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Abstract

Given a stochastic, acyclic, connected digraph with a single source node and a control

agent that repetitively traverses this graph, each time starting from the source node, we

want to define a control policy that will enable this agent to visit each of the graph terminal

nodes a prespecified number of times, while minimizing the expected number of the graph

traversals. We first formulate this problem as a specially structured Discrete Time Markov

Decision Process, and subsequently we develop an asymptotically optimal randomized policy

of polynomial complexity with respect to the problem size. Finally, two further outcomes

of this analysis are a lower and an upper bound to the value of the optimal policy, V ∗.

1 Introduction

The problem addressed in this work can be stated as follows: Given a stochastic, acyclic,

connected digraph with a single source node and a control agent that repetitively traverses

this graph, each time starting from the source node, we want to define a control policy that

will enable this agent to visit each of the graph terminal nodes a prespecified number of times,

while minimizing the expected number of the graph traversals. From a practical standpoint,

this problem arises, for instance, in various experimental setups where the subject must be

studied in a number of states that are obtained from an initial state through some sequential

treatment with probabilistic outcomes at its various stages. Under the assumption that the

performed treatment has a destructive effect on the subject, one would like to obtain the

required measurements while minimizing the number of subjects utilized in the experiment.

A similar problem also arises while trying to learn an optimal policy for a sequential decision

making process over a stochastic acyclic state space. In that case, the learning agent tries

to obtain a series of observations of the values of the various decisions made at the different



problem states, while minimizing the number of the executed process runs; we refer the reader

to [5] for further details on this application.

In this work first we provide a detailed formulation of the aforestated problem as a specially

structured Markov Decision Process (MDP) [1]. However, because the solution of this MDP

through standard techniques provided by the MDP theory is of non-polynomial complexity with

respect to the size of the problem-defining elements, we also develop a randomized policy that

can be derived and implemented in polynomial time, and it is asymptotically optimal; more

specifically, the ratio of the value of this policy to the value of the optimal policy converges

to unity, as the non-zero node visitation requirements grow uniformly to infinity. Finally, a

last contribution of the presented work, that results as a by-product of the aforementioned

developments, is the establishment of a lower and an upper bound for the value of the optimal

policy.

From a presentational standpoint, this material is organized as follows: Section 2 provides a

formal characterization of the problem considered in this work, and proceeds to its formulation

and solution as a “stochastic shortest path (SSP)” problem [1]. It also points out the limitations

arising from the non-polynomial complexity of the standard SSP solution approach and the

possibility of alleviating this computational complexity by taking advantage of some underlying

special structure. Section 3 introduces the suboptimal but computationally efficient policy

mentioned in the earlier paragraph, and proves its asymptotic optimality. In the process, it

also derives a lower bound to the value of the optimal policy. Deriving an upper bound to this

value is the topic of Section 4. Finally, Section 5 concludes the paper and suggests directions

for future work.

2 Problem description and its MDP formulation

This section first provides a formal characterization of the defining elements of the considered

problem and subsequently it proceeds to its rigorous formulation and solution, based upon

concepts and techniques borrowed from the MDP theory [1]. The last part of this section

also considers the computational complexity of the presented solution approach and motivates

the need for the suboptimal but computationally more efficient solution approach developed in

Section 3.

The defining problem elements An instance of the problem considered in this work is

completely defined by a quadruple E = (X,A,P,N ), where

• X is a finite set of nodes, that is partitioned into a sequence of “layers”, X0, X1, . . . ,
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XL. X0 = {x0} defines the source or root node, while nodes x ∈ XL are the terminal or

leaf nodes.

• A is a set function defined on X, that maps each x ∈ X to the finite, non-empty set A(x),

comprising all the decisions / actions that can be executed by the control agent at node

x. It is further assumed that for x 6= x′, A(x) ∩ A(x′) = ∅.

• P is the transition function, defined on
⋃

x∈X A(x), that associates with every action

a in this set a discrete probability distribution p(·; a). The support sets, S(a), of the

distributions p(·; a) are subsets of the set X that satisfy the following property: For any

given action a ∈ A(x) with x ∈ X i for some i = 0, . . . , L − 1, S(a) ⊆
⋃L

j=i+1 Xj ; for

a ∈ A(x) with x ∈ XL, S(a) = X0. In words, the previous assumption implies that the

control agent traverses the space defined by the node set X in an iterative manner, where

each iteration is an “acyclic” traversal; more specifically, the sequence of nodes visited

during each such iteration starts from the root node, x0, ends at a leaf node, x ∈ XL,

and it is monotonically increasing with respect to the layer of the intermediately visited

nodes. Furthermore, it is assumed that for every node x ∈ X, there exists at least one

action sequence ξ(x) = a(0)a(1) . . . a(k(x)) such that (i) a(0) ∈ A(x0), (ii) ∀i = 1, . . . , k(x),

a(i) ∈ A(x(i)) with p(x(i); a(i−1)) > 0, and (iii) p(x; ak(x)) > 0; we shall refer to this action

sequence as an action path from node x0 to node x.

• N is the visitation requirement vector , that associates with each node x ∈ XL a visitation

requirement Nx ∈ Z+ ∪{0}. The support ||N || of N is defined by the nodes x ∈ XL with

Nx > 0; we shall refer to nodes x ∈ ||N || as the problem “target” nodes.

• Finally, we define the instance size |E| ≡ |X| + |
⋃

x∈X A(x)| + |N |, where application of

the operator | | on a set returns the cardinality of this set, while application on a vector

returns its l1 norm.

For the purposes of the subsequent discussion it is pertinent to perceive the node space X

endowed with the transition function P as an “acyclic stochastic digraph”, G, where the node

set of G is defined by X and its arcs are defined by the restriction of P on
⋃

x∈X\XL A(x).

We shall also employ the variable vector N c to denote the vector of the remaining visitation

requirements. The control agent starts from the initial node x0 at period t = 0, sets N c := N ,

and at every consecutive period t = 1, 2, 3, . . . , it (i) observes its current position, x, on the

graph, and the vector of the remaining node visitation requirements, N c, (ii) selects an action

a ∈ A(x) and commands its execution, and (iii) upon reaching one of the terminal nodes,

x ∈ XL, updates Nx
c to (Nx

c − 1)+, and subsequently, resets itself back to the initial node
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Figure 1: An example problem instance E where the state space X is partitioned into two layers,

X0 = {x0} and X1 = {x1, x2}. The decisions associated with node X0 are A(x0) = {α1, α2},

while every terminal node x ∈ X1 has a single decision associated with it that leads back to

state x0. The transition probabilities for actions a1 and a2 are respectively p(x1; α1) = 0.5,

p(x2; α1) = 0.5 and p(x1; α2) = 0.3, p(x2; α2) = 0.7; obviously, p(x0; α3) = p(x0; α4) = 1.

