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Abstract

As many contemporary technological applications move to operational modes of more extensive
and flexible automation, there is a rising need to design and control the underlying resource alloca-
tion not only for efficiency, but also for logical correctness and internal consistency. The material
presented in this chapter offers a unifying and comprehensive treatment of a class of policies that
have been proposed as an effective and efficient solution to this emerging class of logical control
problems.

1 Introduction

This chapter deals with the problem of managing the resource allocation that takes place in various
contemporary technological applications, including flexibly automated production systems, automated
railway and/or monorail transportation systems, electronic workflow management systems, and business
transaction supporting systems. A distinguishing trait of all the aforementioned applications is that they
seek to limit the role of the human element to remote high-level supervision, while placing the burden of
the real-time monitoring and coordination of the ongoing activity upon a computerized control system.
This development is justified by a number of technical, economic and safety considerations, and it is
facilitated by the advent of modern computing and sensing technologies. At the same time, the effective
support of such an extensively automated operational mode poses new challenges to the designers and
supervisors of these systems. A particularly challenging task in the emerging regime is the synthesis
of the control logic that will manage the allocation of the resources of the aforementioned systems to
the various running processes in a way that guarantees the orderly and expedient execution of all these
processes, while preserving the operational flexibility sought by these environments.

The applications depicted in Figures 1 and 2 exemplify the aforementioned problem and they highlight
the currently prevailing practice. Figure 1 depicts a small robotic cell1 with three processing stations,
W1, W2, and W3. Each of these stations can accommodate only one part at a time, and collectively they
support the production of two different part types, J1 and J2, whose processing routes are annotated in
the figure. It should be clear to the reader that the state depicted in Figure 1 is a problematic state,
since the two depicted jobs mutually block each other. Furthermore, this blockage will persist until it is
realized and resolved, probably only through human intervention, by unloading one of the two jobs, a

∗Some of the material presented in this chapter originally appeared in J. Park and S. Reveliotis, “Deadlock Avoidance
in Sequential Resource Allocation Systems with Multiple Resource Acquisitions and Flexible Routings”, IEEE Trans. on
Automatic Control, vol. 46, no.10, pgs 1572-1583 ( c©[2001] IEEE), S. Reveliotis, “Implicit Siphon Control and its Role
in the Liveness Enforcing Supervision of Sequential Resource Allocation Systems”, IEEE Trans. on SMC – Part A,
vol. 37, no. 3, pgs 319-328 ( c©[2007] IEEE), S. Reveliotis, “Real-Time Management of Resource Allocation Systems: A
Discrete Event Systems Approach”, ( c©[2005] Springer), S. Reveliotis and J. Y. Choi, “Designing Reversibility-Enforcing
Supervisors of Polynomial Complexity for Bounded Petri nets through the Theory of Regions”, LNCS 4024, pgs 322-341
( c©[2006] Springer).

1The depicted configuration is very similar in its basic topology to the cluster tools used extensively in the contemporary
semiconductor manufacturing industry.
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Figure 3: A tandem AGV system

rather costly operation in the considered setting. Similarly, Figure 2 depicts a zone-controlled automated
guidance vehicle (AGV) system, where three vehicles block permanently the advancement of each other
at a junction of the guidepath network.

The situations depicted in Figures 1 and 2 are known respectively as a manufacturing and an AGV
deadlock . In operational contexts relying on manual labor, such deadlock problems have been typically
addressed through last-minute improvisation. However, in a fully automated context, the resolution
of these problems must be part of the overall design process. In lack of a systematic methodology to
address these issues, past engineering practice has resorted to rather simplistic approaches that provide
a robust solution to the problem, but only at the expense of the system operational flexibility, efficiency
and productivity. Hence, in order to prevent the occurrence of the manufacturing deadlock mentioned
above, most contemporary cells are operated in a “batching” mode, that separates the production of
the supported part types. By preventing the concurrent production of the supported parts, the system
will always be operated in a unidirectional flow that is free of any deadlocking problems. However,
such a solution is a substantial departure from the notion of flexible automation and its advertised
advantages. In a similar spirit, most contemporary AGV systems are designed according to the “tandem”
configuration depicted in Figure 3, where the entire guidepath network is decomposed to a number of
unidirectional loops, interfacing at a number of strategically preselected points. While managing to
avoid deadlock, tandem AGV systems have to experience expensive “hand-off” procedures at the loop
junctions, and the vehicle filing at any single loop implies that the pacing in that loop is determined by
the slowest vehicle.

The effective and systematic resolution of the aforementioned deadlock problems must be based on a
detailed study of the event sequences that take place during the system operation. Hence, the analysis
and resolution of these problems necessitates a methodological framework that places the emphasis on
the analysis and shaping of these event sequences, and it is substantially different from those that have
been traditionally applied to performance-oriented control.2 Such a methodological framework has been
provided by an area of modern control theory known as qualitative or logical analysis and control of
Discrete Event Systems (DES) [3], and the last 15 years have seen the emergence of a substantial body
of results on the aforementioned deadlock problems that are based on representations and analytical tools
coming from this area. The fundamental abstraction that underlies the development of these results is

2While it is true that event timing can provide a mechanism for enforcing event sequences, such an approach will tend
to be very brittle in the face of the stochasticity characterizing the operation of the considered applications.
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the sequential resource allocation system (RAS), formally defined as follows:

Definition 1 [17] A sequential resource allocation system (RAS) is defined as a 5-tuple Φ =< R, C,P,A,
T >, where:

1. R = {R1, . . . , Rm} is the set of the system resource types.

2. C : R → Z+ – the set of strictly positive integers3 – is the system capacity function, charac-
terizing the number of identical units from each resource type available in the system. Resources
are considered to be reusable, i.e., each allocation cycle does not affect their functional status or
subsequent availability, and therefore, C(Ri) ≡ Ci constitutes a system invariant for each i.

3. P = {Π1, . . . ,Πn} denotes the set of the system process types supported by the considered system
configuration. Each process type Πj is a composite element itself, in particular, Πj =< Sj ,Gj >,
where:

(a) Sj = {Ξj1, . . . ,Ξj,l(j)} denotes the set of processing stages involved in the definition of process
type Πj, and

(b) Gj represents some data structure communicating some sequential logic that applies to the
execution of any process instance of type Πj.

4. A :
⋃n

j=1 Sj →
∏m

i=1{0, . . . , Ci} is the resource allocation function associating every processing
stage Ξjk with a resource allocation request A(j, k) ≡ Ajk. More specifically, each Ajk is an m-
dimensional vector, with its i-th component indicating the number of resource units of resource type
Ri necessary to support the execution of stage Ξjk. Obviously, in a well-defined RAS, Ajk(i) ≤
Ci, ∀j, k, i.

5. T :
⋃n

j=1 Sj → D is the timing function, corresponding to each processing stage Ξjk a distribution
Djk that characterizes the statistics of the processing time tjk, experienced during the execution of
stage Ξjk.

The above characterization of the considered RAS is further qualified by the following conditions
that detail their operation and facilitate the subsequent analysis:

Condition 1 Under expedient resource allocation, every activated process instance will terminate in a
finite number of processing steps.

Condition 2 Every processing stage Ξjk ∈ Sj can be realized by at least one execution sequence
supported by Gj .

Condition 3 A process instance jj advances from stage Ξjk to a successor stage Ξj,k+1 only upon
being allocated the entire set of resources implied by the resource allocation request Aj,k+1. The
allocation of all these resources takes place simultaneously, and it is only at this point that the
process instance jj releases the resources allocated to it for the execution of processing stage Ξjk.

Condition 4 The only way in which two distinct activated process instances can interact with each
other, is through their potential contest for some of the system resources.

Condition 1 excludes those pathological situations in which an executing process can entangle itself
in an infinite loop. In well-designed applications, a process will not be allowed to run within the system
indefinitely. From a representational standpoint, the satisfaction of this assumption allows the modeling
of the process-defining logic through an acyclic data structure. Condition 2 essentially ensures that
the process representation does not introduce redundant processing stages. Condition 3 introduces the
“hold-while-waiting” effect in the considered resource allocation which is at the base of the considered

3Also, in this document, Z+
0 will denote the set of nonnegative integers, Z will denote the set of all integers, and < will

denote the set of reals.
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Figure 4: An event-driven framework for the RAS Supervisory Control problem

deadlock problems.4 Condition 4 applies primarily to complex process flows that involve parallelization,
and implies that the logic coordinating the execution of the various process threads does not “confound”
enacted sub-processes belonging to different process instantiations. Finally, in order to facilitate the
subsequent discussion on the complexity of the posed problems and the proposed solutions, we also
introduce the quantity |Φ| ≡ |R|+ |

⋃n
j=1 Sj |+

∑m
i=1 Ci, which defines the size of the RAS Φ.

The problem of the real-time management of the resource allocation taking place in the considered
RAS can be effectively addressed through the supervisory control (SC) framework depicted in Figure 4.
As indicated in Figure 4, the proposed controller is event-driven, i.e., the control actions commanded
to the underlying RAS can be perceived as the controller responses to the various events taking place
in the RAS domain and communicated to the controller through a monitoring function. Hence, the
entire control function evolves in a number of cycles, with each cycle being triggered by a RAS event
communicated to the controller. Conceptually, each cycle consists of three major phases: (i) In Phase
I, the controller updates a representation of the RAS state so that it represents the RAS status after
the occurrence of the communicated event. This representation, combined with the system knowledge
about the running RAS configuration, encodes the entire set of feasible actions that could be executed
by the RAS as a response to the occurring event. (ii) In Phase II, the controller applies a logical control
policy in order to filter out from the set of feasible actions identified in Phase I, the set of admissible
actions, i.e., this set of actions that satisfy some logical specification for the RAS behavior, like deadlock
freedom. (iii) Finally, in Phase III, the set of admissible actions is provided to the performance-oriented
component of the RAS supervisor in order to select the one that will be communicated eventually to the
RAS environment, in a way that observes some performance considerations. In addition to this basic
functionality, the RAS controller should be able to respond to the various contingencies taking place
in the RAS domain, by (i) appropriately updating the RAS configuration database, and (ii) revising

4As demonstrated by the examples presented in Figures 1 and 2, this “hold-while-waiting” effect frequently results
from the need to physically buffer the various process instances at any single point in time, i.e., parts processed in a
flexibly automated production system or vehicles in an AGV network are physical entities and they always need to be
accommodated somewhere during their sojourn through the system. It must be noticed, however, that, while providing
the necessary specificity for the underlying resource allocation dynamics, the aforestated assumptions do not compromise
the modeling power of our framework, since one can capture any additional resource allocation dynamics by augmenting
the specification of process Πj . For example, one can model the fact that, at some particular process stage Ξjk, process Πj

might release (some of) its currently allocated resources before advancing to stage Ξj.k+1, by introducing to the process
specification an intermediate process stage Ξjq , with resource allocation request Ajq equal to Ajk minus the deallocated
resource set.
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the logical and performance-oriented control logic in order to apply in the emerging RAS configuration.
This last function will be collectively characterized as (re-)configuration management .

