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Abstract—While the supervisory control (SC) problem of (max-
imally permissive) deadlock avoidance for sequential resource
allocation systems (RAS) has been extensively studied in the
literature, the corresponding results that are able to address
potential resource outages are quite limited, both, in terms of
their volume but also in terms of their control capability. This
work leverages the recently developed SC theory for switched
Discrete Event Systems (s-DES) in order to provide a novel
systematic treatment of this more complicated version of the RAS
deadlock avoidance problem. Following the modeling paradigm
of s-DES, both, the operation of the considered RAS and the
corresponding maximally permissive SC policy are decomposed
over a number of operational modes that are defined by the
running sets of the failing resources. In particular, the target
supervisor must be decomposed to a set of “localized predicates”,
where each predicate is associated with one of the operational
modes. A significant part, and a primary contribution, of this
work concerns the development of these localized predicates
that will enable the formal characterization and the effective
computation of the sought supervisor. With these predicates
available, a distributed representation for the sought supervisor,
that is appropriate for real-time implementation, is eventually
obtained through an adaptation of the relevant distributed
algorithm that is provided by the current s-DES SC theory.

Note to Practitioners – This paper extends the existing theory
of deadlock avoidance for buffer-space allocation in flexibly
automated production systems so that it accounts for disruptive
effects due to potential temporary outages of some of the system
servers. The set of the failing servers at any time instant defines
the corresponding operational mode for the underlying resource
allocation system (RAS). The primary problem that is addressed
by this paper is the synthesis of a resource allocation policy
that will ensure the ability of all process instances that do not
require the failing resources in a particular mode, to execute
repetitively and complete successfully while the system remains
in that mode. In line with some past literature on this problem,
we call the corresponding supervisory control problem as “robust
deadlock avoidance”, and we leverage results from the recently
emerged theory for modeling and control of switched Discrete
Event Systems (s-DES) in order to characterize and compute a
maximally permissive solution for it.
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Avoidance, Switched Discrete Event Systems, Decomposition
Methods in DES Supervisory Control Theory
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I. INTRODUCTION

Research Background and Motivation: The problem of dead-
lock avoidance in sequential resource allocation systems
(RAS) is well documented and extensively studied in the liter-
ature [1], [2]. In its basic positioning, the problem concerns the
staged allocation of a limited set of reusable resources to a set
of concurrently executing processes in a way that all of these
processes can secure the resources necessary for the execution
of their various processing stages and terminate successfully.
In this setting, deadlock avoidance policies (DAPs) prevent
resource allocation states that can lead to “deadlocks”, i.e.,
circular waiting patterns where a (sub-)set of processes is
permanently stalled since they are waiting for the allocation
of resources that are currently held by other processes in
this set. Furthermore, one can seek the deployment of the
maximally permissive DAP, i.e., a DAP that prevents effec-
tively the formation of deadlock and at the same time imposes
the minimal possible restriction on the underlying resource
allocation process.

For the RAS classes studied in the past literature, the
maximally permissive DAP is well-defined and unique. On
the other hand, its computation is an NP-hard problem for
most RAS instances [3], [4], and therefore, extensive effort
has been expended on the design of suboptimal (i.e., non-
maximally permissive) DAPs that retain a significant part of
the behavioral latitude supported by the maximally permissive
DAP [5], [6], [7]. Nevertheless, recent developments taking
place in the Ph.D. theses of [8], [9] and their derivative
publications1 have established that the deployment of the
maximally permissive DAP is still a tractable proposition
for RAS instances of pretty high structural and behavioral
complexity, through a two-step approach that isolates the
hardest part of the computation of this policy in an “off-
line” computational stage, and eventually encodes the obtained
results as a “classifier” that dichotomizes the underlying RAS
state set into its admissible and inadmissible subsets.2 Finally,
instrumental in all the aforementioned developments, is the
classification of the various RAS structures according to the
taxonomy that is presented in Table I. As seen in Table I, this
taxonomy is defined on the basis of the structure of (i) the

1Among those publications, some of the most relevant to this work are
those presented in [10], [11], [12]; see also [13] for an abridged exposition
of all the corresponding results.

2In the relevant terminology, the RAS subset that contains the admissible
(resp., inadmissible) states by the maximally permissive DAP is also known
as the “safe” (resp., “unsafe”) subset.
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TABLE I: A RAS taxonomy [6]

Based on the Process Based on the
Sequential Logic Requirement Vectors
Linear: Each process is Single-Unit: Each stage
defined by a linear sequence requires a single unit
of stages from a single resource
Disjunctive: A number of Single-Type: Each stage
alternative process plans requires an arbitrary
encoded by an acyclic number of units, but all
digraph from a single resource
Merge-Split: Each process Conjunctive: Stages re-
is a fork-join network quire different resources
Complex: A combination at arbitrary levels
of the above behaviors

sequential logic that is observed by the RAS processes, and (ii)
the resource requests that are posed by the various processing
stages. The availability of this taxonomy has enabled (a) a
more profound understanding of the dependence of the RAS
deadlock avoidance problem and its complexity to the various
structural and behavioral elements of the underlying RAS, and
(b) the mastering of this complexity through a progressive
study of the problem from its simpler to its more complicated
cases.

When viewed from the standpoint of the aforementioned
taxonomy, most of the past literature on the deadlock avoid-
ance problem has assumed that the resources involved are
imperishable and always available to the contesting processes.
However, in many practical cases, resources might experience
temporary but lengthy outages: machines might be down due
to some failing components or lack of consumables, operators
might be unavailable, segments of a material-handling network
might be inaccessible due to maintenance or currently blocked,
etc. The work that is presented in this paper seeks to develop a
new methodology for effecting maximally permissive deadlock
avoidance in RAS classes that experience some of the afore-
mentioned problems. But in order to provide a more systematic
positioning of the work and its intended contributions, first
we review the existing literature on RAS deadlock avoidance
under resource failures.3

Literature Review: Generally speaking, there are two major
approaches for addressing the aforementioned resource out-
ages with respect to (w.r.t.) the problem of RAS deadlock
avoidance. The first approach is of a reactive nature, seeking to
recompute the applied DAP upon the outage or the restoration
of a resource unit, so that it reflects the actual resource
availability. Such an approach presumes an ability to design
the necessary DAPs on the fly, and furthermore, it might need
to adjust the current RAS state by temporarily unloading some
running processes, in order to establish operational feasibility
in the emerged operational context.

An example application of the reactive approach to the

3Following rather standard practice in the corresponding literature, in the
sequel, we shall use the terms of “(resource) failures” and “(resource) outages”
interchangeably.

