
Invariant-based Supervisory Control of
Switched Discrete Event Systems

Spyros Reveliotis and Zhennan Fei

Abstract—This paper introduces the notion of switched Discrete
Event Systems (s-DES) and investigates its representational and
computational potential in (i) the description and the analysis of
the underlying DES behavior, (ii) the specification of the posed
control requirements, and (iii) the eventual computation of the
necessary control function. More specifically, it is shown that
the potential decomposition of the overall DES behavior in a
well defined set of “operational modes” enables the specification
of control requirements and the synthesis of the corresponding
control laws in a modular and distributed manner that takes full
advantage of the aforementioned decomposition. The work is mo-
tivated by the need to cope with DES operating under a number
of failing modes that result from non-catastrophic failures and
repairs, and also DES that might evolve their operation through
a number of “stages”. Furthermore, the technical developments
of the paper and their representational and computational power
are further highlighted by an application example that is drawn
from the area of robot pursuit on time-varying graphs; however,
due to space considerations, this example is provided in an
electronic supplement to the paper.

Keywords: Discrete Event Systems, Switched Systems, Su-
pervisory Control, Distributed Algorithms

I. INTRODUCTION

The notion of “switched (hybrid) systems” has been used
extensively in the past control literature [1]. Under the existing
theory, this notion describes time-driven dynamical systems
where the governing equations change their structure abruptly
at certain time-points, either due to the mere passage of time,
or due to the transition of the considered system among partic-
ular sections of the underlying state space [2]. The distinct sets
of equations that govern the system behavior during specific
time intervals, or over specific sections of the underlying
state space, define the set of the “operational modes” for this
system, and the logic that determines the system transitions
among its operational modes defines a “transitional structure”
that is represented by some sort of (finite state) automaton [3].
The resultant formalization of this class of systems has given
rise to some very interesting problems regarding the definition
and the rigorous investigation of various notions of stability,
reachability and other properties for the underlying dynamics,
and the synthesis of control policies that will enforce these
properties. The reader is referred to [1] for a nice tutorial
introduction to the theory of switched / hybrid dynamical
systems, and a comprehensive survey of the relevant literature.

S. Reveliotis is with the School of Industrial & Systems Engineering, Geor-
gia Institute of Technology, email: spyros@isye.gatech.edu. Zhennan
Fei is with Prover Technology, Stockholm, Sweden. S. Reveliotis was partially
supported by NSF grant ECCS-1405156.

In this work, however, we are interested in switched systems
where the modal dynamics are not “time-driven” but “event-
driven” [3]. In other words, the system dynamics at each
of its operational modes are represented by a “local” (finite
state) automaton that characterizes the transition of this system
through its underlying state space in response to various
events that take place in its environment. Furthermore, these
local dynamics are switched in an autonomous manner that
is driven by an additional set of events that can take place
uncontrollably at various system states. Hence, similar to the
case of the hybrid dynamics that have been studied in the
past, any trajectory characterizing the overall system behavior
can be partitioned into a number of segments that are defined
by the occurrence of two consecutive events that correspond
to a modal switching of the underlying dynamics, and each
segment evolves over the same state space but according to a
different transitional structure. In the sequel, we shall refer to
such a switched system as a “switched Discrete Event System
(s-DES)”.

The astute reader will also notice that, according to the above
description, an s-DES is essentially a (finite state) automaton
with its state space partitioned / organized by the additional
structure that is implied by the notion of the “(operational)
modes” that was described in the previous paragraph, and with
its dynamics further driven and shaped by the uncontrollable
transitions that take place among these modes. Hence, the
logical behavior of an s-DES can be analyzed and controlled
through the corresponding DES theory [3]. In view of this
fundamental observation, the main objective of this paper is
to show that the potential decomposition of the operation of
any given DES into a set of modes along the aforementioned
lines can enable the specification of control requirements
and the synthesis of control laws for these systems in a
modular and distributed manner that takes full advantage of
the aforementioned decomposition.

Hence, the results presented in this paper can be classified
together with the existing results on modular and hierarchical
DES supervisory control (SC) theory [3], [4] that seek to
further regiment and facilitate the supervisor synthesis process
by taking advantage of special structure that might exist in the
specifications and the underlying system. Along these lines,
our work presents particular affinity to the works presented in
[5], [6], [7], [8] that also seek to design invariant-enforcing
state feedback-based supervisors for the underlying DES. On
the other hand, in the case of the s-DES structure that is
considered in this work, the DES special structure involved is
conceptually simpler and flatter than the hierarchical structures

2

mentioned above, since essentially we address the dynam-
ics of the same physical entity under different operational
regimes. Also, by seeking to enforce a local invariant-based
specification for each mode, the sought supervisors decompose
naturally across these modes. But since there are uncontrol-
lable transitions among these modes, the synthesis procedures
of these supervisors must interact with each other, and this
interaction typically will be much more arbitrary and mul-
tidirectional than the corresponding interaction taking place
in the synthesis procedures that are employed by hierarchical
SC theory. We propose to support this interaction by means
of a message-passing asynchronous distributed algorithm that
possesses a separate thread for the synthesis of each local
modal supervisor.