Finally, the visitation requirement vector is defined by Nx1 = 2, Nx2 = 1.

x0, in order to start another traversal. The entire operation terminates when all the node

visitation requirements have been satisfied, i.e., N c has been reduced to zero. An example

problem instance is presented in Figure 1.

The induced stochastic shortest path problem Our intention is to determine an action

selection scheme – or, a policy – π, that maps each tuple (x,N c) to an action π(x,N c) ∈ A(x) in

a way that minimizes the expected number of graph traversals until N c = 0. This requirement

can be further formalized through a Discrete Time MDP (DT-MDP), M = (S, A, t, c), where

• S is the finite set of states, identified with the tuples (x,N c), where x ∈ X and N c ∈
∏

x∈XL{0, . . . ,Nx}.

• A is a set function defined on S that maps each state s ∈ S to the finite, non-empty set

A(s), comprising all the decisions / actions that are feasible in s. More specifically, for

s = (x,N c), A(s) coincides with A(x) as specified in the definition of E .

• t : S×
⋃

s∈S A(s)×S −→ [0, 1] is the MDP state transition function, i.e., a partial function

defined on all triplets (s, a, s′) with a ∈ A(s), and with t(s, a, s′) being the probability to

reach state s′ from state s on decision a. More specifically, for s = (x,N c), a ∈ A(s),
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s′ = (x′,N c′),

t(s, a, s′) =





p(x′; a), if x ∈ X l, l ∈ {0, . . . , L − 1}, x′ ∈
⋃L

k=l+1 Xk, N c′ = N c;

1, if x ∈ XL, x′ = x0, N c′

x = (N c
x − 1)+, N c′

y = N c
y , ∀y ∈ XL/{x};

0, otherwise.

(1)

• c : S −→ {0, 1} is the cost function, where for s = (x,N c),

c(s) =





1, if x ∈ XL and N c 6= 0;

0, otherwise.
(2)

Notice that, under the considered cost function c(·), the set of states s = (x,N c) with

N c = 0 constitute a closed class which is also cost-free, i.e., once the process enters this

class of states it will remain in it, and there will be no further cost accumulation. For the

purposes of the subsequent development, we shall represent this entire class of states with a

single aggregate state, sT , which we shall refer to as the problem terminal state; clearly, sT is

absorbing and cost-free under any policy π. Furthermore, the MDP state set S will be redefined

to S ≡ {(x,N c)|N c 6= 0} ∪ {sT }, and the action, state transition and cost functions, A, t and

c, will also be appropriately redefined to reflect the above aggregation. In particular, for the

terminal state sT , we define A(sT ) = {aT } with t(sT , aT , sT ) = 1; t(sT , aT , s) = 0, ∀s ∈ S\{sT },

and c(sT ) = 0. The redefinition of the remaining elements of A, t and c is straightforward and

the relevant details are left to the reader.

In the above MDP modelling framework, a policy π that maps every state s ∈ S to an

action π(s) ∈ A(s) is characterized as stationary . We are particularly interested in an optimal

stationary policy, π∗, that, starting from the initial state s0 ≡ (x0,N ), will drive the under-

lying process to the terminal state sT with the minimum expected total cost. This optimality

requirement for π∗ can be formally characterized as follows: First, we define the expected total

cost accumulated by the process when initialized at some state s ∈ S and subsequently operated

under some policy π, by

V π(s) = Eπ[
∞∑

t=0

c(st)|s0 = s] (3)

where the expectation Eπ[ ] is taken over all possible process realizations under policy π. Next,

we define

π∗
s = arg min

π∈Π
V π(s) (4)
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where Π is the set of all stationary policies.1 Finally, we focus on π∗
s0 where s0 ≡ (x0,N ), and

we set

π∗ ≡ π∗
s0 and V ∗ ≡ V π∗

s0 (s0) (5)

The above specification of π∗ and V ∗ brings the considered MDP problem to a particular

class of MDP problems known as stochastic shortest path (SSP) problems [1]. For the resulting

SSP problem to be well-defined, it remains to establish that (i) V ∗ < ∞ and (ii) the corre-

sponding π∗ is effectively computable. In order to derive these two results, we need to introduce

the concept of a proper policy π:

Definition 1 [1] For the considered SSP problem, a stationary policy π is said to be proper

if and only if (iff) in the Markov chain induced by π, every state s ∈ S\{sT } is connected to

the terminal state sT with an action path of positive probability. A stationary policy that is not

proper will be said to be improper.

The following proposition establishes the well-posed nature of the considered SSP problem

and its proof can be found in the Appendix.

Proposition 1 For the considered SSP problem, there exists at least one proper policy. Fur-

thermore, for every improper policy π, there exists at least one state s ∈ S\{sT } for which

V π(s) = ∞.

The next theorem results immediately from the general SSP theory, in the light of Propo-

sition 1; c.f. Proposition 2.1 in [1].

Theorem 1 For the SSP formulation characterizing the problem considered in this work there

exists a unique vector V ∗(s), s ∈ S, with V ∗(sT ) = 0 and its remaining components, for

s ∈ S\{sT }, satisfying the Bellman equation

V ∗(s) = min
a∈A(s)

{c(s) +
∑

s′∈S

t(s, a, s′) · V ∗(s′)} (6)

Furthermore, the vector V ∗(s) defines an optimal policy π∗ by setting for all s ∈ S\{sT },

π∗(s) := arg min
a∈A(s)

{c(s) +
∑

s′∈S

t(s, a, s′) · V ∗(s′)} (7)

1It can be shown that for the considered problem, restriction to the class of stationary policies does not

compromise the global optimality of the obtained solution; c.f. to Theorem 1 below.
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The vector V ∗(s) is known as the optimal value function or the optimal cost-to-go vector for

the considered SSP formulation. Each component of V ∗(s) expresses the expected total cost of

initiating the underlying process at state s ∈ S and subsequently following an optimal policy;

in particular, V ∗ = V ∗(s0). From a computational standpoint, V ∗(s) can be obtained through

a number of approaches. Next, we focus on an approach based on linear programming that

will also be useful in the subsequent developments presented in this document. We present the

relevant result as a theorem, and we refer to [1] for the details of its derivation.

Theorem 2 The optimal value vector V ∗(s), s ∈ S, for the SSP formulation considered in this

work is the optimal solution of the following linear program:

max
∑

s∈S

V (s) (8)

s.t.

∀s ∈ S\{sT }, ∀a ∈ A(s),

V (s) ≤ c(s) +
∑

s′∈S

t(s, a, s′) · V (s′) (9)

V (sT ) = 0 (10)

Figure 2 exemplifies the structure of the SSP problem defined in this paragraph, by depicting

the state transition diagram and the optimal policy for the SSP problem induced by the node

visitation problem presented in Figure 1.