RAS deadlock avoidance problem under resource failures, as
it materializes in the operational context of flexibly auto-
mated production systems, is presented in [14]. On the other
hand, a more abstract treatment of the corresponding policy-
reconfiguration problem can be found in [15]. More precisely,
the work of [15] represents the considered RAS dynamics in
the Petri net (PN) modeling framework [16], and addresses
the problem of enforcing “switching” specifications that take
the form of sets of linear inequalities upon the correspond-
ing PN marking. The results provide feasibility conditions
for enforcing the corresponding control policies, and also a
methodology for driving the net marking to the admissible
region of the currently enforced specifications (provided that
this task is feasible). But the paper does not make explicit
connections of the presented results to the particular problem
of accommodating resource outages.

A paper that uses the PN modeling framework in order to
deal more directly with the problem of DAP reconfiguration
under resource failures is that of [17]. This work uses the
siphon-based characterization of liveness for the considered
PN class, and the corresponding liveness-enforcing supervi-
sory control theory that was developed in the works of [18]
and [19], in order to determine “monitor”-based liveness-
enforcing supervisors for these nets [20], [21], for each failing
mode of the underlying RAS. On the other hand, this paper
does not discuss the RAS transition between two consecutive
supervisors, in the case that the underlying RAS state (or PN
marking) is not compatible with the new supervisor at the
switching point.

The second approach for addressing resource outages in the
context of RAS deadlock avoidance is of a proactive nature
as it seeks to control the initiation and the advancement of
the running process instances through the underlying RAS
in a way that any occurring resource outage will effect the
minimal possible disruption in the operation of the underlying
RAS, and it will be handled by the system itself without the
need for any further external interference. More specifically,
under this approach, we seek to (i) limit the impact of an
occurring resource outage only to these running processes
that must utilize the unavailable resource for the execution of
some of their processing stages, and (ii) ensure the capability
of the processes that do not engage the failing resource to
execute “smoothly” through the system.4 For these reasons,
this approach has come to be known as “robust” deadlock
avoidance.

The research on robust deadlock avoidance for sequential
RAS was initiated with the seminal paper of [22]. This work
introduced the aforementioned notion of “robustness” in the
context of a RAS class that models the buffer allocation
in flexibly automated production systems. The resulting SC
problem was formally characterized using the Ramadge &
Wonham (R&W) SC framework [23], and a computationally
efficient solution for it was synthesized by adapting some sub-
optimal DAPs for failure-free, Linear, Single-Unit RAS. On
the other hand, these prototypical developments were restricted

4Part of the mission of this paper is to provide a succinct formal charac-
terization of this operational requirement. The reader is referred to later parts
of the paper for the corresponding details.



3

to automated production systems with a single failure-prone
processor.

The work of [22] was subsequently extended in [24], that
addressed RAS modeling the operations of automated pro-
duction systems with more than one failure-prone processors.
The results of [24] are of similar flavor to the results of [22]
in that they provide suboptimal solutions to the formulated
“robust” deadlock avoidance problem by adapting ideas and
techniques from classical deadlock avoidance theory to this
particular context. Furthermore, all the developments of [24]
are contingent upon the condition that each process type
utilizes at most one of the failing processors. More recently,
the works appearing in [25], [26], [27], [28] have tried to
extend further the developments of [22], [24] to some RAS
classes that are characterized by increased routing flexibility
and / or additional special structure that impacts the underlying
notion of RAS state safety. This new set of results employ
a PN-based modeling framework, instead of the Finite State
Automata (FSA) that were used in the original works of [22],
[24], and the synthesized “robust” DAPs are employing in-
sights and results regarding the synthesis of liveness-enforcing
supervisors (LES) for RAS-modeling PNs. But, at the end,
even in these new developments, the derived DAPs remain
of a suboptimal nature, and their functionality is contingent
upon specific structural and/or operational assumptions for the
underlying RAS that enable their synthesis.

Finally, another line of work on the problem of “robust”
deadlock avoidance is that presented in [29], [30]. These two
works seek to establish deadlock-free resource allocation in the
context of various types of automated manufacturing systems,
that is also “robust” to resource failures, by enforcing some
elementary sufficient conditions on the resource availability
that ensure the execution of any single process type in isola-
tion. However, the resulting policies can be very conservative,
to the point that they might not even be implementable in
the context of RAS with low resource availabilities on some
critical resources. On the other hand, the aforementioned
papers fail to acknowledge this rather restrictive feature and
to provide the corresponding feasibility analysis.

Recapitulating the above discussion, we can conclude that
the literature on RAS deadlock avoidance in the presence of
resource failures is not as well developed as the corresponding
theory for failure-free RAS. In particular, when it comes
to the concept of “robust” deadlock avoidance, the relevant
results are dominated by the modeling–&–analysis paradigm
that was set by [22], [24], and they are generally characterized
by: (i) limited applicability to failure-prone RAS that satisfy
particular restrictions on their structure and / or the patterns of
the experienced resource failures; and (ii) a suboptimal (i.e.,
non-maximally permissive) nature for the derived DAPs.

The paper content and the intended contributions: Motivated
by the closing remarks in the previous paragraph, in this
work we propose an alternative paradigm for addressing the
basic problem of “robust” deadlock avoidance for the buffer
allocation of automated production systems defined in the
seminal works of [22], [24], while overcoming the limitations
that are present in all the relevant past works. This new

paradigm is grounded on the theory of supervisory control of
switched discrete event systems (s-DES), that was developed
by the paper authors in [31], [32]. Hence, according to this new
paradigm, the overall DAP-synthesis process is decomposed
across a number of operational “modes” for the underlying
RAS, that are naturally defined by the various subsets of failing
resources, and the corresponding controller is synthesized by
a distributed algorithm [33] that employs one computational
thread for each mode and a message-passing mechanism that
ensures the correctness of the entire outcome.

From a representational standpoint, the derived DAP is also
distributed across the aforementioned operational modes, and
therefore, it is effectively computable and executable through
the methods of [10], [11], [12] that have been employed for
the deployment of the maximally permissive DAP in failure-
free RAS. On the other hand, a critical issue for the effective
implementation of this new computational scheme, according
to the theory of [31], [32], is the ability to express the
defining logic for the target policy through a set of “localized
predicates”, one predicate for each operational mode. But the
development of such a set of localized predicates that will
be practically useful in the context of the aforementioned
computation is a quite non-trivial task; hence, the effective
resolution of this problem is at the core of the presented
developments.

Once the above issue has been resolved, the sought DAP
can be computed through an adaptation of the distributed
computation scheme that is presented in [31], [32]. The
corresponding distributed algorithm of [31], [32] needs to
be extended so that it can address modal “non-blockingness”
requirements, besides the modal “safety” specifications that
were addressed in [31], [32].5 We provide the necessary
modifications in the corresponding part of the paper; as it will
be seen in that part, these modifications are based on classical
perspectives and results borrowed from DES SC theory [23],
[34], and they complete the existing SC theory for s-DES in
the aforementioned directions.