DES that are particularly amenable to the aforementioned
decomposition of the underlying logical dynamics and the
corresponding distribution of the control function, are those
that are susceptible to non-catastrophic failures, i.e., failures
that might alter the system behavior but do not lead to the
termination of its operation. Machines on a manufacturing
shop-floor (or any other sort of mechanical equipment) that
have to experience some downtime due to a failing component
or lack of certain consumables provide a typical example of
the aforementioned type of failure. Furthermore, many DES
modeling complex operations can be decomposed into a set of
“operational regimes” or “stages” that correspond to particular
phases towards the execution of a more major task; and these
phases may be organized sequentially according to a pre-
specified execution plan, or they may evolve in a more random
manner driven by exogenous input and events.

A nice exposition of the existing literature on fault-tolerant
supervisory control for DES is provided by [9]. However, most
of this literature employs a linguistic modeling framework and
focuses on the case of a single but possibly unobservable fail-
ure. Furthermore, the main problem addressed in that regime,
is to define diagnosability and controllability properties, as
well as the necessary monitoring and control processes, that
will enable the system to observe certain safety and maybe
liveness requirements in its post-failure behavior. On the other
hand, the s-DES model that is considered in this work allows
the modeling of many different types of failures as well as the
potential recovery from (some of) these failures. Furthermore,
the occurrence of the various failing and recovery events
is observable,1 and the tracing of these events defines the
operational mode of the considered DES at any given instant.

As already mentioned, in the resulting operational regime,
the control specifications are expressed in terms of a set of
predicates that are defined on the underlying state space; each
predicate corresponds to a single failing mode, and it must
be observed by the considered DES while finding itself in
that mode. Also, the resulting SC problem can be addressed,
in principle, by the standard DES SC theory [3], but the

1since, for instance, it is not difficult to monitor the operational status of
the machines and the other mechanical equipment that were mentioned in the
previous paragraphs through the deployment of some sensing capability, or
even by human supervision and inspection.

state space to be employed by the corresponding formulation
involves the replication of the original DES state space for
each considered failing mode, and therefore, its size can be
exorbitant, even by the standards of the state spaces that are
usually handled by DES theory. Hence, the emphasis of this
work is placed on the development of the aforementioned
distributed algorithm that can master this excessive complexity
through a decomposing scheme that takes advantage of the
special structure and the regularity that exists in the considered
problem.

In view of the above positioning of the paper theme and
the intended contribution, the presented developments are
organized as follows: Section II provides a formal definition
of the s-DES, the underlying dynamics, and the corresponding
SC problem that is addressed in this work. Subsequently,
Section III characterizes further the well-posedness of the
considered SC problem and a notion of “optimal supervision”
for it, by taking a more traditional, monolithic perspective on
this problem and tapping upon the corresponding results of
classical SC theory. Section IV presents the main result of
this work, i.e., the aforementioned distributed algorithm for the
computation of the optimal supervisor, where the distribution
of the presented computation is taking place over the distinct
operational modes of the considered s-DES. Finally, Section V
concludes the paper developments, and outlines some direc-
tions for future work. In addition, an electronic supplement to
this paper, accessible at http://www2.isye.gatech.edu/~spyros,
provides (i) some supportive technical developments for Sec-
tion III, and a demonstrative example that highlights the
representational and computational advantages established by
the s-DES concept and the proposed distributed algorithm.2

II. SWITCHED DISCRETE EVENT SYSTEMS AND THE
CONSIDERED SC PROBLEM

Switched discrete event systems: In the context of this work,
a switched Discrete Event System (s-DES) G is formally
defined by a finite state automaton (FSA) G ≡ 〈X × S, Σ ∪
E, δ, (x0, s0)〉, where:

1) The finite sets S and X define respectively the sets of
operational states and modes of the considered DES G.
Hence, the complete – or “global” – state of DES G
at any instant is characterized by the current operational
state and the running mode.

2) The event set of G consists of two event types: The event
set Σ triggers transitions of G within its operational state
space S, without impacting its mode. On the other hand,
the event set E collects the set of events that cause a
modal change in G. Furthermore, the set Σ is partitioned
into the sets Σc and Σu defining, respectively, the sets
of controllable and uncontrollable events in Σ. On the
other hand, all the events in E are uncontrollable events.

3) The state transition function δ : X × S × (Σ ∪ E) →
2X×S describes the transition of G among its various

2We also notice that a preliminary and abbreviated version of this paper
has appeared in the proceedings of the 5th Conference on the Analysis and
Design of Hybrid Systems (ADHS 2015).

http://www2.isye.gatech.edu/~spyros

3

global states (x, s) ∈ X × S upon the occurrence
of various events in Σ ∪ E. The considered definition
of δ supports the modeling of nondeterministic behav-
ior, while by setting δ(x, s, q) = ∅ for some triplets
(x, s, q) ∈ X×S×(Σ∪E), we can also model potential
infeasibility of some event q in a global state (x, s).
Finally, the transition function δ is further qualified by
the following condition:

∀x ∈ X,∀s ∈ S, ∀q ∈ Σ ∪ E, ∀(x′, s′) ∈ δ(x, s, q),
x′ = x, if q ∈ Σ ∧ x′ 6= x, if q ∈ E (1)

Equation 1 expresses the aforestated fact that the events
in Σ cannot impact the mode of G, and establishes a
notion of “locality” for the transitions that are effected
by these events in the context of the global state space
X × S. On the other hand, the events in E cause
transitions among the local subspaces that correspond
to the various modes of DES G.