A systematic exposition of most of the existing results concerning the design and deployment of the
RAS control function depicted in Figure 4 can be found in [17, 28]. The relevant theory provides: (i)
formal characterizations of the underlying RAS dynamics in the context of Finite State Automata (FSA)
[7] and Petri net (PN) [11] modeling frameworks, as well as some more ad hoc representations; (ii) a
characterization of the optimal logical control problem for the considered RAS; (iii) a rigorous study
of the complexity of the aforementioned optimal control problem, that establishes its NP-hardness [6]
but also identifies important practical cases that admit optimal solutions of polynomial complexity with
respect to the size |Φ| of the underlying RAS; (iv) efficient solutions for the remaining cases that trade
off optimality for computational tractability; (v) a formal characterization of the notions of robustness
and re-configurability for the considered operational context; and (vi) some preliminary results regarding
the effective integration of the logical and the performance-oriented control.

The material presented in this chapter complements the aforementioned results by providing a unify-
ing treatment of a particular class of RAS logical control policies known as algebraic. More specifically,
the chapter aggregates and systematizes a number of results regarding this class of policies that emerged
during the last three years, partly in response to problems and thoughts generated during the develop-
ment of [17]. Collectively, the presented results offer (a) a thorough characterization of the considered
class of policies, (b) effective computational tools for their design and implementation on any given
RAS instance, and (c) an insightful explanation of the mechanisms underlying the policy effectiveness
and computational tractability. From an organizational standpoint, the chapter will evolve as follows:
Section 2 provides a systematic characterization of the RAS dynamics by means of the PN modeling
framework. Subsequently, Section 3 introduces the class of algebraic logical control policies and it es-
tablishes that they also admit an effective representation within the PN modeling framework. Section 4
provides an analytical characterization of the entire set of algebraic logical control policies that can en-
sure the deadlock-free operation of any given RAS. Beyond its theoretical interest, this characterization
enables also the introduction of a notion of optimality within the scope of the considered policies. In
principle, such an optimized implementation is effectively computable through the presented develop-
ments. However, from a more practical standpoint, this computation is limited by a very high complexity.
Hence, Section 5 offers an additional approach that can enable the synthesis of algebraic logical control
policies for any given RAS while drastically mitigating the complexity problems arising from the pre-
vious approach. Section 6 offers some interesting and fundamental insights regarding the mechanism
that facilitates the functionality of the considered policies. Finally, Section 7 concludes the chapter and
suggests some directions for future developments. Throughout the following discussion, the emphasis is
placed on the systematic and accessible presentation of the key results and their implications. Therefore,
we have frequently omitted the detailed technical arguments underlying the relevant derivations; these
arguments can be traced in the provided citations.

2 A PN-based representation of the considered RAS

As mentioned in the introductory section, Petri nets [11] have been one of the primary modeling frame-
works employed for the analysis and control of the RAS dynamics considered in this work. In this
section,we define the PN subclass that characterizes the RAS behavior encompassed by Definition 1,
presuming that the reader is already familiar with the basic PN concepts.5The subsequent discussion
proceeds in three steps: (i) first we introduce a PN model that expresses the execution logic of any single
process instance; (ii) subsequently, this model is augmented with resource places in order to represent
the dynamics of the associated resource allocation; and finally (iii) the complete RAS model is obtained
by merging the various subnets developed in step (ii) through their common resource places.

PN-based modeling of the RAS process types In the PN modeling framework, the process type
Πj =< Sj ,Gj >, introduced in item 3 of Definition 1, will be represented by the concept of the process

5A primer on the key PN concepts employed in this work is provided in the Appendix; for a more extensive discussion,
the interested reader is referred to [11] .

6



o

i

t*

t

t

I

F

Ps, Ts

Figure 5: The process net structure of Definition 2

subnet , formally defined as follows:

Definition 2 A process (sub-)net is an ordinary Petri net NP = (P, T,W,M0) such that:

i. P = PS ∪ {i, o} with PS 6= ∅;

ii. T = TS ∪ {tI , tF , t∗};

iii. i• = {tI}; •i = {t∗};

iv. o• = {t∗}; •o = {tF };

v. t•I ⊆ PS; •tI = {i};

vi. t•F = {o}; •tF ⊆ PS;

vii. (t∗)• = {i}; •(t∗) = {o};

viii. the underlying digraph is strongly connected;

ix. M0(i) > 0 ∧ M0(p) = 0, ∀p ∈ P\{i};

x. ∀M ∈ R(NP ,M0), M(i) +M(o) = M0(i) =⇒M(p) = 0, ∀p ∈ PS.

The PN-based process representation introduced by Definition 2 is depicted in Figure 5. Process
instances waiting to initiate processing are represented by tokens in place i, while the initiation of
a process instance is modelled by the firing of transition tI . Similarly, tokens in place o represent
completed process instances, while the event of a process completion is modelled by the firing of transition
tF . Transition t∗ allows the token re-circulation – i.e., the token transfer from place o to place i – in
order to model repetitive process execution. Finally, the part of the net between transitions tI and tF ,
that involves the process places PS , models the sequential logic defining the considered process type. In
particular, places p ∈ PS correspond to the various processing stages Ξjk ∈ Sj , while the net connectivity
among these places concretizes component Gj of Πj (c.f. item (3b) of Definition 1). As it can be seen
in Definition 2, this part of the process subnet can be quite arbitrary. However, in order to capture
the requirements posed by Conditions 1, 2 and 4 in Section 1, we further qualify the considered process
subnets through the following three assumptions:

Assumption 1 The process subnets considered in this work are assumed to be acyclic, i.e., the removal
of transition t∗ from them renders them acyclic digraphs.
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Assumption 2 The process subnets considered in this work are assumed to be quasi-live for M0(i) = 1.

Assumption 3 The process subnets considered in this work are assumed to be strongly reversible, i.e.,
their initial marking M0 can be reached from any marking M ∈ R(NP ,M0), through a firing sequence
that does not contain transition tI .

Assumption 1 is introduced in order to satisfy Condition 1 of Section 1. Assumption 2 pertains
to the satisfaction of Condition 2, by essentially stipulating that, in the considered process subnets,
every transition models a meaningful event that can actually occur during the execution of some process
instance, and therefore, it is not redundant. Assumption 3 pertains to the satisfaction of Condition 4,
as it essentially stipulates that, at any point in time and under expedient resource allocation, all active
process instances can advance to completion. Since the main focus of this work is on the analysis and
control of the resource allocation function taking place in the considered environments, we forego the
further study of the process subnets themselves and the investigation of the structural and behavioral
properties implied by Definition 2 and Assumptions 1-3. The interested reader can find some relevant
discussion and results in [24, 25, 26, 27, 8].

PN-based modeling of the resource allocation function The modeling of the resource allocation
associated with the process stage Ξjk corresponding to any place p ∈ PS , necessitates the augmentation
of the process subnet NP , defined above, with a set of resource places PR = {rl, l = 1, . . . ,m}, of initial
marking M0(rl) = Cl, l = 1, . . . ,m, and with the corresponding flow sub-matrix, ΘPR

, expressing the
allocation and de-allocation of the various resources to the process instances as they advance through
their processing stages, according to the protocol stipulated by Condition 3 in Section 1. The resulting
net will be called the resource-augmented process (sub-)net and it will be denoted by NP . Its basic
structure is depicted in Figure 6. Notice that the characterization of transitions t∗, tI and tF provided
in the above discussion, implies that (t∗)• ∩ PR = •(t∗) ∩ PR = (tI)• ∩ PR = •(tF ) ∩ PR = ∅. On
the other hand, the reusable nature of the system resources presumed in this work, is modelled by the
following assumption regarding the resource-augmented process net NP :

Assumption 4 Let NP = (PS ∪ {i, o} ∪ PR, T,W,M0) denote a resource-augmented process (sub-)net.
Then, ∀l ∈ {1, . . . , |PR|}, there exists a p-semiflow yrl

s.t.: (i) yrl
(rl) = 1; (ii) yrl

(rj) = 0, ∀j 6= l; (iii)
yrl

(i) = yrl
(o) = 0; (iv) ∀p ∈ PS , yrl

(p) = number of units from resource Rl required for the execution
of the processing stage modelled by place p.

Furthermore, the following assumption extends the requirement for quasi-liveness of the process net
NP , introduced by Assumption 2, to the resource-augmented process net NP :
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Assumption 5 The resource-augmented process subnets considered in this work are assumed to be quasi-
live for M0(i) = 1 and M0(rl) = Cl, ∀l ∈ {1, . . . , |PR|}.

In general, assessing the quasi-liveness of a resource-augmented process net is an NP -hard problem
[22, 17]. However, the main source of this complexity is the presence of synchronizing transitions in
the underlying process net, and therefore, the problem remains polynomial in the quite frequent case
that this process net is a state machine. In such a case, assessing the quasi-liveness of the resource-
augmented process net is tantamount to validating that for every resource Ri, Ci ≥ maxj,k{Ajk(i)}, or
equivalently in the PN formalism, that for all rl ∈ PR and for all p ∈ PS , M0(rl) ≥ yrl

(p), where yrl
are

the p-semiflows introduced in Assumption 4. Some interesting and quite powerful computational tests
for assessing quasi-liveness for the remaining cases can be found in [8, 16].

The complete RAS model: Process-resource nets The complete PN-based model, N = (P, T,W ,
M0), of any given instance from the RAS class considered in this work is obtained by merging the
resource-augmented process nets NPj = (Pj , Tj ,Wj ,M0j ), j = 1, . . . , n, modeling its constituent process
types, through their common resource places. The resulting PN class is characterized as the class
of process-resource nets with acyclic, quasi-live and strongly reversible process subnets, and its basic
structure is depicted in Figure 7. Let PS =

⋃
j PSj

; I =
⋃

j{ij}; O =
⋃

j{oj}, and P =
⋃

j Pj =
PS ∪ I ∪O∪PR. Then, the re-usable nature of the resource allocation taking place in the entire process-
resource net is characterized by a p-semiflow yrl

for each resource type Rl, l = 1, . . . ,m, defined by:
(i) yrl

(rl) = 1; (ii) yrl
(rj) = 0, ∀j 6= l; (iii) yrl

(ij) = yrl
(oj) = 0, ∀j; (iv) ∀p ∈ PS , yrl

(p) = y
(j∗)
rl (p),

where NPj∗ denotes the resource-augmented process subnet containing place p, and y
(j∗)
rl () denotes the

corresponding p-semiflow for resource Rl. Furthermore, it is easy to see that Assumption 5, regarding
the quasi-liveness of the constituent resource-augmented process subnets NPj

, implies also the quasi-
liveness of the entire process-resource netN . Finally, in the PN modeling framework, the size of a RAS Φ,
modelled by a net N = (PS∪I∪O∪PR, T,W,M0), is defined as |Φ| = |N | ≡ |PR|+ |PS |+

∑
r∈PR

M0(r).

Example 1 Figure 8 depicts the process-resource net modeling the resource allocation taking place in
the robotic cell of Figure 1. Each of the resource places ri, i = 1, 2, 3, models the unit buffering capacity
of the corresponding workstation in Figure 1, while the processing of an instance of part type Jj , j = 1, 2,
is modeled by the path < tj0, pj1, tj1, pj2, tj2, pj3, tj3 >. Furthermore, in the depicted net we have also
adopted the common practice of aggregating the path < i, t∗, o > of the underlying process nets to a
single place p0, that is called the process idle place. Hence, the state depicted in Figure 8 corresponds
to the initial RAS state, where the system is idle and empty of any processes. Finally, notice that we
have set M0(ij) = 3, j = 1, 2, so that these values do not constrain artificially the system loading. More
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generally, in the proposed PN-based RAS modeling, M0(ij) must be set to a value that is an upper bound
to the maximum number of process instances from process type Πj that can be simultaneously loaded
in the system. Such an upper bound will always exist due to the finiteness of the system resources.