In view of the above positioning of the paper content and
contributions, the rest of it is organized as follows: Section II
introduces the considered RAS structure, its connection to
the automated production systems that were mentioned in the
previous paragraphs, and the corresponding robust deadlock
avoidance problem. Section III represents the operation of the
considered RAS as an s-DES, and subsequently Section IV
characterizes the maximally permissive DAP for these RAS
in this new modeling framework. Section V presents the
aforementioned distributed algorithm for the computation of
the maximally permissive DAP. Finally, Section VI concludes
the paper and highlights some directions for further extensions
of the presented work.6

5The notions of “non-blockingness” and “safety” requirements should be
understood in the spirit of the R&W-SC framework [23].

6We also notice, for completeness, that a preliminary version of the
presented results can be found in [35]; the material of that paper develops
at a more conceptual level and lacks the thorough technical analysis that is
presented in Sections III, IV and V of this paper.
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II. THE CONSIDERED RAS AND THE CORRESPONDING
DEADLOCK AVOIDANCE PROBLEM

In this section we provide a more systematic characteriza-
tion of the RAS class and the corresponding “robust” deadlock
avoidance problem that we consider in this work. Both of
these elements are equivalent to the corresponding elements
that are defined in [24]. However, the subsequent discussion
leverages concepts and results that relate to the RAS taxonomy
of Table I. In this way, the presented developments will
be positioned more succinctly in the broader context of the
existing literature on the RAS deadlock avoidance, and there
is a further potential for the re-interpretation and extension
of these developments in the context of the more general
abstractions that underlie this taxonomy.

The Linear Single-Unit (L-SU) RAS and its connection to
automated production systems: The L-SU RAS was defined
in Table I as the RAS class where (i) each process type is
defined by a simple sequence of processing stages, and (ii)
every processing stage requires the allocation of a single unit
from a single resource type for its successful execution. A
more complete definition of this RAS class, which is in line
with the general definition of the sequential RAS concept that
is provided in [6], is as follows:

Definition 1: A Linear Single-Unit (L-SU) RAS is formally
defined by a 4-tuple Φ = 〈R, C,P,A〉 where:

1) R = {R1, . . . , Rm} is the set of the system resource
types.

2) C : R → Z+ – where Z+ is the set of strictly positive
integers – is the system capacity function, characterizing
the number of identical units from each resource type
available in the system. Resources are assumed to be
reusable, i.e., each allocation cycle does not affect
their functional status or subsequent availability, and
therefore, C(Ri) ≡ Ci constitutes a system invariant
for each Ri.

3) P = {J1, . . . , Jn} denotes the set of the process types
supported by the considered RAS. Each process type
Jj , j = 1, . . . , n, constitutes a totally ordered set of
processing stages, i.e., Jj = 〈Sj〉 = 〈Ξj1, . . . ,Ξj,l(j)〉.

4) A :
⋃n
j=1 Sj → R is the resource allocation function,

which associates every processing stage Ξjk with the
resource allocation request A(j, k) ≡ Ajk. More specif-
ically, each Ajk is an element of the resource set R, the
implication being that processing stage Ξjk requires the
exclusive allocation of one unit from the corresponding
resource type for its execution.

5) Finally, according to the applying resource allocation
protocol, a process instance executing a processing stage
Ξjk will be able to advance to its successor processing
stage Ξj,k+1 only after it has been allocated the required
unit of the corresponding resource type Aj,k+1; and it is
only upon this advancement that the process will release
the currently held unit of resource type Ajk.

The combination of items (3) and (4) in the above definition
further implies that, in the L-SU RAS context, each process
type Jj can be described by the sequence of the resource
types that are supporting the execution of the corresponding

sequence of processing stages Sj ; we shall refer to this
resource sequence as the “process plan” of process type Jj .
Furthermore, in the sequel, we shall characterize as the support
Sup(Ri) of resource Ri, i = 1, . . . ,m, the set of processing
stages Ξjk that request the allocation of one unit from resource
Ri for their execution.

The L-SU RAS model has been used extensively for the
modeling and analysis of the deadlock-related problems that
arise in the buffer allocation of many contemporary automated
production cells. In this modeling paradigm, each resource
type Ri, i = 1, . . . ,m, represents the buffering capacity of the
corresponding workstation WSi. Then, the resource allocation
protocol that is defined in item (5) of Definition 1 is justified
by the basic fact that each process going through the cell,
being a physical entity, must always be staged at a buffer slot
of some workstation; in particular, a process cannot release its
currently allocated buffer slot unless it has secured a buffer
slot at the next requested workstation.7

Introducing “resource failures”: In the automated production
systems that are considered in the above discussion, each
workstation, besides its buffering capacity, also possesses a
server that performs the processing that takes place at that
workstation. And while these servers are not modeled as
distinct entities in the standard L-SU RAS modeling paradigm,
they are assumed to work on the visited processes sequentially,
one at a time, according to a globally non-idling scheme.8

Furthermore, processes retain their designated buffer slot while
in processing; in particular, it can be assumed that either they
receive service in situ, or they are processed in a separate
chamber but they return to their allocated buffer slot upon the
completion of their processing.

In either case, under the aforestated assumptions, the pro-
cesses staged at any workstation WSi, i = 1, . . . ,m, can be
distinguished to (i) those waiting for processing, (ii) the one
in processing, and (iii) those having completed processing and
waiting for their advancement to the next workstation. Fur-
thermore, for the purposes of deadlock analysis and control,
it is also natural to assume that processes having completed
their last processing stage are unloaded from the system
immediately upon the completion of the corresponding service.

In the classical deadlock avoidance theory, the discrimina-
tion of the process instances that are staged at a particular
workstation along the aforementioned lines is not significant
since the progression of these process instances through the
corresponding phases does not alter the underlying resource
allocation. But as we shall see next, this discrimination is
important in the context of the “robust” deadlock avoidance

7Under this interpretation of the resource allocation taking place in an L-
SU RAS, the process transfer between two consecutive workstations, and the
facilitating role of the underlying material handling system, are considered
only implicitly. Alternatively, the necessary material handling steps can be
considered explicitly in the employed L-SU RAS model, by modeling these
steps as additional processing stages requiring a unit of buffering capacity on
the corresponding material handling system, which should be modeled as an
additional resource type.