4) Finally, (x0, s0) initializes G by specifying an initial
mode x0 ∈ X and an initial state s0 ∈ S.

In the following, we further assume that δ is extended to
apply to (i) entire subsets of the global state space G ⊆ X×S,
and to (ii) strings of (Σ ∪E)∗, the Kleene closure of Σ ∪E,
in the standard / natural manner. Also, whenever the state set
G is a singleton {(x, s)}, we shall write δ(x, s, w) instead of
the more complicated form δ({(x, s)}, w). Finally, we define:

Reach(G) ≡ {(x, s) ∈ X × S : ∃w ∈ (Σ ∪ E)∗ s.t.
(x, s) ∈ δ(x0, s0, w)} (2)

The considered SC problem: In this work, we want to control
the considered DES G so that its dynamics observe a set of
invariants Ix, x ∈ X , where each Ix is defined by a predicate
Px that must be satisfied by the states (x, s), s ∈ S. Hence,
∀x ∈ X, Ix ≡ Sx = {s ∈ S : Px(x, s) = TRUE}, and the SC
problem addressed in this work can be formally characterized
as follows:

Definition 1: – The considered SC problem: Given an s-
DES G = 〈X×S, Σ∪E, δ, (x0, s0)〉 and a set of predicates
Px, x ∈ X , represented by the state subsets Sx = {s ∈ S :
Px(x, s) = TRUE}, develop a supervisor Γ̂, in the form of
a total function from X × S to 2Σc

, such that the transition
function Γ̂/δ that is obtained from the transition function δ by
setting

∀x ∈ X, ∀s ∈ S, ∀q ∈ Σ ∪ E,

Γ̂/δ(x, s, q) =

{
∅, if q ∈ Σc ∧ q 6∈ Γ̂(x, s)
δ(x, s, q), o.w.

(3)

induces the DES Γ̂/G ≡ 〈X×S, Σ∪E, Γ̂/δ, (x0, s0)〉 such
that

Reach(Γ̂/G) ⊆ {(x, s) : x ∈ X ∧ s ∈ Sx} (4)

In addition, we request that the synthesized supervisor Γ̂ is
maximally permissive; i.e., there must be no other supervisor
Γ such that (i) the induced DES Γ/G satisfies the condition

of Eq. 4, and (ii)

∀(x, s) ∈ X × S, Γ̂(x, s) ⊆ Γ(x, s) (5)

with the inclusion holding true for at least one state (x, s).

Also, in order to facilitate the subsequent discussion, we shall
set

{(x, s) : x ∈ X ∧ s ∈ Sx} ≡ Ω (6)

Finally, in the following, for any given supervisor Γ, we shall
refer to the induced DES Γ/G as the “controlled” DES G
(under supervision by Γ), and any supervisor Γ such that the
controlled DES Γ/G satisfies the condition of Eq. 4 will be
characterized as a “correct” supervisor.

III. WELL-POSEDNESS AND OPTIMAL SUPERVISION FOR
THE DEFINED SC PROBLEM

As remarked in the introductory section, the SC problem
formulated in Section II can be addressed, in principle, through
the standard SC theory, especially, the seminal results that are
presented in [5], [10] on predicate enforcement through state-
feedback control. Hence, in this section, we overview some
key results from that theory that characterize the notions of
“well-posedness” and the “optimality” for the considered SC
problem. However, instead of adopting the predicate calculus
[11] that is adopted in the aforementioned works, in the
following exposition we have opted for a more conventional
line of semantics and notation, since this approach (i) might
render the corresponding results more accessible to the general
readership, and (ii) facilitates the statement of our main
results through the standard concepts and terminology that
are employed by the theory of distributed algorithms (c.f., for
instance, [12]).3

Well-posedness of the considered SC problem: We begin our
analysis of the SC problem of Definition 1 by providing the
necessary and sufficient condition for the existence of a correct
supervisor. For this, consider an s-DES G ≡ 〈X × S, Σ ∪
E, δ, (x0, s0)〉, and the supervisor Γ∅ defined by:

∀(x, s) ∈ X × S, Γ∅(x, s) = ∅ (7)

Then, for any global state (x, s) ∈ X×S, the “uncontrollable
reach” Reachu(x, s;G) of this state is defined by

Reachu(x, s;G) ≡ Reach(〈X × S, Σ ∪ E, Γ∅/δ, (x, s)〉)
(8)

Also, we define the uncontrollable reach for the execution of
a controllable event σ ∈ Σc at some state (x, s) ∈ X × S by

