
Optimal linear separation of the safe and unsafe subspaces of

sequential resource allocation systems as a set-covering

problem: algorithmic procedures and geometric insights

Spyros Reveliotis and Ahmed Nazeem

School of Industrial & Systems Engineering

Georgia Institute of Technology

{spyros@isye.,anazeem@}gatech.edu

Abstract

A recent line of work has posed the design of the maximally permissive deadlock avoidance

policy for a particular class of sequential resource allocation systems as a linear classification prob-

lem. It has also identified a connection between the classifier design problem addressed by it and

the classical set-covering problem that has been studied in Operations Research and Computer Sci-

ence. This paper seeks to explore and formalize further this connection, in an effort to (i) develop

novel insights regarding the geometric and combinatorial structure of the classifier design prob-

lem mentioned above; (ii) set an analytical base for the development of additional customized and

computationally (more) efficient algorithms for its solution; and (iii) identify necessary and suffi-

cient conditions, and the corresponding computational tests, for the effective application and the

extension of the representational results in the aforementioned work to broader classes of resource

allocation systems.

Keywords: Discrete Event Systems, Deadlock Avoidance, Classification Theory, Set-Covering

Problem, Polyhedral Theory

1 Introduction

In many contemporary applications, ranging from automated manufacturing systems, to intelligent

transportation systems, to internet-based workflow management systems, and more recently to the par-

allel programs that are developed for the emerging multi-core computer architectures, the underlying

control problems boil down to the effective and efficient management of the allocation of some limited

system resources to a number of concurrently executing processes. These system resources are reusable,

and the contesting processes acquire and release them in a staged manner, where each process stage is

being associated with a multi-set of resources that is necessary for its effective support. The structure

of the multi-sets that express the resource requests of the different stages, and also the sequential logic

that defines the process transitions among their processing stages can be quite arbitrary, while in many

cases, it is further required that a process must first secure the resource differential that is necessary for

the support of its subsequent stage before it releases any currently held resources that are not needed for

the next stage. This hold-while-wait effect, when combined with the arbitrary structure of the logic that

defines the process resource allocation requests, can give rise to circular waiting patterns where a set of

executing processes is waiting upon each other for the release of resources that are necessary for their

further advancement. The resulting situation is characterized as a deadlock in the relevant literature, and

the need for its effective resolution becomes especially prominent as the aforementioned applications

migrate to operational modes that seek to combine the advantages and efficiencies of automation with

the operational efficiencies and the flexibility that result from extensive concurrency and choice.

In fact, the problem of deadlock prevention / avoidance in the aforementioned operational contexts

is a well established problem in the controls systems literature. From a methodological standpoint,

this problem is typically addressed by modeling the resource allocation function that takes place in

the aforementioned environments through an abstraction that is known as a resource allocation system

(RAS) [24], and subsequently analyzing the RAS behavior with respect to (w.r.t.) deadlock by using

concepts and techniques borrowed from qualitative Discrete Event Systems (DES) theory [4]. In par-

ticular, due to the extensive randomness that is typically present in the execution of the aforementioned

processes, the relevant research community has come to the conclusion that robust solutions to the

considered deadlock avoidance problem cannot be based on the control of the specific timing of the

execution of the various resource allocation events but only on the control of their logical sequencing, in

the sense that this sequencing is defined by the representational framework of formal languages [4, 13].

Ideally, the imposed control logic – known as the deadlock avoidance policy (DAP) – should allow all

the resource allocation sequences that can be extended to a terminating sequence for all the enacted pro-

cesses. Such a DAP is characterized as maximally permissive in the relevant literature, and essentially it

constitutes a “filter” that extracts from the original feasible behavioral space of the underlying RAS the

maximal admissible sub-space, where admissibility is defined on the basis of deadlock-free behavior.

Once deadlock-free operation has been secured, a second level of control must be applied that will bias

the system admissible behavior in a way that it aligns with certain, typically time-related, performance

objectives. 1

1From a conceptual standpoint, this second control level is closer to the more traditional scheduling problems that have

been considered for the aforementioned application domains.

2

Given the above description of the role and function of the maximally permissive DAP, it is not

hard to see that a sufficient statistic for the effective characterization of this policy is the number of

process instances that execute each of the processing stages that are supported by the system, across

all of the system process types; this information determines completely the current allocation of the

system resources and all the possible ways for its future evolution, and in more technical terms, it

constitutes the RAS state. The state space that results from this definition of the RAS state is further

endowed with a transition structure that models the possible evolution of the system processes among

their processing stages, while respecting the availability of the system resources and the aforementioned

resource allocation protocol. In this way, the underlying RAS dynamics can be formalized into a state

automaton [4]. This state automaton is also finite, since the number of processes that can execute

concurrently any given processing stage is limited by the finite availability of the supporting resources.

Once a finite state automaton (FSA) - based representation of the RAS dynamics has been obtained,

a formal characterization of the corresponding maximally permissive DAP can be obtained through ba-

sic, search-based enumerative techniques that assess the co-reachability w.r.t. the target empty state of

any given RAS state in the underlying state transition diagram (STD); these techniques can be traced in

any text on DES supervisory control theory, like [4]. In the relevant terminology of the RAS supervisory

control theory, the subspace of co-accessible states, that is admitted by the maximally permissive DAP,

is known as the RAS safe space, while its complement is characterized as the unsafe space. Further-

more, assuming the availability of a mechanism that can resolve the safety of any given RAS state, the

maximally permissive DAP can be implemented through a single-step-lookahead scheme that simply

tests the safety of the state that results from a tentative process transition, and admits this transition only

if the resulting state is safe. However, a practical complication of such a control scheme arises from

the fact that for most of the RAS structure that arises in the aforementioned application contexts, the

corresponding decision problem of state safety is NP-complete [1, 12, 23]. Faced with this negative

result, the relative research community had sought for a long time to circumvent the implied computa-

tional limitations either (i) by seeking to identify special RAS structure that enables the resolution of

state safety in a polynomial manner w.r.t. any parsimonious representation of the underlying RAS, or

(ii) by compromising with suboptimal solutions that substitute the safety property with surrogate prop-

erties that guarantee deadlock-free behavior and are polynomially evaluated on any given RAS state;2

comprehensive expositions of these results can be found in [24, 26, 15].

Yet, more recently, and under the increasing pressures for process concurrency and operational flex-

2In more technical terms, these alternative properties are able to recognize a strongly connected component of the under-

lying RAS safe subspace that also contains the target empty state, but not necessarily the maximal one. Dijkstra’s Banker’s

algorithm [9] and various more recent implementations of it in the context of the considered RAS [2, 14, 10] are some well

known policies of this type.

3

ibility that was mentioned in the opening paragraph, there has been a new, more aggressive approach

towards the implementation of the maximally permissive DAP in the aforementioned application con-

texts, that seeks the real-time deployment of this policy, in spite of the established NP-hardness. This

new approach is motivated and enabled by the following remarks: From the above description of the

RAS (optimal) deadlock avoidance problem, it is clear that the maximally permissive DAP acts as a

“classifier” that dichotomizes the RAS behavioral space into its safe and unsafe subspaces. In partic-

ular, this state classification capability is at the core of the one-step-lookahead implementation of the

maximally permissive DAP that was discussed in the previous paragraph. And while it is known that

assessing the state safety is an NP-complete task, it might be possible to pre-compute the safety of the

various states through an expensive “off-line” computation that uses the classical FSA-based represen-

tation of the RAS dynamics, and subsequently re-hash the obtained results in an alternative represen-

tation that will enable the “on-line” safety assessment of any given RAS state through a streamlined,

more efficient computation. The construction of this last representation can be based on the interpre-

tation of the maximally permissive DAP as a classifier, and draw upon concepts and results borrowed

from classification theory [22]. Specific implementations of these ideas can be traced in the works of

[20, 17, 19, 18, 8, 5].

