered problem must specify all the
edges, eat , that are held by each agent a ∈ A at each period
t ∈ {0, 1, . . . , T}. Hence, a complete traffic schedule is a set
S of |A| finite sequences σa, each consisting of edges e ∈ Ê
and having length T + 1.

In addition, any tentative schedule S = {σa : a ∈ A}
will be considered feasible if and only if (iff ) it satisfies the
following conditions:

1) ∀a ∈ A, ea0 = sa ∧ eaT = da.
2) ∀a ∈ A, ∀t ∈ {0, 1, . . . , T−1}, eat+1 ∈ {eat }∪NH(eat ),

where NH(eat ) denotes the set of the neighboring edges
of edge eat in graph G.

3) ∀a, a′ ∈ A, ∀t ∈ {1, . . . , T}, eat = e ∧ ea
′

t = e′ =⇒
(e 6= e′) ∨ (e = e′ = h) ∨ (e = e′ = eaq = ea

′

q , ∀q ∈
{0, . . . , t}) ∨ (e = da ∧ e′ = da′).

4) ∀a, a′ ∈ A, ∀t ∈ {1, . . . , T}, eat = ea
′

t−1 = e 6=
eat−1 =⇒ (e = h) ∨ (da = da′ = e).

Condition 1 in the above list expresses the fact that in
the considered class of feasible schedules, every agent must
start from its current location and be at its destination edge
by the end of the provided time horizon T . Condition 2
stipulates that any feasible route must observe the connectivity
of the underlying guidepath network. Condition 3 enforces the
requirement that two agents cannot cohabit on an edge at any
time unless (i) it is the “home” edge h, (ii) a common initial
location, or (iii) a common destination. In particular, parts (ii)
and (iii) of this condition intend to capture the additional traffic
dynamics that can be generated by potential “rendezvous”
requirements among the traveling agents; please, c.f. Sections I
and III for some further discussion on these requirements.
Finally, Condition 4 enforces the requirement that an agent
a can move into an edge e at a period t only if this edge was
empty in period t − 1, unless e is the “home” edge or the
common destination for a and some other agent a′.

Example: The above definitions regarding the representation
of a feasible traffic schedule in this work are highlighted
through Table I that provides a feasible (in fact, optimal) traffic
schedule for the example problem instance of Figure 1. This

12The integrality of these numbers results from the time discretization that
was introduced in Section III.
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TABLE I: An optimal traffic schedule for the example problem
instance of Figure 1.

t a1 a2 a3 t a1 a2 a3 t a1 a2 a3

0 7 6 5 6 8 3 2 12 18 12 10
1 7 6 4 7 9 4 2 13 19 17 11
2 7 5 8 8 10 8 3 14 20 18 12
3 6 4 3 9 11 9 4 15 20 19 17
4 5 8 2 10 12 10 8 16 20 19 18
5 4 3 2 11 17 11 9

7	

7	

6	

6	

5	 19	

20	

20	

t=0	 t=1	 t=2	 t=12	 t=13	

Fig. 2: A fragment of DAG D(a1, e7, 0, 13) for the example
problem instance of Figure 1. The labels k in the various nodes
of the depicted digraph correspond to the various edges ek in
the guidepath graph G of Figure 1.

table provides the edge eai
t that is occupied by each agent

ai, i = 1, 2, 3, at each period t ∈ {0, . . . , 16}. In the provided
schedule, it is interesting to notice (i) the agents’ ability to
reverse their motion within a particular edge (as exemplified,
for instance, by the moves of agent a1 in periods 3–5), and
(ii) the observation of Condition 4 by this schedule (e.g., agent
a2 can make its first move, to edge 5, only at period 2, after
agent a3 has moved out from this edge in period 1). Also,
the detailed tracing of this schedule will reveal the agent
coordination in their effort to reach their destination, which
has agents a2 and a3 “side-step” into the spear that is defined
by edges e1, e2, e3 and h. �

For the computational needs of the presented algorithm, it is
also important to have an efficient representation of all the pos-
sible paths that can take any given agent a ∈ A from its edge
eat = e ∈ Ê at period t, for any t ∈ {0, 1, . . . , T − 1}, to its
destination da, over the remaining time interval {t+1, . . . , T}.
Such an efficient representation is provided by a directed
acyclic graph (DAG) that will be denoted by D(a, e, t, T ).
The nodes of D(a, e, t, T ) are pairs (e′, t′), for certain e′ ∈ Ê
and t′ ∈ {t, . . . , T}, and represent the positioning of agent a
at edge e′ at time t′. From this description, it is easy to see
that the nodes of D(a, e, t, T ) are layered w.r.t. the parameter
t′ of their labels. On the other hand, a directed edge from node
(e′, t′) to node (e′′, t′ + 1) implies the existence of a feasible
path that contains the corresponding move.

Example: Figure 2 demonstrates the D(a, e, t, T ) object
by depicting a fragment of the DAG D(a1, e7, 0, 13) for the
example problem instance of Figure 1. This DAG encodes all

1) Start by introducing to the constructed DAG
D(a, e, t, T ) the “root” node (e, t), indicating the
positioning of agent a at edge e at time t.

2) For each new node introduced in the constructed DAG
D(a, e, t, T ), append a next layer of nodes (e′, t+1), for
all those edges e′ that (i) belong to the set {e}∪NH(e),
and (ii) there exists a feasible route that can take agent a
from edge e′ to its destination edge, da, in no more than
T − t−1 time periods; link each node (e′, t+1) to node
(e, t) with a directed edge leading from the latter node to
the former; furthermore, in this expansion, avoid the re-
introduction of nodes that have been already introduced
in the constructed DAG D(a, e, t, T ).

3) Terminate when all nodes of DAG D(a, e, t, T ) have
been processed according to the logic of Step 2.

Fig. 3: A “forward-search” algorithm for constructing the DAG
D(a, e, t, T ).

the possible paths that take agent a1 from its initial edge, e7,
to its destination edge, e20, in no more than 13 periods. It is
interesting to notice that the layer of nodes corresponding to
period 2 does not contain edge e7, even though it is a viable
location for agent a1 during this period, because, placing agent
a1 at edge e7 in period 2 will render edge e20, which is the
destination edge of agent a1, inaccessible by this agent in the
remaining 11 periods of the considered time horizon. �

DAG D(a, e, t, T ) can be computed efficiently by the
“forward-search” algorithm that is depicted in Figure 3. Con-
dition (ii) in the second step of the algorithm of Figure 3 can
be checked efficiently by using the Floyd-Warshall algorithm
[54] to precompute all the pairwise shortest distances among
the various pairs of edges of the guidepath graph G. Clearly,
the number of nodes of the resulting DAG D(a, e, t, T ) cannot
be more than |Ê| · T , and in most practical instantiations of
the considered problem, the actual number of these nodes will
be significantly smaller than the above upper bound.