Reachu(x, s, σ;G) =
⋃

(x,s′)∈δ(x,s,σ)

Reachu(x, s′;G) (9)

In view of the above definitions, the complete feasibility
condition for the SC problem of Definition 1 can be expressed

3 The electronic supplement to this paper, posted at http://www2.isye.
gatech.edu/~spyros, contains a more expansive treatment of the material that
is presented in this section, including complete formal proofs for the presented
results.

http://www2.isye.gatech.edu/~spyros
http://www2.isye.gatech.edu/~spyros

4

as follows [5]:

Proposition 1: There exists a correct supervisor for the
SC problem of Definition 1 if and only if (iff) ∀(x, s) ∈
Reachu(x0, s0;G), s ∈ Sx (or, equivalently, (x, s) ∈ Ω).

In the following, unless otherwise specified, we shall assume
that all the addressed instantiations of the considered SC
problem are feasible.

Pertinent correct supervisors and their disjunction: Next we
proceed to define a notion of “supervisor disjunction” for
the considered SC problem that will eventually enable us to
formalize the notion of “maximal permissiveness” among the
class of the considered supervisors. A first derivation of the
following results can be traced in [5].

Definition 2: A supervisor Γ for an s-DES G with required
control invariants Ix, expressed by the state sets Sx, x ∈ X ,
is characterized as “pertinent” iff

∀(x, s) ∈ Ω, ∀σ ∈ Γ(x, s), Reachu(x, s, σ;G) ⊆ Ω (10)

The next proposition establishes that it is reasonable to limit
our search for a correct supervisor within the class of pertinent
supervisors.

Proposition 2: Consider an s-DES G with required control
invariants Ix that are expressed by the state sets Sx, x ∈ X .
Then, for any correct supervisor Γ, there exists a pertinent cor-
rect supervisor Γ′ such that (i) Reach(Γ′/G) = Reach(Γ/G)
and (ii) ∀(x, s) ∈ Reach(Γ/G), Γ′(x, s) = Γ(x, s).

Definition 3: Given two correct supervisors Γ1 and Γ2, the
“disjunctive” supervisor Γ1 ∨ Γ2 is obtained by setting

∀(x, s) ∈ X×S, (Γ1∨Γ2)(x, s) ≡ Γ1(x, s)∪Γ2(x, s) (11)

The disjunction of two correct supervisors for the consid-
ered SC problem is not necessarily a correct supervisor; an
elucidating example of this fact is provided in the electronic
supplement to this paper. However, this complication can be
circumvented by restricting the underlying synthesis process
to the space of pertinent correct supervisors.

Proposition 3: Consider an s-DES G with required control
invariants Ix that are expressed by the state sets Sx, x ∈
X , and two pertinent correct supervisors Γ1, Γ2. Then, the
disjunctive supervisor Γ1∨Γ2 is a pertinent correct supervisor
for the considered problem.

Optimal supervision for the considered SC problem: The
closure of the pertinent correct supervisors under disjunction,
that was established by Proposition 3, further implies that,
for any feasible instantiation of the SC problem of Defini-
tion 1, the maximally permissive pertinent correct supervisor
is defined uniquely on the critical states (x, s) ∈ X × S with
Reachu(x, s;G) ⊆ Ω (i.e., the global states that can observe
the imposed invariants). In the sequel, we shall denote the
maximally permissive supervisor w.r.t. these critical states by
Γ∗, and we shall also refer to it as the “optimal” supervisor.
For the remaining states (x, s) ∈ X × S that can violate

uncontrollably the imposed invariants, the sought optimal
supervisor can be left undefined, or, for better specificity, one
can set Γ∗(x, s) = ∅, and this is the practice that we shall
adopt herein.

A basic iterative algorithm for the computation of Γ∗: The
computation of the optimal pertinent correct supervisor Γ∗ for
any feasible instantiation of the considered SC problem can
be performed through a fixed-point iteration that is in line
with the classical Ramadge & Wonham SC theory [13]. More
specifically, we define the operator F upon the subsets of X×
S, that when applied on any given subset G of this set, returns

F(G) = {(x, s) ∈ G : ∀q ∈ Σu ∪ E, δ(x, s, q) ⊆ G} (12)

Also, we use the notation F i to denote the i-fold composition
of this operator with itself. Then, we have the following
theorem:

Theorem 1: Consider an s-DES G with required control
invariants Ix that are expressed by the state sets Sx, x ∈ X ,
and further assume that Reachu(x0, s0;G) ⊆ Ω. Then, the
limit limi F i(Ω) is obtained in a finite number of iterations
and it is a non-empty subset of the set Ω containing the initial
global state (x0, s0). Furthermore, the sought supervisor Γ∗

can be defined as follows:

∀(x, s) ∈ X × S, Γ∗(x, s) = {σ ∈ Σc : δ(x, s, σ) ⊆ limi F i(Ω)}, (x, s) ∈ limi F i(Ω)

∅, o.w.