A pertinent selection of the classifier structures that can effectively represent the RAS state safety

concept, can be based on (i) the definition of the RAS state as a vector of nonnegative integers, and

(ii) the finiteness of the safe and unsafe subspaces. More specifically, it is well known that any pair of

finite vector sets from a Euclidean space can be effectively separated by a two-tier structure of linear

inequalities known as a “(generalized) committee machine” [22], where the first set of inequalities

is applied directly upon the classified vector and the second set is applied upon the set of indicator

variables that express the satisfaction of the first layer of inequalities. Furthermore, the binary nature

of the vectors that are processed by the second layer of inequalities, implies that one can substitute this

second layer of inequalities of a committee machine by a Boolean function that recognizes the binary

images of the accepted input vectors that are generated by the first layer of inequalities. In the sequel,

we shall refer to these two classifier classes as non-linear classifiers. Finally, in [20] it is also shown

that in the particular case where the underlying RAS state space is binary, effective separation of the

safe and unsafe subspaces can be attained by a single layer of linear inequalities. Such a classifier will

be characterized as linear.

In the sequel, we shall focus primarily on the particular class of linear classifiers. As explained in

the previous paragraphs, for any given RAS instance, we are interested in the representation of the cor-

responding maximally permissive DAP by a (structurally) minimal element of the considered class of

classifiers, i.e., by a classifier from the considered class that will characterize correctly the safety of the

4

various RAS states while minimizing the involved “on-line” computational cost. For linear classifiers,

this “on-line” cost minimization can be achieved by minimizing the number of the linear inequalities

involved, and the relevant design problem can be posed as a mixed integer programming (MIP) for-

mulation [20]. The tractability of this formulation is established upon a monotonicity property that is

presented by RAS state safety in the context of the considered RAS classes, and it implies that a RAS

state that is component-wise larger than an unsafe state, is also unsafe. In [20] it is shown that thanks

to this monotonicity property, one can design a linear classifier that classifies correctly all the maximal

safe states and the minimal unsafe states of the considered RAS, and the resulting classifier will classify

correctly all the other RAS states as well, provided that all the classifier coefficients are restricted to be

nonnegative. Furthermore, as long as the considered classification problem admits linear classification,

there will exist a minimal linear classifier with nonnegative coefficients; hence, the aforementioned re-

striction impacts neither the feasibility nor the optimality of the considered optimization problem. In

addition, in [20] it has also been shown that in the reduced classification problem, one can project away

the state vector coordinates that are identically priced to zero in the set of minimal unsafe states, and

the obtained classifier will still generalize correctly when applied on the original state space.3 Finally,

the results of [20] have also provided a heuristic for the synthesis of the sought classifier. This heuristic

seeks to design the sought inequalities one at a time, and it can be applied when the MIP formula-

tion that characterizes the optimal classifier remains an intractable proposition. From a more analytical

standpoint, the logic underlying this heuristic has been motivated by and analyzed through a perceived

similarity between the classifier design problem and the minimal set covering problem [25] that has

been studied by the Operations Research (OR) and the Computer Science (CS) communities.

The work presented in this paper seeks to explore further the problem of the representation of the

maximally permissive DAP through a minimal set of linear inequalities, and its connection to the min-

imal set covering problem that was identified in [20]. In particular, the main results of this work give a

complete formal characterization of this connection, by providing a systematic reduction of the (simpli-

fied) classifier design problem of [20] to the classical set covering problem. Hence, at a first level, the

results provided in this work can be perceived as an alternative algorithmic procedure for the resolution

of the optimal classifier design problem that is addressed in [20]. Even more importantly, however, the

analysis that provides the aforementioned reduction also reveals additional important structure regarding

the geometry of the classifier design problem addressed in the aforementioned works, and the particular

elements in this geometry that determine the problem feasibility and optimality. When viewed from this

standpoint, an important contribution of the presented work is a necessary and sufficient condition for

3In more practical terms, the removed state coordinates correspond to processing stages that will never get entangled in a

deadlock.

5

the existence of a linear classifier representing the maximally permissive DAP for any given instance

from the considered RAS class.4 Furthermore, the geometric results and insights obtained by the anal-

ysis that is pursued in this work, and also the consideration of the optimal classifier design problem as

a set covering problem defined in terms of certain state subsets, provide a starting point for the devel-

opment of novel and more efficient customized algorithms for this problem. A first set of results along

these lines can be found in [7, 6]; we briefly overview these results in Section 5.

In light of the above discussion, the rest of the paper is organized as follows: Section 2 provides

a formal statement of the classifier design problem considered in this work, as abstracted from the

results of [20], and it also summarizes some results from [20] that will be useful in the subsequent

developments. Section 3 presents the main results of the paper, that will enable the problem reduction

to a set covering problem and the further geometrical insights that were mentioned above. Section 4

provides a small but highlighting example of the main ideas and techniques presented in Section 3, while

Section 5 elaborates on the more practical aspects of the derived results and their further implications.

Finally, Section 6 concludes the paper by summarizing its results and outlining some directions for

future work.

2 The considered classification problem

The reduced state classification problem that was introduced in the previous section can be formally

described as follows: Consider two finite vector subsets of (Z+
0)

ξ, S and U, and let I ≡ {1, . . . ,ξ}, i.e.,

I denotes the set of dimensions of the space where S and U live. Set S corresponds the maximal safe

states of the introductory discussion, set U corresponds to the minimal unsafe states, and furthermore, it

is assumed that any dimensions that are identically equal to zero in the minimal unsafe states have been

removed from both of these sets. In addition, the sets S and U satisfy the following properties:

Property 1 There is no dominance either in S or in U w.r.t. the relation ”≤”, where the latter is defined

through componentwise application. Furthermore, there is no pair (s,u) ∈ S ×U such that u≤ s.

Property 2 There is no i ∈ I such that si = 0, ∀s ∈ S , or ui = 0, ∀u ∈U.

Property 1 expresses the maximality of the elements of S and the minimality of the elements of

U in the reduced classification problem described in Section 1, and also, the monotonicity property of

state safety that was established in [20]. On the other hand, the first part of Property 2 results from the

fact that, in a well-defined RAS, every processing stage can be safely executed by a process instance

4We remind the reader that the results of [20] establish the binary nature of the underlying RAS state space only as a

sufficient condition for the existence of a linear classifier.

6

of the corresponding process type that runs in the considered RAS in isolation. The second part of

Property 2 expresses the aforementioned fact that in the simplified classification problem, dimensions

that are identically equal to zero in the set of minimal unsafe states have been projected away.

