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1. AN EXPANDED VERSION OF SECTION III IN
THE PUBLISHED MANUSCRIPT

Well-posedness of the considered SC problem: We begin
our analysis of the considered SC problem by providing
the necessary and sufficient condition for the existence of
a correct supervisor. For the systematic characterization of
this feasibility condition, we need the following definition:

Definition 1. Consider an s-DES G ≡ 〈X × S, Σ ∪
E, δ, (x0, s0)〉, and the supervisor Γ∅ defined by:

∀(x, s) ∈ X × S, Γ∅(x, s) = ∅ (1)

Then, for any global state (x, s) ∈ X × S, the “uncontrol-
lable reach” Reachu(x, s;G) of this state is defined by

Reachu(x, s;G) ≡ Reach(〈X × S, Σ ∪ E, Γ∅/δ, (x, s)〉)
(2)

Also, we define the uncontrollable reach for the execution
of a controllable event σ ∈ Σc at some state (x, s) ∈ X ∈ S
by

Reachu(x, s, σ;G) =
⋃

(x,s′)∈δ(x,s,σ)

Reachu(x, s′;G) (3)

In view of Definition 1, the complete feasibility condition
for the considered SC problem can be expressed as follows:

Proposition 1. There exists a correct supervisor for the
considered SC problem if and only if (iff) ∀(x, s) ∈
Reachu(x0, s0;G), s ∈ Sx (or, equivalently, (x, s) ∈ Ω).

Proof: The necessity of the above condition is obvious. The
sufficiency is established by the fact that, under satisfac-
tion of this condition, the supervisor Γ0 of Definition 1 is
a correct supervisor. 2

In the following, unless otherwise specified, we shall as-
sume that all the addressed instantiations of the consid-
ered SC problem are feasible.

Disjunction of correct supervisors and pertinent correct su-
pervisors: Next, we elaborate further on the sought super-
visors and their properties. We are especially interested in
a notion of “supervisor disjunction” for the considered SC
problem that preserves the correctness of the constituent
supervisors, since the availability of such an operation will
enable the definition of a notion of “maximally permissive

(correct) supervision”, and therefore, a notion of “optimal
control” for the considered problem. We begin our analysis
with the following proposition.

Proposition 2. Let Γ be a correct supervisor for the con-
sidered problem, and Γ′ be a supervisor such that

∀(x, s) ∈ X × S, Γ′(x, s) ⊆ Γ(x, s) (4)

Then, the more restrictive supervisor Γ′ is also a correct
supervisor.

Proof: It is easy to check that Reach(Γ′/G) ⊆ Reach(Γ/G)
⊆ Ω, where the second inclusion results from the presumed
correctness of supervisor Γ. Hence, the controlled DES
Γ′/G satisfies the inclusion of Eq. 4 in the main text, and
supervisor Γ′ is a correct supervisor. 2

Next, we consider two correct supervisors Γ1 and Γ2, and
define the “disjunctive” supervisor Γ1 ∨ Γ2 as follows:

Definition 2. Given two correct supervisors Γ1 and Γ2, the
“disjunctive” supervisor Γ1 ∨ Γ2 is obtained by setting

∀(x, s) ∈ X ×S, (Γ1 ∨Γ2)(x, s) ≡ Γ1(x, s)∪Γ2(x, s) (5)

It is clear from Definition 2 that Reach(Γ1 ∨ Γ2/G) ⊇
Reach(Γi/G), for i = 1, 2, i.e., the disjunctive supervisor
enables a richer behavior than its constituent supervisors.
But this new supervisor may not be correct; this is
demonstrated by the following example.