The above computation of Γ∗ is quite straightforward and,
as already remarked, in line with similar existing results in
DES SC theory. But for many DES G of the considered class,
this computation may be practically challenged by the very
large size of the underlying state space X × S. Hence, it is
useful to seek alternative algorithms for the computation of the
target supervisor Γ∗ that are amenable to a more distributed
implementation. Such a distributed scheme can speed up the
overall computation through parallelization, and, even more
importantly, it can control more effectively the corresponding
memory requirements. In the sequel, we present a distributed
algorithm for the computation of Γ∗ that takes advantage of the
distribution of the control predicate that specifies the imposed
invariant across the modes of the underlying s-DES G.

IV. AN EFFICIENT DISTRIBUTED ALGORITHM FOR THE
COMPUTATION OF Γ∗

The presented algorithm distributes the computation of the
target set limi F i(Ω) over |X| agents Ax, x ∈ X , with
each agent Ax pursuing the computation of the subset of
limi F i(Ω) that corresponds to mode x. Furthermore, these
agents communicate by (i) message passing [12] that enable
them to share partial results of their computation that will be
useful in the computation conducted by some other agents,
and also through (ii) some shared variables [12] that enable
them to track the status of the overall computation, and define
a terminating condition for their endeavor.

5

Next, we detail the proposed distributed algorithm by dis-
cussing (a) the data that is possessed by every agentAx, (b) the
primary local variables that it employs during its computation,
(c) the variables that it shares with the other agents, (d) the
structure of the messages that it exchanges with the other
agents, and (e) the primary algorithm that is executed by
each agent. Once all these aspects of the considered algorithm
have been fully described, we shall proceed to establish its
correctness.

Each agent Ax, x ∈ X , avails of the following data during
the execution of its computation:

1) The control predicate Px corresponding to mode x.
2) The restriction of the transition function δ to {x}×S×Σ,

that encodes the transitions taking place in the subspace
that corresponds to mode x. This restriction will be
denoted by δx, and furthermore, for representational
economy, δx will be considered as reduced to a two-
argument function, defined on S × Σ.4

3) The restriction of the function δ to {x} × S × E, that
encodes the uncontrollable transitions in mode x result-
ing in a mode change. This restriction will be denoted
by δEx , and similar to the case of the function δx that
was defined in the previous item, δEx will be considered
as a two-argument function, defined on S × E.

4) The function ∆x : S → 2X with ∆x(s) ≡ {x′ ∈ X :
∃e ∈ E and s′ ∈ S s.t. (x, s) ∈ δ(x′, s′, e)}; in plain
terms, ∆x(s) provides the set of modes x′ that have
uncontrollable transitions from their subspace {(x′, s′) :
s′ ∈ S} to state (x, s).

5) Finally, for the needs of the subsequent discussion, we
also define ∆̂x ≡

⋃
s∈S ∆x(s).

The local variables that are possessed by agent Ax are as
follows:

1) Qx is a subset of S. This variable is initialized at the
set {s ∈ S : Px(s) = TRUE}, and at the end of the
overall computation it will contain the target set {s ∈
S : (x, s) ∈ limi F i(Ω)}.

2) Mx,x′ , ∀x′ ∈ ∆̂x. At various stages of the computation
of agent Ax, each of these variables will contain subsets
of S with the following property: Each state s ∈Mx,x′

corresponds to a global state (x, s) that (i) has been
identified by agent Ax as not belonging to the target
set limi F i(Ω), and (ii) can be reached from the cor-
responding mode x′ through some uncontrollable event
e ∈ E. Hence, Mx,x′ will be passed, as a message, to
the corresponding agent A′x, that will proceed to the
necessary state eliminations from its own set Qx′ .

3) MessageQueuex is a FIFO queue that collects all the
messages Mx′,x that are sent to agent Ax by the other
agents Ax′ , x′ ∈ X \ {x}.

Besides their local variables, the agents Ax, x ∈ X , also
share the following two arrays of variables:

4Formally, the reduction of δx from a three-argument to a two-argument
function, can be obtained through the “existential quantification” of its first
(constant) argument.

1) COUNT [|X|, |X|], with COUNT [x, x′] reporting the
number of messages sent by agent Ax to the agent Ax′

that have not been picked up for processing by agent
Ax′ .

2) DONE[|X|], an array of Boolean variables, with
DONE[x] being set to TRUE or to FALSE by agent Ax
depending on whether it is in an “idling” or a “working”
mode.

The above two sets of variables are respectively initialized to
0 and FALSE, and as remarked at the beginning of this section,
they will be used in order to detect the completion of the over-
all computation. On the other hand, the communication taking
place among the various agents by means of the messages
Mx,x′ that were discussed above, is assumed to occur through
reliable FIFO channels that deliver the dispatched messages
with a finite latency [12]. The reception of these messages by
the destination agent and their placement in the corresponding
message queue can be handled either by a thread that runs
in parallel to the main computational thread of this agent,
or by “interrupts” to the main computational process that are
triggered by the arriving messages.