RAS deadlock and deadlock avoidance In the PN-based modeling framework, the formation
of RAS deadlock is expressed by the lack of reversibility of the corresponding process-resource net.
Furthermore, in the underlying reachability space, R(N ,M0), this lack of reversibility is graphically
represented by the formation of strongly connected components that are not co-reachable, i.e., the initial
marking M0, is not reachable from them through any sequence of feasible transitions. As a case in point,
Figure 9 depicts the reachability graph of the process-resource net of Figure 8, where it can be clearly
seen that four reachable net markings are not co-accessible.

In the light of these characterizations, a correct Deadlock Avoidance Policy (DAP), ∆, must try to
restrict the system operation to a strongly connected component of the underlying reachability space,
R(N ,M0), which contains the initial marking M0. The RAS subspace that is reachable under – or
admissible by – some DAP ∆ will be denoted by R∆(N ,M0). Given a RAS configuration, an applied
DAP is characterized as optimal , if the corresponding admissible subspace is the maximal strongly
connected component of R(N ,M0) which contains the initial marking M0. The set of markings admitted
by the optimal DAP, ∆∗, is characterized as the (set of reachable) safe markings, and it will denoted by
Rs(N ,M0). The complement of Rs(N ,M0) with respect to R(N ,M0) is denoted by Ru(N ,M0), and it
constitutes the (reachable) unsafe markings.

The finiteness of the reachability space R(N ,M0) for the considered RAS class implies that the
optimal DAP, ∆∗, is well-defined, and it is effectively computable through an one-step lookahead scheme
that admits a tentative resource allocation if and only if (iff) the resulting marking is safe. However,
the underlying safety problem is NP -complete, in general [1]. In the light of this result, the research
community has sought the development of sub-optimal DAP’s that are implementable in polynomial
complexity with respect to the underlying RAS size, and yet, efficient, i.e., they manage to admit a
large part of Rs(N ,M0). This idea has been formalized by the concept of Polynomial Kernel (PK-)
DAP [17]. From an implementational standpoint, a typical approach to the design of PK-DAP’s is the
identification of a property H(M), M ∈ R(N ,M0), such that (i) the complexity of testing H() on the
RAS markings is polynomial with respect to the RAS size, (ii) H(M0) = TRUE, and (iii) the subspace
{M ∈ R(N ,M0) : H(M) = TRUE} is strongly connected. The reader is referred to [17, 28] for a broad
set of results regarding the design of PK-DAPs for various subclasses of the RAS class introduced in
Definition 1, and also, for the identification of special RAS structure for which the optimal DAP ∆∗ is
implementable with polynomial complexity with respect to the corresponding RAS size, |Φ|. In the rest
of this chapter we focus on a particular subclass of PK-DAPs that is known as algebraic, and we present
a series of results regarding the analysis and the design of these policies.

3 Algebraic DAPs and their PN-based representation

Definition of algebraic PK-DAPs Algebraic PK-DAP’s are defined as the particular class of PK-
DAP’s where the property H(M) constitutes a system of linear inequalities on the RAS marking M that
is polynomially sized with respect to the RAS size |Φ|. Furthermore, since the marking of the resource
places r ∈ PR and of the process idle places, pj0, j = 1, . . . , n, is determined by the marking of the
remaining places p ∈ PS , which expresses the state of the active process instances, the aforementioned
inequalities will constrain explicitly only the restriction of M to its components corresponding to places
p ∈ PS , MS . Hence, a typical algebraic PK-DAP will have the form:

A ·MS ≤ b (1)

where A is a nonnegative integer matrix with K rows, b is a K-dimensional nonnegative integer vector,
and K is polynomially related to the RAS size |Φ|.

A PN-based representation of algebraic PK-DAPs The constraints expressed by Equation 1
can be enforced in the PN-based representation of the RAS dynamics through the super-imposition on
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the original process-resource net of a controlling subnet that is readily constructed through the theory
of control-place invariants presented in [10]. According to [10], each of the inequalities

A(k, ·) ·MS ≤ b(k), k = 1, . . . ,K (2)

can be imposed on the net behavior by superimposing on the original net structure a control place pc(k).
The connectivity of place pc(k) to the rest of the network is determined by the flow matrix

θpc(k) = −A(k, ·) ·ΘS (3)

where ΘS denotes the flow sub-matrix of the uncontrolled network N = (P, T,W, M0) corresponding to
places p ∈ PS . The initial marking of place pc(k) is set to

M0(pc(k)) = b(k) (4)

The resulting controller imposes Constraint 2 on the original system behavior by establishing the place
invariant

A(k, ·) ·MS +M(pc(k)) = b(k) (5)

Example 2 Figure 10 depicts the implementation on the process-resource net of Figure 8 of an algebraic
PK-DAP, ∆, that is expressed by the following set of inequalities on the marking MS :

 1 0 0 0 0 1
1 1 0 1 1 0
0 0 1 1 0 0

 ·

M(p11)
M(p12)
M(p13)
M(p21)
M(p22)
M(p23)

 ≤

 1
1
1

 (6)

The reader can verify that the connectivity and the initial marking of the monitor places w1, w2 and w3,
that enforce each of the three constraints of Equation 6, satisfies the requirements of Equations 3 and 4,
as well as Equation 5. The correctness of policy ∆ for the considered process-resource net is manifested
by Figure 11, that depicts the policy-admissible subspace, R∆(N ,M0), and it is formally proven in [20].

Monitor places as fictitious resources Equation 5, when interpreted in the light of Assumption 4
of Section 2, implies that the control places pc(k), implementing each of the constraints in the policy-
defining Equation 1, essentially play the role of fictitious new resources in the dynamics of the net N c,
that models the controlled system behavior.6 As a result, the controlled net N c remains in the class
of process-resource nets that satisfy Assumptions 1 and 3. Let PC ≡

⋃
k{pc(k)}. If it can be shown

that the net N c satisfies also Assumption 5 with respect to the extended “resource” set PR ∪ PC , then
it can be inferred that N c belongs to the class of process-resource nets with acyclic, quasi-live and
strongly reversible process subnets, and therefore, all the analytical insights and results regarding the
logical behavior of the uncontrolled RAS extend to their controlled counterparts. This remark will be
especially useful in Section 5 where we derive correctness tests for algebraic PK-DAPs based on the
structural properties of process-resource nets.

4 An analytical characterization of the class of algebraic DAPs

This section provides an analytical characterization for the entire set of algebraic PK-DAPs, ∆, that
employ (up to) K constraints and can establish deadlock-free operation for some given process-resource
net N . Beyond its inherent theoretical interest, such a characterization enables also an “optimal”
selection of the implemented policy ∆ from the considered set of policies. The subsequent discussion
addresses the aforementioned problem by considering the more general problem of characterizing the

6This effect is manifested also in Figure 10.
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class of algebraic supervisors that employ (upto) K constraints and enforce the reversibility of some
bounded PN N ; a solution to this extended problem can be easily customized to the notion of algebraic
PK-DAPs for process-resource nets by restricting appropriately some elements of the policy-defining
matrix A in the derived formulation. Hence, a formal statement of the problem considered in this
section is as follows:

A formal statement of the considered problem Given a non-reversible, bounded PN N , identify
a set of constraints

A ·M ≤ b (7)

such that

i. when imposed on the plant net N , they will incur the reversibility of the controlled system;

ii. the cardinality of the imposed constraint set must not exceed a pre-specified parameter K;

iii. the matrix A and the vector b satisfy the constraint

∀i, j, A(i, j) ∈ {0, 1, . . . , Ā(i, j)} and ∀i, b(i) ∈ {0, 1, . . . , b̄(i)}, (8)

where Ā(i, j) and b̄(i) are finitely valued, externally provided parameters;

iv. and finally, assuming that every reachable marking Mi ∈ R(N ,M0) of N is associated with some
value wi, the developed supervisor will maximize the total value of the admissible markings, over
the set of supervisors satisfying the previous three requirements.

In the sequel, a PN supervisor that is defined by Equation 7 for some pricing of matrix A and vector
b, will be referred to as the supervisor S(A, b).

Overview of the proposed solution Next, we provide a Mixed Integer Programming (MIP) formu-
lation for the aforestated problem. The objective function of this formulation will express the optimality
requirement stated in item (iv) above. Requirement (ii) will be captured by the structure of the decision
variables of the presented formulation, while requirements (i) and (iii) will be explicitly encoded in its
constraints. More specifically, given a pricing of the matrix A and the rhs vector b, the constraint set
must check whether this pricing abides to requirement (iii) and it must also assess the ability of this
pricing to satisfy requirement (i), i.e., establish the reversibility of the controlled system. This last re-
quirement further implies that all the markings M ∈ R(N ,M0) that remain reachable under the policy
constraints, are also co-reachable under these constraints. Hence, the constraint set of the proposed
formulation must be able to assess the reachability and co-reachability of the markings M ∈ R(N ,M0)
under the net supervision by any tentative constraint set, A ·M ≤ b, and it must also be able to vali-
date that all reachable markings are also co-reachable. The rest of this section proceeds to the detailed
derivation of a formulation that possesses the aforementioned qualities.

Characterizing the net transition firing under supervision by S(A, b) In order to be able to
assess the reachability and co-reachability of the various markings M ∈ R(N ,M0) under supervision by
supervisor S(A, b), it is necessary to characterize how the various transitions, t ∈ T , of the plant net N ,
retain their fireability in the controlled system. Next, we introduce a set of variables and constraints that
will achieve this purpose. The main issue to be addressed is whether a transition t that was fireable in
some marking Mi ∈ R(N ,M0), leading to another marking Mj ∈ R(N ,M0), will remain fireable under
supervision by S(A, b). For this to be true, t must be enabled at Mi by all the monitor places, pc(k),
k = 1, . . . ,K, that implement the supervisor S(A, b). Testing whether transition t is enabled at marking
Mi by a monitor place pc(k) can be done through the employment of a binary variable zk

ij , that will be
priced to one, if this condition is true, and to zero, otherwise. A set of constraints that will enforce the
pricing of zk

ij according to the aforementioned scheme is the following:

M0(pc(k)) +
∑

(u,v)∈ξ(i)

Θ(pc(k), t(u, v)) + Θ(pc(k), t(i, j)) + (zk
ij − 1)Lk

ij ≥ 0 (9)
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M0(pc(k)) +
∑

(u,v)∈ξ(i)

Θ(pc(k), t(u, v)) + Θ(pc(k), t(i, j))− zk
ijU

k
ij ≤ −1 (10)

The parameter ξ(i) appearing in Equations 9 and 10 denotes any path in R(N ,M0) leading from
M0 to Mi. (u, v) denotes an edge of ξ(i) leading from node Mu to node Mv, and t(u, v) denotes its la-
beling transition. Lk

ij denotes a lower bound for the quantity M0(pc(k)) +
∑

(u,v)∈ξ(i) Θ(pc(k), t(u, v)) +
Θ(pc(k), t(i, j)), and Uk

ij denotes an upper bound for the quantityM0(pc(k))+
∑

(u,v)∈ξ(i) Θ(pc(k), t(u, v))
+Θ(pc(k), t(i, j))+1. Then, it is clear that whenM0(pc(k))+