Complexity considerations and a spatially decomposing solution approach It should

be clear from the definitions and the example provided in the previous paragraph, that the size

of the state space S of the induced SSP problem is |S| = |X| ·
∏

x∈XL(Nx +1)−|X|+1. Hence,

|S| grows exponentially with respect to the size of ||N ||, i.e., the number of the problem target

nodes. This further implies that the computation – in fact, even the explicit enumeration –

of the optimal value function V ∗(s), s ∈ S, and the corresponding policy π∗ will be a task of

non-polynomial complexity with respect to the problem size |E|. In particular, notice that the

LP formulation of Theorem 2 will have |S| variables and an even larger number of constraints.

As a result, the LP-based solution approach delineated in Theorem 2 is severely limited by its

computational complexity.

In the rest of this section we establish that the problem state space presents additional struc-

ture that enables the computation of the optimal value function V ∗(s), s ∈ S, in an incremental
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Figure 2: The State Transition Diagram for the stochastic shortest path problem induced by

the problem instance E depicted in Figure 1. Each problem state corresponds to one of the

non-filled (white) nodes in the depicted graph, and it is defined by (i) the position of this

node in the underlying acyclic graph that defines the problem instance, and (ii) the vector of

the remaining visitation requirements. The values annotated next to the arcs representing the

available actions at every state indicate the corresponding immediate cost. By associating a

non-zero, unit cost only with the actions / transitions emanating from states where the first

component is a leaf node, it is ensured that the cost accumulated over any sample path leading

from the initial state s0 to the terminal state sT , is equal to the corresponding number of graph

traversals experienced by the control agent. Finally, the reader can verify that the optimal

policy for the considered problem instance is defined by the emboldened arcs in this graph, and

that V ∗ = 4.357.
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fashion, by solving a sequence of LP formulations, each containing a number of variables and

constraints that are polynomially related to |E|. More specifically, the decomposing solution

approach presented in this paragraph is based on the following key observations:2 First, notice

that, by the definition of the DT-MDP M, every cycle appearing in the state space S involves

states s ∈ S that have the same vector N c as their second component. Furthermore, every

transition from a state s = (x,N c) with |N c| > 0 leads to another state s′ = (x′,N c) or to a

state s′′ = (x0,N c′′) with |N c′′ | = |N c| − 1. When combined with the structure of the Bellman

equation, that characterizes the optimal value function V ∗(s) (c.f. Equation 6), the above two

observations imply that, for every state s = (x,N c) with |N c| ≥ 1, (i) V ∗(s) is completely

defined by the optimal values V ∗(s′) for s′ ∈ {(x,N c)|x ∈ X} ∪ {(x0,N c′)| |N c′ | = |N c| − 1},

(ii) but itself has no impact on the determination of the optimal values V ∗(s′) for states

s′ ∈ {(x0,N c′)| |N c′ | = |N c| − 1}. Hence, the LP of Theorem 2 can be solved incremen-

tally through an iterative procedure that computes the value function for the subsets of states

corresponding to distinct vectors N c one at a time, starting with the state subsets with |N c| = 1

and proceeding to the state subset corresponding to N c = N ; a formal characterization of this

procedure is provided in Figure 3.

Clearly, each of the LP’s solved under the above solution approach is polynomially sized

with respect to |E|. However, this approach is still limited by the fact that the total number

of linear programs to be solved is equal to
∏

x∈||N ||(Nx + 1), which remains a non-polynomial

quantity with respect to |E|. For this reason, in Section 3 we also propose an alternative

solution approach that in general will lead to a sub-optimal policy, but, both, the derivation

and implementation of this policy will be of polynomial complexity with respect to the problem

size |E|. Furthermore, we shall show that the value of this policy converges to the value of the

optimal policy as the target visitation requirements grow uniformly to infinity.

3 A computationally efficient and asymptotically optimal pol-

icy

The main contribution of this section is a randomized policy for the MDP problem defined in

Section 2, that is of polynomial complexity with respect to the problem size |E|, and the ratio

of its value to the value V ∗, of the optimal policy π∗, converges to unity, as the non-zero node

visitation requirements grow uniformly to infinity. The definition and the properties of this

policy rely heavily on the LP formulation of a surrogate deterministic optimization problem

2The reader is referred to Figure 2 for a more concrete demonstration of these observations.
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Computing the Optimal Value Function through Spatial Decomposition

V ∗(sT ) := 0

for i := 1 to |N |

if (i < |N |)

Ω := {N c| |N c| = i}

else

Ω := {N}

for N c ∈ Ω

Solve the LP obtained from the LP of Theorem 2 when the variable

and the constraint sets are restricted to those corresponding to s ∈ {(x,N c)|x ∈ X},

and all the remaining variables V (s) in the aforementioned constraints are

substituted by the values V ∗(s) obtained from the solution of the earlier subproblems.

Return as V ∗(s), s ∈ S, the vector obtained from the concatenation of the solutions of the

aforementioned LP’s.

Figure 3: An iterative algorithm for computing the optimal value function of the considered

shortest path problem, through spatial decomposition

that in the following will be referred to as the “relaxing LP”. Hence, the first part of this

section introduces the relaxing LP formulation and the underlying optimization problem, and

it establishes that this formulation provides a lower bound for V ∗. Subsequently, the second

part employs the optimal solution of the relaxing LP in order to define the aforementioned

randomized policy, and proves its asymptotic optimality.

3.1 The “Relaxing LP” and its relationship to the optimal value of the SSP

formulation

The relaxing LP is the analytical characterization of the following problem: Consider the acyclic

graph G introduced in Section 2, and assume that a certain amount of fluid is pumped from

the root node, x0, of G to its terminal nodes, x ∈ XL. At each non-terminal node, x ∈

X l, l = 0, 1 . . . , L − 1, the incoming flow is conveyed to the emanating arcs corresponding to

the various actions a ∈ A(x) according to a routing scheme to be determined by the considered

formulation. On the other hand, the flow directed to an arc a ∈ A(x), x ∈
⋃L−1

l=0 X l, is

distributed to the nodes x′ ∈ S(a) according to the proportions defined by the probability

function p(x′; a), x′ ∈ S(a). We want to determine the fluid volume to be routed through each

10



arc a ∈ A(x), x ∈
⋃L−1

l=0 X l, so that each terminal node x ∈ XL receives a fluid volume at least

equal to Nx, while the total amount of fluid induced into graph G through its root node x0 is

minimized. Letting χa denote the fluid volume routed through arc a ∈ A(x), x ∈
⋃L−1

l=0 X l, the

above problem can be expressed by the following LP formulation:

min
∑

a∈A(x0)

χa (11)

s.t.