Next we turn to the description of the main algorithm that
is run by each agent Ax, x ∈ X . The pseudo-code for this
algorithm is presented in Fig. 1, and it involves four major
stages. The first stage concerns the initialization of the agent’s
local variables that control the corresponding algorithmic
thread(s), and also, the initialization of the shared variables
that are (primarily) controlled by this agent. This stage also
collects in the set Qx all the operational states s ∈ S that
satisfy the local predicate Px. Finally, the initialization stage
concludes with agent Ax informing the other agents Ax′ ,
x′ ∈ ∆̂x, of the states s ∈ S \Qx that violate the predicate Px
and can be reached uncontrollably from the subspaces of the
global state space X × S that correspond to agents Ax′ ; this
is performed by composing and sending the corresponding
messages Mx,x′ , and updating the counters COUNT [x, x′]
accordingly.

Upon its completion, the initialization stage passes control
to a second stage that is perceived as the main computational
stage of each local thread. The primary task of this stage is to
update the variable Qx according to a fixed-point computation
that starts with the current value of Qx and applies iteratively
upon this variable an operator Fx that can be perceived as
a localized version of the original operator F of Eq. 12 in
the computational scope of agent Ax; more specifically, the
operator Fx is defined as follows:

∀Q ⊆ S, Fx(Q) ≡ {s ∈ Q : ∀σ ∈ Σu, δx(s, σ) ⊆ Q} (13)

A second task of this stage is to compose the messages
Mx,x′ , x′ ∈ ∆̂x, with the corresponding states s ∈ S
that have been removed from Qx during the aforementioned
computation, and send these messages to their destination
agents while updating accordingly the corresponding variables
COUNT [x, x′].

Upon the completion of its two primary tasks, the second

6

Input: Px, δx, δEx , ∆x, ∆̂x

Output: Qx
/* INITIALIZE */

1: MessageQueuex := NILL; DONE[x] := FALSE;
2: for all x′ ∈ ∆̂x do
3: COUNT [x, x′] := 0;
4: end for
5: Qx := {s ∈ S : Px(s) = TRUE};
6: if Qx 6= S then
7: for all x′ ∈ ∆̂x do
8: Mx,x′ := {s ∈ S \Qx : x′ ∈ ∆x(s)};
9: if Mx,x′ 6= ∅ then

10: COUNT [x, x′] + +; send(Mx,x′);
11: end if
12: end for
13: end if

/* COMPUTE */
14: Q̃x := Qx;
15: repeat
16: Q̂x := Qx;
17: Qx := Fx(Q̂x) ≡

{s ∈ Q̂x : ∀σ ∈ Σu, δx(s, σ) ⊆ Q̂x};
18: until Qx = Q̂x;
19: if Qx 6= Q̃x then
20: for all x′ ∈ ∆̂x do
21: Mx,x′ := {s ∈ S : s ∈ Q̃x \Qx ∧ x′ ∈ ∆x(s)};
22: if Mx,x′ 6= ∅ then
23: COUNT [x, x′] + +; send(Mx,x′);
24: end if
25: end for
26: end if

/* PROCESS MESSAGE QUEUE */
27: repeat
28: if MessageQueuex 6= NILL then
29: DONE[x] := FALSE; Q̃x := Qx;
30: while MessageQueuex 6= NILL do
31: Pop next message Mx′x from MessageQueuex;
32: COUNT [x′, x]−−;
33: Qx := Qx \ {s ∈ S : ∃s′ ∈Mx′,x, ∃e ∈ E,

(x′, s′) ∈ δEx (s, e)};
34: end while
35: if Qx 6= Q̃x then
36: Go to “COMPUTE”;
37: else
38: DONE[x] := TRUE;
39: end if
40: end if
41: until

(∑
x,x′∈X COUNT [x, x′] = 0

)
∧∧

x∈X DONE[x];
/* TERMINATE */

42: return Qx;

Fig. 1. The algorithm executed by each agent Ax, x ∈ X .

stage passes control to a third stage which is in charge of
processing any newly received messages. More specifically,
this third stage processes each message Mx′,x that is currently
available in MessageQueuex, by removing its contents from
the set Qx and updating accordingly the corresponding counter
COUNT [x′, x]. If these updates have resulted in a reduction
of the set Qx, this third stage passes the control back to the
second stage for the computation of the new fixed point of Fx
w.r.t. the current value of Qx. If, on the other hand, Qx was
not altered by the processing of the new messages, then, the
algorithm sets the variable DONE[x] = TRUE and proceeds
to check its terminating condition. This condition is uniform
for all agents Ax, x ∈ X , and requests that (i) there are no
messages pending for processing, and (ii) all agents are idling;
more formally,

(
∑

x,x′∈X
COUNT [x, x′] = 0) ∧

∧
x∈X

DONE[x] (14)

If the condition of Eq. 14 is met, then the algorithm proceeds
to its fourth and final stage, that returns the current set Qx,
terminates all its running threads, and exits. On the other
hand, if the aforementioned condition is not met, the algorithm
gets into a loop that continuously checks for the reception of
new messages or the eventual satisfaction of the terminating
condition. In particular, if the considered loop is broken by
the arrival of new messages, the algorithm sets the variable
DONE[x] = FALSE and goes back to the beginning of the
third stage, for the processing of these new messages according
to the logic that was outlined in the previous paragraphs.