B. Constructing an initial feasible solution
Conditions 3 and 4 of the previous section, that must be

observed by any feasible schedule for the considered traffic
coordination problems, define a notion of “routing conflict”
among the traveling agents that, when combined with the
arbitrary structure of the underlying guidepath network G,
further imply that the task of assessing the feasibility of any
given instance of the considered traffic scheduling problems
can be pretty challenging, in general [15].

However, in this section we shall show that the particular
problem version defined in Section III will always be feasible.
We establish this result by construction, i.e., by providing
a systematic procedure that will always generate a feasible
solution. The feasibility of this construction stems from (i)
the availability of the “home” edge h, that can accommodate
simultaneously all agents a ∈ A, and (ii) the presumed
reversibility of the agent motion within its running edge. More
specifically, the proposed procedure for the construction of a
feasible routing schedule can be perceived as a “two-stage”
computation where, in the first stage, all agents are collected
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to the “home” edge h, and in the second stage they are routed
to their destination edges da. The presumed reversibility of
the agent motion within any given edge further implies that in
each of these two stages, the traveling agents can be routed to
their respective destinations in a way that avoids any potential
conflicts among them. The technical details of this construction
are established by the following two results.

Lemma 1: For the traffic scheduling problem defined in
Section III, it is always possible to reach from the initial traffic
state s0 that is defined by the edge set {sa : a ∈ A}, to the
traffic state sh where every agent is located at the “home”
edge h.

Proof: Let us assume, without loss of generality, that there
exist some agents a ∈ A with sa 6= h. Pick any agent, a1,
from this set, that is located closest to the “home” edge h, in
terms of the smallest number of edges that must be traversed
in order to reach h from sa1 . Clearly, this selection of agent
a1 implies that all edges on any shortest path leading from
its current location sa1

to the “home” edge h are free. Hence,
agent a1 can reach edge h while keeping all other agents still.
But then, Lemma 1 is proved by an inductive invocation of the
above argument for the remaining set of agents a with sa 6= h.
�

Proposition 1: For the traffic scheduling problem defined in
Section III, there is always a routing schedule that takes all
agents a ∈ A from their initial locations sa to their destina-
tions da, and abides to the Conditions 1–4 of Section IV-A.

Proof: Lemma 1 has established that it is possible to reach
from the initial state s0 the state sh where all agents are
collected on the “home” edge h. An argument similar to
that used in the proof of Lemma 1 can be used to establish
that, from state sh, all agents a ∈ A can be routed to their
destinations da one at a time, starting with the agents for which
their destination edge da is furthest from the “home” edge h;
the relevant details are pretty straightforward and they are left
to the reader. �

Besides establishing the feasibility of all the instantiations
of the considered traffic scheduling problem, the proof of
Proposition 1 further implies that a feasible traffic schedule can
be computed in polynomial time w.r.t. the size of the guidepath
network G and the number of the traveling agents, |A|. It is
also useful to notice that the construction of an initial feasible
traffic schedule for the considered problem instances that was
outlined in Lemma 1 and Proposition 1, is meant as a formal
argument regarding the problem feasibility. A more practical
implementation of this procedure first will prioritize the agent
trips at each of the two stages according to the corresponding
logic that was established in the proofs of Lemma 1 and
Proposition 1, but subsequently it will allow all agents to ad-
vance simultaneously to their (stage-dependent) destinations,
as long as such an advancement does not impede any agents
with higher traveling priority to reach their own destinations;
such potential blockages can be assessed and resolved very
efficiently through some testing procedures similar to those
that were presented in [8] for an efficient implementation of
Dijkstra’s Banker’s algorithm [55] in guidepath-based traffic
systems.

Example: In the example problem instance of Figure 1, an
initial traffic schedule can be obtained by first routing agents

a3, a2 and a1 (in this order) to the “home” edge h through the
corresponding shortest paths, and subsequently routing them
from edge h to their respective destinations, in the sequence
〈a1, a2, a3〉. The reader can also check that the first part of
this traffic schedule can executed with a minimal makespan
of 10 periods, while the more naive implementation of this
part that routes the three agents to edge h one at a time will
lead to a makespan for this part of 18 periods. Similarly, an
efficient implementation of the second part of the proposed
routing plan has a minimum required makespan of 14 periods,
while the naive implementation of this part that routes one
agent at a time, will have a makespan of 33 periods. Hence,
the total makespans for the two initial traffic schedules that
are constructed by the naive and the efficient implementation
of the corresponding procedure are, respectively, 51 and 24
periods. On the other hand, in both of these plans, the last
agent to reach its destination in this schedule is agent a3,
and the length of the corresponding sequence σa3 defines the
makespan of the entire schedule.

C. Searching locally for an improved solution
In this section we detail a basic version for the “improving

step” of the proposed algorithm. This version will be further
enhanced in the last subsection of Section IV and through the
discussion that is provided in Section VI.

Hence, suppose that we have already computed a feasible
schedule S = {σa : a ∈ A} with makespan w. By the
definition of the “makespan” concept, there exists a set of
agents Ȧ ⊆ A that reach their corresponding destinations da
exactly at period w. The proposed improving step seeks to
find an agent â ∈ Ȧ and a new route σ̂â for this agent that (i)
presents no conflicts with the routes σa that are specified by
the original schedule S for all the other agents a ∈ A \ {â},
and (ii) places agent â to its destination location dâ at a period
earlier than w. In such a case, the original schedule S is
replaced by the schedule Ŝ ≡ {σa : a ∈ A \ {â}} ∪ {σ̂â},
which is considered as an “improving” schedule w.r.t. S.

To provide a complete description of the improving step
that was outlined in the previous paragraph, we also need to
describe the mechanism that computes a feasible route σ̂â,
provided that such a route is available for the selected agent
â. This can be done by formulating and solving a simple
“shortest-path” problem [54] on the DAG D(â, sâ, 0, w − 1),
that was introduced in Section IV-A. According to the rel-
evant definitions that were provided in that section, DAG
D(â, sâ, 0, w − 1) encodes all the possible routes that take
agent â from its initial location sâ to its destination location
dâ no later than period w − 1, and each node of this DAG
carries a label (e, t) indicating that agent â is located at edge
e at period t. To formulate the aforementioned “shortest-path”
problem, we also associate a “cost” with each node (e, t) of
DAG D(â, sâ, 0, w−1) that expresses the number of conflicts
that are generated w.r.t. the remaining routes σa, a ∈ A\{â},
by placing agent â at edge e at period t. Then, it is easy to
see that any feasible route σ̂â w.r.t. the specifications that are
defined by Conditions 1–4 in Section IV-A, is represented by
a path of zero total cost leading from the “root” node (sâ, 0)
of DAG D(â, sâ, 0, w− 1) to its “terminal” node (dâ, w− 1).
The considered method will identify all the zero-cost paths
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by formulating and solving the corresponding shortest-path
problem, and eventually it will select as the new route σ̂â, for
agent â, any of these zero-cost paths that takes agent â to its
destination as soon as possible.