∀x ∈ X\({x0} ∪ XL),
∑

a:x∈S(a)

p(x; a) · χa =
∑

a∈A(x)

χa (12)

∀x ∈ XL,
∑

a:x∈S(a)

p(x; a) · χa ≥ Nx (13)

∀a ∈
⋃

x∈X\XL

A(x),

χa ≥ 0 (14)

As it was already pointed out, we shall refer to the LP formulation of Equations 11–14

as the “relaxing LP”, and we shall denote the optimal value of this formulation by V ∗
rel. In

the sequel we shall establish that V ∗
rel is a lower bound for V ∗. However, the establishment of

this result will employ an analytical characterization of V ∗ that is based on a variant of the

LP formulation introduced in Theorem 2. More specifically, this new formulation computes

V ∗ = V ∗(s0) through the following LP

max V (s0) (15)

s.t.

∀s ∈ S\{sT }, ∀a ∈ A(s),

V (s) ≤ c(s) +
∑

s′∈S\{sT }

t(s, a, s′) · V (s′) (16)

where (i) the zero-priced variable V (sT ) has been eliminated and (ii) the objective function of

Equation 8 has been substituted with the objective function of Equation 15. The performed

substitution is legitimate because it is well-known in the relevant MDP theory that the SSP

optimal value function V ∗(s), s ∈ S, is the componentwise maximal vector that satisfies the

constraint of Equation 9 for V (sT ) = 0. Furthermore, instead of computing V ∗(s0) directly
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through the LP of Equations 15–16, in the subsequent discussion will shall focus on the dual

LP of this formulation [4]. Letting q(s, a) denote the dual variable corresponding to the primal

constraint for the state-action pair (s, a), s ∈ S\{sT }, a ∈ A(s), and also using the notation

x(s) in order to denote the first component of any state s = (x,N c), this dual LP can be written

as follows (c.f. [4]):

min
∑

s∈S\{sT }:x(s)∈XL

∑

a∈A(s)

q(s, a) (17)

s.t.

∀s ∈ S\{sT }, (18)
∑

a∈A(s)

q(s, a) = 1{s=s0} +
∑

s′∈S\{sT }

∑

a∈A(s′)

t(s′, a, s) · q(s′, a)

∀s ∈ S\{sT }, ∀a ∈ A(s),

q(s, a) ≥ 0 (19)

An optimal solution of the LP formulation of Equations 17–19 will be denoted by q∗(s, a), s ∈

S\{sT }, a ∈ A(s). It is well-known from LP duality theory [4] that

∑

s∈S\{sT }:x(s)∈XL

∑

a∈A(s)

q∗(s, a) = V ∗(s0) (20)

In addition, any feasible solution q(s, a), s ∈ S\{sT }, a ∈ A(s), of the dual LP formulation

admits a flow interpretation in the state transition diagram (STD) defined by the MDP state set

S and the corresponding action sets A(s), s ∈ S. More specifically, under this interpretation,

any feasible solution q(s, a), s ∈ S\{sT }, a ∈ A(s), of the dual LP formulation defines a flow

pattern that transfers a unit flow entering the aforementioned STD at the initial state s0 to

the terminal state sT . In this context, the constraint of Equation 18 expresses a flow balance

requirement, while the objective function of Equation 17 measures the flow that is routed

through the arcs corresponding to actions a ∈ A(s) with s ∈ S\{sT } and x(s) ∈ XL. Next we

shall employ this flow interpretation of the feasible solutions of the dual LP formulation of the

Equations 17–19 in order to prove the following theorem:

Theorem 3 Under the above definitions, V ∗
rel ≤ V ∗.

Proof Equation 20 implies that in order to prove the result of Theorem 3, it suffices to

show that (i) every feasible solution q(s, a), s ∈ S\{sT }, a ∈ A(s), for the LP formulation

of Equations 17–19, induces a feasible solution χa, a ∈
⋃

x∈X\XL A(x), for the relaxing LP,
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and (ii) the corresponding objective values are equal. Hence, consider such a feasible solution

q(s, a), s ∈ S\{sT }, a ∈ A(s), for the dual LP formulation of Equations 17–19, and define

χa ≡
∑

s∈S\{sT }:a∈A(s)

q(s, a), ∀a ∈
⋃

x∈X\XL

A(x) (21)

In the remaining part of this proof we shall show that the vector {χa} defined by Equation 21

satisfies the aforestated requirements, when considered as a solution to the relaxing LP.

Clearly, Constraint 14 is immediately satisfied by Constraint 19 and the definition of {χa}.

Next we prove the feasibility of {χa} with respect to Constraint 12. Hence, consider a node

x ∈ X\({x0} ∪ XL). Then it holds that:

∑

a∈A(x)

χa =
∑

a∈A(x)

∑

s∈S\{sT }:a∈A(s)

q(s, a)

=
∑

s∈S\{sT }:x(s)=x

∑

a∈A(s)

q(s, a)

=
∑

s∈S\{sT }:x(s)=x

∑

s′∈S\{sT }

∑

a∈A(s′)

t(s′, a, s) · q(s′, a)

=
∑

a:x∈S(a)

p(x; a) ·
∑

s′∈S\{sT }:a∈A(s′)

q(s′, a)

=
∑

a:x∈S(a)

p(x; a) · χa

The first equality above results from Eq. 21, the second from term rearrangement, the third

from Eq. 18, the fourth from the definition of the function t and term rearrangement, and the

last from Eq. 21.

To prove the satisfaction of Constraint 13 by the vector {χa}, first notice that this constraint

is trivially satisfied for all non-target nodes x ∈ XL. Hence, consider a node x ∈ XL with

Nx > 0. Then, by working as in the proof of the validity of Constraint 12, we can easily

establish that
∑

a:x∈S(a)

p(x; a) · χa =
∑

s∈S\{sT }:x(s)=x

∑

a∈A(s)

q(s, a) (22)

Next consider the arc set Cx(Nx), consisting of all the arcs in the STD defined by the state set

S and the action sets A(s), s ∈ S, that lead from any state s ∈ Sx(Nx) ≡ {(x,N c) : N c
x = Nx}

to the resultant state s′ = (x0,N c − 1x), where 1x denotes the unit vector of dimensionality

|XL| and with the non-zero component corresponding to node x.3 Clearly, since x is a target

node, Cx(Nx) is non-empty. Furthermore, since this set aggregates all the possible transitions