We also emphasize that, in the following developments, the components of the classified vectors are

considered as non-negative integers, but not necessarily binary (which is the case in [20]). While the

imposition of a binary constraint for the elements of S and U provides a guarantee for the existence of

a linear classifier, as established in [20], it is not necessary for the development of the results pursued in

this work. In fact, allowing the elements of S and U to take non-binary values will provide important

insights about the potential non-existence of a linear classifier in this broader setting, and will facilitate

a systematic investigation of the conditions that enable linear separation.

Following the developments of [20], we define the notion of a linear classifier for the aforemen-

tioned sets S and U as follows:

Definition 1 A linear classifier C for the sets S and U introduced in the previous paragraphs is any set

of linear inequalities {(ai,bi), i= 1, . . . ,n} such that (i) bi≥ 0, ∀i; (ii) ∀s∈ S ,∀i∈{1, . . . ,n}, aT
i ·s≤ bi;

and (iii) ∀u ∈U,∃i ∈ {1, . . . ,n} with aT
i ·u > bi.

The non-negativity requirement in item (i) of Definition 1 results from requirement that the con-

structed classifier must classify correctly the entire safe and unsafe subspaces of the underlying RAS.

In particular, the state s0 ≡ 0, which corresponds to the RAS empty state, must be recognized as a safe

state.5 Let C(S ,U) denote the entire set of linear classifiers for two given sets S and U that meet the

requirements of Definition 1. Also, for any classifier C ∈ C(S ,U), let card(C) denote the number of

inequalities employed by C . Then, we have the following notion of optimality defined over the elements

of C(S ,U):

Definition 2 A classifier C ∗ ∈C(S ,U) is an optimal linear classifier for the sets S and U iff card(C ∗)=

inf{card(C) : C ∈ C(S ,U)}.

Notice that, since card(C) ∈ Z+, the above notion of the optimal classifier is well-defined, as long

as C(S ,U) 6= /0 (i.e., the sets S and U are indeed linearly separable). The next theorem provides

an additional important result for the linear classification problem and its optimizing version that are

defined respectively by Definitions 1 and 2; this result can be traced in the developments of [20].

5The reader should also notice the asymmetry in the role of the sets S and U in the classification logic of Definition 1. This

asymmetry results by the further intention to eventually obtain a distributed implementation of the derived classifier, by means

of the Petri net modeling framework [16]. This framework facilitates the imposition upon the plant dynamics of constraints

expressed as conjunctions of linear inequalities, but not as disjunctions of such inequalities.

7

Theorem 1 Consider the finite sets S and U of (Z+
0)

ξ that possess Property 1, and further assume that

C(S ,U) 6= /0. Then, there exists an optimal classifier C ∗ for S and U with ai ≥ 0, ∀i.

The practical significance of the result of Theorem 1 is that it allows us to limit our search for

an optimal linear classifier in the subset of C(S ,U) that involves only classifiers with non-negative

coefficients.6 Let us denote this subset by C+(S ,U). Then, we can epitomize the classification problem

that is considered in this work as follows:

Definition 3 Given the finite sets S and U of (Z+
0)

ξ that possess Properties 1 and 2, find an optimal

(i.e., min-card) classifier C ∗ ∈ C+(S ,U), provided that S and U are linearly separable.

We close this section with the introduction of some further concepts and remarks that will be useful

in the subsequent developments.

Definition 4 Given a finite set X of (Z+
0)

ξ and an inequality (a,b), we shall say that (a,b) is valid w.r.t.

X iff aT ·x≤ b, ∀x ∈ X.

According to the problem statement of Definition 3, in the rest of this work we are primarily in-

terested in valid inequalities (a,b) w.r.t. the set S that also satisfy a ≥ 0∧ b ≥ 0. In fact, unless stated

otherwise, this non-negativity assumption will be implicitly assumed in the following. The reader should

also notice that any such valid inequality (a,b) w.r.t. S will have b > 0 since, otherwise, Property 2 to-

gether with the non-negativity of a and of the elements of S will imply that a = 0, as well, and we shall

end up with the trivial identity 0T · s = 0. But if b > 0, we can divide both sides of the inequality (a,b)

by b, getting its normalized version (a′,1), where ∀i ∈ I, a′[i] = a[i]/b. Such a normalization allows

the representation of the inequalities in C+(S ,U) only through the vectors a′ of (R+
0)

ξ that collect the

coefficients that appear in their left-hand-side, and it is the representation that will be adopted in the

following.

Finally, given two linearly separable sets S and U, a classifier C ∈ C+(S ,U), and a (normalized)

inequality a of C , we shall denote by Ua the set of points u ∈ U that are separated by a; i.e., u ∈

Ua⇐⇒ aT ·u > 1. The reader should also notice that for any pair of inequalities ai and a j belonging

to an optimal classifier C ∗ ∈C+(S ,U), Uai \Ua j 6= /0, since, otherwise, inequality ai could be removed

from C ∗ without affecting the classifier’s capability to separate sets S and U (and therefore C ∗ cannot

be optimal).

6As explained in the introductory section, this sign restriction is crucial for being able to reduce the original classifier

design problem that characterizes the maximally permissive DAP to the (much) simpler classification problem that addresses

explicitly only the classification of maximal safe and minimal unsafe states; this last possibility is instrumental for ensuring

the computational tractability of the entire approach of [20].

8

3 Main results

In the first part of this section, we provide a series of results that will enable the reduction of the

classifier design problem of Definition 3 to an equivalent set-covering problem, where the covering sets

are defined by valid inequalities w.r.t. set S . This reduction also provides an alternative algorithm for

the solution of the classifier design problem of Definition 3. In the second part, we provide additional

geometrical insights and computational procedures that (i) can streamline the classifier design algorithm

developed in the first part, and also (ii) can help resolve the problem of the existence of a linear classifier

for any pair of sets S and U of (Z+
0)

ξ that also possess Properties 1 and 2.

3.1 Reducing the considered classifier-design problem to a set-covering problem

In this subsection, we assume that for the considered sets S and U, C+(S ,U) 6= /0; i.e., there exists a

linear classifier C for the sets S and U, and furthermore, all the inequalities of C have non-negative

coefficients. The next result establishes that the existence of the classifier C mentioned above implies

also the existence of another classifier C ′ ∈C+(S ,U) with some stronger topological properties than C

w.r.t. the spatial distribution of the elements of S .

Proposition 1 Suppose that the considered sets S and U are linearly separable, and let C ∈C+(S ,U).

Then, for every inequality a in C there is another inequality a′ such that: (i) Ua′ ⊇Ua; (ii) a′ is valid

w.r.t. S ; and (iii) ∃s ∈ S such that a′ · s = 1.

Proof: Since a is an inequality of C , it is a valid inequality w.r.t. S ; i.e.,

∀s ∈ S , aT · s≤ 1 (1)

Define

ε≡min{s ∈ S : 1−aT · s} (2)

Equation 1, combined with the non-negativity of aT · s, ∀s ∈ S , implies that ε ∈ [0,1]. Further-

more, Property 2 implies that max{s ∈ S : aT · s} > 0, and therefore, ε 6= 1. But then, the (normalized)

inequality defined by the vector

a′ =
1

1− ε
a (3)

is a valid inequality w.r.t. S that also satisfies the condition of part (iii) of the proposition. Furthermore,

we have that

∀u ∈Ua, aT ·u > 1≥ 1− ε (4)

and therefore, part (i) of the proposition is also true. �

9

Proposition 1 implies that for any linearly separable pair of sets S and U, we can restrict the search

for an optimal classifier to those elements of C+(S ,U) consisting of linear inequalities that bind at (at

least) one s ∈ S . Next, we provide a systematic characterization of the linear inequalities that are valid

inequalities w.r.t. S and satisfy the aforementioned additional requirement.