Example: As remarked in the example of Section IV-B, the
naive and the efficient implementations of the construction
procedure that was developed in that section will provide
initial schedules for the example problem instance of Figure 1
with respective makespans of 51 and 24 periods. Furthermore,
in each of these two schedules, the makespan is defined by
the routing plan of agent a3. Hence, assuming that we have
started with the schedule that is generated by the naive im-
plementation of the corresponding procedure, the application
of the improving step of our algorithm on that schedule will
seek to identify a new routing plan for agent a3 that will
bring this agent to its destination edge, e18, in no more than
50 periods. It can be easily checked in Figure 1 that, in view of
the routing plans that are provided by the considered schedule
for agents a1 and a2, such an improved plan for agent a3
can be obtained either (i) by advancing agent a3 from edge
h towards its destination edge e18 before agent a2 reaches its
own destination, or (ii) by initially routing this agent to edge
e16 (instead of edge h), and keeping it there until agents a1
and a2 have cleared through edge e17.

On the other hand, it is also interesting to notice that
neither of the above two options will work in the case
where the initial traffic schedule is the efficient one with the
makespan of 24 periods. In fact, in this case, the improving
step that was described in the previous paragraphs will fail
to identify an improved routing plan for agent a3, and the
basic implementation of our algorithm will exit with the initial
schedule as the proposed solution. �

We close the discussion of this subsection with the following
two remarks.

Remark 1: The “shortest-path” problem outlined in the
earlier part of this subsection can also be perceived as a “reach-
ability” problem on the subgraph of DAG D(â, sâ, 0, w − 1)
that is defined by its zero-cost edges. Therefore, this problem
is also solvable through the simpler enumerative techniques
that are available for such “reachability” problems [38]. But
we have pronounced the “shortest-path” perspective in the
above discussion because it provides naturally some additional
information that is exploited in the algorithmic enhancement
discussed in Section IV-F.

Remark 2: We also notice, for completeness, that in certain
variations of the traffic scheduling problem considered in
this work, it might be necessary to enforce the additional
requirement that, in the derived schedules S, an agent a
reaching its destination da at some period t will remain at this
edge until the end of the planning horizon T . This requirement
can be expressed by adding the condition:

5) ∀a ∈ A, ∀t ∈ {1, . . . , T − 1}, eat = da =⇒ eat+1 = da
to the four conditions in Section IV-A that define the schedule
feasibility in the considered problem context. This new condi-
tion will be naturally satisfied during the construction of the
initial feasible solution that is presented Section IV-B, thanks
to the agent ordering that is adopted in the second part of the
corresponding procedure. On the other hand, in the context
of the schedule-improving procedure that is presented in this

1) Use the procedure outlined in Section IV-B in order
to construct an initial feasible schedule S(0) for the
considered problem instance.

2) S := S(0).
3) Q := Ȧ.
4) While (Q 6= ∅) do

a) Pick an element a ∈ Q.
b) Test whether agent a can be used for generating

an improving schedule Ŝ.
c) If the above test is positive, do

i) S := Ŝ.
ii) Goto Step 3.

d) else Q := Q \ {a}.
5) Return S.

Fig. 4: A basic version of the heuristic algorithm for the traffic-
scheduling problem that is considered in this work.

subsection, Condition 5 can be easily enforced by pruning
accordingly the DAGs D(â, sâ, 0, w − 1).

D. A complete canonical version of the presented algorithm

In view of all the above discussion, a complete canoni-
cal version for the proposed algorithm can be organized as
follows: The algorithm will start by constructing an initial
feasible schedule according to the methodology that was
presented in Section IV-B. Then, with this initial feasible
schedule available, the algorithm will go into an iterative mode
that seeks to generate a sequence of improving schedules
according to the logic that was described in Section IV-C.
More specifically, at the i-th iteration, for i = 1, 2, . . . ,,
the algorithm will work with the schedule S(i−1) that was
obtained during the previous iterations (or the initial schedule,
in the case that i = 1), and it will search the corresponding set
Ȧ(i−1) for an agent a(i) ∈ Ȧ(i−1) that can be used to construct
an improving schedule. In the absence of any other pertinent
information, this search for the agent a(i) through the elements
of the set Ȧ(i−1) can be done opportunistically (ensuring,
however, that we avoid the repetitive selection of the same
agents). On the other hand, once an improving schedule Ŝ is
constructed, this schedule becomes the incumbent schedule
S(i), and the algorithm advances to iteration i + 1. The
algorithm will terminate at the first iteration, k, where it is
not possible to identify an improving schedule for any of the
agents a ∈ Ȧ(k−1); at that point, the algorithm will return
the schedule S(k−1) as its final solution, with corresponding
makespan w(k−1).

Figure 4 provides a more formal statement of the algorithm
that was outlined in the previous paragraph. The completeness
of this algorithm, and the correctness of the returned schedule
S, result immediately from all the developments that were
presented in the earlier parts of this section. Furthermore, since
in the new schedule Ŝ that is generated at every iteration of the
Steps 3–4, one of the traveling agents reaches its destination
earlier by one period, the algorithm will terminate in a finite
number of iterations, and the returned schedule S will have a
makespan that is no greater than the makespan of the initially
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constructed schedule S(0).
Example: The execution of the algorithm of Figure 4 on the

example problem instance of Figure 1, with the basic compu-
tational scheme that is suggested by the proof of Proposition 1
for the generation of the initial schedule (i.e., the “naive” initial
schedule described in the example of Section IV-B), lasted 25
msecs and it resulted in the traffic schedule that is presented
in Table I. The reader can verify that this is an optimal traffic
schedule for the considered problem instance.

E. Complexity Analysis for the Algorithm of Figure 4

In this subsection, we provide a complexity analysis for the
algorithmic version of Figure 4. As discussed in the earlier
parts of Section IV, the proposed algorithm will benefit from
an initial, “off-line” execution of the Floyd-Warshall algorithm
for the computation of the pairwise shortest distances among
the edges of the set Ê. The same information can also be used
for the specification of the shortest paths that are necessary for
the construction of the initial schedule S(0). The computational
cost of the Floyd-Warshall algorithm is O(|Ê|3) [54].