3The reader is referred to Figure 4 for a more concrete visualization of the concepts and arguments related

to this part of the proof.
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Figure 4: The STD “cuts” C1(1) and C1(2) defined by the target leaf node x1 in the optimal

node visitation problem of Figure 1

through which the visitation requirements for x are reduced from Nx to Nx − 1, it defines a cut

on the underlying graph defined by S and A(s), s ∈ S. This last observation when combined

with the fact that {q(s, a)} defines a flow that conveys a unit load from state s0 to state sT ,

imply that
∑

(s,a)∈Cx(Nx)

q(s, a) = 1 (23)

In the same way, we can define the arc sets Cx(Nx − k), k ∈ {1, . . . ,Nx − 1}, each consisting of

all the arcs that lead from any state s ∈ Sx(Nx − k) ≡ {(x,N c) : N c
x = Nx − k} to the state

s′ = (x0,N c − 1x), and establish that

∑

(s,a)∈Cx(Nx−k)

q(s, a) = 1, ∀k ∈ {1, . . . ,Nx − 1} (24)

But then, the satisfaction of Constraint 13 results immediately from the fact that each of the

summations appearing in Equations 23 and 24 is subsumed in the double summation that

appears in the right-hand-side of Equation 22.
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It remains to show that

∑

a∈A(x0)

χa =
∑

s∈S\{sT }:x(s)∈XL

∑

a∈A(s)

q(s, a)

The validity of this equation is established as follows:

∑

a∈A(x0)

χa =
∑

s∈S\{sT }:x(s)=x0

∑

a∈A(s)

q(s, a)

=
∑

s∈S\{sT ,s0}:x(s)=x0

∑

a∈A(s)

q(s, a) +
∑

a∈A(s0)

q(s0, a)

=
∑

s∈S\{sT ,s0}:x(s)=x0

∑

s′∈S\{sT }

∑

a∈A(s′)

t(s′, a, s) · q(s′, a) + 1 +

∑

s′∈S\{sT }

∑

a∈A(s′)

t(s′, a, s0) · q(s′, a)

= 1 +
∑

s∈S\{sT }:x(s)=x0

∑

s′∈S\{sT }

∑

a∈A(s′)

t(s′, a, s) · q(s′, a)

= 1 +
∑

s∈S:x(s)=x0

∑

s′∈S\{sT }

∑

a∈A(s′)

t(s′, a, s) · q(s′, a) − 1

=
∑

s∈S\{sT }:x(s)∈XL

∑

a∈A(s)

q(s, a)

The first equality above can be derived as in the proof of Constraint 12, the third equality results

from Eq. 18, the fifth equality results from the fact that
∑

s′∈S\{sT }

∑
a∈A(s′) t(s′, a, (x0,0)) ·

q(s′, a) = 1, and the last from the definition of function t.

3.2 The proposed randomized policy and its asymptotic optimality

In this section we introduce a randomized policy for the MDP problem defined in Section 2

and establish its asymptotic optimality.4 The definition of this policy relies on the optimal

solution of the relaxing LP, introduced in Section 3.1. In particular, given an optimal solution

{χ∗
a|a ∈

⋃
x∈X\XL A(x)} of this LP, we determine a policy π that assigns to a state s = (x,N c)

with x ∈ X\XL and
∑

a∈A(x) χ∗
a > 0, an action π(x,N c) ∈ A(s) according to the probability

distribution

P (π(x,N c) = a) =
χ∗

a∑
a∈A(x) χ∗

a

, a ∈ A(x). (25)

4We remind the reader that a randomized policy for the considered MDP problem is an action selection

scheme where, at each state s = (x,N c), an action a ∈ A(s) is selected according to a probability distribution

supported on the set A(s).
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On the other hand, for states s = (x,N c) with x ∈ X\XL and
∑

a∈A(x) χ∗
a = 0, the policy

is indeterminate. Finally, for states s = (x,N c), x ∈ XL, the policy executes the unique

transition a ∈ A(s) with probability one.

Clearly, the deployment and execution of the aforestated policy π is of polynomial complex-

ity with respect to the problem size |E|, since this complexity is determined by (i) the solution

of the relaxing LP, (ii) the computation and storage in a pertinent data structure of the action

selection distributions induced by the optimal solution {χ∗
a|a ∈

⋃
x∈X\XL A(x)}, for all nodes

x ∈ X\XL with
∑

a∈A(x) χ∗
a > 0, and (iii) the reference of these distributions every time that

the underlying process enters a state s = (x,N c) with x ∈ X\XL and
∑

a∈A(x) χ∗
a > 0. The

next proposition also establishes a notion of properness for the aforestated policy, and its proof

can be found in the Appendix.

Proposition 2 The proposed randomized policy, π, has the following two properties:

i. Every state s = (x,N c) with x ∈ X\XL and
∑

a∈A(x) χ∗
a = 0 is unreachable under policy

π.

ii. For every state s ∈ S\{sT } that is reachable under policy π, there exists an action path

leading from s to the terminal state sT with positive probability.

In the remaining part of this section we establish the asymptotic optimality of the considered

randomized policy π; in particular, we show that the ratio of the policy value, V π ≡ V π(s0),

to the value V ∗, of the optimal policy π∗, converges to unity, as the non-zero node visitation

requirements grow uniformly to infinity. In order to formally state and prove this convergence,

for any given problem instance E = (X,A,P,N ), we shall consider the entire problem sequence,

{E(n)}, obtained by replacing the visitation requirement vector, N , with n · N , n ∈ Z+, and

letting n → ∞. Also, we shall let (i) {V ∗(n)} denote the sequence of the optimal expected

total costs for the corresponding problem instances E(n), (ii) {χ∗
a(n)|a ∈

⋃
x∈X\XL A(x)} and

{V ∗
rel(n)} denote respectively the sequences of the optimal solutions and the optimal objective

values for the corresponding relaxing LP’s, (iii) {π(n)} denote the sequence of the randomized

policies defined for the various elements of {E(n)} by the corresponding elements of {χ∗
a(n)},

and (iv) {V̂ π(n)} denote the sequence of the random costs incurred by each randomized policy

π(n) when exercised upon its corresponding problem instance E(n). We already know from

Theorem 3 that V π(n) ≡ Eπ[V̂ π(n)] ≥ V ∗(n) ≥ V ∗
rel(n), ∀n > 0. The following series of

lemmata establishes that the ratio V̂ π(n)/V ∗
rel(n) converges almost surely to unity, as n → ∞.

Lemma 1 Consider the problem instance E = (X,A,P,N ) and an optimal solution, {χ∗
a|a ∈

⋃
x∈X\XL A(x)}, of the corresponding relaxing LP, defined by Equations 11–14. Then, for every
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node x ∈ X, the process defined by the initial state s′ = (x0,N c) and the randomized policy π,

that is induced by {χ∗
a|a ∈

⋃
x∈X\XL A(x)} as described at the beginning of this section, will

reach the state (x,N c) before revisiting the set {s ∈ S|x(s) = x0} with probability

Px =

∑
a:x∈S(a) p(x; a) · χ∗

a∑
a∈A(x0) χ∗

a

. (26)

The proof of this lemma is through a straightforward induction on the layer index, l, and it

can be found in the Appendix.