∑
(u,v)∈ξ(i) Θ(pc(k), t(u, v))+Θ(pc(k), t(i, j))

≥ 0 – i.e., when transition t(i, j) is enabled by monitor place pc(k) in marking Mi – the above set of con-
straints is satisfied by setting zk

ij = 1. On the other hand, whenM0(pc(k))+
∑

(u,v)∈ξ(i) Θ(pc(k), t(u, v))+
Θ(pc(k), t(i, j)) < 0 the above constraint set is satisfied by setting zk

ij = 0.
It remains to connect the variables M0(pc(k)) and Θ(pc(k), ·) to the primary problem variables, A,

b, and explain how to compute the bounds Lk
ij and Uk

ij employed in the above equations. Connecting
M0(pc(k)) and Θ(pc(k), ·) to the variables A, b can be done straightforwardly through Equations 3 and 4;
the corresponding substitutions respectively transform Equations 9 and 10 to:

b(k)−
∑

(u,v)∈ξ(i)

A(k, ·) ·Θ(·, t(u, v))−A(k, ·) ·Θ(·, t(i, j)) + (zk
ij − 1)Lk

ij ≥ 0 (11)

b(k)−
∑

(u,v)∈ξ(i)

A(k, ·) ·Θ(·, t(u, v))−A(k, ·) ·Θ(·, t(i, j))− zk
ijU

k
ij ≤ −1 (12)

Finally, it should be clear from the structure of Constraints 11 and 12 that the bound Lk
ij (resp., Uk

ij),
defined above, can be obtained by minimizing (resp., maximizing) the quantity b(k)−

∑
(u,v)∈ξ(i)A(k, ·) ·

Θ(·, t(u, v))−A(k, ·) ·Θ(·, t(i, j)) over the space defined by the admissible ranges of the involved variables
A(k, ·) and b(k) (c.f., item (iii) in the formal problem statement provided at the beginning of this section).

Once variables zk
ij have been properly priced for all k, the feasibility of Mi

t(i,j)−→ Mj can be assessed
by introducing another real variable, zij , that is priced according to the following constraints:

zij ≤ zk
ij , ∀k ∈ {1, . . . ,K} (13)

zij ≥
K∑

k=1

zk
ij −K + 1 (14)

0 ≤ zij ≤ 1 (15)

To understand the pricing logic behind Constraints 13–15, first notice that Constraint 15 restricts the
variable zij within the interval [0, 1]. Then, Constraint 13 sets it to zero, as long as any of the variables
zk
ij is priced to zero – and therefore, the corresponding monitor place pc(k) disables t(i, j). On the other

hand, when all variables zk
ij are priced to one, Constraint 14 forces variable zij to its extreme value of

one.

Characterizing the reachability of the markings Mi ∈ R(N ,M0) under supervision by S(A, b)
The availability of the variables zij , defined above, subsequently enables the characterization of the
reachability of the various markings Mi ∈ R(N ,M0) under supervision by the supervisor S(A, b). This
can be done by introducing the real variables yl

i, 0 ≤ i ≤ |R(N ,M0)|, 0 ≤ l ≤ l̄, and pricing them so
that yl

i = 1 indicates that marking Mi is reachable from the initial marking M0 under supervision by
S(A, b) and the minimum length of any transition sequence leading from M0 to Mi is l; if Mi is not
reachable from M0 under supervision by S(A, b), yl

i should be set to zero, for all l. Clearly, in order to
satisfy this definition of yl

i, l̄ must be set to the length of the maximum path in G(N ,M0) that starts
from M0 and contains no cycles. Then, a set of constraints that achieves the pricing of yl

i described
above, is as follows:
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y0
i =

{
1, i = 0
0, i 6= 0 (16)

0 ≤ yl
i, ∀i ∈ {1, . . . , |R(N ,M0)|}, l ∈ {1, . . . , l̄} (17)

l̄∑
l=0

yl
i ≤ 1 (18)

δl
ji ≤ yl−1

j , ∀j : (Mj ,Mi) ∈ G(N ,M0) (19)

δl
ji ≤ zji, ∀j : (Mj ,Mi) ∈ G(N ,M0) (20)

yl
i ≤

∑
j

δl
ji (21)

yl
i ≥ yl−1

j + zji − 1−
l−1∑
q=0

yq
i , ∀j : (Mj ,Mi) ∈ G(N ,M0) (22)

Constraint 16 expresses the fact that marking M0 is reachable from itself in zero steps, under su-
pervision by S(A, b), and this is the only marking in R(N ,M0) possessing this property. Constraint 17
states the nonnegative real nature of variables yl

i, i > 0, l > 0, while Constraint 18 expresses the fact
that, according to the pricing scheme discussed above, only one of the variables yl

i, 0 ≤ l ≤ l̄, can be
priced to one. Constraints 19, 20 and 21 express the fact that, under supervision by S(A, b), there is a
minimal path from marking M0 to marking Mi of length l, only if there is a minimal path of length l−1
from M0 to some marking Mj such that (i) (Mj ,Mi) ∈ G(N ,M0) and (ii) this transition remains feasible
under S(A, b). In particular, variables δl

ji is a set of auxiliary real variables that are used to force yl
i to

zero every time that the aforestated condition is violated for all the markings Mj ∈ R(N ,M0) such that
(Mj ,Mi) ∈ G(N ,M0). On the other hand, Constraint 22 tends to price variable yl

i to one every time
that there exists a marking Mj such that (i) (Mj ,Mi) ∈ G(N ,M0), (ii) this transition remains feasible
under S(A, b), and (iii) Mj is reachable from M0 under supervision by S(A, b) through a minimal path
of length l− 1; however, this pricing is enforced only when the quantity

∑l−1
q=0 y

q
i appearing in the right-

hand-side of this constraint is equal to zero – i.e., only when the marking Mi cannot be reached from
the initial marking M0 through a path of smaller length.

Characterizing the co-reachability of the markings Mi ∈ R(N ,M0) under supervision by
S(A, b) Clearly, the co-reachability of a marking Mi ∈ R(N ,M0) is equivalent to the reachability of the
same marking in the graph GR(N ,M0), obtained from G(N ,M0) by reversing all its arcs. In the light of
this observation, the set of constraints characterizing the co-reachability of the markingsMi ∈ R(N ,M0),
under supervision by supervisor S(A, b), can be obtained through a straightforward modification of the
constraint set 16–22, characterizing the reachability of these markings. More specifically, let ψl

i be a real
variable that will be priced to one, if Mi ∈ R(N ,M0) is co-reachable under supervision by S(A, b), and
a minimal transition sequence leading from Mi to M0 has a length equal to l; otherwise, ψl

i should be
priced to zero. By following a logic similar to that employed in the previous paragraph for the pricing
of variables yl

i, we obtain the following set of constraints for the pricing of variables ψl
i:

ψ0
i =

{
1, i = 0
0, i 6= 0 (23)

0 ≤ ψl
i, ∀i ∈ {1, . . . , |R(N ,M0)|}, l ∈ {1, . . . , l̃} (24)

l̃∑
l=0

ψl
i ≤ 1 (25)
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ηl
ij ≤ ψl−1

j , ∀j : (Mi,Mj) ∈ G(N ,M0) (26)

ηl
ij ≤ zij , ∀j : (Mi,Mj) ∈ G(N ,M0) (27)

ψl
i ≤

∑
j

ηl
ij (28)

ψl
i ≥ ψl−1

j + zij − 1−
l−1∑
q=0

ψq
i , ∀j : (Mi,Mj) ∈ G(N ,M0) (29)

The parameter l̃, appearing in Equations 24 and 25, denotes the length of the maximum path in
GR(N ,M0) that leads from node M0 to node Mi and contains no cycles, and the auxiliary variables ηl

ij ,
that appear in Constraints 26 and 27, play a role identical to that played by variables δl

ji in Constraints 19
and 20.

Characterizing the closure of the sub-space that is reachable and co-reachable under super-
vision by S(A, b) Let xi be a real variable that will be priced to one when the marking Mi ∈ R(N ,M0)
is reachable and co-reachable under supervision by S(A, b), and it will be priced to zero, otherwise. Then,
in the light of the above characterizations of reachability and co-reachability, the desired pricing of xi

can be enforced by the following constraints:

xi ≤
l̄∑

l=0

yl
i (30)

xi ≤
l̃∑

l=0

ψl
i (31)

xi ≥
l̄∑

l=0

yl
i +

l̃∑
l=0

ψl
i − 1 (32)

0 ≤ xi ≤ 1 (33)

Constraint 33 restricts xi in the interval [0, 1]. Then, Constraints 30 and 31 force it to zero, when
markingMi is not reachable or co-reachable. On the other hand, ifMi is both reachable and co-reachable,
Constraint 32 forces xi to its extreme value of one.

Finally, the availability of variables xi allows us to express the requirement for closure of the sub-
space of R(N ,M0) that is reachable and co-reachable under supervision by S(A, b), through the following
constraint:

(1− xi) + xj ≥ zij , ∀i, j : (Mi,Mj) ∈ G(N ,M0) (34)

When xi = 1 and xj = 0 – i.e., when xi belongs to the target space of markings that are reachable and co-
reachable under supervision by S(A, b), but xj does not belong to this set – Constraint 34 forces variable
zij to zero – i.e., it requires that the corresponding transition Mi[t(i, j)〉Mj is disabled by S(A, b). In
any other case, the left-hand-side of Constraint 34 is greater than or equal to one, and therefore, the
constraint becomes inactive.

The objective function of the proposed formulation The objective function of the considered
formulation is straightforwardly expressed as follows:

max
∑

i

wixi (35)
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The correctness of the proposed formulation The next theorem states the correctness of the
derived formulation. A formal proof of this result can be based on concepts and arguments coming
from the theory of regions [2], a theory that concerns the design of PNs from a specification of their
reachability space; the reader is referred to [19] for the relevant details.

Theorem 1 The formulation of Equations 8,11–35 returns an optimal solution to the problem stated
at the beginning of this section, provided that such a solution exists; otherwise, this formulation will be
infeasible.

Customizing the derived formulation to the design of algebraic PK-DAPs We remind the
reader that, according to the definition of Section 3, algebraic PK-DAPs restrict explicitly only the
projection MS of the entire marking M of the corresponding process-resource net N . This additional
feature for the sought supervisors can be readily introduced in the formulation of Equations 8,11–35
by setting Ā(i, j) = 0 for all the elements of matrix A corresponding to places p 6∈ PS .7 On the other
hand, the values for the remaining elements of matrix A and those of vector b should not be artificially
restricted by the choice of the corresponding upper bounds, Ā(i, j) and b̄(i); this can be attained by
maintaining these bounds to sufficiently large values. The resulting formulation will be always feasible,
since it contains the trivial policy that confines the RAS to its initial state s0.8 Of course, such a
result should be interpreted as lack of an effective DAP in the considered policy space. If we want
such a negative result to be communicated as infeasibility by the proposed formulation, we can add the
constraint ∑

i:i 6=0

xi ≥ 1 (36)

Furthermore, in most practical cases, one would like to enforce the existence of at least one policy-
admissible process plan for each process type Πj , j = 1, . . . , n. In such a case, letting IN(j) denote the
set of transitions corresponding to the initiation of an instance from process type Πj , we can replace
Constraint 36 with the following stronger requirement:

∀j = 1, . . . , n,
∑

(i,q)∈IN(j)

ziq ≥ 1 (37)

Finally, the typical objective for maximal permissiveness of the resulting policy can be communicated
in the developed formulation by setting wi = 1, ∀i.