We start by characterizing the elements of S that can bind at least one valid inequality w.r.t. this set;

in the following, we shall denote the subset of S that collects all these elements by S ′.

Proposition 2 An s′ ∈ S belongs to S ′ iff the optimal value of the following LP is non-negative.

max
(a,h)

h (5)

s.t.

aT · s′ = 1 (6)

aT · s+h≤ 1, ∀s ∈ S \{s′} (7)

a≥ 0 (8)

Furthermore, if S includes only binary vectors,7 then S ′ = S .

Proof: To prove the first part of Proposition 2, we start by noticing that since (i) aT · s≥ 0, ∀a,s, and

(ii) S is a finite set, the LP of Equations 5–8 will always have a finite optimal solution. Furthermore,

if there is an inequality a that is valid w.r.t. S and binds at s′, then, every corresponding inequality

defined by Constraint 7 will have a non-negative slack, and therefore, the considered LP will have a

non-negative optimal value. On the other hand, a negative optimal value for the considered LP implies

that, for every selection of a, there is at least one inequality among those defined by Constraint 7 that is

violated. Therefore, there is no valid inequality w.r.t. S that binds at s′, and s′ 6∈ S ′.

To prove the second part of Proposition 2, consider a vector s∈ S and let ||s|| denote its support, i.e.,

||s|| ≡ {i ∈ IP : s[i] = 1}. Also, let K ≡ card(||s||). Properties 1 and 2 imply that K > 0. Finally, define

the vector a ∈ (R+
0)

ξ as follows:

∀i ∈ I, a[i] =

 1
K , if i ∈ ||s||

0, o.w.
(9)

It can be easily checked that if all the vectors of S are binary, the linear inequality defined by a is

a valid inequality w.r.t. S and binds at s. Hence, s ∈ S ′. Since s was chosen arbitrarily, it follows that

S ⊆ S ′. Also, from the definition of S ′, S ′ ⊆ S . Hence, S ′ = S . �
7As is the case considered in [20]

10

Next, consider an s ∈ S ′ and let A(s) denote the set of valid inequalities w.r.t. S that pass through s;

i.e.,

A(s)≡ {a : aT · s = 1; ∀s′ ∈ S \{s}, aT · s′ ≤ 1; a≥ 0} (10)

Property 2 implies that A(s) is a polytope,8 and its extreme points are deterimed by the binding of

the two types of inequalities that appear in its defnition. Let A′(s) denote the set of the extreme points of

A(s), and A′(s) denote the subset of A′(s) containing its maximal elements. Then, we have the following

result.

Proposition 3 Consider a point u ∈ U and suppose that there exists a valid inequality a ∈ A(s) for

some s ∈ S ′ that separates u from S , i.e., aT ·u > 1. Then, there exists a′ ∈ A′(s) that separates u from

S .

Proof: First notice that, by the definition of A′(s), any a′ ∈ A′(s) is a valid inequality w.r.t. S . Next

we proceed to prove the result of Proposition 3 through contradiction. Hence, suppose that

∀a′ ∈ A′(s), a′T ·u≤ 1 (11)

Equation 11, when combined with the non-negativity of the elements of A(s) and of the vector u,

also implies that

∀a′ ∈ A′(s), a′T ·u≤ 1 (12)

According to Minkowski’s representation theorem for polytopes [21], any a ∈ A(s) can be written

as a convex combination of the elements of A′(s). Hence,

a = ∑
a′∈A′(s)

λa′a′ (13)

and furthermore,

∑
a′∈A′(s)

λa′ = 1 (14)

and

∀a′ ∈ A′(s), λa′ ≥ 0 (15)

Equations 12, 13 and 14 further imply that

aT ·u = ∑
a′∈A′(s)

λa′a′T ·u ≤ ∑
a′∈A′(s)

λa′ = 1 (16)

But Equation 16 contradicts the fact that a separates u from S and establishes the result. �

8We remind the reader that a polytope is a bounded polyhedron.

11

Proposition 3 implies that, for any s∈ S ′, the set of unsafe states, U(s), that can be separated by valid

inequalities in A(s) coincides with the set of unsafe states that can be separated by valid inequalities in

A′(s). But A′(s) is a finite set. Hence, in principle, U(s) can be obtained by enumerating the elements

of A′(s), and identifying all the points u ∈U that are separated by each of them. More formally,

∀s ∈ S ′, U(s)≡
⋃

a∈A′(s)

Ua (17)

Once U(s) is available for every s ∈ S ′, we can compute for each U(s) its maximal subsets that are

separable from S by a single inequality in A(s). This can be effectively done through a search process

that starts with U(s) and traverses downwards the lattice of its subsets, terminating the traversal in any

given direction every time that it comes across a subset that is separable from S by a single inequality.

Furthermore, as we saw in the proof of Proposition 3, Minkowski’s theorem implies that every

inequality a ∈ A(s) that is constructed in the aforementioned search can be expressed as a convex com-

bination of the elements of A′(s). The next proposition implies that we can restrict further the search of

the aforementioned inequalities into the subset of A(s) that is defined by the convex combinations of the

elements of A′(s).

Proposition 4 Consider an inequality a ∈ A(s) and the set Ua that contains all the elements of U that

are separated from S by it. Then, there exists an inequality a′ that separates Ua from S and belongs to

the convex hull of A′(s).

Proof: By the assumptions of Proposition 4,

∀u ∈Ua, aT ·u > 1 (18)

Also, from Minkowski’s theorem, we can set

a = ∑
a′∈A′(s)

λa′a′ (19)

with

∑
a′∈A′(s)

λa′ = 1 (20)

and

∀a′ ∈ A′(s), λa′ ≥ 0 (21)

Let â′ be a non-maximal element of A′(s) appearing in the sum of Equation 19. Then, there exists

ã′ ∈ A′(s) such that ã′ ≥ â′. Furthermore, since ã′, â′ and u are non-negative vectors, the vector a that is

obtained from a through the substitution of â′ by ã′ in the right-hand-side of Equation 19, satisfies the

12

inequalities of Equation 18 and remains an element of A(s) (since it is still a convex combination of the

elements of A′(s)). Hence, it constitutes an alternative separator of the sets S and Ua.

But then, the validity of Proposition 4 results through the application of the substitution described in

the previous paragraph to every non-maximal element a′ that appears in the representation of a provided

by Equation 19. �

For s ∈ S ′, let M(s) collect the maximal subsets of U(s) identified through the aforementioned

search process, i.e., each element of M(s) is a maximal subset of U(s) separated from S through a

single inequality in A(s).9 Also, let M ≡
⋃

s∈S ′ M(s). Then, the following theorem is a straightforward

implication of all the above developments.

Theorem 2 Given two linearly separable sets S and U that correspond to the input state sets of the

simplified classification problem of [20], the problem of constructing an optimal linear classifier for

them, C ∗ ∈C+(S ,U), reduces to the problem of constructing a minimal cover Ω for U from the elements

of the set M that was defined in the previous paragraph.