On the other hand, for the iterative part of the algorithm
that is presented in Figure 4 we have the following complexity
result.

Proposition 2: Let w∗ denote the optimal makespan for the
considered problem instance, and ŵ denote the makespan of
the initially constructed traffic schedule S(0). Then, the (worst-
case) computational complexity of the iterative part of the
algorithm presented in Figure 4 is O((ŵ2 − w∗2)|A|2|Ê|2).

Proof: First consider the test that is performed in Step
(4b) of the algorithm in Figure 4. As remarked in Sec-
tion IV-C, this test can be organized efficiently as a “reach-
ability” test that seeks the existence of a zero-cost path in
DAG D(â, sâ, 0, w

∗ + i), leading from node (sâ, 0) to node
(dâ, w

∗ + i) for some â ∈ A and i ∈ {0, . . . , ŵ − 1 − w∗}.
DAG D(â, sâ, 0, w

∗+ i) will have O(|Ê|(w∗+ i)) nodes and
each node will have O(|Ê|) emanating edges. Assessing the
availability of any of these edges in the underlying reachability
problem requires the assessment of potential conflict between
the corresponding step and the incumbent schedules of the
remaining agents, a task that has a cost of O(|A|). Hence,
the total cost for a single execution of the considered test is
O(|A||Ê|2(w∗ + i)). According to the “while”-loop of Step
(4), at any given i, this test will be performed O(|A|) times.
Finally, the result of Proposition 2 is obtained by further
noticing that

∑ŵ−1−w∗
i=0 (w∗ + i) = O(ŵ2 − w∗2). �

When the initial traffic schedule is obtained through the
“naive” implementation of the procedure of Section IV-B, the
corresponding makespan, ŵ, is O(|A|D̄), where D̄ denotes
the largest distance, among the edges e ∈ E, from the “home”
edge h. Hence, the computational complexity of the iterative
part of the algorithm of Figure 4 is O(|A|3|Ê|2D̄).

On the other hand, the factor (ŵ2 − w∗2) appearing in the
more general result of Proposition 2 reveals quite vividly the
computational value of having a good initial traffic schedule.
In Section V we also present a set of numerical results that
evaluate the computational complexity of our algorithm from
a more empirical standpoint that focuses upon the observed
execution times. The corresponding results indicate that the

algorithm executes very fast. Next, we introduce a variation
of the algorithm of Figure 4 that will retain the computational
efficiency of the original version, and, at the same time, it will
return more competitive solutions for the underlying traffic
coordination problem.

F. Enhancing the algorithm performance by digressing into
the infeasible region

In this subsection, we discuss a modification of the algo-
rithm presented in the earlier parts of Section IV, that has
proved particularly effective in terms of avoiding a premature
entrapment into some bad local optima. This is attained by
allowing the algorithm to take controlled excursions to infea-
sible solutions that are close to a reached local optimum, in ex-
pectation of the eventual identification of an improved feasible
schedule. The computational results reported in Section V will
reveal that this new mechanism can enhance very substantially
the algorithm performance, enabling the computation of very
efficient solutions even for some pretty hard problem instances,
with very short execution times.

Under the proposed enhancement, every time that the algo-
rithm of Figure 4 will reach an iteration k where no improving
schedule can be identified, it will go into a new phase of the
overall computation that works as follows:

First, the algorithm will seek to identify among the paths
of the DAGs D(a, sa, 0, (w − 1)(k−1)), a ∈ Ȧ(k−1), that
were computed in iteration k, one of minimal total cost (i.e.,
minimal conflict w.r.t. the remaining fixed routes of schedule
S(k−1)); in the selection of this path, potential ties are resolved
arbitrarily. For further reference, let us denote by a1 the agent
that corresponds to the selected path, and by σa1

1 the routing
schedule for agent a1 that is defined by this path. We shall
also denote by S(k−1)1 the routing schedule that is obtained by
replacing the route of agent a1 in schedule S(k−1) by σa1

1 .
Next, the algorithm will try to obtain a new feasible traffic

schedule from schedule S(k−1)1 by eliminating incrementally
the various conflicts that are present in this schedule. This
is done by starting with the new schedule S(k−1)1 and trying
to identify an agent a2 ∈ A \ {a1} that possesses a minimal-
cost path in the corresponding DAGD(a2, sa2 , 0, w

(k−1)) such
that the corresponding total cost is lower than the number of
conflicts between agent a2 and all the remaining agents in
schedule S(k−1)1 . Replacing the route of agent a2 in schedule
S(k−1)1 with the route σa2

2 that is defined by the aforemen-
tioned minimal-cost path, will lead to schedule S(k−1)2 , and
it can be easily checked that, by its construction, schedule
S(k−1)2 involves a smaller number of conflicts than schedule
S(k−1)1 . Hence, iterating the above computation on the new
schedule S(k−1)2 and the further schedules that are obtained in
this manner, either we shall reach a schedule S(k−1)n involving
zero conflicts, or the algorithm will get stuck with an infeasible
schedule and no possibility for further reduction of the number
of the existing conflicts. In the first case, schedule S(k−1)n can
be treated as schedule S(k), i.e., as a new feasible schedule
obtained in the k-th iteration of the original algorithm of
Figure 4, and the algorithm can move on with the next basic
iteration, k+ 1, as specified in Figure 4. In the opposite case,
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Fig. 5: The problem instance addressed in the first part of
Section V.

no further progress is possible, and the algorithm will exit
returning as its solution the feasible schedule S(k−1), that was
the best schedule available at the beginning of the considered
excursion to the infeasible region. The next section presents
a series of computational experiments that demonstrate very
vividly the efficacy of the resulting algorithm.

V. COMPUTATIONAL RESULTS

In the first part of this section we report the results from
the application of the presented algorithm on another hard
instance of the traffic-scheduling problem that is considered
in this work. The second part of the section reports the
results of a more extensive computational experiment that has
been designed to demonstrate and assess the computational
efficiency of the presented algorithm and the quality of the
derived solutions, as it is applied on increasingly congested
traffic systems. An additional role of this experiment is to
identify some further important factors that can impact the
algorithm performance w.r.t. its computational efficiency and
the quality of the derived solutions. Finally, part of this
experiment also demonstrates the limitations of the coupled
methods discussed in Section II when applied on increasingly
harder problem instances.