Lemma 2 Consider the problem sequence, {E(n)}, that is induced by a problem instance E =

(X,A,P,N ), through the scaling of the visitation requirement vector, N , by a factor n ∈ Z+.

Then, for all n ∈ Z+,

V ∗
rel(n) = n · max

x:Nx>0
{
Nx

Px
} (27)

Proof First we prove the validity of Equation 27 for n = 1. Since {χ∗
a(1)|a ∈

⋃
x∈X\XL A(x)} ≡

{χ∗
a|a ∈

⋃
x∈X\XL A(x)} is an optimal solution of the relaxing LP, it must hold:

∑
a:x∈S(a) χ∗

a(1)·

p(x; a) ≥ Nx, ∀x ∈ XL. When combined with Equation 26, this last inequality implies that

Px · (
∑

a∈A(x0) χ∗
a(1)) ≥ Nx, ∀x ∈ XL. Taking into account that (i) since {χ∗

a} is an optimal

solution of the relaxing LP, at least one of the Constraints 13 must hold as equality, (ii) V ∗
rel =

∑
a∈A(x0) χ∗

a, and (iii) Px > 0, ∀x ∈ XL with Nx > 0, we finally get

V ∗
rel(1) ≡ V ∗

rel = max
x:Nx>0

{
Nx

Px
} (28)

Next fix an n > 1. We shall refer to the relaxing LP corresponding to the problem instance

E(n) as LP(n), and to the relaxing LP of the original problem instance E as LP(1). Notice that

the dual of LP(n) has the same feasible region as the dual of LP(1), while the objective function

of the former is equal to the objective function of the latter multiplied by n. Therefore, the

optimal objective value of the dual of LP(n) is equal to the objective value of the dual of LP(1)

multiplied by n. This last result, when combined with LP duality theory [4] and Equation 28,

imply that V ∗
rel(n) = n · maxx:Nx>0{

Nx

Px
}, and establish the validity of Equation 27 for every

n > 0.

Lemma 3 Let {χ∗
a|a ∈

⋃
x∈X\XL A(x)} be an optimal solution to the relaxing LP corresponding

to a problem instance E = (X,A,P,N ). Then, {χ∗
a(n) ≡ n · χ∗

a|a ∈
⋃

x∈X\XL A(x)} is an
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optimal solution to the relaxing LP corresponding to the problem instance E(n), for all n ∈ Z+.

Proof The definition of the problem instance E(n) implies that the vector {χ∗
a(n) ≡ n ·χ∗

a|a ∈
⋃

x∈X\XL A(x)} is a feasible solution for the corresponding relaxing LP. Furthermore, the

objective value obtained by plugging the considered vector, {χ∗
a(n)}, to the expression of Equa-

tion 11 is equal to n · V ∗
rel, which, by the result of Lemma 2, is equal to V ∗

rel(n).

An immediate implication of Lemma 3 is that the randomized policies π(n), for n > 1, are

identical to the policy π ≡ π(1), that is induced by the optimal solution {χ∗
a|a ∈

⋃
x∈X\XL

A(x)} of the relaxing LP for the original problem instance, E . The next lemma employs this

result, together with the results of Lemmas 1–3, in order to state and prove the key result of

this section.

Lemma 4 Consider a problem instance E = (X,A,P,N ) and the sequence of problem in-

stances, {E(n)}, that is induced by E through the scaling of the visitation requirement vector,

N , by n ∈ Z+. Also, let (i) {V ∗
rel(n)} denote the sequence of the optimal values for the corre-

sponding relaxing LP’s; (ii) π denote the randomized policy defined by an optimal solution of

the relaxing LP for E; and (iii) {V̂ π(n)} denote the sequence of the random costs incurred by

the application of the randomized policy π to the problem instances E(n). Then, for n → ∞,

V̂ π(n)

V ∗
rel(n)

a.s.
−→ 1 (29)

Proof Consider the application of the randomized policy π on some problem instance E(n),

and, for each terminal node x ∈ XL and each i = 1, . . . , V̂ π(n), define the random variable

Ix
i = 1, if the process visits node x during its i-th traversal of the graph G; 0, otherwise. Then,

the number of times that the process visits a terminal node x ∈ XL before its termination,

can be expressed as
∑V̂ π(n)

i=1 Ix
i . By the problem definition,

∑V̂ π(n)
i=1 Ix

i ≥ n · Nx, ∀x ∈ XL, or

equivalently, V̂ π(n) ·
∑V̂

π(n)
i=1 Ix

i

V̂ π(n)
≥ n · Nx, ∀x ∈ XL. Since the constraint attained last must be

holding as equality, we obtain

V̂ π(n)

n
= max

x:Nx>0
{

Nx
∑V̂ π(n)

i=1 Ix

i

V̂ π(n)

} (30)

Observe that V̂ π(n) ≥ n ·
∑

x∈XL Nx a.s., which implies that V̂ π(n)
a.s.
−→ ∞ as n → ∞. But

then, the result of Lemma 1, when combined with the definition of Ix
i and the Strong Law of
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Large Numbers [2], imply that
∑V̂ π(n)

i=1 Ix
i

V̂ π(n)

a.s.
−→ Px (31)

as n → ∞. Subsequently, Equations 30, 31, and an application of the Continuous Mapping

Theorem [2] imply that

V̂ π(n)

n

a.s.
−→ max

x:Nx>0
{
Nx

Px
} (32)

as n → ∞. Equation 32, when combined with Lemma 2, imply that

V̂ π(n)

V ∗
rel(n)

=
V̂ π(n)

n · V ∗
rel

a.s.
−→ 1 (33)

as n → ∞, and conclude the proof.

Finally, the next theorem builds upon Lemma 4 and some technical results regarding the

uniform integrability of random variables, in order to formally establish the asymptotic opti-

mality of the proposed randomized policy π, as the node visitation requirements grow uniformly

to infinity.