8In the standard L-SU RAS operational context, “global non-idleness”
means that when the system is not empty, at least one of the system servers
must be busy, and this requirement ensures the system progress towards the
completion of all the initiated process instances.
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J1 : Ξ11

R1

Ξ12

R3

J2 : Ξ21

R4

Ξ22

R2

J3 : Ξ31

R3

Ξ32

R4

Ξ33

R1

C(Ri) = 1, i = 1, 2, 3, 4

RF = {R1, R4}

R = {R1, R2, R3, R4}

Fig. 1: The F-L-SU RAS instance considered in the provided
example. Resources R1 and R4 might experience temporary
outages, while resources R2 and R3 are assumed to never fail.

problem that is considered in this work.
More specifically, in this paper we assume that the servers

of certain workstations may experience a non-catastrophic
failure while working on some process instance, and they
will stay in this failing mode for a random (and possibly
extensive) time until they are eventually repaired and resume
service on the interrupted process instances. We formalize
this additional operational feature by extending Definition 1
to include information about these failing possibilities.

Definition 2: An L-SU RAS with resource outages, to be
denoted by F-L-SU RAS in the sequel, is formally defined by
a 5-tuple Φ = 〈R, C,P,A,RF 〉 where:

1) The quadruple 〈R, C,P,A〉 defines an L-SU-RAS ac-
cording to the logic of Definition 1.

2) The set RF ⊆ R defines the set of the resource
types corresponding to workstations whose servers can
experience temporary outages.

In the acronym F-L-SU RAS, ‘F’ stands for “failing”.
Also, for the sake of brevity and notational simplicity, in
the sequel we shall not distinguish between the resource
type Ri, i = 1, . . . ,m, and its corresponding server; hence,
we shall talk about “failing resources”. The next definition
introduces a natural, yet formal, concept for tracing the server
operational status in any given F-L-SU RAS, and it has a
central role in all the subsequent developments.

Definition 3: Given a F-L-SU RAS Φ, the set of failing
servers at any time point t will define the current failing mode
x(t) of this RAS.

Example 1: We concretize the notions of the F-L-SU RAS
and the corresponding failing modes that are defined in
Definitions 2 and 3, by means of the F-L-SU RAS instance
that is depicted in Figure 1. This example RAS will also be
used in the rest of the manuscript for highlighting all the
technical concepts and results that are presented in it. The
depicted RAS consists of three process types J1, J2 and
J3. Among these process types, J1 and J2 are defined as
sequences of two processing stages that are denoted by Ξjk
where j = 1, 2 and k = 1, 2. On the other hand, process
type J3 is defined by a sequence of three processing stages
that are denoted by Ξ31, Ξ32 and Ξ33. The system resource
set is R = {R1, R2, R3, R4}, and each resource Ri has a
(buffering) capacity Ci = 1. Each processing stage requests
only one unit from a single resource type; the corresponding
resource allocation function is depicted in Fig. 1. Moreover,
the servers that are possessed by the workstations modeled
by the resource types R1 and R4 might experience temporary

outages. If an outage occurs at a server while working on a
process instance executing one of the supported stages, the
server will remain at this failing status until it is restored and
resumes service on the interrupted process. Hence, the F-L-
SU RAS instance considered in this example has three failing
modes, corresponding to the outage of either R1 or R4, and
the simultaneous outage of both R1 and R4.

Maximally permissive robust deadlock avoidance for the F-L-
SU RAS: Clearly, at any given failing mode x(t), a process
instance jj being processed or waiting for service at a work-
station with a failing server cannot proceed to its completion
until the restoration of the functionality of this server (and
the switching of the RAS to a different failing mode x′(t)).
Furthermore, in a failing mode x(t) with a failing resource
type Ri, any process instance with its (remaining) process plan
involving resource type Ri will not be able to complete. But,
more generally, the inability of the aforementioned process
instances to advance past a certain stage of their corresponding
process plans might also lead to the blockage of additional pro-
cess instances, that are executable by the non-failing resources
in mode x(t), but they cannot reach (some of) these resources
due to the presence of the first set of process instances.9

Following [22], [24], we define the problem of (maximally
permissive) robust deadlock avoidance for the considered
RAS class as the corresponding SC problem that prevents
the development of such second-order blockages in the op-
eration of the considered RAS, at any of its failing modes
x(t). More specifically, we stipulate that at any failing mode
x(t) of the considered F-L-SU-RAS, all those process types
Jj with process plans executable, in isolation, by the non-
failing resources in that mode, should retain their ability
to be repeatedly activated and complete all their activated
process instances while the system remains in the considered
failing mode. Furthermore, we would like to attain the above
objectives while imposing the minimal possible restriction
upon the feasible operation of the underlying RAS.

In the rest of this paper, we provide a compete formulation
and a systematic solution of the aforestated RAS SC problem
by adapting to this problem the notion of the s-DES and the
relevant SC theory that were developed in [31], [32].

III. MODELING THE F-L-SU RAS AS A SWITCHED
DISCRETE EVENT SYSTEM

In this section we provide a formal characterization of
the qualitative dynamics of the F-L-SU RAS in the s-DES
modeling framework that was recently introduced in [31], [32].
We start these developments with a brief overview of the s-
DES concept and its key defining ingredients.

Definition 4: According to [31], [32], a switched Discrete
Event System, briefly annotated as s-DES, is formally defined
by a 4-tuple G ≡ 〈X × S, Σ ∪ E, δ, (x0, s0)〉 where:

1) The finite state set S defines the set of operational states
of G, and the finite set X distinguishes a number of
operational modes over S. The tuples (x, s) ∈ X×S are

9The reader can refer to Section III of [24] for some vivid examples of
these blocking effects.
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characterized as the global state of G. On the other hand,
the state (x, s) for a fixed mode x ∈ X is perceived
as a local state in that mode, and, in the absence of
any ambiguity, it will be represented only by its second
component s.

2) The finite set Σ ∪ E defines the events taking place in
G, and it distinguishes these events into two types: (i)
The events in set Σ trigger transitions of G within its
operational state space S, without altering its mode. (ii)
The events in set E are all those events that cause a
modal change in G.
Furthermore, the set Σ is partitioned into the sets Σc

and Σu defining, respectively, the sets of controllable
and uncontrollable events in Σ. On the other hand, all
the events in E are uncontrollable events.

3) The state transition function δ : X × S × (Σ ∪ E) →
2X×S describes the transition of G among its various
global states (x, s) ∈ X ×S upon the occurrence of the
various events in Σ ∪ E. Moreover, the state transition
function δ is recursively extended to strings of (Σ∪E)∗,
the Kleene closure of Σ∪E; for the sake of simplicity,
we denote the extended transition function by δ, as well.
Furthermore, for the needs of the subsequent develop-
ments, it is also useful to consider the restrictions of the
transition function δ to its domain subsets {x}× S ×Σ
and {x} × S × E, for any given mode x ∈ X . The
first type of these restrictions encodes the transitions
taking place in the local subspace that corresponds to
mode x, and it will be denoted by δx. Furthermore,
for representational economy, δx will be considered as
reduced to a two-argument function, defined on S×Σ.10

On the other hand, the restriction of the function δ to
{x} × S × E encodes the uncontrollable transitions in
mode x that result in a mode change. This restriction
will be denoted by δEx , and similar to the case of
the function δx, δEx will also be considered as a two-
argument function, defined on S × E.