Example 1: Consider the DES G with a single operational
mode x and the corresponding state transition diagram
(STD) depicted in Fig. 1. The control predicate is specified
by the state set Sx = {s0, s1, s2, s3, s5}. Also, in the de-
picted STD, events a and b are controllable, while event u
is uncontrollable. Table 1 provides two correct supervisors
Γ1 and Γ2 for this DES, the corresponding reachability
sets for the controlled DES Γ1/G and Γ2/G, and also the
disjunctive supervisor Γ1 ∨ Γ2 and the reachability set of
the controlled DES Γ1 ∨ Γ2/G. As it can be seen from the
provided data, Γ1 ∨ Γ2 fails to confine the behavior of the
underlying DES G within the state set Sx, and therefore,
it is not a correct supervisor. 2

The incorrectness of the disjunctive supervisor Γ1 ∨ Γ2 in
the previous example is due to the facts that (i) supervisor
Γ2 enables the transition from state s1 to state s2, and
(ii) the forbidden state s4 is uncontrollably reachable from
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Fig. 1. The STD of the s-DES G that is considered in
Example 1. This s-DES has only one mode x, and
therefore, the mode component has been dropped
from the demarkation of the depicted states. The cross
next to state s4 indicates that this state does not
satisfy the imposed control predicate.

Table 1. The supervisors considered in Exam-
ple 1 and the reachability sets for the corre-

sponding controlled versions of DES G.

Supervisor Γ s0 s1 s2 Reach(Γ/G)
Γ1 a, b b u s0, s1, s3, s5
Γ2 b a u s0, s5

Γ1 ∨ Γ2 a, b a, b u s0, s1, s2, s3, s4, s5

state s2. Nevertheless, supervisor Γ2 is correct because the
aforementioned transition from s1 to s2 is never activated
in the dynamics of the controlled DES Γ2/G, since state
s1 is not reachable in this DES. On the other hand, the
enrichment of the permissible events by supervisor Γ2 with
the permissible events by supervisor Γ1, in the disjunctive
supervisor Γ1 ∨ Γ2, renders state s1 reachable and leads
to the incorrectness of this last supervisor. These remarks
motivate the following definition:

Definition 3. A supervisor Γ for an s-DES G with required
control invariants Ix, expressed by the state sets Sx, x ∈
X, is characterized as “pertinent” iff

∀(x, s) ∈ Ω, ∀σ ∈ Γ(x, s), Reachu(x, s, σ;G) ⊆ Ω (6)

The next proposition establishes that it is reasonable to
limit our search for a correct supervisor within the class
of pertinent supervisors.

Proposition 3. Consider an s-DES G with required control
invariants Ix that are expressed by the state sets Sx, x ∈
X. Then, for any correct supervisor Γ, there exists a per-
tinent correct supervisor Γ′ such that (i) Reach(Γ′/G) =
Reach(Γ/G) and (ii) ∀(x, s) ∈ Reach(Γ/G), Γ′(x, s) =
Γ(x, s).

Proof: If supervisor Γ itself is pertinent, we can just set
Γ′ = Γ. Next, consider the case where Γ is not a perti-
nent supervisor. Hence, there exists some state (x, s) ∈
X × S and a controllable event σ ∈ Γ(x, s) such that
Reachu(x, s, σ;G) 6⊆ Ω. But then, the only way that Γ can
be a correct supervisor for the considered control task is by
having (x, s) 6∈ Reach(Γ/G). Under these circumstances,
we define Γ1(x, s) = ∅, while setting Γ1(x′, s′) = Γ(x′, s′)
for all other global states (x′, s′) 6= (x, s). This restriction
preserves correctness, while the non-reachability of the
state (x, s) in the original dynamics of Reach(Γ/G) further
implies the satisfaction of conditions (i) and (ii) in Propo-
sition 3. Repeating the above adjustment on supervisor Γ1

for every other triplet (x′, s′, σ′) ∈ X×S×Σc that violates

the condition of Eq. 6, will eventually lead to a pertinent
supervisor Γ′ that meets the conditions of Proposition 3.
2

The class of pertinent correct supervisors is closed under
disjunction; this is stated formally in the following propo-
sition.