Theorem 4 Consider a problem instance E = (X,A,P,N ) and the sequence of problem in-

stances, {E(n)}, that is induced by E through the scaling of the visitation requirement vector,

N , by n ∈ Z+. Also, let (i) {V ∗(n)} denote the sequence of the corresponding optimal expected

costs; (ii) π denote the randomized policy defined by an optimal solution of the relaxing LP for

E; and (iii) {V̂ π(n)} denote the sequence of the random costs incurred by the application of the

randomized policy π to the problem instances E(n). Then, for n → ∞,

V̂ π(n)

V ∗(n)

a.s.
−→ 1 (34)

Proof Since

∀n ∈ Z+, V ∗
rel(n) ≤ V ∗(n) ≤ V π(n)

and, from Lemma 4,
V ∗

rel(n)

V̂ π(n)

a.s.
−→ 1

as n → ∞, it suffices to show that

V π(n)

V̂ π(n)
=

V π(n)/n

V̂ π(n)/n

a.s.
−→ 1 (35)
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as n → ∞. Furthermore, since V π(n) = Eπ[V̂ π(n)], Eq. 32 implies that a sufficient condition

for Eq. 35 to hold, is that

lim
n→∞

Eπ[V̂ π(n)/n] = Eπ[ lim
n→∞

V̂ π(n)/n] (36)

This last result can be established as follows: Let xl = arg maxx∈XL:Nx>0{
Nx

Px
}, i.e., xl

denotes the “most difficult” target node under the randomized policy π. Also, for any given

n ∈ Z+, let Ψ(n) be the random cost resulting from the application of the policy π on the

problem instance E l(n), that is obtained from E(n) by setting Nx = 0 for x 6= xl. Clearly,

V̂ π(n) ≤st |X
L| · Ψ(n) (37)

since |XL| · Ψ(n) is a stochastic upper bound for the performance that is attained by a policy

that seeks to satisfy the posed visitation requirements one leaf node at a time, while routing

tokens according to the routing probabilities employed by policy π.

By definition, Ψ(n) − 1 follows a negative binomial distribution with mean

E[Ψ(n) − 1] = E[Ψ(n)] − 1 = nNxl

1 − Pxl

Pxl

(38)

and variance

V ar[Ψ(n) − 1] = V ar[Ψ(n)] = nNxl

1 − Pxl

P2
xl

(39)

Therefore,

sup
n

{
E[

Ψ2(n)

n2
]

}
= sup

n

{
1

n2
(V ar[Ψ(n)] + E[Ψ(n)]2)

}

= sup
n

{
1

n
Nxl

1 − Pxl

P2
xl

+
1

n2
(nNxl

1 − Pxl

Pxl

+ 1)2

}

< ∞ (40)

But then, Ψ(n)/n are uniformly integrable (c.f., [3], pg. 338), which combined with Equa-

tion 37, implies the uniform integrability of the random variables V̂ π(n)/n. Finally, the desired

result of Equation 36 is obtained from the uniform integrability of V̂ π(n)/n and Equation 32,

when combined with Theorem 25.12 of [3] (c.f. pg. 338).

As an example of the result of Theorem 4, consider the problem instance E depicted in

Figure 5(a), where the node set X is partitioned into two layers X0 = x0, X1 = XL =

{x1, x2, x3}, and the decisions associated with the non-terminal node x0 are A(x0) = {α1, α2}.

The transition function is given by p(x1; α1) = 0.3, p(x2; α1) = 0.3, p(x3; α1) = 0.4, p(x2; α2) =

0.1, p(x3; α2) = 0.9, and p(x0, α(xl)) = 1, ∀xl ∈ X1. Finally the visitation requirement vector
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Figure 5: A demonstration of the result of Theorem 4

is defined by Nx1 = 1, Nx2 = 1, Nx3 = 2. The graph illustrated in Figure 5 (b) demonstrates

the ratio of the random performance of the randomized policy π, V̂ π(n), and the lower bound

V ∗
rel(n) returned by the relaxing LP, as the visitation requirement vector is scaled uniformly by

a factor n. It is obvious from the plot that as the value of n increases, this ratio tends to one.

4 Establishing an upper bound for V
∗

In order to develop an upper bound, V̂ , for the optimal value, V ∗, of any given problem

instance E = (X,A,P,N ), it suffices to compute the expected total cost, V π̂(s0), for any viable

policy π̂. In the sequel, we shall focus on the particular policy π̂ that seeks to satisfy the

posed visitation requirements for each terminal node sequentially, one node at a time. More

specifically, the policy π̂ first orders the nodes x ∈ XL with Nx > 0 in some arbitrary sequence,

and subsequently, it iteratively selects the next node in the sequence and tries to satisfy its

visitation requirements while ignoring all the visits to any other terminal node. Furthermore,

while trying to satisfy the visitation requirements of some node x ∈ XL with Nx > 0, the policy

adopts an action selection scheme that maximizes the probability of visiting node x during a

single traversal of the underlying graph G. This action selection scheme can be computed from

the LP of Theorem 2 and Equation 7 applied on a problem instance Ex, that is obtained from

the original problem instance, E , by replacing the visitation requirement vector N with the

unit vector 1x. Letting V ∗
x denote the optimal value of Ex, it is also easy to see that the

expected number of the graph traversals that are required by policy π̂ in order to satisfy the

21



visitation requirements for node x, is equal to Nx · V ∗
x . Hence, the value, V π̂(s0), of policy π̂

– i.e., the expected traversals of the graph G in order to satisfy the entire set of the visitation

requirements expressed by vector N , under π̂ – is equal to
∑

x∈XL Nx · V
∗
x . We summarize the

above discussion in the following theorem.

Theorem 5 Given a problem instance E = (X,A,P,N ), an upper bound, V̂ , for its optimal

value, V ∗, is given by the expression

V̂ =
∑

x∈XL

Nx · V ∗
x (41)

where the quantities V ∗
x , for x ∈ XL with Nx > 0, are the optimal values for the problem

instances Ex, that are obtained from the original problem instance, E, by replacing the visitation

requirement vector N with the unit vector 1x.

Finally, we notice that the upper bound V̂ provided by Theorem 5 is tight, since it is easy to

construct problem instances in which the sequential strategy adopted by the underlying policy

π̂ is indeed an optimal strategy.

5 Conclusions

This paper introduced the problem of the optimal node visitation in acyclic stochastic digraphs

and it provided its formal characterization as an SSP problem. It also established that the

induced SSP problem possesses special structure that enables its solution through a spatial

decomposition approach. This decomposing approach can alleviate the computational effort of

computing an optimal policy, but it remains intractable for larger problem instances. Hence, an

additional contribution of the presented work was the development of a randomized policy that

can be deployed and executed with a computational cost that is polynomially related to the

underlying problem size, and it is asymptotically optimal as the nodal visitation requirements

grow uniformly to infinity. Finally, an additional outcome of the presented work was the

derivation of a lower and an upper bound to the optimal value, V ∗.