4) Finally, the pair (x0, s0) initializes G by specifying an
initial mode x0 ∈ X and an initial state s0 ∈ S.

Modeling the F-L-SU RAS as an s-DES: Let us consider a
RAS Φ = 〈R, C,P,A,RF 〉, belonging to the RAS class of
Definition 2. The qualitative dynamics of this RAS can be
modeled by a s-DES G(Φ) = 〈X × S, Σ ∪ E, δ, (x0, s0)〉,
as follows:

1) The (local) state set S of G(Φ) characterizes the distribu-
tion of the running process instances to their correspond-
ing processing stages, also taking into consideration the
processing status of each process instance in its current
processing stage. A formal encoding of this “state”
concept can be obtained as follows:
Let ξ ≡

∑n
j=1 |Sj |, where we remind the reader that

Sj , j = 1, . . . , n, denotes the set of the processing
stages of process type Jj , and the application of the
operator | · | on a given set returns its cardinality. Then,

10Formally, the reduction of δx from a three-argument to a two-argument
function, can be obtained through the existential quantification of its first
(constant) argument [36].

assuming that a process instance that has executed its
last processing stage is unloaded immediately from the
system, we take S ⊂ (Z+

0 )3ξ−n. Each component of the
vectors s ∈ S corresponds to a pair of a processing stage
Ξjk ∈

⋃n
j=1 Sj together with a particular processing

status; for further reference, we shall indicate these
possible statuses by I – waiting for processing, II –
in processing, and III – waiting to be transferred to
the next workstation. Furthermore, the proposed state
representation accounts for the fact that a job that has
completed its last processing stage cannot be in status
III, and this explains the term ‘−n’ in the definition of
the dimensionality of the local state vector s.
For a complete characterization of the target set S,
vectors s ∈ S must be further qualified to ensure the
feasibility of the implied resource allocation. This can
be achieved by enforcing the following set of linear
inequalities on s:

∀i ∈ {1, . . . ,m},
∑

q:res(s[q])=Ri

s[q] ≤ Ci (1)

∀i ∈ {1, . . . ,m},
∑

q:res(s[q])=Ri∧stat(s[q])=II

s[q] ≤ 1

(2)
The notation res(s[q]) in the above equation implies a
function returning the resource type that supports the
processing stage corresponding to the state component
s[q]. Also, the notation stat(s[q]) is a function that
returns the processing status of the process instances
corresponding to the state component s[q]; the range
of this function is the set {I, II, III}, with an inter-
pretation of these values as discussed in the previous
paragraphs. Then, it is clear that a vector s satisfies the
inequalities of Eq. 1 if and only if (iff) it corresponds to a
feasible resource allocation w.r.t. the resource capacities
of the RAS Φ. Similarly, the inequalities of Eq. 2
enforce the working assumption that every workstation
WSi, i = 1, . . . ,m, of the underlying production
system possesses a single server.11

2) The mode set X of G(Φ) is defined by the power set
of the set RF that contains the failure-prone resources.
Hence, every mode x ∈ X corresponds to a subset of
RF .
Furthermore, the working assumption that a workstation
server can fail only while processing a process instance,
implies the following additional condition for any global

11 The above discussion has provided a canonical characterization of the
local state s for the considered s-DES G(Φ). However, some reflection on
the material that is provided in the rest of this section will reveal that the
tracing of the processing status of the active process instances is necessary
only for those processing stages that are supported by failure-prone resources;
this realization can incur a possible reduction in the dimensionality of the
employed state vector s. An additional reduction in the dimensionality of s
can be incurred by the realization that failure-prone resources with a single
unit of capacity cannot have active process instances waiting for processing;
in these resources, process instances should be either in processing or blocked
waiting for transfer to their next workstation.
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state (x, s) ∈ X × S:

∀(x, s) ∈ X × S, ∀Ri ∈ x,∑
q:res(s[q])=Ri∧stat(s[q])=II

s[q] = 1 (3)

3) The set Σ contains the events that evolve the local
state s of G(Φ). More specifically, Σ contains all the
process initiation, single-stage advancement, and com-
pletion events that are implied by the sequential logic
that is presented in Definition 1, as well as the ser-
vice initiation and completion events within a particular
stage. In the considered application context, all these
events are assumed to be controllable except for the
events that correspond to service completion.

4) On the other hand, the set E contains all the possible
events that correspond to the failure or the restoration
of any single resource in RF . All the events in E are
uncontrollable.

5) The (global) state transition function δ encodes the
qualitative dynamics of the s-DES G(Φ) as implied by
the above definitions of the sets S, X , Σ and E. It should
be clear from these definitions that, in the considered
application context, δ is deterministic, i.e., it maps every
element of (x, s, q) ∈ X ×S× (Σ∪E) to a single state
(x′, s′). Furthermore, such a transition is feasible only
if the resultant state (x′, s′) satisfies the constraints of
Eqs 1–3.

6) Finally, the initial global state (x0, s0) of G(Φ) is
naturally defined by the state (∅,0), i.e., the state where
all the system servers are functional, and the system is
empty of any process instances.

Some further notions of particular significance in DES SC
theory at large, and also in the theory of deadlock avoidance
for sequential RAS, are those of state reachability and the
reachable subspace of any given DES. In the operational
context of the s-DES G(Φ) that was defined in the previous
paragraphs, a global state (x′, s′) is reachable from a global
state (x, s) if there exists a feasible event sequence σ ∈ (Σ ∪
E)∗ such that δ(x, s, σ) = (x′, s′). Furthermore, the reachable
(global) subspace of G(Φ) is defined by Reach(G(Φ)) ≡
{(x, s) ∈ X × S : ∃σ ∈ (Σ ∪ E)∗ s.t. (x, s) = δ(x0, s0, σ)}.
Finally, similar notions of reachability can be defined by
means of the restrictions δx and δEx of the transition function
δ, that were introduced in the earlier parts of this section;
the corresponding definitions are straightforward and their
detailing is left to the reader.

Example 1 (cont.): We demonstrate the concepts involved in
the above definition of the s-DES G(Φ) and its reachable state
space, Reach(G(Φ)), by means of the example F-L-SU RAS
Φ that was introduced in Section II.