Proposition 4. Consider an s-DES G with required control
invariants Ix that are expressed by the state sets Sx, x ∈
X, and two correct pertinent supervisors Γ1, Γ2. Then,
the disjunctive supervisor Γ1 ∨ Γ2 is a correct pertinent
supervisor for the considered problem.

Proof: The pertinence of the supervisor Γ1 ∨ Γ2 results
immediately from the definitions of the disjunctive and
the pertinent supervisors, and the pertinence of the con-
stituent supervisors Γ1 and Γ2. Next, we prove the cor-
rectness of this supervisor.

For any state (x, s) ∈ Reach(Γ1∨Γ2/G), let #(x, s) denote
the minimum number of transitions that are necessary for
reaching state (x, s) from the initial state (x0, s0) in the
dynamics of Γ1 ∨ Γ2/G. We shall prove the sought result
by an induction on #(x, s).

The base case of #(x, s) = 0 results immediately from the
presumed feasibility of the considered supervisory control
problem and Proposition 1.

Next, suppose that the correctness condition holds true for
every state (x, s) ∈ Reach(Γ1 ∨ Γ2/G) with #(x, s) ≤ n,
i.e., for every such state, s ∈ Sx. We shall show that
this condition also holds true for every state (x, s) with
#(x, s) = n + 1. We prove the required result by con-
tradiction. Hence, consider a state (x, s) with #(x, s) =
n + 1, and suppose that s 6∈ Sx. Then, the presumed
feasibility of the considered problem implies that (x, s) 6∈
Reachu(x0, s0;G). Hence, every transition sequence lead-
ing from (x0, s0) to (x, s) must contain at least one con-
trollable event. Consider such a transition sequence and
let the triplet (x′, s′, σ) ∈ X × S × Σc denote the last
controllable transition on this path. Also, notice that, by
the definition of this sequence, #(x′, s′) ≤ n, and thus,
by the inductive hypothesis, s′ ∈ Sx′ . Finally, since the
transition (x′, s′, σ) is enabled by Γ1 ∨ Γ2, it must be
enabled by at least one of the two supervisors Γ1 and
Γ2. On the other hand, the aforestated assumptions also
imply that (x, s) ∈ Reachu(x′, s′, σ;G), a fact that when
combined with the working hypothesis that s 6∈ Sx, leads
to the contradictory conclusion that at least one of the
original supervisors Γi, i = 1, 2, is not pertinent. 2

Optimal supervision for the considered SC problem: The
closure of the correct pertinent supervisors under disjunc-
tion, that was established by Proposition 4, further implies
that, for any feasible instantiation of the considered SC
problem, the maximally permissive correct pertinent su-
pervisor 1 is defined uniquely on the critical states (x, s) ∈
X×S with Reachu(x, s;G) ⊆ Ω (i.e., the global states that
can observe the imposed invariants). In the sequel, we shall
denote the maximally permissive supervisor w.r.t. these
critical states by Γ∗, and we shall also refer to it as the “op-
timal” supervisor. For the remaining states (x, s) ∈ X×S

1 We remind the reader that “maximal permissiveness” is defined in
terms of the inclusions of Eq. ??.



that can violate uncontrollably the imposed invariants, the
sought optimal supervisor can be left undefined, or, for
better specificity, one can set Γ∗(x, s) = ∅, and this is the
practice that we shall adopt herein.

A basic iterative algorithm for the computation of Γ∗: The
computation of the optimal correct pertinent supervisor Γ∗

for any feasible instantiation of the considered SC problem
can be performed through the application of a fixed-point
iteration that is reminiscent of similar results provided by
the classical Ramadge & Wonham SC theory Ramadge and
Wonham (1989). More specifically, we define the operator
F upon the subsets of X × S, that when applied on any
given subset G of this set, returns

F(G) = {(x, s) ∈ G : ∀q ∈ Σu ∪ E, δ(x, s, q) ⊆ G} (7)

Also, we use the notation F i to denote the i-fold com-
position of this operator with itself. Then, we have the
following theorem:

Theorem 1. Consider an s-DES G with required control in-
variants Ix that are expressed by the state sets Sx, x ∈ X,
and further assume that ∀(x, s) ∈ Reachu(x0, s0;G), (x, s)
∈ Ω. Then, the limit limi F i(Ω) is obtained in a finite
number of iterations and it is a non-empty subset of the set
Ω containing the initial global state (x0, s0). Furthermore,
the sought supervisor Γ∗ can be defined as follows:

∀(x, s) ∈ X × S, Γ∗(x, s) =
{σ ∈ Σc : δ(x, s, σ) ⊆ lim

i
F i(Ω)}, (x, s) ∈ lim

i
F i(Ω)

∅, o.w.

Proof: The correctness of the supervisor Γ∗ defined in
Theorem 1 can be obtained from its pertinence, once
the latter is established, through an argument similar to
that followed in the proof of Proposition 4. Hence, to
establish the results claimed by Theorem 1, it suffices to
establish that (i) the iteration providing limi F i(Ω) will
terminate in a finite number of steps, (ii) the resultant set
limi F i(Ω) will contain the initial state (x0, s0), (iii) the
supervisor Γ∗ which is subsequently constructed from this
set through the equation in Theorem 1 is pertinent, and
(iv) the restriction of this supervisor over the global states
(x, s) ∈ X × S with Reachu(x, s;G) ⊆ Ω is maximally
permissive.

These four results can be obtained immediately from Eq 7
and the equation in Theorem 1, the finiteness of the
underlying (global) state space of DES G, and the following
lemma:

Lemma 1. For every i = 1, 2, . . ., a state (x, s) is removed
from the set F (i−1)(Ω) during the computation of F i(Ω)
iff Reachu(x, s;G) 6⊆ Ω and any minimal uncontrollable
transition sequence that leads from (x, s) to some state
(x′, s′) ∈ X × S \ Ω has a length of i steps.

Proof: The reader can easily verify that Lemma 1 holds
true for i = 1. Next, suppose that Lemma 1 holds true for
i ≤ n. We shall show that it must also hold true for i = n+
1. Indeed, consider a state (x, s) that is removed from
Fn(Ω) during the computation of F (n+1)(Ω). According
to the logic of Eq. 7, this state is removed from Fn(Ω)
because there is an event q ∈ Σu ∪E and a state (x′, s′) ∈

Fig. 2. The graph employed in the considered example.

X × S \ Fn(Ω) such that (x′, s′) ∈ δ(x, s, q). But by
the inductive hypothesis, every state (x′, s′) ∈ X × S \
Fn(Ω) either belongs in X ×S \Ω or it has an emanating
uncontrollable transition sequence leading to this set in no
more than n steps. Hence, state (x, s) has an emanating
sequence that leads to X×S\Ω in no more than n+1 steps.
The fact that any such minimal sequence of (x, s) contains
exactly n+ 1 steps, results from the inductive hypothesis,
since otherwise this state should have been removed during
the previous iterations. 2

Example 1 (cont.): We apply the algorithm of Theorem 1
to compute the maximally permissive, correct, pertinent
supervisor Γ∗ for the example DES of Fig. 1. The com-
putation starts by setting G0 = {s0, s1, s2, s3, s5}. Ap-
plying the operator F on G0, we obtain G1 = F(G0) =
{s0, s1, s3, s5}. State s2 has been removed from G1 since
the forbidden state s4 is in the uncontrollable reach of
s2. On the other hand, every state in the set G1 enables
only controllable events, and therefore, G2 = F(G1) = G1.
Furthermore, the reader can verify that the application
of the equation in Theorem 1 in this case returns the
supervisor Γ1 of Table 1 as the corresponding maximal
supervisor Γ∗. 2