Example 3 We demonstrate the efficacy of the design methodology developed in Section 5, by applying
it to the design of an algebraic DAP for the PN depicted in Figure 12. This PN models a RAS consisting
of three resource types, R1, R2, and R3, with respective capacities C1 = C3 = 1, and C2 = 2, and
supporting two process types, JT1 and JT2, whose process plans are respectively modelled by the paths
< t10p11t11p12t12p13t13 > and < t20p21t21p22t22p23t23 >. The reachability space, R(N ,M0), for the
PN depicted in Figure 12 is provided in Figure 13, while the detailed characterization of the markings
corresponding to the various nodes of the graph of Figure 13 can be found in Table 1.9 Clearly, the
considered net is not reversible, since the states depicted by the darker-shaded nodes in Figure 13 are
not co-reachable to M0.

Two algebraic PK-DAPs for the process-resource net of Figure 12, originally developed in [12], are
respectively expressed by the constraint sets: 1 1 1 1

1 1 1 1
1 1 1 1

 ·MS ≤

 1
2
1

 . (38)

7Although, from a computational standpoint, it is preferable to identify all these zero-valued variables and systematically
remove them from the formulation.

8This policy is expressed by the single constraint [1 1 . . . 1]Ms ≤ 0.
9Table 1 provides only MS , i.e., the markings of the places corresponding to the various processing stages, since the

markings of the remaining places can be easily obtained from the net invariants corresponding to (i) the reusability of the
system resources and (ii) the circuits established by the introduction of the process idle places.
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Figure 12: The process-resource net of Example 3

 1 1 1 1
1 1 1 1
1 1 1 1

 ·MS ≤

 3
2
3

 . (39)

It is interesting to notice that the Constraint set 39 is a relaxation of the Constraint set 38 since
A1 = A2 and b1 ≤ b2. Therefore, the supervisor established by the Constraint set 39 is expected to be
more permissive than the supervisor established by the Constraint set 38, and this is indeed reflected
in Figure 13 that also depicts the sub-spaces admitted by each of these two supervisors. On the other
hand, the application on the net of Figure 12 of the MIP formulation developed in the earlier parts of
this section, with the number of policy constraints, K, set equal to 3, returned the following supervisor: 1 0 0 0 3 0

0 1 0 2 0 0
2 2 0 2 3 0

 ·MS ≤

 6
3
8

 (40)

The sub-space admitted by the supervisor of Equation 40 is also depicted in Figure 13. As it can be
seen in this figure, the obtained supervisor manages to recognize the entire safe space of the considered
process-resource net, and therefore, it expresses the optimal DAP, ∆∗. Hence, this example corroborates
the efficacy and analytical power of the proposed methodology.

Complexity considerations Yet, the practical applicability of the algebraic DAP design methodology
developed in this section can be severely limited from the fact that it requires the explicit enumeration
of the reachability space, R(N ,M0), of the underlying process-resource net, N . It is well established
in the relevant literature that the size of this state space is, in general, an exponential function of the
size of the underlying net, |N |, and it grows very fast. This situation is further complicated by the
fact that the presented methodology eventually boils down to the solution of a MIP formulation with
a number of variables and constraints that is determined by the size of the space R(N ,M0). A first
approach to alleviate this problem is to restrict the target behavior for the controlled net to a sub-space
of R(N ,M0) so that the resulting formulation is computationally manageable. Another approach is to
develop additional methodology that will provide correct algebraic DAPs for some given process-resource
net N , while avoiding the explicit enumeration of the reachability space R(N ,M0). We present such an
alternative methodology in the next section.
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Table 1: The markings of the reachability space depicted in Figure 13
State p11 p12 p13 p21 p22 p23 State p11 p12 p13 p21 p22 p23

0 0 0 0 0 0 0 24 0 1 0 1 1 0
1 1 0 0 0 0 0 25 0 1 0 0 0 1
2 0 0 0 1 0 0 26 1 0 0 0 2 0
3 0 1 0 0 0 0 27 0 0 0 1 2 0
4 1 0 0 1 0 0 28 0 0 0 0 1 1
5 0 0 0 0 1 0 29 1 1 1 0 0 0
6 1 1 0 0 0 0 30 1 2 0 1 0 0
7 0 0 1 0 0 0 31 1 0 1 0 1 0
8 0 1 0 1 0 0 32 1 1 0 1 1 0
9 1 0 0 0 1 0 33 0 0 1 0 0 1
10 0 0 0 1 1 0 34 0 1 0 1 0 1
11 0 0 0 0 0 1 35 1 0 0 1 2 0
12 0 2 0 0 0 0 36 0 0 0 1 1 1
13 1 0 1 0 0 0 37 0 2 1 0 0 0
14 1 1 0 1 0 0 38 0 1 1 0 1 0
15 0 1 0 0 1 0 39 0 1 0 0 1 1
16 1 0 0 1 1 0 40 0 0 0 0 2 1
17 0 0 0 0 2 0 41 1 2 1 0 0 0
18 0 0 0 1 0 1 42 1 1 1 0 1 0
19 1 2 0 0 0 0 43 0 1 1 0 0 1
20 0 1 1 0 0 0 44 0 0 1 0 1 1
21 0 2 0 1 0 0 45 0 1 0 1 1 1
22 1 1 0 0 1 0 46 0 0 0 1 2 1
23 0 0 1 0 1 0

0 

2 1 

4 3 5 

9 10 11 8 6 7 

15 14 16 13 18 17 12 

20 28 

32 33 

23 25 24 26 27 19 21 22 

29 30 31 36 35 34 

38 39 40 37 

41 46 42 43 44 45 

k1 Unsafe states 

k2 States admitted by the original RUN  
policy using b=(1, 2, 1) 

k2 k3 States admitted by the  
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Figure 13: The reachability graph of the process-resource net of Figure 12, and a comparison of the
sub-spaces admitted by the presented supervisors

20



20t

t

t

t

t

t

t

t

r

r

r

p p

p

p

p

p

1

2

11

12

13

21

3

22

23

p p
10

20

13

12

11

23

22

21

10

Figure 14: Interpreting the non-liveness of PT -ordinary process-resource nets with acyclic, quasi-live
and strongly reversible process subnets through empty siphons

5 Analysis and design of algebraic DAPs through PN structural
analysis

A structural characterization for the reversibility of process-resource nets and the correct-
ness of algebraic DAPs The characterization of the RAS deadlock-freedom and the DAP correctness
that was provided in the closing part of Section 2, and was behind the design methodology of Section 3,
is behavioral , since it engages patterns and structure that are traceable in the reachability space of the
considered process-resource net. In this section we focus on an alternative characterization for these two
concepts that is structural , since it is based on the identification of special structure in the reachable
markings of the underlying PNs. As it will be shown in the subsequent developments, the ability to
confine the search for special structure in individual markings further enables the assessment of the
deadlock-freedom of the underlying RAS and/or the correctness of any given algebraic DAP through an
implicit enumeration of the underlying state space. At the basis of all the developments presented in
this section is the following structural characterization for the reversibility of the process-resource nets
defined in Section 2:

Theorem 2 Let N = (PS ∪ I ∪O ∪PR, T,W,M0) be a process-resource net with acyclic, quasi-live and
strongly reversible processes. Then, the following hold true:

1. N is reversible if and only if it is live.

2. N is live if and only if the space of modified reachable markings, R(N ,M0), that is induced from
R(N ,M0) through the projection:

M(p) =
{
M(p) if p 6∈ I ∪O
0 otherwise (41)

contains no deadly marked siphon S such that (i) S∩PR 6= ∅ and (ii) ∀p ∈ S∩PR, p is a disabling
place at M .

3. In the particular case that N is PT -ordinary, N is live if and only if the space of reachable
markings, R(N ,M0), contains no empty siphons.

A complete development of the results stated in Theorem 2 can be found in [15, 17]. Here we give an
intuitive explanation for the role of deadly marked and empty siphons in the interpretation of the RAS
deadlock, under the PN representation introduced in Section 2. Hence, Figure 14 depicts the empty
siphon that interprets the deadlock of the robotic cell depicted in Figure 1. As indicated in Figure 14,
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this siphon consists of the resources involved in the considered deadlock and the stages that involve the
allocation of at least one of the deadlocked resources and are currently empty; these stages are known
as “empty holders” in the relevant terminology. Since a fundamental property of an empty siphon is
that it will remain empty during the entire evolution of the net marking, the empty siphon of Figure 14
is a PN-based manifestation of the deadlock experienced in the underlying RAS. On the other hand, in
the case of non-PT-ordinary PNs, the non-uniformity of the resource allocation requests for any single
resource type, across the various processing stages, allows the existence of RAS states where certain
process types can be executed repetitively, even though some of their supporting resource types are
involved in a deadlock. The situation is depicted in Figures 15-17: In particular, Figure 16 depicts a
reachable marking of the process-resource net depicted in Figure 15, where the active process instances
corresponding to the tokens in place p21 are deadlocked, since their request for 2 extra units of resource
R1 cannot be met unless one of them releases its currently held resource. However, process instances
executing stage p11 can still engage the remaining free unit of resource R1 and successfully proceed to
completion. But then, place p11 cannot be part of an empty siphon, even though it is an empty holder of
resource R1, that is involved in the depicted RAS deadlock. The aforementioned problem is remedied by
the introduction of the concept of the modified marking . The modified marking of the original marking
depicted in Figure 16 is depicted in Figure 17. By removing all the tokens resident in places pj0, ∀j, we
construct a deadlock marking, in which the set S of all disabling places – depicted by shaded places in
Figure 17 – will be a deadly marked siphon.10 It is interesting to notice that the constructed siphon S
is deadly marked but not empty. On the other hand, the token removal implied by the definition of the
modified marking M will also generate artificially empty siphons, especially, for those process types with
no active process instances in the original marking M ; in Figure 17, the place set S′ = {p10, p11} is such
an artificially constructed empty siphon. Hence, in order to infer the net non-liveness, one must focus
on the particular type of deadly marked siphon characterized in item 2 of Theorem 2; these siphons are
called resource-induced deadly marked siphons in the relevant literature.

The liveness and reversibility criteria of Theorem 2 can also provide correctness criteria for any
tentative DAP for a given process-resource net, provided that the controlled net remains in the class
of process-resource nets with acyclic, quasi-live and strongly reversible processes. In particular, as it
was discussed in Section 3, the net N c resulting from the imposition of some algebraic DAP on a given
process-resource net N will possess this property as long as the super-imposed monitor places do not
affect the quasi-liveness of the resource-augmented process subnets. While the assessment of the quasi-
liveness of a resource-augmented process net can be a challenging problem in itself, there is broad set
of cases for which this problem is easily resolved,11 and furthermore, as it will be demonstrated in the
example provided in the closing part of this section, in certain cases the imposed policy can be defined
in a way that it will ensure the sought quasi-liveness.

The remaining part of this section establishes that the criterion stated in item 2 of Theorem 2 can
be effectively assessed through a mathematical programming formulation.