A. Applying the algorithms of Section IV on the problem
instance of Figure 5

In this part of our computational experiments we applied the
algorithms presented in Section IV to the problem instance that
is depicted in Figure 5. This problem instance was carefully
crafted in order to assess the performance of our algorithm in a
very congested environment that involves an extensive overlap
among the available paths of the traveling agents towards their
target destinations. In addition, the “home” edge h was placed
at a very remote location, in an effort to assess the potential
inefficiencies that may be incurred by the role of this edge
in the construction of the initial traffic schedule, especially in
such an adversarial situation.

For a proper understanding of the problem instance that
is depicted in Figure 5, the reader should also notice that
the problem representation employed in this figure differs

TABLE II: The traffic schedule computed for the problem
instance of Figure 5 by the variation of the proposed algo-
rithm that allows for excursions to the infeasible region –
c.f.Section IV-F.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

19 2 4 12 10 8 1 3 5 13 11 9
25 2 4 12 10 6 1 26 5 13 18 7
25 19 4 12 8 6 3 27 5 11 17 14
25 19 2 10 8 6 26 27 7 18 16 15
25 19 35 10 8 4 14 27 7 17 16 15
25 19 36 10 6 2 18 27 7 17 16 15
24 19 3 8 4 35 11 27 14 17 16 15
24 25 5 6 2 36 38 27 18 17 16 15
24 25 7 4 19 3 37 27 18 17 16 15
24 25 9 2 19 5 10 27 18 17 6 15
24 25 9 35 19 5 12 27 18 16 8 15
24 25 9 36 2 5 12 26 17 6 8 15
24 19 9 3 27 5 12 14 16 4 8 15
25 2 9 1 26 5 12 18 6 4 10 15
19 27 9 1 3 5 12 17 8 4 37 16
19 26 9 1 3 5 12 10 8 2 38 6
19 14 9 1 3 5 12 10 8 4 11 6
2 7 9 1 3 5 12 10 8 4 18 6
27 7 9 1 3 5 12 10 8 4 14 6
16 7 9 1 3 5 12 10 8 2 26 6
17 7 9 1 3 5 12 10 8 19 27 4
18 7 9 1 3 5 12 10 8 19 2 4
11 14 9 1 3 5 12 10 8 19 2 4
13 18 9 1 3 5 12 10 8 19 2 4
13 11 9 1 3 5 12 10 8 19 2 4

slightly from the previous models presented in this paper, in
that the traveling agents are placed at the nodes instead of
the edges of the underlying guidepath network, and the graph
connectivity now defines a notion of “neighborhood” among
the different nodes; nevertheless, all the rules of Conditions
1–4 in Section IV, that define the dynamics of the underlying
traffic, extend naturally to this new setting, and the same
applies to the logic of the algorithms that were presented in
that section.13

Under the aforementioned interpretation, the consid-
ered problem instance involves twelve agents ai, i =
1, . . . , 12, each initially located at the corresponding
node that is marked by si. These agents must swap
their positions pairwise, with the corresponding pairs
being {a1, a10}, {a2, a11}, {a3, a12}, {a4, a7}, {a5, a8} and
{a6, a9}. The “home” location is the node at the left-top corner
of Figure 5, and it is connected to the rest of the graph by the
depicted long path between nodes h and 19.

The application to this problem instance of the canonical
version of our algorithm that is depicted in Figure 4, on an
HP Z230 workstation with an Intel core i7 processor and 8 GB
RAM, running Fedora, lasted 739 msecs and gave a feasible
schedule with a makespan equal to 72 periods. We also applied
the variation of our algorithm that allows for excursions to
the infeasible region, in an effort to overcome a premature
entrapment in local optima (c.f. Section IV-F). In this case,
the algorithm ran in 8.6 secs, and the obtained schedule is
presented in Table II; the corresponding makespan was 24
periods. Finally, we also applied the MIP formulation of [11],
[10] to this problem instance. The solution of this formulation

13These remarks essentially reveal an existing “duality” in the role of the
“node” and “edge” concepts in the graphical representation of the traffic
dynamics that are considered in this work. At the end, what really matters is
the set of the available “locations” for the traveling agents, and the “proximity”
relation that is defined among them.
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TABLE III: An optimal traffic schedule for the problem
instance of Figure 5 computed through the MIP formulation
of [10], [11].

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

19 2 4 12 10 8 1 3 5 13 11 9
19 2 4 12 17 6 1 26 5 13 38 7
19 27 4 10 18 16 3 26 5 11 37 7
2 27 6 10 18 17 36 26 5 9 38 14
4 16 8 37 18 17 35 26 3 7 11 15
6 16 10 38 14 17 2 27 36 5 9 15
8 16 37 11 26 18 4 27 35 3 7 15
10 17 38 9 26 14 6 27 2 36 5 15
37 18 11 7 26 14 8 16 4 35 3 15
38 18 9 5 27 14 10 17 6 2 36 15
11 18 9 3 27 7 10 17 8 19 35 16
13 18 9 1 26 5 12 17 8 19 2 6
13 11 9 1 3 5 12 10 8 19 2 4

through CPLEX lasted almost 5 days, but the solver was
eventually able to come up with an optimal solution of 12
periods; this solution is tabulated in Table III.

B. A more extensive numerical experiment

As stated in the opening part of this section, in this part
we report a numerical experiment that was designed to (i)
assess more systematically the performance of the traffic-
scheduling algorithm that is presented in the paper, and (ii)
identify critical factors that will impact this performance. The
guidepath network used in this experiment has the particular
structure of a “grid”, that has been used in similar experiments
reported in the past literature, and the traffic congestion is
determined by controlling the number of agents that circulate
on this grid. The employed grid is depicted in Figure 6, and
as in the case of Figure 5, this figure provides a “dual”
representation of the employed guidepath graph, where the
various zones are represented by the nodes of the depicted
graph, and the edges define the neighboring structure of these
zones.

There are 133 nodes in the grid of Figure 6. The red node
at the center of this grid indicates the location of the “home”
zone. In fact, in our experiments, the “home” zone was placed
at two different locations: (i) the middle of the guidepath
network, as indicated in Figure 6, and also (ii) one of the four
corners of the depicted graph.14 The results that are reported
in the rest of this section reveal that the aforementioned
placement of the “home” zone can have a significant impact
on the performance of the presented algorithm.