2. A DEMONSTRATIVE EXAMPLE

In the considered example, two robots, R1 and R2, move
upon the graph G = (V, E) that is depicted in Figure 2.
At any time instant, robot Ri, i = 1, 2, is on some
graph vertex v(Ri). Hence, the motion state is defined by
s ≡ (v(R1), v(R2)). The current state changes by each
agent deciding to move to a neighboring vertex through
an interconnecting edge, or to stay at its current vertex.
However, the moves of R1 are controllable while the moves
of R2 are uncontrollable, and robot R1 does not know
the intended motion of robot R2 when it determines its
own move. Hence, the combined move for the two robots
can be decomposed to a two-stage move, with robot R1

making first its decision, and robot R2 moving second.
Finally, edge e5 in the depicted graph can change its
connectivity with respect to one of its two vertices in an
uncontrollable manner, as annotated in the figure. Also,
for more specificity, we assume that such a switching can
take place only between two of the aforementioned motion
cycles that determine the system state, and not during
the cycle. The current positioning of the two robots on
the graph vertices is as indicated in Fig. 2, and we want
to minimally restrict the moves of robot R1 at each state
s in order to ensure that the robots never get in a state
with v(R1) = v(R2).

The above problem can be modeled as an invariant-based
SC problem in line with the developments presented in



Table 2. The initial computation of the max-
imally permissive supervisor for Mode 1; this
computation ignores the uncontrollable transi-

tions between the modes.

s 1 2 3 4 5 6 7

1 - 3 2 1 1,2,3 1,2,3 1,2,3
2 4 - 2 1 1,2 1,2 1,2,4
3 4 3 - 1 1,3 1,3 1,3,4
4 4,5,6 3,5,6 2,5,6 - 2,3,6 2,3,5 2,3,4
5 4,5,7 5,7 5,7 7 - 5 4
6 4,6,7 6,7 6,7 7 6 - 4
7 5,6,7 5,6,7 5,6,7 7 6 5 -

Ramadge and Wonham (1987). In this basic formulation,
the system state is determined by (i) the positioning of the
two robots in the graph, (ii) the robot to move next, and
(iii) the current placement of the edge e5. Furthermore, in
states where robot R1 moves, the feasible events are those
that take the robot at a neighboring node or leave it at the
same node, and they are controllable; i.e., some of these
moves can be disabled at will. In states where robot R2

moves, the corresponding events are defined as in the case
of robotR1, but they are uncontrollable; i.e., this robot can
determine freely its motion. Also, in states that result from
the motion of robot R2, another uncontrollable event is the
switching of the edge e5 from its current position to the
alternative one. Finally, as already stated, the invariant
to be enforced by the sought supervisor is given by the
predicate v(R1) 6= v(R2).

From the above description of the underlying DES state
and the dynamics involved, it is easily checked that the
corresponding state space will consist of 7×7×2×2 = 196
states. Next, we shall employ the s-DES model for a
more efficient representation of the underlying dynamics,
and a simple and expedient computation of the sought
supervisor.

Hence, in the spirit of the s-DES representations that
were discussed in the previous sections of this paper, we
associate each graph configuration that results by the two
possible positionings of edge e5, and the corresponding
transitional dynamics, with a particular operational mode
x ∈ {1, 2}. Furthermore, in the case of the considered sys-
tem, a more efficient representation of the local dynamics
materialized in each mode can be based on a “tabular”
representation of the local states s that correspond to all
those states where robot R1 is about to move. Focusing
upon these states is most pertinent since these are the
states that are amenable to control. At the same time,
the impact of the uncontrollability that results from the
free moves of robot R2, after a move of robot R1, can
be assessed through a local computation at each of these
states. On the other hand, as we shall demonstrate below,
the impact of the uncontrollable switching of edge e5
will be captured through the partial computations of the
threads that compute the sought supervisors for each of
these two modes, and the information (i.e., the messages)
exchanged by these threads.