The mode set X of the s-DES G(Φ) modeling the consid-
ered RAS Φ is equal to the set {x0, x1, x2, x3} where: x0 = ∅;
x1 = {R1}; x2 = {R4}; and x3 = {R1, R4}. On the other
hand, the local state set S characterizes the space of all the
possible allocation patterns of the capacity Ci of each resource
type Ri to the processing stages in the corresponding support
Sup(Ri). As explained in the earlier parts of this section, all

these allocation patterns can be pertinently represented by a
vector s that contains one component for every combination of
a processing stage with a processing status within this stage,
except for the combinations that involve a terminal processing
stage with a processing status of type III. In the context of the
considered example, this modeling approach implies a (local)
state vector s of dimensionality 3× 7− 3 = 18.

However, it is possible to reduce drastically the dimen-
sionality of the employed state vector s by taking advantage
of the observations that are provided in Footnote 11, and
some additional structure that is present in the considered
RAS. More specifically, since resources R2 and R3 are not
in RF , the processing stages Ξ12, Ξ22 and Ξ31 that are
supported by these two resources can be represented by a
single variable in s instead of three. In addition, the last
remark in Footnote 11 further implies that the stages Ξ11,
Ξ21, Ξ32 and Ξ33, that are supported by the failure-prone
resources R1 and R4, can be represented by two state variables
in s instead of three. Hence, the above remarks lead to the
following representation of the local state s for the considered
example: s = (v11,II , v11,III , v12, v21,II , v21,III , v22, v31,
v32,II , v32,III , v33,II) where the state variables v are indexed
by the corresponding processing stages and statuses. Fur-
thermore, since those process instances that have completed
processing at the processing stages Ξ12 and Ξ22 can leave the
system without experiencing any resource outages or posing
further resource requests, the state variables that correspond
to these two processing stages can be dropped completely
from the employed state representation when reasoning about
(robust) deadlock avoidance. And a similar remark applies
to process instances that have completed processing in stage
Ξ21 since the resource R2 in their remaining process plan
can be engaged neither in a deadlock nor in a resource
outage. Hence, the local state vector s is further reduced
to s = (v11,II , v11,III , v21,II , v31, v32,II , v32,III , v33,II). Ta-
ble II lists the state vectors for the considered example F-L-SU
RAS.

The initial global state (x0, s0) of the considered s-DES
G(Φ) is the state (∅,0) where all the servers are functional
and the system is idle and empty of any process instances.

The various events that evolve the state of G(Φ) can
be classified as follows: (i) First, there is the event set Σ
consisting of all those events that activate the running process
instances and advance them through the refined processing
stages that are recognized by the local state vector s that
was defined in the previous paragraphs. These events affect
only the local state s of G(Φ), and they are assumed to
be controllable except for the events that correspond to the
transitions 〈Ξ11,II ,Ξ11,III〉 and 〈Ξ32,II ,Ξ32,III〉, i.e., the
service completions in the corresponding processing stages
Ξ11 and Ξ32. Furthermore, since there are no state variables
tracking the number of process instances in the terminal
stages Ξ12, Ξ21,III and Ξ22, the unloading events for process
types J1 and J2 are modeled implicitly through the events
〈Ξ11,III ,Ξ12〉 and 〈Ξ21,II ,Ξ21,III〉. (ii) The second class of
events taking place in the considered s-DES G(Φ) is the event
set E = {R1 fail, R4 fail, R1 repair, R4 repair}, that
contains all the resource failing and restoration events. The
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TABLE II: The detailed description of the RAS states appear-
ing in Figs 2–5.

State (v11,II , v11,III , v21,II , v31, v32,II , v32,III , v33,II)
s0 (0, 0, 0, 0, 0, 0, 0)
s1 (1, 0, 0, 0, 0, 0, 0)
s2 (0, 0, 1, 0, 0, 0, 0)
s3 (0, 0, 0, 1, 0, 0, 0)
s4 (0, 1, 0, 0, 0, 0, 0)
s5 (1, 0, 1, 0, 0, 0, 0)
s6 (1, 0, 0, 1, 0, 0, 0)
s7 (0, 0, 1, 1, 0, 0, 0)
s8 (0, 0, 0, 0, 1, 0, 0)
s9 (0, 1, 1, 0, 0, 0, 0)
s10 (0, 1, 0, 1, 0, 0, 0)
s11 (1, 0, 1, 1, 0, 0, 0)
s12 (1, 0, 0, 0, 1, 0, 0)
s13 (0, 0, 0, 1, 1, 0, 0)
s14 (0, 0, 0, 0, 0, 1, 0)
s15 (0, 1, 1, 1, 0, 0, 0)
s16 (0, 1, 0, 0, 1, 0, 0)
s17 (1, 0, 0, 1, 1, 0, 0)
s18 (1, 0, 0, 0, 0, 1, 0)
s19 (0, 0, 0, 1, 0, 1, 0)
s20 (0, 0, 0, 0, 0, 0, 1)
s21 (0, 1, 0, 1, 1, 0, 0)
s22 (0, 1, 0, 0, 0, 1, 0)
s23 (1, 0, 0, 1, 0, 1, 0)
s24 (0, 0, 0, 1, 0, 0, 1)
s25 (0, 0, 1, 0, 0, 0, 1)
s26 (0, 1, 0, 1, 0, 1, 0)
s27 (0, 0, 1, 1, 0, 0, 1)
s28 (0, 0, 0, 0, 1, 0, 1)
s29 (0, 0, 0, 1, 1, 0, 1)
s30 (0, 0, 0, 0, 0, 1, 1)
s31 (0, 0, 0, 1, 0, 1, 1)

occurrence of any of these events switches the mode x of the
s-DES G(Φ) but it does not alter its local state s, since it
does not impact the processing stage and status of the running
processes. All the events in the set E are uncontrollable events.

The transition function δ for the considered s-DES G(Φ)
is graphically represented by the finite state automata (FSA)
depicted in Figs 2 – 5. These automata represent only the
dynamics that take place in Reach(G(Φ)), the reachable
subspace of the s-DES G(Φ), and each of the provided figures
depicts the state transition diagram (STD) that represents the
local dynamics in the corresponding operational mode xi,
i = 0, 1, 2, 3. The uncontrollable transitions among these
automata, due to the occurrence of the events in the set E,
are identified in the legends of the corresponding figures.

IV. A FORMAL CHARACTERIZATION OF THE MAXIMALLY
PERMISSIVE ROBUST DAP FOR THE F-L-SU RAS

With the operational dynamics of the F-L-SU RAS Φ well-
defined through the s-DES G(Φ), next we turn to the formal

specification of the notion of the “maximally permissive robust
DAP” for this RAS class. An informal characterization of
this last concept was already provided in the closing part
of Section II. Following the spirit of [31], [32], here we
shall seek to take advantage of the notions of “modality”
and “locality” that are introduced by the s-DES concept, and
distribute the control specification and the computation of the
corresponding supervisor across the modes that are recognized
in the operation of the underlying DES. This intention is
further facilitated by the fact that the control specifications that
are (verbally) stated at the end of Section II have, indeed, such
a distributed character. More specifically, in the operational
context of the s-DES G(Φ), those earlier specifications boil
down to the following two operational requirements for each
mode x ∈ X of the s-DES G(Φ):

Requirement 1: In any given mode x, activated process
instances that do not require any failing resource in that mode
for the completion of their remaining process plans, must be
able to advance to their completion.