Assessing the liveness and reversibility criterion of Theorem 2 through a mathematical
programming formulation The starting point for the development of the sought formulation is the
realization that, given a PN N = (P, T,W,M0) and a marking M ∈ R(N ,M0), the maximal deadly
marked siphon S in M can be computed by the algorithm of Figure 18, originally developed in [13]. In
the case of structurally bounded nets, the algorithm of Figure 18 can be converted to a MIP formulation
as follows: First, let SB(p) denote a structural bound for the markings of place p ∈ P . Furthermore, let
vp, zt and ftp be binary indicator variables respectively denoting the following conditions:

vp = 1 ⇐⇒ place p is removed by the algorithm, ∀p ∈ P
zt = 1 ⇐⇒ transition t is removed by the algorithm, ∀t ∈ T
fpt = 1 ⇐⇒ M(p) ≥W (p, t) ∨ vp = 1, ∀W (p, t) > 0

Then, we have the following theorem:
10c.f. Theorem 5 in the Appendix.
11c.f. the relevant discussion in Section 2

23



Input: A PN N = (P, T,W,M0) and a marking M ∈ R(N ,M0)
Output: The maximal deadly marked siphon in M , S

1. S := P ; N ′ := N

2. while ∃ t ∈ T such that t is fireable in the modified net N ′ do

(a) S := S\t•

(b) Remove t from N ′

(c) Remove t• from N ′

endwhile

3. Return S

Figure 18: An algorithm for computing the maximal deadly marked siphon in a given marking M

Theorem 3 [13, 17] Given a marking M ∈ R(N ,M0) of a structurally bounded PN N = (P, T,W,M0),
the maximal deadly marked siphon S contained in M is determined by:

S = {p ∈ P | vp = 0} (42)

where vp, p ∈ P , is obtained through the following IP formulation:

G(M) = min
∑
p∈P

vp (43)

s.t.
fpt ≥ M(p)−W (p,t)+1

SB(p) , ∀W (p, t) > 0 (44)

fpt ≥ vp, ∀W (p, t) > 0 (45)

zt ≥
∑

p∈•t fpt − |•t|+ 1, ∀t ∈ T (46)

vp ≥ zt, ∀W (t, p) > 0 (47)

vp, zt, fpt ∈ {0, 1}, ∀p ∈ P, ∀t ∈ T (48)

To understand the result of Theorem 3, first notice that Equation 46 together with Equation 44 imply
that all transitions zt fireable in marking M will have zt = 1. Furthermore, Equation 47 implies that
all places p ∈ t• for some t with zt = 1 will have vp = 1, which implements Step (2.b) in the algorithm
of Figure 18. Similarly, Equation 45 combined with Equation 46 force zt = 1 for all transitions t with
vp = 1, ∀p ∈ •t. Finally, the fact that no additional place p (resp., transition t) has vp = 1 (resp.,
zt = 1), is guaranteed by the specification of the objective function in the above formulation.

In the case that the net N is a process-resource net, the formulation of Theorem 3 can be restricted
to the computation of the maximal resource-induced deadly marked siphon, through the introduction of
the following two constraints: ∑

r∈PR
vr ≤ |PR| − 1 (49)∑

t∈r• frt − |r•|+ 1 ≤ vr, ∀r ∈ PR (50)

Constraint 49 enforces that the identified siphon S must contain at least one resource place, while
Constraint 50 requires that all resource places included in S must be disabling. The resulting necessary
and sufficient condition for the non-existence of resource-induced deadly marked siphons in a given
marking M of a process-resource net is as follows:

Corollary 1 [13, 17] A given marking M of a process-resource net N contains no resource-induced
deadly marked siphons, if and only if the corresponding formulation of Equations 43–50 is infeasible.
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The test of Corollary 1 can be extended to a test for the non-existence of resource-induced deadly
marked siphons over the entire modified reachability space, R(N ,M0), of a process-resource net N =
(P, T,W,M0), by:

i. substituting the marking M in the MIP formulation of Theorem 3 with the modified marking M ;

ii. introducing an additional set of variables, M , representing the net reachable markings;

iii. adding two sets of constraints, the first one linking variables M and M according to the logic of
Equation 41, and the second one ensuring that the set of feasible values for the variable vector M
is equivalent to the PN reachability space R(N ,M0).

In the general case, the characterization of the set R(N ,M0) by a system of linear inequalities will
involve a number of variables and constraints that is an exponential function of the net size |N | [23].
However, in the case of the process-resource nets considered in this work, there is such a characterization
of R(N ,M0) that is polynomially sized with respect to |N |, and therefore, the plan outlined above
remains a viable proposition; we refer to [18] for the relevant details. Furthermore, a practical and
frequently used implementation of the aforementioned plan substitutes the exact characterization of the
reachability space R(N ,M0) by its superset that is provided by the state equation.12 The resulting
formulation provides a sufficient condition for the non-existence of resource-induced deadly marked
siphons S in the entire space R(N ,M0) of a given process-resource netN , which in the light of Theorem 2,
constitutes also a sufficient condition for the liveness and reversibility of process-resource nets with
acyclic, quasi-live, and strongly reversible process subnets. The following corollary summarizes the
above discussion:

Corollary 2 Let N = (P, T,W,M0) be a process-resource net with acyclic, quasi-live, and strongly
reversible process subnets. If the mixed integer program defined by (i) Equations 43–50, where vector
variable M is replaced by vector variable M , (ii) Equations 72–73, and (iii) Equation 41, is infeasible,
then N is live and reversible.

Concluding this discussion, we notice that for the case of PT -ordinary process-resource nets with
acyclic, quasi-live, and strongly reversible subnets, a similar but simpler liveness and reversibility suffi-
ciency test can be obtained by focusing on the presence of empty siphons in the original net reachability
space, R(N ,M0); we refer the reader to [5, 12] for a detailed discussion of this formulation.

Design of efficient algebraic DAPs through the criterion of Corollary 2 As it was discussed in
the opening part of this section, the correctness of an algebraic DAP can be established by the criterion
of Corollary 2 as long as the super-imposition of the relevant monitor places maintains the quasi-liveness
of the underlying resource-augmented process sub-nets. Hence, the formulation of Corollary 2 can be
embedded in a search process seeking a pair (A, b) that will render this formulation infeasible.13 This
search can be further assisted by additional insights regarding the dynamics of the underlying process-
resource net. A particularly effective use of the aforementioned criterion has sought the systematic
relaxation of the right-hand-side vector, b, in algebraic DAPs that have been developed through alter-
native approaches; we refer the reader to [12, 13] for some relevant examples. Next, we demonstrate the
application of the criterion of Corollary 2 by focusing on a particular class of algebraic DAPs known as
“process-release” policies. This class of policies seeks only to restrict the number of process instances
that are loaded simultaneously into the system, rather than their access to particular segments of their
process routes. Hence, they can be expressed by a single linear inequality

a ·MS ≤ b (51)

where b defines the ceiling on the process concurrency imposed by the considered supervisor, and the
elements of the row vector a are provided by the p-semiflows that characterize the flow logic of the

12This is Equation 72 in the Appendix.
13For a more concrete experience, the reader is invited to apply the criterion of Corollary 2 on the algebraic DAPs that

were presented in Examples 2 and 3.
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Figure 19: The process-resource net and the imposed process-release control policy for Example 4

various process types. The DAP of Equation 51 is superimposed to the original process-resource net N
through the introduction of a single control place pc with p•c ⊆

⋃
j{tIj

}. Hence, it should be obvious
to the reader that the resulting controlled net N c preserves the quasi-liveness of the original net N , as
long as M0(pc) ≥ 1. The following example demonstrates the DAP synthesis method discussed in this
section, and also, the particular concept of process-release control.

Example 4 Consider the process-resource net depicted in Figure 19. As it can be seen in the figure,
the underlying RAS consists of two process types, Π1 and Π2, and five resource types, R1, . . . , R5. Pro-
cess type Π1 has a flow represented by an acyclic marked graph, and it involves six processing stages,
Ξ11, . . . ,Ξ16, with corresponding resource requirements: (1, 0, 0, 0, 0)T , (0, 1, 0, 0, 0)T , (0, 0, 1, 0, 0)T ,
(0, 0, 1, 0, 0)T , (0, 1, 0, 0, 0)T and (0, 0, 0, 0, 1)T . Process type Π2 has a flow represented by an acyclic
state machine, and it involves four stages, Ξ21, . . . ,Ξ24, with corresponding resource requirements:
(0, 1, 0, 0, 0)T , (1, 1, 0, 0, 0)T , (0, 1, 1, 0, 0)T and (0, 0, 0, 1, 0)T . A closer inspection of the stage resource
requirements for these two processes reveals that the only resources that could be entangled in a deadlock
are R1, R2 and R3. Therefore, the critical sections for Π1 and Π2 are respectively defined by the stage
sets {Ξ11,Ξ12,Ξ13,Ξ14,Ξ15} and {Ξ21,Ξ22,Ξ23}.

Our intention is to develop an algebraic DAP that will establish the liveness and reversibility of the
controlled net by restricting the number of process instances that can execute simultaneously in their
critical sections identified above. Hence, the proposed supervisor constitutes a more refined implementa-
tion of the general “process-release” control scheme, to the particular process-resource net of Figure 19.
This supervisor is super-imposed to the original process-resource net of Figure 19 by introducing the
control place w, connected to the original process-resource net through the flow structure depicted by
dotted lines in Figure 19.

Next we seek to determine the maximal initial marking for place w that leads to live and reversible
behavior for the controlled net of Figure 19, using the siphon-based analysis that was developed in this
section. For this, first we determine an upper bound to the maximal number of processes that can be exe-
cuted simultaneously by the considered RAS. The reader can convince herself that, based on the resource
capacities and the process flows annotated in Figure 19, an upper bound for the system concurrency with
respect to process type Π1 (resp., Π2) is 7 (resp., 5) process instances. Then, application of the MIP
formulation of Corollary 2 in a binary search over the integer set {1, . . . , 12} reveals that the maximal
initial marking for control place w leading to a correct algebraic DAP – or equivalently, the maximal
number of processes that can be simultaneously loaded and let to execute uncontrollably through the
system without the possibility of running into any deadlocking problems – is 6. For completeness, we
mention that the deadlock marking identified by the computerized solver when the MIP formulation of
Corollary 2 was solved with M0(w) = 7, is: M(i1) = 1; M(p11) = 4; M(p12) = M(p13) = 2; M(i2) = 4;

26



M(p21) = 1; M(r4) = 2; M(r5) = 1; and zero for every other place.
Closing the discussion of this example, we want to point out that, while in the case of “process-release”

control policies the satisfaction of the criterion of Corollary 2 presents a monotonicity with respect
to the initial marking of the control place, pc, that enables the search for the maximally permissive
implementation through binary search, this property will not be true for algebraic DAPs implementing
more involved control schemes. In those cases, the identification of a maximal marking leading to live and
reversible behavior will necessitate a more careful search mechanism. Furthermore, in the more general
case, the structural liveness of the controlled net with respect to markings M0(pc(k)), k = 1, . . . ,dim(b)–
i.e., the existence of some marking M0(pc(k)), k = 1, . . . ,dim(b), that satisfies the the liveness and
reversibility condition of Corollary 2 for the resulting net N c – cannot be guaranteed a priori . The
next section offers some further insights on these issues by providing an analytical characterization of
the basic mechanism that enables the control of the net siphons through a limited number of monitor
places.