Table 2 introduces the tableau that is employed in the con-
sidered computations, and also represents the maximally
permissive supervisor for Mode 1 that is computed by the
corresponding thread of the algorithm of Fig. 1 in the
manuscript while ignoring the uncontrollable transitions
from Mode 1 to Mode 2. As already mentioned, each cell

Table 3. The initial computation of the max-
imally permissive supervisor for Mode 2; this
computation ignores the uncontrollable transi-

tions between the modes.

a)

s 1 2 3 4 5 6 7

1 - 3 2 1 1,2,3 1,2,3 1,2,3
2 4 - 2 1 1,2,4 1,2 1,2
3 4 3 - 1 1,3,4 1,3 1,3
4 4,6,7 3,6,7 2,6,7 - 2,3,4,6 2,3 2,3
5 5,7 5,7 5,7 5 - 5 -
6 4,6,7 6,7 6,7 - 6,4 - -
7 5,6,7 5,6,7 5,6,7 5 4,6 5 -

b)

s 1 2 3 4 5 6 7

1 - 3 2 1 1,2,3 1,2,3 1,2,3
2 4 - 2 1 1,2,4 1,2 1,2
3 4 3 - 1 1,3,4 1,3 1,3
4 4,6,7 3,6,7 2,6,7 - 2,3,4,6 2,3 2,3

5 5,7 5,7 5,7 �5 - �5 -
6 4,6,7 6,7 6,7 - 4,6 - -

7 5,6,7 5,6,7 5,6,7 �5 4,6 �5 -

c)

s 1 2 3 4 5 6 7

1 - 3 2 1 1,2,3 1,2,3 1,2,3
2 4 - 2 1 1,2,4 1,2 1,2
3 4 3 - 1 1,3,4 1,3 1,3

4 4,�6,�7 3,�6,�7 2,�6,�7 - 2,3,4,�6 2,3 2,3

5 �5,�7 �5,�7 �5,�7 �5 - �5 -

6 4,�6,�7 �6,�7 �6,�7 - 4,�6 - -

7 �5,�6,�7 �5,�6,�7 �5,�6,�7 �5 4,�6 �5 -

in this tableau corresponds to a local state s in Mode 1
that anticipates the move of robot R1, and the content of
these cells report the feasible moves of robot R1 that are
also admissible at that state. Hence, for instance, the ‘3’ in
cell (1,2) reflects the fact that at the considered state, the
only move for robot R1 that will avoid with certainty the
undesired event of having robots R1 and R2 co-located at
the end of the current cycle, is to force robot R1 to node
3. Similarly, the content of the cell (1,5) indicates that, in
the considered configuration of graph G, and with robot
R2 currently located at node 5, robot R1 can essentially
decide freely its next move at the current state. On the
other hand, the dashes ‘-’ that appear in the principal
diagonal of the considered tableau express the fact that
these states violate the imposed invariant I1 and therefore
they are forbidden.

In the computation that was described in the previous
paragraph, additional forbidden states can be generated
in the case that the uncontrollability of the moves of
robot R2, in combination with the topology of the graph
configuration that corresponds to the considered mode,
do not allow any feasible and admissible moves for robot
R1 at these states. In the particular computation of
Table 2 no such new forbidden states arise, since every
non-diagonal state has a non-empty set of feasible and
admissible moves. But we shall encounter this possibility
in the corresponding computation for Mode 2, that is
depicted in Table 3. Finally, we also notice that since the
computation of Table 2 has generated no new forbidden
states (other than the diagonal states), the computational
process for Mode 1 goes into its idling mode without
sending any message to its counterpart thread for Mode 2.

The initial computation for Mode 2 that corresponds to
the computation of Table 2, is depicted in Table 3(a). It



Table 4. The processing of the message M
(1)
2,1

by the thread that computes the maximally
permissive supervisor for Mode 1.