The problem instances addressed in the considered exper-
iment, for each of the two placements of the “home” zone,
involved a number of agents ranging from 3 to 45, with
a step-increase of three agents. The starting and the desti-
nation locations for each agent were determined randomly,
with the provision that the resulting problem instance was
consistent with the problem formulation that was introduced
in Section III. Furthermore, the construction of these problem
instances was such that the problem instance involving n
agents subsumed the problem instance that was defined with
n−3 agents, n = 6, 9, . . . , 45. This structure of the experiment
in terms of the number of the traveling agents and their

14Due to the symmetries of the graph of Figure 6, all these corners are
topologically equivalent.

routing specifications intended to assess the performance of
the algorithm as the guidepath network became increasingly
more congested.15

We executed five replications of the aforementioned ex-
periment and the obtained results are reported in Table IV.
More specifically, this table reports for each problem instance
addressed in the experiment, an estimate of the optimality gap
for the obtained schedule, assessed through the solution of the
Lagrangian dual problem of the considered problem instance
that is studied in [10], [11]; in particular, for each considered
problem instance, the value reported in Table IV is computed
by the following formula:

obt. sched. makespan − opt. value of Lagrangian dual
opt. value of Lagrangian dual

×100

Also, Figure 7 depicts the evolution of the average of these
numbers, as the traffic density increases from 3 traveling
agents to 45. The two plots presented in this figure suggest that
the performance of the presented algorithm is pretty close to
the optimal in environments with a low zone occupancy by the
traveling agents, but this performance degrades as the ratio of
the number of the traveling agents to the number of zones
of the guidepath network increases to some higher levels.
Furthermore, the experienced degradation is higher in the case
that the underlying “home” zone is located away from the
“center” of the guidepath network. This effect is explainable
by the fact that, in this case, the initially constructed schedules
by the presented algorithm will possess a highly congested
phase that results from the collection of the traveling agents to
the “home” zone; the recovery from this congesting effect will
require a pretty drastic revision of the originally constructed
schedules, that can be facilitated only by “neighborhood”
structures involving a high representational and computational
complexity.16

The careful perusal of the numbers that are reported in
Table IV also reveals considerable variability across the per-
formed replications, especially in the case of dense traffic.
This variability is interpretable by the distribution of the
agent starting locations and their destinations across the entire
guidepath network. For reasons similar to those discussed in
the previous paragraph, some of the more difficult problem
instances for the considered algorithm are those where the
destination edges for a group of agents are clustered together
in a pretty compact area of the underlying guidepath network.
Such a situation implies extensive coupling among all the
efficient routing plans for the involved agents, and it requires
a very careful coordination of the order in which these agents
approach and eventually occupy their destinations.

Next we discuss the results of this experiment from the
standpoint of the computational efficacy of the presented
algorithm. We start by noticing that the reported experiment
was executed on an HP Z230 workstation with an Intel core
i7 processor and 8 GB RAM, running Fedora Linux. Further-
more, Table V reports the computational times, in seconds, for

15Problem instances with 45 agents imply a pretty congested guidepath
network, since, at each time period, the traveling agents occupy about 1/3 of
the available zones.

16In fact, this effect was also manifested in the example of Section IV-C
where the improving procedure was unable to identify an improved routing
plan for agent a3 in the case of the “efficient” initial traffic schedule.
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Fig. 6: The guidepath graph used in the numerical experiment of Section V-B.

TABLE IV: Estimates of the optimality gap for the numerical experiment that is reported in Section V-B.

# of Corner Depot Center Depot
agents Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 5 Avg. Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 5 Avg.

3 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0
15 11.76 7.69 0 0 0 3.89 5.88 7.69 0 0 17.65 6.24
18 0 15.38 0 0 0 3.08 5.88 15.38 0 0 5.88 5.43
21 5.88 0 0 0 0 1.18 5.88 0 0 0 11.76 3.53
24 11.76 5.88 0 0 11.76 5.88 5.88 31.25 5 0 11.76 10.78
27 0 29.41 5 9.52 11.76 11.14 0 25 10 0 23.53 11.70
30 18.18 76.47 10 104.76 29.41 47.76 36.36 25 5 23.81 23.53 22.74
33 50 64.70 400 61.90 52.63 125.85 45.45 43.75 105 176.19 36.84 81.45
36 50 82.35 45 160.87 31.58 73.96 59.09 35.29 45 104.35 36.84 56.11
39 109.09 141.18 435 112.5 47.37 169.03 59.09 58.82 195 25 47.37 77.06
42 186.36 276.47 520 87.5 65 227.07 68.18 100 175 129.17 75 109.47
45 145.45 605.88 625 537.5 100 402.77 86.36 105.88 270 37.5 55 110.95

the execution of the presented algorithm on the aforementioned
problem instances, while Figure 8 plots the corresponding
averages as a function of the traffic density. As it can be
seen in the provided data, our algorithm executes very fast,
even for problem instances that correspond to highly congested
environments. Also, the plots of Figure 8 are consistent with
our earlier remarks regarding the identification of (i) the traffic
density and (ii) the centrality of the location of the “home”
zone as important factors that determine the difficulty of the
considered problem instance.

Finally, Table VI highlights the performance of the MIP
formulation of [10], [11] when applied to some of the problem
instances that were considered in this experiment. More specif-
ically, we employed this formulation for generating feasible
and/or optimal schedules for the various problem instances
considered in this experiment, and Table VI reports the results
obtained for the first five problem instances of the second
problem set corresponding to the “Center Depot” case that

was employed in the generation of Tables IV and V. For
each of these instances, Table VI provides the performance
of the progression of the improving traffic schedules that
were generated through the solution of the corresponding MIP
formulation by CPLEX, and the computation times involved.
In each case, the solver either ran to completion, or it was
stopped after one hour of computation. The juxtaposition of
the reported results in Table VI with the corresponding results
reported in Tables IV and V reveals very clearly the limitations
of the MIP-based approach, and its inability to cope effectively
with the increasing problem complexity.17

17We should also mention that the experience reported in Table VI is
representative of the performance that we obtained when the MIP-based
approach was applied on any other problem set of the considered experiment.
Also, we chose to focus this reporting on the “Center Depot” case, since, for
the reasons that were discussed in the earlier part of this section, this case is
easier than the “Corner Depot” one.
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TABLE V: The computational times, in seconds, for the numerical experiment that is reported in Section V-B.

# of Corner Depot Center Depot
agents Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 5 Avg. Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 5 Avg.