We close the presentation of the proposed distributed algo-
rithm of Fig. 1 with the next theorem which establishes that (i)
the considered algorithm will terminate in finite time, and that
(ii) the sets Qx returned by the agents Ax, x ∈ X , upon their
termination, constitute a correct distributed representation of
the target set limi F i(Ω) of Theorem 1.

Theorem 2: The algorithm depicted in Fig. 1 will terminate
in finite time for all agents Ax, x ∈ X , and the sets Qx
that are returned upon termination, will satisfy the following
property:

∀x ∈ X, Qx = {s ∈ S : (x, s) ∈ lim
i
F i(Ω)} (15)

Proof: To prove the results of Theorem 2, first it is important
to notice that, due to its symmetrical structure, the terminating
condition of Eq. 14 is priced uniformly for every agent Ax,
and whenever it is set to TRUE, all agents are in an idling
mode, having set their corresponding variable DONE[x] =
TRUE. Furthermore, it is easy to check, by tracing the logic
of the stage “PROCESS MESSAGE QUEUE”, that once the
terminating condition is set to true, it cannot be negated by the
action of any agent, and therefore, all the agents Ax will have
to proceed from their current idling status to their termination.

On the other hand, an agent Ax may exit its idling
status by receiving some messages Mx′,x in its queue
MessageQueuex. But the origination and delivery of any
such message Mx′,x by agent A′x implies the reduction of

7

the cardinality of the corresponding state set Qx′ . Since (a)
all state sets Qx, x ∈ X , are initialized to finite contents, (b)
these contents can only be reduced during the execution of the
algorithm, and (c) any single pass of the stages “COMPUTE”
and “PROCESS MESSAGE QUEUE” (i.e., lines 14–39 in
Fig. 1) is a finite computation, it follows that the entire
algorithm will terminate in finite time.

Next, we prove the correctness of the algorithm, i.e., the
validity of Eq. 15. An argument very similar to that estab-
lishing the main result of Theorem 1 can establish that, for
any value of the variable set Qx, the fixed-point computation
of the stage “COMPUTE” in the code of Fig. 1 will return
the subset of Qx collecting all of its states that have no
uncontrollable paths to S \ Qx. This remark together with
the initial value of the sets Qx, x ∈ X , further imply that
the first execution of the stage “COMPUTE” by each agent
Ax will remove from the corresponding set Qx all states
that have uncontrollable paths to states s ∈ S \ Sx (i.e.,
to states in S that do not satisfy the predicate Px). On the
other hand, the messages Mx,x′ exchanged by the agents
Ax, and the corresponding processing of these messages that
takes place in stages “PROCESS MESSAGE QUEUE” and
“COMPUTE”, seek to eliminate from each state set Qx any
states s corresponding to global states (x, s) with emanating
transition sequences to some predicate-violating state (x′, s′)
that contain some event(s) e ∈ E. Hence, to establish the claim
of Theorem 2, we need to show that the considered distributed
algorithm generates and processes all the messages Mx,x′ that
are necessary for the aforementioned eliminations.

To prove this last result, for any given global state (x, s) 6∈
limi F i(Ω), let #(x, s) denote the minimum number of events
e ∈ E in any uncontrollable transition sequence that leads
from (x, s) to X ×S \Ω; we shall establish the sought result
through an induction on this state index. The base case of
#(x, s) = 0 was already established in the previous discussion
about the computation that takes place during the first visit of
the stage “COMPUTE” by each agent Ax, x ∈ X . Next,
suppose that the algorithm identifies and eliminates from the
corresponding set Qx all the global states (x, s) 6∈ limi F i(Ω)
with #(x, s) ≤ n, and consider a state (x̂, ŝ) 6∈ limi F i(Ω)
with #(x̂, ŝ) = n + 1. By the definition of the state (x̂, ŝ),
there is a state (x′, s′) with #(x′, s′) = n, and (x′, s′)
is reachable from (x̂, ŝ) through a transition sequence we
where w ∈ Σu and e ∈ E. By the inductive hypothesis,
state s′ has been eliminated from Q′x by agent Ax′ , and
furthermore, this elimination has been communicated to the
agent Ax̂ by a message Mx′,x̂ during the execution of the
corresponding computational stage by agent Ax′ . Since agent
Ax′ was in stage “INITIALIZE” or “COMPUTE” during the
composition and dispatching of the aforementioned message
Mx′,x̂, DONE[x′] = FALSE and, according to the remarks
in the opening paragraph of this proof, agent Ax̂ cannot
be in its terminating stage. Furthermore, the increase of the
counter COUNT [x′, x̂] by one unit upon the creation of the
aforementioned message Mx′,x̂ implies that the terminating
condition of Eq. 14 cannot be evaluated to TRUE until agent
Ax̂ has processed the message Mx,x̂. Let s̃ denote the next-

to-last state visited by the aforementioned transition sequence
we on a path that leads from (x̂, ŝ) to (x′, s′).5 State s̃
is in Qx̂ during the processing of the considered message
Mx′,x̂, since, otherwise, the considered state ŝ would have
been eliminated from Qx̂ by the fixed-point iteration of stage
“COMPUTE” during the elimination of the state s̃. But then,
the processing of Mx′,x̂ by agent Ax̂, in stage “PROCESS
MESSAGE QUEUE”, will lead to the elimination of state s̃
from Qx̂, and this elimination subsequently will trigger the
execution of the stage “COMPUTE” by the same agent; state
ŝ will be eliminated from the set Qx̂ during this stage (unless
w = ε, in which case, ŝ ≡ s̃). �

An example application of the s-DES modeling framework
and of the algorithm of Fig. 1 for the computation of the
optimal strategy in a robot-pursuit problem that takes place on
a time-varying graph, is provided in the electronic supplement
to this paper. The corresponding developments reveal quite
vividly, both, the representational and the computational effi-
ciencies that are established by this new modeling framework,
but they could not be included in this document due to the
imposed space limitations.

V. CONCLUSIONS

This paper introduced the s-DES concept, defined an
invariant-based SC problem for this class of DES, and devel-
oped a distributed algorithm for computing the corresponding
maximally permissive supervisor. The proposed algorithm
constitutes a decomposing scheme that is suggested by the
s-DES structure, and it can effect substantial gains in terms of
the required computational time and memory compared to the
corresponding requirements that are posed by the monolithic
algorithms provided by the classical DES SC theory. The
motivational ideas underlying the presented work and the
aforementioned representational and computational gains are
further highlighted through the application of the derived
results on a robot-pursuit problem that evolves on a time-
varying graph, and it is provided in an electronic supplement
to this paper.

Our future work will seek to further develop, formalize
and assess the potential of the presented results for the
particular application of “robust” deadlock avoidance, that was
introduced in [14] and is further discussed in [15]. Such a
development involves the establishment of (some notion of)
non-blocking behavior for each operational mode, and neces-
sitates the extension of the current theory and the algorithm
of Fig. 1 to cases where the invariant-defining predicates Px,
x ∈ X , cannot be specified independently at each mode x
by simple subsets of the local state space S. We shall also
consider additional specific applications that are amenable to
the structure and the analytical and computational benefits
of the s-DES concept. Finally, on the more theoretical side,
an interesting direction is the integration of the concepts and
the computational developments presented in this work with

5The last qualification of s̃ is necessary since the transitions of the
considered DES G are nondeterministic.

8

the assumptions and the results on fault-tolerant SC that are
overviewed in [9].

REFERENCES

[1] H. Lin and P. Antsaklis. Hybrid dynamical systems: An introduction to
control and verification. Foundations and Trends in Systems and Control,
1:1–172, 2014.

[2] D. Liberzon. Switching in Systems and Control. Birkhäuser, Boston,
MA, 2003.

[3] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event
Systems (2nd ed.). Springer, NY,NY, 2008.

[4] W. M. Wonham. Supervisory control of discrete event systems. Techni-
cal Report ECE 1636F / 1637S 2013-14, Electrical & Computer Eng.,
University of Toronto, 2014.

[5] P. J. G. Ramadge and W. M. Wonham. Modular feedback logic for
discrete event systems. SIAM Journal on Control and Optimization,
25:1202–1218, 1987.

[6] Y. Brave and M. Heymann. Control of discrete event systems modeled
as hierarchical state machines. IEEE Trans. on Automatic Control,
38:1803–1819, 1993.

[7] B. Gaudin and H. Marchand. Safety control of hierarchical synchronous
discrete event systems: a state-based approach. In Proceedings of the
13th Mediterranean Conference on Control and Automation, pages 889–
895, 2005.

[8] C. Ma. Non blocking supervisory control of state tree structures. PhD
thesis, University of Toronto, Toronto, Canada, 2004.

[9] T. Moor. Fault-tolerant supervisory control. In Proceedings of the 5th
Intl. Workshop on Dependable Control of Discrete Systems, pages 17–
24. IFAC, 2015.

[10] R. Kumar, V. Garg, and S. I. Marcus. Predicates and predicate
transformers for supervisory control of discrete event systems. IEEE
Trans. on Automatic Control, 38:232–247, 1993.

[11] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, Englewood
Cliffs, NJ, 1976.

[12] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, San Francisco,
CA, 1996.

[13] P. J. G. Ramadge and W. M. Wonham. The control of discrete event
systems. Proceedings of the IEEE, 77:81–98, 1989.

[14] M. Lawley and W. Sulistyono. Robust supervisory control policies for
manufacturing systems with unreliable resources. IEEE Trans. on R&A,
18:346–359, 2002.

[15] S. Reveliotis. Real-time Management of Resource Allocation Systems:
A Discrete Event Systems Approach. Springer, NY, NY, 2005.

	Introduction
	Switched discrete event systems and the considered SC problem
	Well-posedness and optimal supervision for the defined SC problem
	An efficient distributed algorithm for the computation of *
	Conclusions
	References