Future work will seek to rigorously resolve the computational complexity of this problem,

and to derive bounds for V ∗ and policies of enhanced quality and performance; this second task

will be especially important in the case that it is shown that the problem does not admit an

optimal solution of polynomial complexity.
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Appendix

Proof of Proposition 1

According to Definition 1, we need to show that there exists a stationary policy π such that in

the Markov chain induced by π, every state s ∈ S\{sT } is connected to the terminal state sT

with an action path of positive probability. We prove this result by a double induction where

the outer induction runs on the size of the vector N c, defined by the l1 norm, and the inner

induction runs on the layer index of the node x. Hence, first consider a state s = (x0,N c) with

|N c| = 1, and let the node y ∈ XL denote the unique terminal node with N c
y > 0. From the

assumptions stated in the definition of the transition function P, there exists an action path

ξ(y) that leads with positive probability from node x0 to node y. Hence, there exists an action

path of positive probability that leads from state s to the terminal state sT . Next, consider a

state s = (x,N c) with N c
y = 1; N c

z = 0, ∀z ∈ XL\{y}, and a node x ∈ XL. If x = y, state sT

is reachable from s by a single transition. If x 6= y, then, the unique action feasible at s leads

deterministically from state s to state (x0,N c), which was shown to be connected to sT by an

action path of positive probability. Subsequently, consider a state s = (x,N c) with N c
y = 1;

N c
z = 0, ∀z ∈ XL\{y}, and a node x ∈ XL−1. If this state belongs to the earlier constructed

path leading from state s = (x0,N c) to sT , then the sought action π(x,N c) is selected to

match the action suggested by that path. Otherwise, since by assumption A(x) is non-empty,

pick any action a ∈ A(x). This action leads with positive probability to a number of states

s′ = (x′,N c) with x′ ∈ XL, for which we have already established paths connecting them to the

terminal state sT ; selecting any of these states s′ and the corresponding path will complete the

argument for state s. Proceeding in a similar fashion with the subsequent layers XL−2, . . . , X1,

one can also establish a stationary policy π connecting every state s = (x,N c) with N c
y = 1;

N c
z = 0, ∀z ∈ XL\{y}, to the terminal state sT with positive probability. Since the target

node y was selected arbitrarily, and there is no communication among the sub-spaces defined

by this selection, the above construction can be applied to every target node y ∈ XL. Finally,

repetition of the entire above argument will iteratively provide paths from states s = (x,N c)

with |N c| = i, for i = 2, 3, . . . , |N |, to the respective states s′ = (x0,N c′) with |N c′ | = i − 1,

and through them, to sT .

Next,assume an improper policy π. Then, by definition, there is at least one state s ∈

S\{sT } such that there is no action path of positive probability from state s to state sT .

Hence, when the process is initiated in state s and subsequently is operated under policy π, it

will remain in the subspace S\{sT } ad infinitum. Since, by the definition of S\{sT }, the process

can undergo at most L transitions before incurring a positive cost, it follows that V π(s) = ∞.

23



Proof of Proposition 2

To prove part (i) of Proposition 2, first notice that for any state s = (x,N c) with x ∈ X\XL and
∑

a∈A(x) χ∗
a = 0, x 6= x0 (since, for N > 0,

∑
a∈A(x0) χ∗

a > 0). Next consider a state s = (x,N c)

with x ∈ X\XL and
∑

a∈A(x) χ∗
a = 0. Then, Constraint 12 of the relaxing LP implies that the

total flow entering node x under the optimal solution {χ∗
a|a ∈

⋃
x∈X\XL A(x)}, is equal to zero.

This last observation, when combined with the definition of the randomized policy π, imply

that there is no action path of positive probability leading from state s′ = (x0,N c) to state

s. However, Equation 1 implies that state s′ is the only state through which the underlying

process can reach state s, when starting from the initial state s0 = (x0,N ), and therefore, state

s is unreachable under policy π.

To prove part (ii) of Proposition 2, first notice that in the optimal solution {χ∗
a|a ∈

⋃
x∈X\XL A(x)}, there is a path of positive flow connecting the source node x0 to any node

x ∈ XL with Nx > 0. In the operational context of the randomized policy π, each of these

paths translates to an action path of positive probability leading from state s = (x0,N c) to

the corresponding state s′ = (x,N c), for any N c > 0. Hence, in order to establish the required

result, it is adequate to show that from any state s′′ ∈ S\{sT } that is reachable under policy

π, we shall reach a state s = (x0,N c) or state sT with probability one. The validity of this last

statement follows immediately from (a) the result of part (i), established above, which guar-

antees the policy completeness at all the intermediately visited states, and (b) the transitional

structure implied by Equation 1.

Proof of Lemma 1

We proceed by running an induction on the layer index, l. Clearly, Px0 = 1. Also, for x ∈ X1,

Px can be expressed as
∑

a∈A(x0)
χ∗

a∑
a∈A(x0) χ∗

a

· p(x; a) and the theorem holds. Next assume that

the theorem holds for all x ∈
⋃l

i=1 Xi and let x ∈ X l+1. Then we have
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Px =
∑

y∈
⋃

l

i=1 Xi

Py

∑

a∈A(y)

χ∗
a∑

a∈A(y) χ∗
a

p(x; a) + Px0

∑

a∈A(x0)

χ∗
a∑

a∈A(x0) χ∗
a

p(x; a) (42)

=
∑

y∈
⋃

l

i=1 Xi

∑
a:y∈S(a) p(y; a) · χ∗

a∑
a∈A(x0) χ∗

a

∑

a∈A(y)

χ∗
a∑

a∈A(y) χ∗
a

p(x; a)

+
∑

a∈A(x0)

χ∗
a∑

a∈A(x0) χ∗
a

p(x; a) (43)

=
∑

y∈
⋃

l

i=1 Xi

∑
a∈A(y) χ∗

a∑
a∈A(x0) χ∗

a

∑

a∈A(y)

χ∗
a∑

a∈A(y) χ∗
a

p(x; a) +
∑

a∈A(x0)

χ∗
a∑

a∈A(x0) χ∗
a

p(x; a) (44)

=
1∑

a∈A(x0) χ∗
a

∑

y∈
⋃

l

i=1 Xi

∑

a∈A(y)

χ∗
a · p(x; a) +

∑

a∈A(x0)

χ∗
a∑

a∈A(x0) χ∗
a

p(x; a) (45)

=
1∑

a∈A(x0) χ∗
a

∑

a:x∈S(a)

χ∗
a · p(x; a) (46)

Notice that, as established in the proof of Proposition 2, the expression
∑

a∈A(x0) χ∗
a ap-

pearing in the denominator of the second term in the right-hand-side of Equation 42 will be

strictly positive for well-defined problem instances, while any nodes y involved in the first term

of the right-hand-side of Equation 42 that have
∑

a∈A(y) χ∗
a = 0, will also have Py = 0; hence,

the right-hand-side of Equation 42 is well-defined. Furthermore, Equation 43 holds from the

induction hypothesis, whereas Equation 44 holds from the equality constraints of the relaxing

LP (c.f. Eq. 12). Thus, the induction is complete.
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