We notice that the reduction established in Theorem 2 suggests also an alternative algorithm for the

construction of a min-card linear classifier for any pair of inearly separable sets S and U. The main

steps of this algorithm are outlined in Algorithm 1 and they are defined by (i) the computation that is

necessary for the construction of the set M from the input data sets S and U, (ii) the solution of the set

covering problem defined by U and M, and (iii) the translation of the results of Step (ii) to a set of linear

inequalities to be employed by the sought classifier.

The next section provides some additional results that will enable (i) the resolution of the linear

separability of the considered pair of sets S and U, and (ii) the further streamlining of Algorithm 1.

3.2 Determining the existence of a linear classifier

We begin this section by defining the set

A′(S)≡
⋃

s∈S ′
A′(s) (22)

The significance of this set is revealed by the following proposition.

Proposition 5 A vector u ∈U is linearly separable from S iff there exists at least one inequality in the

set A′(S), that is defined by Equation 22, such that aT ·u > 1.

9Or, as established by Proposition 4, through a single inequality in the subspace of A(s) that constitutes the convex hull of

A′(s).

13

Algorithm 1: Solving the classifier-design problem of Definition 3 through its reduction to a set-covering

problem

Input: (i) Subsets S and U of (Z+
0)

ξ that correspond to the input state sets of the simplified classifica-

tion problem presented in [20].

Output: A min-card classifier C ∈ C+(S ,U).

1: Compute the set S ′ ⊆ S by applying the LP of Proposition 2 to every s ∈ S . /* If S includes

binary vectors only, then the second part of Prop. 2 implies that we can immediately set S ′ = S . */

2: for all s ∈ S ′ do

3: Compute the set A′(s).

4: Compute the set U(s) containing all the u ∈U that are separated from S by some inequality in

A′(s).

5: Compute the set M(s) containing the maximal subsets of U(s) that are separable from S through

a single inequality in the convex hull of A′(s).

6: end for

7: M :=
⋃

s∈S ′ M(s).

8: Compute a min-card cover Ω⊆M for U from the elements of M.

9: C := {a : a is the separating inequality for one of the elements of Ω that was constructed in Step

5}.

10: Return C .

Proof: First, assume that there exists an a ∈ A′(S) such that aT ·u > 1. Since, by construction, all

the elements of A′(S) are valid inequalities w.r.t. S , u is linearly separable from S .

Next, assume that u is linearly separable from S . Then, from the remark provided at the end of

Section 2, it can be inferred that an optimal classifier will involve one inequality only. Theorem 1

of Section 2 also implies that this inequality can have only non-negative coefficients. Subsequently,

Proposition 1 implies that the considered inequality can be chosen so that it binds at some s ∈ S ′, and

finally, Proposition 3 further ensures the existence of an inequality with the aforementioned properties

which is also a maximal extreme point for the corresponding A(s), and therefore, it belongs in A′(S). �

Next we introduce the polyhedron ϒ(S) that is defined through A′(S) as follows:

ϒ(S)≡ {x ∈ (R+
0)

ξ : aT ·x≤ 1, ∀a ∈ A′(S)} (23)

The following result is an immediate corollary of the above definition of ϒ(S) and of the result of

Proposition 5.

14

Corollary 1 The sets S and U that correspond to the input state sets of the simplified classification

problem of [20] are linearly separable iff ϒ(S)∩U = /0.

Proposition 5 and Corollary 1 resolve the issue of the linear separability of any pair of sets S and

U that correspond to the input state sets of the simplified classification problem of [20], and through

the generalizing capabilities of the constructed classifier that were discussed in the introductory section,

they also resolve the issue of the linear separability of the entire sets of safe and unsafe RAS states,

which are the primary sets of interest in the implementation of the maximally permissive DAP. The next

series of results establish some further properties of ϒ(S) that will lead to a tighter characterization of

this polyhedron and will also reveal a duality between ϒ(S) and the set of valid inequalities w.r.t. S with

non-negative coefficients. Finally, the presented results can help streamline some of the computations

involved in Algorithm 1.

Proposition 6 The polyhedron ϒ(S) that is defined by Equation 23 is a full-dimensional polytope lying

in (R+
0)

ξ.

Proof: First we show that ϒ(S) is a polytope. By its definition, ϒ(S) lies in (R+
0)

ξ, and therefore,

each of its elements is bounded from below by 0. Also, it should be clear that the origin itself belongs

in ϒ(S). To show that ϒ(S) is also bounded from above, we use contradiction.

Hence, suppose that ϒ(S) possesses a ray r ≥ 0 such that ∀λ ∈ R+
0 , λr ∈ ϒ(S); i.e., there exists

some direction in (R+
0)

ξ in which ϒ(S) expands to infinity. Also, let ||r|| denote the support of r, i.e.,

the dimensions i ∈ I for which r[i]> 0.

Let θ ≡ maxs∈S maxi∈I s[i] and pick a λ′ such that ∃i ∈ ||r||, λ′r[i] > θ. The point λ′r is linearly

separable from S through the inequality x[i]≤ θ. But then, according to Corollary 1, λ′r cannot belong

in ϒ(S). The resulting contradiction establishes the boundedness of ϒ(S) (and the fact that it is a

polytope).

To show that ϒ(S) is full-dimensional, it suffices to show that it includes all the unit vectors ei,

i ∈ I. Since, as pointed out above, ϒ(S) also includes the origin, the set {ei, i ∈ I} ∪ {0} provides

ξ+ 1 affinely independent points of ϒ(S), and the result will be established. Hence, pick an i ∈ I and

notice that the corresponding ei is the smallest non-zero integral vector, w.r.t. the relationship ”≤” that

was introduced in Property 1, that has a non-zero value for its i-th component. By Property 2, there

exists some s ∈ S such that ei ≤ s. But then, for any inequality a with non-negative coefficients that is a

valid inequality w.r.t. S , we shall also have aT · ei ≤ 1. Hence, ei is not linearly separable from S , and

therefore, by Corollary 1, ei ∈ ϒ(S). �

The following result is taken from [21] (cf. Propositions 5.8 and 5.9 in pg. 103 of that text), and

it will help us characterize the dual relationship between ϒ(S) and the set of valid inequalities w.r.t. S

15

with non-negative coefficients, that was mentioned above.

Proposition 7 Let P = {x ∈ (R+
0)

ξ : Bx≤ 1}, where B is a non-negative matrix with no zero columns.

Also, denote by Ψ the κ×ξ matrix whose rows are the extreme points of P. Finally, define the polytope

PC ≡ {π ∈ (R+
0)

ξ : πT ·x ≤ 1, ∀x ∈ P}; polytope PC is typically known as the antiblocker of P. Then,

the following statements hold true:

i. PC = {π ∈ (R+
0)

ξ : Ψπ≤ 1}.

ii. (PC)C = P.

iii. The facet-defining inequalities of PC are the inequalities x̄T
i ·π ≤ 1, i = 1, . . . , κ̄, where {x̄i}κ̄

i=1

are the extreme points of P that are maximal in P.

Next, consider the set V (S) ≡ {a ∈ (R+
0)

ξ : sT · a ≤ 1, ∀s ∈ S}. V (S) essentially collects all

the valid inequalities w.r.t. S with non-negative coefficients. Also, Property 2 implies that there is an

inequality with a strictly positive coefficient for every dimension i∈ I, and therefore, V (S) is a polytope.