s 1 2 3 4 5 6 7

1 - 3 2 1 1,2,3 1,2,3 1,2,3
2 4 - 2 1 1,2 1,2 1,2,4
3 4 3 - 1 1,3 1,3 1,3,4

4 4,�5,�6 3,�5,�6 2,�5,�6 - 2,3,�6 2,3,�5 2,3,4

5 4,�5,�7 �5,�7 �5,�7 �7 - �5 4

6 4,�6,�7 �6,�7 �6,�7 �7 �6 - 4

7 �5,�6,�7 �5,�6,�7 �5,�6,�7 �7 �6 �5 -

can be checked that this new table contains non-diagonal
empty states. Hence, for instance, we can see that for the
state (5,7) that is highlighted in boldface in Table 3(b),
and with the edge e5 interconnecting nodes 4 and 7, it is
impossible for robot R1 to determine a move at this state
that will guarantee the corresponding invariant I2 once
robot R2 also moves. Furthermore, pronouncing cell (5,7)
a forbidden state, also results to the further elimination of
the moves that are annotated in cells (5,4), (5,6), (7,4) and
(7,6). Since all these eliminations leave the corresponding
cells empty, these four cells are pronounced forbidden
states, as well.

Processing all the identified forbidden states according
to the logic that is described in the previous paragraph,
we obtain the final Tableau 3(c). Once this tableau is
available, the thread computing the supervisor for Mode
2 sends the following message to the corresponding thread
for Mode 1:

M
(1)
2,1 = {(5, 1), (5, 2), (5, 3), (5, 4), (5, 6), (5, 7),

(6, 2), (6, 3), (6, 4), (6, 7)

(7, 1), (7, 2), (7, 3), (7, 4), (7, 6)} (8)

The states included in the above message correspond to
cells with no moves for robot R1 in Tableau 3(c). And since
all these states can be accessed uncontrollably from Mode
1, through the switching of the edge e5, the corresponding
thread must know about the relevant result of Table 3(c).

Upon receiving message M
(1)
2,1 the computational thread

for Mode 1 pronounces all the states in this message as
forbidden states, and goes into a local computation that
is initialized by the result of Table 2 and is similar to
the local computations that were described in the above
paragraphs. The result of this computation is depicted in
Table 4. We leave the verification of the relevant compu-
tations to the reader. Furthermore, upon the generation
of Table 4, the thread for the computation of the local
supervisor for Mode 1 sends the following message to the
thread for the generation of the local supervisor for Mode
2:

M
(1)
1,2 = {(6, 5), (7, 5)} (9)

Message M
(1)
1,2 contains the local states (6,5) and (7,5) that

were identified as forbidden in the last computation for

Mode 1, but they were not contained in message M
(1)
2,1 ,

and therefore, are considered as safe states in Table 3.
Hence, upon receiving this message, the computational

thread for Mode 2 defines these two states as forbidden,
and proceeds with the necessary updating of the prior
result in Table 3(c). It should be clear, however, from all
the previous discussion, that this updating will render no
further states forbidden in this mode, and therefore, Ta-
ble 3(c) remains unaltered, and no message is passed from
the computational thread for Mode 2 to the corresponding
thread for Mode 1. Since Mode 1 is also in an idling mode
and there are no further messages requiring processing by
any of these two threads, the algorithm terminates.

The maximally permissive supervisor that is returned by
the above algorithm upon termination, is represented in
a distributed manner, across the underlying operational
modes, by Tables 4 and 3(c). An intuitive interpretation
of the obtained result is as follows: The topology of the
considered graph G in Mode 1 allows robot R1 to move
intelligently upon the two minimal cycles of this graph, in a
way that maintains the enforced invariant v(R1) 6= v(R2).
On the other hand, the repositioning of edge e5 in Mode
2, renders the right minimal cycle of graph G a pretty
dangerous place for robot R1. In particular, the only
admissible states s in which robot R1 is located in the right
minimal cycle (i.e., nodes, 5, 6 to 7), are those that enable
robot R1 to rush to the left cycle without being intercepted
by robot R2. Furthermore, since transitions from Mode 1
to Mode 2 can take place in a very uncontrollable manner
and at any local state s, the local states s where robot R1

is in the right minimal cycle must be treated as dangerous
even by the supervisor of Mode 1. This last effect is
attained in the above computation through the exchange

of the messages M
(1)
2,1 and M

(1)
1,2 .
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