6 Explaining the functionality of algebraic DAPs

Implicit siphon control This section offers an analytical interpretation of the basic mechanism that
enables the algebraic DAPs to control the marking of the entire set of siphons of a process-resource
net with only a limited number of control places. Our discussion epitomizes the key insights and re-
sults of [14], that constitutes a more formal and extensive reference for the subsequent developments.
Furthermore, in order to enhance the clarity of the presentation, in the following we shall confine our
attention to PT-ordinary process-resource nets. Then, thanks to the last item of Theorem 2, we are able
to focus on the empty siphons of the underlying process-resource net instead of the more elusive set of
resource-induced deadly marked siphons. In particular, we shall say that a net siphon is controlled if it
remains non-empty during the entire evolution of the net marking.

The following series of definitions introduce a number of concepts that are instrumental for the linkage
of the structure of the algebraic DAPs to the control of the net siphons.

Definition 3 Consider a marked PN N = (P, T,W,M0) and a vector v ∈ <|P |, where < denotes the
set of reals. Then, for any marking M ∈ R(N ,M0), the generalized compound marking generated by v,
is defined by

GCM(M,v) =
∑
p∈P

v(p)M(p) = vTM (52)

The vector v will be called the generator of GCM(M,v) and the set of places corresponding to non-zero
elements of v will be denoted by P v. Finally, in the particular case that v(p) ∈ {0, 1}, ∀p ∈ P , a
GCM(M,v) reduces to the compound marking of the place subset P v.

Definition 4 Consider a pure marked PN N = (P, T,W ,M0) and a GCM generator v ∈ <|P |. Then,
the net flow (vector) of v is defined by

NF (v) = vT Θ (53)

where Θ denotes the flow matrix of N .

Notice that NF (v) is a |T |-dimensional row vector. Furthermore, the components of NF (v) have
the following very intuitive interpretation: For every transition t ∈ T , NF (v; t) denotes the net change
of GCM(M,v) resulting by the firing of transition t at M .14 Finally, the next definition connects the
GCM and NF concepts to the concept of siphon.

Definition 5 Consider a siphon S of a pure marked PN N = (P, T,W ,M0). The characteristic vector
of S is a |P |-dimensional binary vector λS such that

∀p ∈ P, λS(p) = 1 ⇐⇒ p ∈ S (54)

14This becomes obvious in the light of Equation 71 in the Appendix.
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Hence, the characteristic vector, λS , of any given siphon S, can be considered as a GCM generator
with GCM(M,λS) being equal to the token content of siphon S at marking M . Furthermore, the
components of the corresponding net flow vector NF (λS) express the net change incurred to the siphon
marking by the firing of any single transition t ∈ T .

The next theorem, which constitutes the main result of this section, establishes the connection
between the siphon control and the concepts introduced in the above definitions:

Theorem 4 [14] Let S denote a siphon of a pure marked PN N = (P, T,W ,M0) such that

NF (λS) =
n∑

i=1

aiNF (vi) (55)

where vi, i = 1, . . . , n, are GCM generators of N , and ai ∈ <, ∀i. Then,

S is controlled in N ⇐⇒ λT
SM0 +G∗ > 0 (56)

where

G∗ = min
M∈R(N ,M0)

(M −M0)T
n∑

i=1

aiv
i (57)

To see the validity of this theorem, consider a marking M ∈ R(N ,M0). Then, there exists a vector
z ∈ (Z+

0 )|T | such that M = M0 + Θz (c.f. Equations 72 and 73 in the Appendix). Therefore,

M(S) =
∑
p∈S

M(p)

= λT
SM

= λT
SM0 + λT

SΘz
= λT

SM0 +NF (λS)z

= λT
SM0 + [

∑
i

aiNF (vi)]z

= λT
SM0 + [

∑
i

ai(vi)T Θ]z

= λT
SM0 + [

∑
i

aiv
i]T Θz

= λT
SM0 + [

∑
i

aiv
i]T (M −M0)

= λT
SM0 + (M −M0)T

∑
i

aiv
i (58)

Clearly, the right-hand-side of Equation 58 is minimized over R(N ,M0) by G∗, and therefore, S will be
controlled if and only if the criterion of Equation 56 holds.

A siphon S controlled by means of the criterion of Theorem 4 will be characterized as an implicitly
controlled siphon. The corresponding generator vectors vi, i = 1, . . . , n, of Equation 55, will be called
the controlling generators of S. In order to operationalize the criterion of Theorem 4, we must provide an
analytic characterization of the constraint M ∈ R(N ,M0). This can be done effectively using the theory
presented in [18]. Alternatively, one can compromise for a sufficiency test by relaxing the requirement
M ∈ R(N ,M0) in Equation 57 to that expressed by the state equations 72 and 73, in the Appendix. We
state the resulting criterion as a corollary.

Corollary 3 Let S denote a siphon of a pure marked PN N = (P, T,W ,M0) such that

NF (λS) =
n∑

i=1

aiNF (vi) (59)
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where vi, i = 1, . . . , n, are GCM generators of N , and ai ∈ <, ∀i. Also, let

G′ = min
(M,z)

(M −M0)T
n∑

i=1

aiv
i (60)

s.t.
M = M0 + Θz (61)

M ≥ 0, z ∈ (Z+
0 )|T | (62)

Then,
λT

SM0 +G′ > 0 =⇒ S is controlled in N (63)

Notice that the mathematical programming (MP) formulation involved in the criterion of Corollary 3
is a Mixed Integer Program (MIP), and therefore, it can be easily addressed through commercial solvers.15

Next we present another criterion that is weaker than the criterion of Corollary 3, but it connects the
presented results to those originally derived in [9]. Furthermore, this new criterion can be simpler, from
a computational standpoint.

Corollary 4 Let S denote a siphon of a pure marked PN N = (P, T,W ,M0) such that

NF (λS) =
n∑

i=1

aiNF (vi) (64)

where vi, i = 1, . . . , n, are GCM generators of N , and ai ∈ <, ∀i. Also, for every i ∈ {1, . . . , n}, let
GCM(vi) and GCM(vi) respectively denote a lower and an upper bound of GCM(M,vi), for all M
such that

M = M0 + Θz (65)

M ≥ 0, z ∈ (Z+
0 )|T | (66)

Finally, let

G′′ =
∑

i:ai>0

ai[GCM(vi)−GCM(M0, v
i)] +

∑
i:ai<0

ai[GCM(vi)−GCM(M0, v
i)] (67)

Then,
λT

SM0 +G′′ > 0 =⇒ S is controlled in N (68)

The validity of Corollary 4 can be easily established by noticing that

(M −M0)T
∑

i

aiv
i =

∑
i

ai(MT vi −MT
0 v

i)

=
∑

i

ai[GCM(M,vi)−

GCM(M0, v
i)] (69)

Then, the definitions of GCM(vi) and GCM(vi), when combined with Equations 60-62, 65-67 and 69,
imply that G′ ≥ G′′ and the validity of Corollary 4 follows from Corollary 3.

15In fact, the integrality requirement for z can be further relaxed to z ≥ 0, providing a test that is computationally
easier, but also with diminished resolution power, compared to the test of Corollary 3.
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Figure 20: The nets N and N c of Example 5

Beyond providing a sufficiency test for assessing whether a given siphon S is implicitly controlled
by a set of GCM generator vectors {vi : i = 1, . . . , n}, the result of Corollary 4 can also provide the
basis for deploying a control mechanism that will actively enforce the implicit control of siphon S by
some generator set {vi : i = 1, . . . , n}. Under this approach, the upper and lower bounds GCM(vi) and
GCM(vi), i = 1, . . . , n, are “design parameters”, and their values are chosen such that they guarantee
the condition of Equation 68. The selected bounds can be subsequently enforced on the behavior of the
original net by the addition of appropriate “monitor places”, according to the theory developed in [10].
Finally, it is also known that:

Proposition 1 [9] Given a pure marked PN N = (P, T,W,M0), the rank of the space of net flow vectors
NF (λS), corresponding to the net siphons S, is bounded from above by min{|P |, |T |}.

Hence, the entire set of siphons, S, of a pure marked PN N = (P, T,W,M0), can be potentially
controlled by a set of generators, and the resultant monitor places, that is linearly sized with respect to
the net size |N |. The following example demonstrates this capability and connects the above discussion
to the context of process-resource nets and algebraic DAPs.

Example 5 Consider the net N depicted by solid lines in Figure 20, under the supervision of the
algebraic DAP expressed by the following constraints:

 1 1 1 1
1 1 1 1
1 1 1 1



M(p11)
M(p12)
M(p13)
M(p21)
M(p22)
M(p23)

 ≤

 1
2
1

 (70)

The control sub-net enforcing the constraints of Equation 70 on N is also depicted in Figure 20, through
dashed lines. The resulting controlled net, N c, has been shown to be live and reversible in [12]. Here
we re-establish the liveness of net N c, and the correctness of the DAP expressed by Equation 70, by
applying the siphon control criterion of Corollary 4.

The characteristic vectors of the minimal siphons in the controlled net N c of Figure 20 are tabulated
in Table 2. Siphons S1–S8 correspond to the support of p-semiflows, and therefore, they are already
controlled. The net flows NF (λSk

) of the remaining uncontrolled siphons Sk, k = 9, 10, 11, can be
expressed as linear combinations of the net flows NF (vl) corresponding to the GCM generator vectors
vl, l = 1, . . . , 6, presented in Table 3; Table 4 provides the relevant coefficients al

k, l = 1, . . . , 6, k =
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Table 2: Example 5: The minimal siphons of the controlled net N c

siphon p10 p11 p12 p13 p20 p21 p22 p23 r1 r2 r3 w1 w2 w3

S1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
S2 0 0 0 0 1 1 1 1 0 0 0 0 0 0
S3 0 1 0 0 0 0 0 1 1 0 0 0 0 0
S4 0 0 1 0 0 0 1 0 0 1 0 0 0 0
S5 0 0 0 1 0 1 0 0 0 0 1 0 0 0
S6 0 1 0 0 0 1 1 1 0 0 0 1 0 0
S7 0 1 1 0 0 1 1 0 0 0 0 0 1 0
S8 0 1 1 1 0 1 0 0 0 0 0 0 0 1
S9 0 0 1 0 0 0 0 1 1 1 0 0 0 0
S10 0 0 0 1 0 0 1 0 0 1 1 0 0 0
S11 0 0 0 1 0 0 0 1 1 1 1 0 0 0

Table 3: Example 5: The GCM generators, vl, employed for the expansion of the net flow vectors
NF (λSk

), k = 9, 10, 11, and the associated bounds used in the evaluation of the criterion of Corollary 4

gen. p10 p11 p12 p13 p20 p21 p22 p23 r1 r2 r3 w1 w2 w3 GCM GCM
v1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 1
v2 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 2
v3 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1
v4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
v5 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
v6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1

Table 4: Example 5: The coordinates for the expansions of NF (λSk
), k = 9, 10, 11, as linear combina-

tions of NF (vl), l = 1, . . . , 6, and the obtained values for the test of Corollary 4

siphon a1 a2 a3 a4 a5 a6 λT
SM0 +G′′(S)

S9 0.0 -1.0 0.0 0.0 1.0 1.0 3-2=1
S10 0.0 0.0 0.0 0.0 -1.0 -1.0 3-2=1
S11 0.0 -1.0 0.0 0.0 0.0 0.0 4-2=2
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9, 10, 11, for these expansions. Notice that the vector set {vl, l = 1, . . . , 6} contains the GCM generator
set {vi, i = 1, 2, 3}, that is induced by the DAP constraints of Equation 70, and an additional vector
set {vj , j = 4, 5, 6}, selected in a way that facilitates the aforementioned expansion of the vector set
{NF (λSk

)}, k = 9, 10, 11.
Table 3 also provides the bounds GCM(vl) and GCM(vl) used in the evaluation of G′′, during the

application of the criterion of Corollary 4 to the siphons Sk, k = 9, 10, 11. The values of GCM(vl) are
obtained immediately by noticing that (i) MT · vl ≥ 0, ∀l, (ii) vl(p) > 0 =⇒ p ∈ PS , ∀p ∈ P , and
(iii) M0(p) = 0, ∀p ∈ PS . The values of GCM(vl) were obtained by solving the following MIP for each
l ∈ {1, . . . , 6}:

GCM(vl) = max
(M,z)

MT · vl

s.t.