Proposition 8 Polytope ϒ(S) is the antiblocker of polytope V (S). Furthermore, the facets of ϒ(S)

correspond to the maximal extreme points of V (S).

Proof: It should be clear to the reader that, by its construction, the set A′(S) of Equation 22 collects

all the maximal extreme points of V (S) that bind at some element(s) of S . But then, the first part of

Proposition 8 follows from the definition of ϒ(S) in Equation 23, and parts (i) and (iii) of Proposition 7.

The second part of Proposition 8 results from its first part and part (iii) of Proposition 7. �

In plain terms, Proposition 8 implies that ϒ(S) collects all the points x ∈ (R+
0)

ξ that satisfy all

the possible valid inequalities w.r.t. S with non-negative coefficients. It is exactly for this reason that

Corollary 1 is true. The second part of Proposition 8 implies that one can compute the facets of ϒ(S) by

computing the maximal extreme points of V (S). This computation can also take advantage of the set

S ′ of Proposition 2, since the constraints of V (S) corresponding to s ∈ S \S ′ cannot be binding for any

a ∈ (R+
0)

ξ, and therefore, they cannot be part of a set of constraints defining an extreme point of V (S).

Once the facets of ϒ(S) have been obtained, then, it is also possible to check the separability of U and

S according to the result of Corollary 1. The computation involved in this last test can also be leveraged

for the construction of the sets A′(s) and U(s), s ∈ S ′, that appear in Algorithm 1. The details for the

completion and re-organization of the computation of Algorithm 1 along the lines discussed above are

depicted in Algorithm 2. In the next section we demonstrate the application of Algorithm 2 through a

small but highlighting example.

16

Algorithm 2: Checking the feasibility of the classifier-design problem of Definition 3 through the con-

struction of polytope ϒ(S), and solving the separable cases through their reduction to a set-covering

problem

Input: (i) Subsets S and U of (Z+
0)

ξ that correspond to the input state sets of the simplified classifica-

tion problem presented in [20].

Output: A min-card linear classifier C ∈ C+(S ,U) that separates S and U, or a signal indicating the

non-separability of these two sets.

1: Compute the set S ′ ⊆ S by applying the LP of Proposition 2 to every s ∈ S . /* If S includes

binary vectors only, then the second part of Prop. 2 implies that we can immediately set S ′ = S . */

2: Compute the set F of the (non-trivial) facets of polytope ϒ(S) through the enumeration of the

maximal extreme points of polytope V (S), while avoiding the consideration of inequalities that

correspond to the elements of S \S ′.

3: for all u ∈U do

4: SEPARABLE := FALSE.

5: for all a ∈ F do

6: if aT ·u > 1 then

7: SEPARABLE := T RUE.

8: Enter u in Ua.

9: end if

10: end for

11: if SEPARABLE = FALSE then

12: Exit indicating non-separability.

13: end if

14: end for

15: for all s ∈ S ′ do

16: Extract the set A′(s)⊆ A′(s) that collects all the facets in F that are bound by s.

17: U(s) :=
⋃

a∈A′(s) Ua.

18: Compute the set M(s) containing the maximal subsets of U(s) that are separable from S through

a single inequality in the convex hull of A′(s).

19: end for

20: M :=
⋃

s∈S ′ M(s).

21: Compute a min-card cover Ω⊆M for U from the elements of M.

22: C := {a : a is the separating inequality for one of the elements of Ω that was constructed in Step

18}.

23: Return C .

17

2

1

2

3

4

5

1 2 3 4 5

X

X

X

x = 4

x = 4
1

2

6

21

4x + 5x = 24
21

x + x = 5

X

X

X
1

Figure 1: The geometry of the classification problem discussed in Section 4.

4 Example

In this section we present an example that demonstrates the ideas and the techniques that were dis-

cussed in Section 3, and provides some further details for the involved computations. The example

is rather small and artificial,10 and for expository purposes it is kept in the 2-dim space, but it high-

lights all the main concepts and themes of the previous discussion. More specifically, in this exam-

ple we are called to test the linear separability of the following two sets, S = {(1,4),(2,2),(4,1)} and

U = {0,5),(2,4),(4,3),(5,1)}, and construct a min-card linear classifier, in the case that they are found

to be linearly separable. It can be easily checked that S and U satisfy the conditions stated in Proper-

ties 1 and 2, and therefore, we can proceed with the application of the results of Section 3.

Hence, using the LP of Proposition 2,11 we can see that for the considered example, S ′ = {(1,4),

(4,1)}. The set of the valid inequalities w.r.t. S can be expressed as follows:

V (S) = {(a1,a2) ∈ R2 : a1 +4a2 ≤ 1; 2a1 +2a2 ≤ 1; 4a1 +a2 ≤ 1; a1 ≥ 0; a2 ≥ 0} (24)

The computation of the maximal extreme points of V (S), while taking into consideration the content

of set S ′, is tabulated in Table 1. In the depicted computation, the constraints that define V (S) are

numbered in the order that they appear in the right-hand-side of Equation 24. From Table 1, we can see

that the set F , that containts the facets of the polytope ϒ(S) for the considered example, is

F = {(1/5,1/5),(0,1/4),(1/4,0)} (25)

10By artificial we mean that the sets S and U considered in this example have not been produced through a particular RAS

instance.
11Of course, in this simple case, this issue can be resolved quite easily by inspection!

18

Binding Constraints (a1,a2) Feasible Maximal

(1), (3) (1/5, 1/5) YES YES

(1), (4) (0, 1/4) YES YES

(1), (5) (1, 0) NO N/A

(3), (4) (0, 1) NO N/A

(3), (5) (1/4, 0) YES YES

(4), (5) (0, 0) YES NO

Table 1: Computing the maximal extreme points for the set V (S) of Equation 24.

U(1/5,1/5) = {(2,4),(4,3),(5,1)}

U(0,1/4) = {(0,5)}

U(1/4,0) = {(5,1)}

A′(1,4) = {(1/5,1/5),(0,1/4)}

A′(4,1) = {(1/5,1/5),(1/4,0)}

U(1,4) = {(2,4),(4,3),(5,1),(0,5)}

U(4,1) = {(2,4),(4,3),(5,1)}

Table 2: A listing of the sets Ua, A′(s), and U(s), that are employed by Algorithm 2, as they materialize

in the example of Section 4.

The corresponding inequalities are:

1
5

x1 +
1
5

x2 ≤ 1⇐⇒ x1 + x2 ≤ 5 (26)

1
4

x2 ≤ 1⇐⇒ x2 ≤ 4 (27)

1
4

x1 ≤ 1⇐⇒ x1 ≤ 4 (28)

Figure 1 depicts in solid lines the polytope ϒ(S) that is defined by these inequalities, and also the

distribution of the sets S and U in the corresponding plane. From this figure, it can be easily checked

that the sets Ua for a ∈ F , and also the sets A′(s) for s ∈ S ′, are structured as depicted in Table 2. Also,

the availability of these two types of sets enables the computation of the sets U(s) for s ∈ S ′, according

to Step 17 of Algorithm 2; these sets are also listed in Table 2.