3 0.578 0.997 1.072 0.207 0.566 0.684 0.064 0.202 0.010 0.117 0.078 0.094
6 1.646 2.108 2.029 2.161 1.648 1.918 0.696 0.503 0.353 0.356 0.438 0.469
9 3.547 3.263 4.435 3.401 3.642 3.658 0.934 1.047 0.583 1.367 1.043 0.995
12 6.426 5.324 7.375 4.754 6.279 6.032 2.883 1.744 1.195 2.535 2.074 2.086
15 10.832 8.912 10.003 6.941 10.234 9.385 5.061 2.887 2.544 6.190 5.150 4.366
18 16.415 14.314 20.085 11.022 15.202 15.408 6.498 4.790 8.507 6.006 7.623 6.685
21 23.325 22.275 30.002 17.016 19.962 22.516 8.452 6.865 11.311 8.286 13.287 9.640
24 41.147 29.571 59.755 26.108 31.421 37.600 10.647 16.931 15.554 10.422 12.425 13.196
27 52.565 40.889 42.776 47.026 42.274 45.106 19.762 18.791 21.880 16.794 20.228 19.491
30 72.063 53.518 111.397 110.126 63.599 82.141 27.615 25.240 29.823 30.649 26.039 27.873
33 97.556 94.606 133.889 105.607 100.407 106.413 33.467 30.906 78.517 40.778 35.837 43.901
36 143.186 103.203 299.298 107.343 82.586 147.123 42.159 52.968 87.547 59.112 47.455 57.848
39 174.941 104.938 183.402 317.641 211.703 198.525 47.996 82.556 87.653 84.874 38.086 68.233
42 209.937 260.069 229.955 234.994 259.284 238.848 74.069 66.680 155.846 88.233 69.370 90.839
45 296.739 251.565 287.195 194.762 430.644 292.181 74.918 105.301 494.313 218.629 76.077 193.848
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Fig. 7: Plotting the optimality gap for the numerical experi-
ment of Section V-B.
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Fig. 8: Plotting the computational times for the numerical
experiment of Section V-B.

VI. DISCUSSION

In this section we discuss some further possibilities that
can enhance the quality of the traffic schedules that are
returned by the considered algorithm, and enable a more

TABLE VI: Characterizing the performance of the MIP-based
approach for the considered problem instances.

# of optimality comp. time # of optimality comp. time
agents gap (secs) agents gap (secs)

3 1.31 0.9 9 1.31 902.56
0.08 1.06 0.08 916.84
0.00 1.38 0.00 941.62
term. 1.42 term. 941.78

6 1.31 4.27 12 1.31 2473.06
0.08 6.71 0.00 2702.49
0.00 7.21 term. 2702.55
term. 7.28 15 term. 3600

explicit management of the trade-off between the quality of the
derived solutions and the corresponding computational cost.
Furthermore, we address briefly the extension of the presented
results towards the real-time management of the traffic taking
place in guidepath-based transport systems that might not
fit exactly the modeling assumptions that have enabled the
algorithmic developments that are presented in this work,
and the integration of these results in the “rolling-horizon”
framework that was outlined in the introductory section of
this paper.

a) Some further enhancements of the presented algo-
rithm: These enhancement possibilities for our algorithm are
defined by (i) the revision of the representations for the
underlying solution space and the “neighborhood” structure
that are employed in the conducted local search, and (ii) the
design of additional mechanisms for resolving certain choices
that arise during the execution of the algorithm.

Regarding the first of the above two items, one can consider
the simultaneous perturbation of the routes of more than one
agent during the search for an improved schedule. In order
to effect such a simultaneous perturbation of n agent routes,
for some n = 2, 3, . . . , we shall need the redefinition of the
DAG structure that is employed in the improving step, so that
it is capable to represent, through the employed nodes and
their connectivity, all the feasible routes that will enable the
considered n agents to reach their corresponding destinations
under the imposed timing constraints without any conflicts
among themselves. The specification of such a DAG and its
systematic construction can be performed in an incremental
manner, through a “composing” process of the corresponding
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single-agent DAGs. An algorithmic procedure for this con-
struction is presented in [56].

[56] also reports some experimental results with this aug-
mented version of the algorithm. As expected, the resulting
algorithm can be more powerful than the algorithmic versions
that were presented in Section IV, since it employs a more
coupling approach in its search for an improved schedule. But,
similar to the case of the various coupled methods discussed
in Section II, as the parameter n increases to even some
moderate values, the size of the generated DAGs explodes
pretty fast. An additional interesting finding of the experiments
that are reported in [56] is that the for values of n that
maintain practical tractability for the resulting algorithm, the
improvements incurred in the quality of the obtained solutions
are not very significant compared to the solutions that are
generated by the algorithm implementation for n = 1. More
generally, the selection of a pertinent value for the parameter
n in any given implementation of the considered algorithm
should be based on (i) the available time budget, and (ii) the
significance of the incremental improvements that are attained
for the returned solutions.

As for the potential development of mechanisms that will
resolve the various choices that arise during the execution of
the algorithm in a more pertinent manner, one can consider de-
veloping a number of heuristics that will employ any available
information regarding the topology of the underlying guide-
path network, the proximity of the various traveling agents
to their respective destinations, and also any information that
is contained in the optimal solution of the corresponding
“(Lagrangian) dual” problem that was discussed in Section I.
[56] also reports some experimentation along these lines. This
experimentation has revealed that the integration in the em-
ployed algorithm of available information on (i) the particular
structure of the underlying guidepath network and (ii) the
relative positioning of the different agents with respect to their
destinations and each other does have the potential to enhance
its computational efficiency and the quality of the solutions
that are returned by it. On the other hand, we have not been
able to employ with significant advantage the information that
is provided in the optimal solutions of the Lagrangian dual
problem.

Another way to take advantage of the arbitration that
is discussed in the previous paragraph, especially for deci-
sions that cannot be resolved very clearly by an efficient
heuristic rule, is by randomizing the corresponding decisions.
Such randomization will introduce an additional exploration
mechanism in the computational dynamics of the considered
algorithm, taking these dynamics to broader regions of the
underlying solution space, and increasing, thus, the probability
of encountering some high-quality solutions. It also subsumes
the frequently used idea of randomizing the starting point of
any local search algorithm; in the computational context of our
algorithm, the randomization of this particular element can be
incurred by randomizing certain indeterminate aspects of the
corresponding construction procedure that was described in
Section IV-B, like the priority-assignment to agents that are
at equal distance from the “home” edge, or the selection of
the particular shortest path to be followed by each agent. Of
course, the price to be paid for the resulting enrichment of the

solution space is the additional computational cost that will
result from the need for multiple runs of the algorithm. The
detailed determination of the number of these runs constitutes
another control parameter for managing the existing trade-
off between the quality of the generated schedules and the
corresponding computational cost, and it can be based on the
available time budget.

b) Extending the presented results to other classes of
guidepath-based transport systems: As discussed in the ear-
lier sections of this work, the detailed development of the
algorithm that is presented in Section IV has been facilitated
by (i) the presence of the “home” edge h in the underlying
guidepath network, and (ii) the ability of the traveling agents
to reverse their direction of motion on any edge of this
network. Moreover, an additional assumption that underlies all
the presented developments is the uniformity of the traveling
times that are required for the traversal of any given zone by
a traveling agent. While these three conditions will be satis-
fied straightforwardly by most instantiations of the particular
applications that are targeted in this work, it is also natural
to consider the extension of the presented method to other
classes of guidepath-based transport systems that might not
satisfy these conditions. In regards to this question, we want
to make the following remarks.