Equations 65 and 66

Finally, Table 4 provides also the values obtained for the left-hand-side of the inequality that is
employed by the test of Corollary 4 (c.f. Equation 68), based on the aforementioned expansions and
bounds. Since all the obtained values are strictly greater than zero, it is concluded that the net N c is
live, and the DAP of Equation 70 is a correct DAP for the original net N .

The work of [12] has also established that the DAP obtained by replacing the right-hand-side of
Equation 70 with the vector [2 4 2]T , is another correct DAP for net N . Interestingly, the application of
the test of Corollary 4, based on the GCM generator set {vl} of Table 3, fails to recognize the ability of
this new DAP to control the siphons S9 and S10 of Table 2. On the other hand, this effect is successfully
recognized by the more powerful test of Corollary 3. We leave the relevant computational details to the
reader.

7 Conclusions

This chapter started with the observation that the flexible automation pursued in the context of many
contemporary technological application necessitates the explicit logical analysis and control of these
environments with respect to the underlying resource allocation, and subsequently it offered a unified
and comprehensive treatment of the theory of algebraic deadlock avoidance policies, that provides an
effective and efficient solution to the emerging logical control problems. The presented developments
characterized the state of art in the relevant research area, and, hopefully, they have also revealed its
maturity and vigor. At the same time, these results can function as the starting point for additional
developments in the field in terms of, both, theory and application.

On the theoretical side, a novel research direction was recently developed by [21], which introduced
the notion of generalized algebraic DAP, based on the notion of “committee machine” that was borrowed
from pattern recognition and machine learning. The key property of generalized algebraic DAPs is that,
when viewed as pattern classifiers in the underlying state space, they can recognize non-convex state
subsets, something that is not possible with the linear structure of algebraic DAPs. The work of [21]
extends the design methodology presented in Section 4 to this new class of policies, but currently, we
lack a complete understanding and characterization of the properties of these policies in the spirit of
Sections 5 and 6. An even more prominent open problem on the theoretical side is the development
of the necessary theory for the effective and systematic integration of logical and performance-oriented
control. Some preliminary thoughts and results along these lines are reported in [17, 4].

From an application standpoint, the ultimate objective of the research program underlying the results
presented in this work, is the integration of the developed theory to a control architecture that will
function as the next-generation “operating system”, able to support robust, yet highly flexible and
efficient operation of the target technological applications. While this effort can be initiated and led by
the relevant research community, a profound understanding of, and extensive interaction with, the target
industries is of paramount importance for the successful implementation and the eventual acceptance of
the final product.
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Appendix: Petri nets – Basic Concepts and Definitions

A formal definition of the Petri net model is as follows:

Definition 6 [11] A Petri net (PN) is defined by a quadruple N = (P, T,W, M0), where

• P is the set of places,

• T is the set of transitions,

• W : (P × T ) ∪ (T × P ) → Z+
0 is the flow relation, and

• M0 : P → Z+
0 is the net initial marking, assigning to each place p ∈ P , M0(p) tokens.

The first three items in Definition 6 essentially define a weighted bipartite digraph representing the
system structure that governs its underlying dynamics. The last item defines the system initial state. A
conventional graphical representation of the net structure and its marking depicts nodes corresponding
to places by empty circles, nodes corresponding to transitions by bars, and the tokens located at the
various places by small filled circles. The flow relation W is depicted by directed edges that link every
nodal pair for which the corresponding W -value is non-zero. These edges point from the first node of
the corresponding pair to the second, and they are also labeled – or, ”weighed” – by the corresponding
W -value. By convention, absence of a label for any edge implies that the corresponding W -value is equal
to unity.

PN structure-related concepts and properties Given a transition t ∈ T , the set of places p for
which (p, t) > 0 (resp., (t, p) > 0) is known as the set of input (resp., output) places of t. Similarly,
given a place p ∈ P , the set of transitions t for which (t, p) > 0 (resp., (p, t) > 0) is known as the set
of input (resp., output) transitions of p. It is customary in the PN literature to denote the set of input
(resp., output) transitions of a place p by •p (resp., p•). Similarly, the set of input (resp., output) places
of a transition t is denoted by •t (resp., t•). This notation is also generalized to any set of places or
transitions, X, e.g. •X =

⋃
x∈X

•x.
The ordered set X =< x1 . . . xn > ∈ (P ∪T )∗ is a path, if and only if (iff ) xi+1 ∈ x•i , i = 1, . . . , n−1.

Furthermore, a path X is characterized as a circuit iff x1 ≡ xn.
A PN with a flow relation W mapping onto {0, 1} is said to be ordinary . If only the restriction of W

to (P × T ) maps on {0, 1}, the PN is said to be PT -ordinary . An ordinary PN such that (s.t.) ∀t ∈ T ,
|t•| = |•t| = 1, is characterized as a state machine, while an ordinary PN s.t. ∀p ∈ P , |p•| = |•p| = 1, is
characterized as a marked graph.

A PN is said to be pure if ∀(x, y) ∈ (P × T ) ∪ (T × P ), W (x, y) > 0 ⇒ W (y, x) = 0. The flow
relation of pure PN’s can be represented by the flow matrix Θ = Θ+ − Θ− where Θ+(p, t) = W (t, p)
and Θ−(p, t) = W (p, t).

PN dynamics-related concepts and properties In the PN modeling framework, the system state
is represented by the net marking M , i.e., a function from P to Z+

0 that assigns a token content to the
various net places. The net marking M is initialized to marking M0, introduced in Definition 6, and it
subsequently evolves through a set of rules summarized in the concept of transition firing . A concise
characterization of this concept has as follows: Given a marking M , a transition t is enabled iff for every
place p ∈ •t, M(p) ≥W (p, t), and this is denoted by M [t〉. t ∈ T is said to be disabled by a place p ∈ •t
at M iff M(p) < W (p, t). Furthermore, a place p ∈ P for which there exists t ∈ p• s.t. M(p) < W (p, t)
is said to be a disabling place at M . Given a marking M , a transition t can be fired only if it is enabled
in M , and firing such an enabled transition t results in a new marking M ′, which is obtained from M
by removing W (p, t) tokens from each place p ∈ •t, and placing W (t, p′) tokens in each place p′ ∈ t•.
For pure PN’s, the marking evolution incurred by the firing of a transition t can be concisely expressed
by the state equation:

M ′ = M + Θ · 1t (71)
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where 1t denotes the unit vector of dimensionality |T | and with the unit element located at the component
corresponding to transition t.

The set of markings reachable from the initial markingM0 through any fireable sequence of transitions
is denoted by R(N ,M0) and it is referred to as the net reachability space. In the case of pure PN’s, a
necessary condition for M ∈ R(N ,M0) is that the following system of equations is feasible in z:

M = M0 + Θz (72)

M ≥ 0, z ∈ Z+
0 (73)

A PN N = (P, T,W,M0) is said to be bounded iff all markings M ∈ R(N ,M0) are bounded. N is
said to be structurally bounded iff it is bounded for any initial marking M0. N is said to be reversible iff
M0 ∈ R(N ,M), for all M ∈ R(N ,M0). A transition t ∈ T is said to be live iff for all M ∈ R(N ,M0),
there exists M ′ ∈ R(N ,M) s.t. M ′[t〉; non-live transitions are said to be dead at those markings
M ∈ R(N ,M0) for which there is no M ′ ∈ R(N ,M) s.t. M ′[t〉. PN N is quasi-live iff for all t ∈ T ,
there exists M ∈ R(N ,M0) s.t. M [t〉; it is weakly live iff for all M ∈ R(N ,M0), there exists t ∈ T s.t.
M [t〉; and it is live iff for all t ∈ T , t is live. A marking M ∈ R(N ,M0) is a (total) deadlock iff every
t ∈ T is dead at M .16

Siphons and their role in the interpretation of the PN deadlock Of particular interest for the
liveness analysis of the PN’s considered in this chapter is a structural element known as siphon, i.e., a
set of places S ⊆ P such that •S ⊆ S•. A siphon S is minimal iff there exists no other siphon S′ s.t.
S′ ⊂ S. A siphon S is said to be empty at marking M iff M(S) ≡

∑
p∈S M(p) = 0. S is said to be

deadly marked at marking M , iff every transition t ∈ •S is disabled by some place p ∈ S. Clearly,
empty siphons are deadly marked siphons. It is easy to see that, if S is a deadly marked siphon at some
marking M , then (i) ∀t ∈ •S, t is a dead transition in M , and (ii) ∀M ′ ∈ R(N ,M), S is deadly marked.
Furthermore, the next theorem establishes a strong relationship between the notion of deadly marked
siphon and that of the PN deadlock:

Theorem 5 [17] Given a deadlock marking M of a PN N = (P, T,W,M0), the set of disabling places
S ⊆ P in M constitutes a deadly marked siphon.

PN semiflows PN semiflows provide an analytical characterization of various concepts of invariance
underlying the net dynamics. Generally, there are two types, p and t-semiflows, with a p-semiflow
formally defined as a |P |-dimensional vector y satisfying yT Θ = 0 and y ≥ 0, and a t-semiflow formally
defined as a |T |-dimensional vector x satisfying Θx = 0 and x ≥ 0. In the light of Equation 72, the
invariance property expressed by a p-semiflow y is that yTM = yTM0, for all M ∈ R(N ,M0). Similarly,
Equation 72 implies that for any t-semiflow x, M = M0 + Θx = M0.

Given a p-semiflow y (resp., t-semiflow x) its support is defined as ‖y‖ = {p ∈ P | y(p) > 0} (resp.,
‖x‖ = {t ∈ T | x(t) > 0}). A p-semiflow y (resp., t-semiflow x) is said to be minimal iff there is no
p-semiflow y′ (resp., t-semiflow x′) s.t. ‖y′‖ ⊂ ‖y‖ (resp., ‖x′‖ ⊂ ‖x‖).

PN merging We conclude this introductory discussion on the PN concepts and properties by defining
a merging operation for two PN’s: Given two PN’s N1 = (P1, T1,W1,M01) and N2 = (P2, T2,W2,M02)
with T1∩T2 = ∅ and P1∩P2 = Q 6= ∅ s.t. for all p ∈ Q, M01(p) = M02(p), the PN N resulting from the
merging of the nets N1 and N2 through the place set Q, is defined by N = (P1∪P2, T1∪T2,W1∪W2,M0)
with M0(p) = M01(p), ∀p ∈ P1\P2; M0(p) = M02(p), ∀p ∈ P2\P1; M0(p) = M01(p) = M02(p), ∀p ∈
P1 ∩ P2.
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