At this point, Algorithm 2 would need to construct the sets M(s), s ∈ S ′, containing the maximal

subsets of the corresponding U(s) that are linearly separable from S by a single straight line passing

through s. Since, in the considered case, U(1,4) =U, it is pertinent to start by examining the possibility

19

of separating the entire set U by a single line that passes through point (1,4). This can be done by testing

whether the following LP admits a strictly positive optimal solution.

maxε (29)

s.t.

2a1 +4a2− ε≥ 1 (30)

4a1 +3a2− ε≥ 1 (31)

5a1 +a2− ε≥ 1 (32)

5a2− ε≥ 1 (33)

a1−
1
5

λ1 = 0 (34)

a2−
1
5

λ1−
1
4

λ2 = 0 (35)

λ1 +λ2 = 1 (36)

λ1,λ2 ≥ 0 (37)

The objective of this LP together with the first four constraints of it express the request for a separa-

trice of U from S , while the remaining constraints express the fact that this separatrice is sought in the

convex hull of the set A′(1,4).12 For the considered case, it is easy to check, through Figure 1, that a

linear separatrice for sets S and U can be obtained by pivoting the line x1 + x2 = 5 at point (1,4) in the

counter-clockwise sense. Indeed, the solution of the LP of Equations 29–37 resulted in an optimal value

of ε∗ = 1/24.13 The particular line that corresponds to this optimal value is described by the vector

(a∗1,a
∗
2) = (1/6,5/24), and it is depicted in Figure 1 by a bold dashed line.

12Also, it should be noticed, for completeness, that Constraints 34 and 35 enable the substitution of variables a1 and a2 by

the corresponding linear combinations of λ1 and λ2, across the remaining constraints. We have opted to retain variables a1

and a2 in the presented formulation in order to provide a clearer demonstration of the logic that underlies this formulation.
13In natural terms, ε∗ is the distance between the constructed separatrice and the point u ∈U that is closest to this line, and

it can be perceived as a “measure” of the separability of S and U by a straight line that passes through the chosen point s ∈ S ′.

20

1

1

2

3

4

5

1 2 3 4 5

X

X

X

x = 4
1

6

3x + 4x = 16
1 2

X
2

x = 4
2

X

X

Figure 2: A variation of the Example of Figure 1 that demonstrates the need for focusing on the maximal

extreme points of V (S) during the characterization of the polytope ϒ(S).

Binding Constraints (a1,a2) Feasible Maximal

(1), (3) (3/16, 1/4) YES YES

(1), (4) (0, 1/4) YES NO

(1), (5) – NO N/A

Table 3: Computing the maximal extreme points for the set A(0,4) of Equation 38.

In the last part of this section, we discuss a variation of the above example that will explain, from

a more conceptual standpoint, the need for focusing only on (i) the maximal extreme points of V (S)

during the computation of the facets of polytope ϒ(S), and, consequently, on (ii) the sets A′(s), s ∈ S ′,

in the computations of Algorithms 1 and 2. More specifically, the set S for this new problem instance is

obtained from the corresponding set in the original example by substituting the point (1,4) with (0,4).

The new situation is depicted in Figure 2. It is easily checked (e.g., through Figure 2) that, in this new

case, point (2,2) remains outside the set S ′, i.e., S ′ = {(0,4),(4,1)}.

Next, we focus upon the set A(0,4), that contains the valid inequalities wr.t. S that have non-negative

coefficients only and bind at (0,4). According to Equation 10, A(0,4) is described by the following

constraints:

A(0,4) = {(a1,a2) ∈ R2 : 4a2 = 1; 2a1 +2a2 ≤ 1; 4a1 +a2 ≤ 1; a1 ≥ 0; a2 ≥ 0} (38)

The computation of the extreme points of A(0,4) is depicted in Table 3. In the depicted computation,

the constraints defining A(0,4) have been numbered according to the order that they appear in the right-

hand-side of Equation 38, and furthermore, we have also accounted for the fact that point (2,2) cannot

bind any valid inequality that is defined by the elements of A(0,4) (and, therefore, it cannot be part of a

set of inequalities that define an extreme point of A(0,4)). According to Table 3, the set of extreme points

21

of A(0,4) is A′(0,4) = {(3/16,1/4),(0,1/4)}, which further implies that the only maximal extreme

point of A(0,4) is (3/16,1/4); i.e., A′(0,4) = {(3/16,1/4)}.

Figure 2 also depicts the straight lines that correspond to the elements of A′(0,4). It is easy to see

from this drawing that the maximal extreme point (3/16,1/4), that corresponds to a valid inequality

a1 binding at the points (0,4) and (4,1) of S ′, defines indeed a facet of ϒ(S). On the other hand, the

non-maximal extreme point (0,1/4) corresponds to a valid inequality a2 that is defined by its binding at

(0,4) and the non-negativity restriction for coefficient a1; the binding of this last constraint implies that

the line defined by a2 is parallel to axis X1. Since, however, point (0,4) is located on the X2 axis, the

facet of ϒ(S) that would have been defined by a2 reduces to the zero-dimensional set containing only the

point (0,4). More generally, in problem instances formulated in (R+
0)

ξ, a non-maximal extreme point

of a set A(s), s ∈ S ′, will correspond to a valid inequality that is defined by (i) its binding at some points

s ∈ S ′ that are lying in some hyperplane xi = 0, i ∈ I, and (ii) a number of non-negativity constraints

ai ≥ 0, i ∈ I, in a way that the facet of ϒ(S) that would be induced by this inequality degenerates to a

polytope of dimensionality strictly smaller than ξ−1.

5 Discussion

In this section, we consider the more practical implications and value of the results that were developed

in the earlier parts of this manuscript. In particular, first we take a closer look at the computational

complexity of Algorithm 2 and the potential limitations that this complexity might imply for the practical

applicability of this algorithm. On the other hand, as stated in the earlier parts of this manuscript, the

main value of the presented results stems from the analytical insights that they provide regarding the

geometry of the linear classification problem that is addressed in [20]. These insights have enabled

the development of the condition of Section 3.2 regarding the existence of a linear classifier for the

considered classification problem, and they also establish a theoretical basis for the development of

more streamlined algorithms for the computation of a structurally minimal classifier, for, both, the linear

and the non-linear problem versions that were discussed in Section 1; this potential is considered in the

second part of this section.

Regarding the computational complexity of Algorithm 2, we remark the following: It is well known

that the minimal set covering problem is NP-hard [11]. Hence, the solution of the transformed problem

remains a challenging task. Even more importantly, the reduction process itself, that is materialized

through Steps 1–20 in Algorithm 2, is a computationally intensive task. In particular, Step 2, that

constructs the non-trivial facets of polytope ϒ(S), and Step 18, that identifies the maximal subsets of

U that are separable from S by a single inequality passing through one of the maximal elements of the

22

latter, are quite demanding tasks, as they involve enumerations over spaces that grow exponentially w.r.t.

their defining elements. These remarks imply that, from a purely computational standpoint, Algorithm 2

might not be a very competitive proposition; yet, its primary value lies in the constructive insights that

it provides regarding the underlying problem structure.