First, the reader should notice that while conditions (i)
and (ii) in the previous paragraph are especially useful for
constructing the initial feasible schedule that is eventually em-
ployed by our algorithm in its improving step, the improving
step itself can be easily adapted to any new set of assumptions
about the traveling agents by adjusting accordingly (a) the
construction logic of the DAGs that are employed by this step,
and (b) the specification of the costs that are associated with
the various nodes of this graph during the formulation and
solution of the corresponding shortest-path problems. Hence,
the possibility of employing our “local-search” algorithm for
the real-time traffic management in guidepath-based transport
systems that will not satisfy any of the aforementioned condi-
tions (i) and (ii) is primarily determined by the possibility of
obtaining easily an initial traffic schedule for the corresponding
problem.

More specifically, in the case of guidepath-based traffic
networks that do not possess a “home” edge,18 the results
of [16] that were discussed in Section II suggest that, as
long as the target agent configuration is reachable from the
initial configuration, then an initial solution can be constructed
through the algorithm that is provided in that work with cubic
computational complexity w.r.t. the number of the locations
that are provided by the underlying guidepath network. Hence,
our algorithm can be easily extended to this new class of
guidepath-based transport systems.

On the other hand, removing the ability of the agents to
reverse the direction of their motion within their assigned
zone, while retaining an arbitrary structure for the underlying
guidepath network, can give rise to potential deadlocks, and
renders the issue of the feasibility of the corresponding traffic
scheduling problem that is addressed in this work a signifi-
cantly harder problem; and these complications arise even in

18In the context of the AGV literature, the corresponding MHS are
characterized as “closed” [57], [44].
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the presence of a “home” edge [15]. Hence, the application
of our algorithm in this particular class of guidepath-based
traffic systems seems much more challenging. A particular
way to deal with the very high computational complexity that
arises in this last case, while retaining the completeness and
the computational efficiency of our algorithm, is by restricting
the overall operation of the underlying traffic system into an
operational subspace where (i) the agent “configurations” – or,
alternatively, the “traffic states” – admitted by this subspace
are mutually reachable from each other, and (ii) for any given
pair (s, s′) of these traffic states, a traffic schedule taking the
underlying traffic system from state s to state s′ is efficiently
computable. In the case of guidepath-based traffic systems
that possess a “home” edge, such a pertinent subspace can
be defined by an adaptation of the notion of the “ordered”
traffic state that is presented in [8]; we shall further discuss
the employment of this concept in the last part of this section,
that addresses the broader issue of the integration of the results
that are presented in this paper to the “rolling-horizon” scheme
that was outlined in Section I.

Next we consider the necessary modifications of our algo-
rithm in order to accommodate deterministic but nonuniform
zone traversal times for each zone-agent pair (e, a) ∈ E ×A.
Along these lines, first, we notice that the procedure for the
construction of the initial feasible traffic schedule extends nat-
urally in this case, since the notion of the “shortest paths” that
are involved in this construction were defined in Section IV-B
on the basis of the number of edges that must be traversed by
each agent towards the corresponding destinations, and not
through the required traversal time. Furthermore, the logic
that supports the improving step can also be adapted easily
to this new case by (i) having the length of the discrete time
period t defined as the greatest common divisor (GCD) of
the zone traversal times for the various zone-agent pairs, and
also (ii) having the arc connectivity of the DAGs that are
employed by the improving step, reflect the corresponding
delays. Everything else in the algorithm logic remains exactly
the same as described in Section IV.

c) Integration of the presented results in a “rolling-
horizon” framework: As remarked in the introductory section,
the “rolling-horizon” scheme that will decompose the overall
traffic management problem to a sequence of subproblems
of the type that are studied in this work, must ensure the
liveness of the resulting traffic, i.e., the ability of every agent
to complete its current mission and eventually retire to the
“home” location, h, of the guidepath network. In the more
technical context of the developments that are presented in
this work, traffic liveness implies the feasibility of the various
subproblems that are formulated and solved by the employed
“rolling-horizon” scheme. Along these lines, an important
implication of Proposition 1 is that, for the particular class
of guidepath-based transport systems defined in Section III,
any agent configuration will be reachable from any other
configuration, and the algorithm(s) presented in Section IV
will be able to provide the necessary traffic schedules. Hence,
the embedding of our algorithm in any employed “rolling-
horizon” scheme is a trivial task in this case.

On the other hand, when seeking to employ our algo-
rithm for some other classes of guidepath-based transport

systems, it is important that the corresponding “rolling-
horizon” scheme generates feasible and efficiently solvable
sub-problems, through a pertinent specification of the vehicle
“mission” trips and the decomposition of these trips into a
sequence of intermediate destinations. The investigation of this
last problem is beyond the scope of the current work, but
as we mentioned in the previous paragraphs, we believe that
this problem can be resolved effectively and efficiently using
concepts and algorithms similar to those that are employed
in [8] for the liveness-enforcement supervision of the class
of AGV systems that are addressed in that work; the detailed
development of the corresponding methodological framework
is part of our future work w.r.t. this paper.

VII. CONCLUSIONS

The work presented in this manuscript has developed an
efficient heuristic algorithm for the real-time management of
the traffic that is generated in a class of guidepath-based
transport systems arising in various MHS applications and
in quantum computing. This algorithm customizes to the
considered problem the broader “local-search” framework
that is frequently used in the solution of hard combinatorial
optimization problems. Furthermore, the paper reports results
from numerical experimentation with this algorithm which
indicate that the proposed algorithm can return very efficient
schedules in very short computational times, even for some
very hard cases of the considered problem. Hence, our al-
gorithm is very well suited for the real-time applications that
have motivated the considered problem. Finally, the discussion
that was provided in the last part of the paper, in combination
with the extensive literature review of Section II, have also
defined a significant potential of the presented algorithm
for adaptation and applicability to additional guidepath-based
transport systems that will not satisfy the complete set of
the structural and the operational features characterizing the
transport systems primarily addressed in this paper.

Our future work will seek to extend the applicability of our
algorithm along the lines that were discussed in the previous
paragraph and in the last part of Section VI. It will also
seek to develop a broader decision-making framework for
the considered traffic systems that will address higher-level
decisions concerning the pertinent assignment of the arising
transport requests to the system agents. Finally, it is also
interesting to extend the presented developments so that they
can address more explicitly various notions of randomness /
stochasticity that might arise in the operational context of the
considered traffic systems.19
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