Requirement 2: For any given mode x, let P(x) ⊆ P denote
the set of those process types that do not require any of the
failing resources for the support of their corresponding process
plans. Then, any process type Jj ∈ P(x) must be able to
execute repetitively while the system remains in that mode.

In the FSA modeling framework that represents the modal
qualitative dynamics of the s-DES G(Φ), the above two
requirements can be expressed by associating a corresponding
set of “marked states” with each mode x ∈ X . Marked states
is a standard method for expressing control specifications in
the DES SC theory that uses an automata-based representation
for the underlying dynamics [34]. Under this paradigm, the
specifications are enforced by the “co-reachability” require-
ment that the specified set of marked states is reachable from
any state that is reachable in the operation of the controlled
DES, in spite of potential complications that might arise from
the presence of uncontrollable behavior in the DES dynamics.
The synthesis of the necessary supervisor that will enforce
the aforestated “co-reachability” requirement in DES that are
modeled by basic finite state automata, has been well studied
by the DES SC theory [23], [34]. In this work, we shall
capitalize upon those past results in later parts of this section
and in Section V, where we shall address the computation
of the maximally permissive DAP for the considered F-L-SU
RAS.

Next, we detail a number of predicates that will define the
local marked states that are in agreement with Requirements 1
and 2, at each mode x ∈ X of the considered RAS. To
formally define these predicates, first we need to introduce
some further notation. In particular, for any given resource
Ri, i = 1, . . . ,m, we define ESup(Ri) – the extended
support of Ri – as the set of processing stages Ξjk that are
either supported by Ri, or they have remaining process plans
that contain Ri. We also define, for each mode x ∈ X , the
following (index) subsets I(x) of the components of the local
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Fig. 2: The finite state automaton modeling the qualitative dynamics of the example F-L-SU RAS of Fig. 1 in
mode x0. A detailed description of each of the 32 states that are depicted in this automaton, is provided in Ta-
ble II; and the same description applies also to the states that appear in Figs 3–5. Furthermore, states (x0, s) in
the depicted automation where s ∈ {s1, s5, s6, s11, s12, s17, s18, s20, s23, s24, s25, s27, s28, s29, s30, s31} can reach states
(x1, s) in Fig. 3 upon the occurrence of the uncontrollable event !R1 fail. Similarly, states (x0, s

′) where s′ ∈
{s2, s5, s7, s8, s9, s11, s12, s13, s15, s16, s17, s21, s25, s27, s28, s29} can reach states (x1, s

′) in Fig. 4 upon the occurrence
of the uncontrollable event !R4 fail.

state vector s:

∀x ∈ X, I(x) =
{
q ∈ {1, . . . , 3ξ − n} :(

stg(s[q]) 6∈
⋃
Ri∈x

ESup(Ri)
)
∨(

res(s[q]) ∈ x ∧ stat(s[q]) = III ∧

stg(s[q + 1]) 6∈
⋃
Ri∈x

ESup(Ri)
)

(4)

The function stg(s[q]) appearing in Eq. 4 returns the
processing stage of the underlying RAS Φ that corresponds
to its argument s[q]. Then, in plain terms, the index set
I(x) characterizes those active process instances in s that do
not need any of the failing servers in x for the support of
their remaining process plan. This realization further implies
that, for any mode x ∈ X , Requirement 1 can be formally
expressed in the established semantics for the s-DES G(Φ),
as the requirement for co-reachability w.r.t. some local state s
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that satisfies the following condition:∑
q∈I(x)

s[q] = 0 (5)

Clearly, the co-reachability of any local state s′ in mode x
w.r.t. some local state s of x that satisfies the condition of Eq. 5
implies the ability of the underlying RAS to clear all the pro-
cess instances that do not require the failing resources in x. On
the other hand, the satisfaction of the additional Requirement 2
also requires the availability of free capacity in the marked
states that are defined by Eq. 5, at levels that are adequate
to enable the repetitive execution of any process plan that
does not involve the failing resources in mode x. Considering
the single-unit nature of the underlying resource allocation
function A, and setting Aj ≡ {Ajk : k = 1, . . . , l(j)};
i.e., Aj for every process type Jj , j = 1, . . . , n,12 this last
requirement is expressed by the following additional condition
for the sought marked states of mode x:

∀j ∈ {1, . . . , n} s.t. Aj ∩ x = ∅, ∀i ∈ {1, . . . ,m} s.t.

Ri ∈ Aj :
∑

q:stg(s[q])∈Sup(Ri)

s[q] ≤ Ci − 1 (6)

The next proposition establishes formally the fact that the
specification of the local marked states for any given mode
x ∈ X according to the conditions of Eqs. 5 and 6 leads to
the satisfaction of Requirements 1 and 2 w.r.t. that mode in a
maximally permissive manner.

Proposition 1: For any given mode x ∈ X of the s-DES
G(Φ), co-reachability w.r.t. the set of states that satisfies the
conditions of Eqs. 5 and 6 is necessary and sufficient for the
satisfaction of Requirements 1 and 2 w.r.t. that mode.

Proof: The sufficiency part of the above proposition is
obvious from the content of Eqs 5 and 6. So, next we establish
the necessity part.

Hence, consider a local state s0 of mode x. The set of
the active processes in this state, to be denoted by J 0, can
be partitioned into two subsets J 0

1 and J 0
2 , with subset J 0

1

containing the set of those process instances that do not
require any resources in x for the execution of their remaining
process plan. In the semantics established by Eq. 4, the process
instances in J 0

1 are represented by those components of s that
belong in the set I(x). Then, Requirement 1, when combined
with the sequential logic of the process types in F-L-SU RAS
that is established by Definitions 1 and 2, implies the existence
of an event sequence σ1 ∈ Σ∗ such that δx(s0, σ1) = s1,
where the set of the active process instances in s1, J 1, satisfies
J 1 = J 0

2 . But then, state s1 satisfies the condition of Eq. 5.
Regarding the satisfaction of Requirement 2, first let us

notice that this requirement must be satisfied at the afore-
mentioned state s1. This remark further implies that (i) there
must exist a further transition sequence σ2 ∈ Σ∗ with
δx(s1, σ2) = s2, (ii) the set of active process instances in s2

will be J 2 = J 1 = J 0
2 , and (iii) s2 will enable the execution

of an instance from every process type that does not engage
the failing resources in mode x. This last requirement implies