Along these more qualitative lines, as mentioned in the introductory section, the work of [20] has

already exploited the analogies that are established by Algorithm 2 in order to provide a very efficient

heuristic for the problem of constructing a minimal linear classifier for the maximally permissive DAP,

assuming that such a classifier is available. This heuristic seeks to develop a linear separator by de-

veloping the linear inequalities in an iterative scheme, one at a time, and with the objective of each

iteration being to construct an inequality that separates the maximal possible subset of the currently

non-separated unsafe states. Using a line of argumentation that parallels the development of a similar

heuristic for the set covering problem, in [20] it is shown that the suboptimality of the resulting classifier

can be bounded by a factor of ln |U|.

More recently, the identified relationship between the classifier design problem of [20] and the

classical set covering problem has been employed towards the development of a customized Branch &

Bound (B&B) algorithm [21] for the former. This algorithm appeared originally in [8], and it essentially

orchestrates an efficient search among the possible partitions of the set U into a number of subsets that

are linearly separable from set S by a single linear inequality, for a minimal such partition. Furthermore,

the works of [7, 6] have sought to complement the developments of [8] with the existence results and the

analytical insights that were developed in this work, in order to extend the B&B scheme of [8] so that

it applies to the broader non-linear classification problem that is addressed in [17, 19]. The basic logic

that facilitates this extension can be stated as follows: As long as the classification problem addressed

admits a linear classifier, then, the construction of a minimal classifier can be resolved through the B&B

scheme of [8]. In the opposite case, the results of Section 3 in this paper suggest that one can represent

the safe subspace that is defined by S as a “union” of polytopes ϒi(S), i = 1, . . . ,q, where each polytope

ϒi(S) encompasses a subset Si of S and possesses similar topological properties w.r.t. set U with those

that are possessed by the set ϒ(S) in the linear case. Hence, in this more complex case, the search for a

minimal classifier boils down to a double search for (i) a pertinent partition of the set S to a set of subsets

Si that are linearly separable from U, and for (ii) minimal linear classifiers for each of these subsets.

The B&B method of [7, 6] can be perceived as an efficient process that carries out these two searches

in parallel and in an incremental manner, while capitalizing upon the geometrical and combinatorial

perspectives and insights that were revealed by the analysis that is pursued in this work.

23

6 Conclusion

This paper has further explored and formalized the connection, that was originally identified in [20],

between the linear classification problem that underlies the implementation of the maximally permissive

DAP for certain RAS classes that arise in many contemporary applications and the classical set-covering

problem that has been studied in OR and CS. Furthermore, it has provided additional insights about the

problem geometry that determine its feasibility and its combinatorial attributes. Finally, through the

discussion of the last section, it has also highlighted how these new insights provide a starting point for

the development of further, more efficient customized algorithms for the considered problem, as well

as for its variant that might necessitate a non-linear structure for the sought classifier. The complete

realization of this possibility is part of our ongoing investigations.

References

[1] T. Araki, Y. Sugiyama, and T. Kasami. Complexity of the deadlock avoidance problem. In 2nd

IBM Symp. on Mathematical Foundations of Computer Science, pages 229–257. IBM, 1977.

[2] Z. A. Banaszak and B. H. Krogh. Deadlock avoidance in flexible manufacturing systems with

concurrently competing process flows. IEEE Trans. on Robotics and Automation, 6:724–734,

1990.

[3] R.E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Transactions on

Computers, 100(8):677–691, 1986.

[4] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems (2nd ed.). Springer,

NY,NY, 2008.

[5] Y. F. Chen and Z. W. Li. Design of a maximally permissive liveness-enforcing supervisor with a

compressed supervisory structure for flexible manufacturing systems. Automatica, 47:1028–1034,

2011.

[6] R. Cordone, A. Nazeem, L. Piroddi, and S. Reveliotis. Designing optimal deadlock avoidance

policies for sequential resource allocation systems through classification theory: existence results

and customized algorithms. Technical Report (submitted for publication), Univ. of Milan, 2012.

[7] R. Cordone, A. Nazeem, L. Piroddi, and S. Reveliotis. Maximally permissive deadlock avoidance

for sequential resource allocation systems using disjunctions of linear classifiers. In Proceedings

of CDC 2012. IEEE, 2012.

24

[8] R. Cordone and L. Piroddi. Monitor optimzation in Petri net control. In Proceedings of the 7th

IEEE Conf. on Automation Science and Engineering, pages 413–418. IEEE, 2011.

[9] E. W. Dijkstra. Cooperating sequential processes. Technical report, Technological University,

Eindhoven, Netherlands, 1965.

[10] J. Ezpeleta, F. Tricas, F. Garcia-Valles, and J. M. Colom. A Banker’s solution for deadlock avoid-

ance in FMS with flexible routing and multi-resource states. IEEE Trans. on R&A, 18:621–625,

2002.

[11] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman and Co., New York, NY, 1979.

[12] E. M. Gold. Deadlock prediction: Easy and difficult cases. SIAM Journal of Computing, 7:320–

336, 1978.

[13] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Computation.

Addison-Wesley, Reading, MA, 1979.

[14] M. Lawley, S. Reveliotis, and P. Ferreira. The application and evaluation of Banker’s algorithm

for deadlock-free buffer space allocation in flexible manufacturing systems. Intl. Jrnl. of Flexible

Manufacturing Systems, 10:73–100, 1998.

[15] Z. Li, M. Zhou, and N. Wu. A survey and comparison of Petri net-based deadlock prevention

policies for flexible manufacturing systems. IEEE Trans. Systems, Man and Cybernetics – Part C:

Applications and Reviews, 38:173–188, 2008.

[16] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77:541–580,

1989.

[17] A. Nazeem and S. Reveliotis. Designing maximally permissive deadlock avoidance policies for

sequential resource allocation systems through classification theory. In Proceedings of the 7th

IEEE Conf. on Automation Science and Engineering, pages 405–412. IEEE, 2011.

[18] A. Nazeem and S. Reveliotis. A practical approach for maximally permissive liveness-enforcing

supervision of complex resource allocation systems. IEEE Trans. on Automation Science and

Engineering, 8:766–779, 2011.

[19] A. Nazeem and S. Reveliotis. Designing maximally permissive deadlock avoidance policies for

sequential resource allocation systems through classification theory: the non-linear case. IEEE

Trans. on Automatic Control, 57:1670–1684, 2012.

25

[20] A. Nazeem, S. Reveliotis, Y. Wang, and S. Lafortune. Designing maximally permissive deadlock

avoidance policies for sequential resource allocation systems through classification theory: the

linear case. IEEE Trans. on Automatic Control, 56:1818–1833, 2011.

[21] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley, NY, NY,

1988.

[22] N. J. Nilsson. The Mathematical Foundations of Learning Machines. Morgan Kaufmann, San

Mateo, CA, 1990.

[23] S. Reveliotis and E. Roszkowska. On the complexity of maximally permissive deadlock avoidance

in multi-vehicle traffic systems. IEEE Trans. on Automatic Control, 55:1646–1651, 2010.

[24] S. A. Reveliotis. Real-time Management of Resource Allocation Systems: A Discrete Event Systems

Approach. Springer, NY, NY, 2005.

[25] V. Vazirani. Approximation Algorithms. Springer, NY,NY, 2003.

[26] M. Zhou and M. P. Fanti (editors). Deadlock Resolution in Computer-Integrated Systems. Marcel

Dekker, Inc., Singapore, 2004.

26