12In plain terms, the set Aj is the set of all the resource types that appear
in the process plan of process type Jj , j = 1, . . . , n.
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Fig. 3: The finite state automaton modeling the qualitative
dynamics of the example RAS of Fig. 1 in mode x1, where
resource R1 has failed. In this automaton, all states can reach
their counterparts in mode x0 upon the occurrence of the
uncontrollable event !R1 repair. On the other hand, states
(x1, s) where s ∈ {s5, s11, s12, s17, s25, s27, s28, s29} can
reach states (x3, s) in Fig. 5 upon the occurrence of the
uncontrollable event !R4 fail.

that state s2 must satisfy the condition of Eq. 6. Furthermore,
since J 2 = J 1 = J 0

2 , state s2 will also satisfy the condition
of Eq. 5. But then, state s2 belongs to the set of “marked
states” that is defined by Eqs 5 and 6 and the sought result is
established. �

In order to turn the result Proposition 1 into a complete
specification of the maximally permissive DAP for the con-
sidered RAS, we also need to account for the impact of the
uncontrollability that is associated with the event sets Σu and
E.

To facilitate the subsequent discussion, let us denote the
target policy by Ω, and further define the transition function
δΩ and its modal restrictions δΩ

x , x ∈ X , that provide
a formal expression of the transitional dynamics of G(Φ)
under policy Ω. We shall also use the notation G(Φ; Ω) and
Reach(G(Φ; Ω)) to refer, respectively, to the controlled s-
DES G(Φ) under Ω, and the corresponding reachability space.
Finally, for any mode x ∈ X , we define the sets M(x) and
Scor(x) as follows:

M(x) ≡
{
s ∈ S : s meets the conditions of Eqs 3, 5 and 6

}
(7)

Scor(x) ≡
{
s ∈ S : s meets the condition of Eq. 3 ∧
∃σ ∈ Σ∗ s.t. δx(s, σ) ∈M(x)

}
, if M(x) 6= ∅{

s ∈ S : s meets the condition of Eq. 3
}
, o.w.

(8)
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Fig. 4: The finite state state automaton modeling the qualitative
dynamics of the example RAS of Fig. 1 in mode x2, where
resource R4 has failed. In this automaton, all states can reach
their counterparts in mode x0 upon the occurrence of the
uncontrollable event !R4 repair. On the other hand, states
(x2, s) where s ∈ {s5, s11, s12, s17, s25, s27, s28, s29} can
reach states (x3, s) in Fig. 5 upon the occurrence of the
uncontrollable event !R1 fail.
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Fig. 5: The finite state automaton modeling the qualitative
dynamics of the example RAS of Fig. 1 in mode x3, where
both R1 and R4 have failed. In this automaton, all states can
uncontrollably reach either their counterparts in mode x1 when
event !R1 repair occurs, or their counterparts in mode x2

when event !R4 repair occurs.

It should be obvious from Eqs. 7 and 8 that the set M(x)
collects all the local marked states at mode x ∈ X , while the
set Scor(x) is the local-state set satisfying the corresponding
“co-reachability” predicate that is defined in Proposition 1. In
particular, the reader should notice that the second branch in
the right-hand-side of Eq. 8 essentially addresses the case of
modes x ∈ X where each process type Jj , j = 1, . . . , n,
requires at least one of the failing resources in that mode, and
therefore, M(x) = ∅. In these modes, Requirements 1 and 2
are essentially nullified, and therefore, all local states that
might be experienced in these modes are admissible. The next
proposition establishes that each state set Scor(x) is invariant
w.r.t. the “local” uncontrollability that is encoded by the set
Σu.

Proposition 2: For any mode x ∈ X of the s-DES G(Φ),
s ∈ Scor(x) ∧ s′ = δx(s, q) for some q ∈ Σu =⇒ s′ ∈
Scor(x).

Proof: Since s ∈ Scor(x), there exists an event sequence
σ ∈ Σ∗ s.t. δx(s, σ) ∈ M(x). Furthermore, since q ∈ Σu,
it must be a service completion event, and therefore, the

uncontrollable transition from the local state s to the local state
s′ does not alter the allocation of the underlying resources to
the running processes. Finally, σ must contain at least one
instance of the considered event q, and the removal of the
first occurrence of q from this sequence provides a sequence
σ′ that is feasible in the state s′ and δx(s′, σ′) ∈M(x). Hence,
s′ ∈ Scor(x). �

On the other hand, the local nature of the specification of
the sets Scor(x), x ∈ X , w.r.t. the operational modes of the
considered RAS Φ, together with the uncontrollable transi-
tioning among these modes that is incurred by the resource-
failing and restoration events in E, imply that the observation
of Requirements 1 and 2 through the entire operation of the
RAS Φ might necessitate the further restriction of the local
behavior of Φ to certain subsets of the sets Scor(x), x ∈ X .
Indeed, at a first pass, it is pertinent to define these more
restricted sets, for each mode x ∈ X , by:

Ŝcor ≡
{
s ∈ S : s ∈ Scor(x), ∀x ∈ X that satisfies

the condition of Eq. 3 w.r.t. local state s
}

(9)

The above specification of the set Ŝcor can be understood
from the following two observations: (i) At any global state
(x, s), a modal change due to the occurrence of an event e ∈ E
leaves the local state s unaltered. (ii) At any global state (x, s),
a modal change due to the occurrence of an event e ∈ E
must lead to a RAS state (x′, s) that satisfies the condition of
Eq. 3. Then, the defining condition of the set Ŝcor in Eq. 9
seeks to ensure that if the system is started at a global state
(x, s) with s ∈ Scor(x), the occurrence of any event sequence
ε ∈ E∗ will take the system through a sequence of global
states (xi, s), i = 1, 2, . . ., that satisfy s ∈ Scor(xi), ∀i. The
next proposition formalizes this result and establishes some
further important properties of the set Ŝcor.

Proposition 3: The local-state set Ŝcor that is defined in
Eq. 9 possesses the following properties:13

1) 0 ∈ Ŝcor.
2) ∀s ∈ S s.t. |s| = 1, s ∈ Ŝcor.
3) The global state set {(x, s) ∈ X × S : s ∈ Ŝcor} is

invariant w.r.t. the uncontrollability of G(Φ).
Proof: For the first part of Proposition 3, first it can be

easily checked that M(∅) = {0}, and therefore, 0 ∈ Scor(∅).
Furthermore, since all servers are idle at local state 0, mode ∅
is the only viable mode for this local state. Hence, the result.

For the second part of Proposition 3, the reader should
notice that state s can belong to at most two operational
modes: (i) mode ∅, and (ii) in the case that the non-zero
component corresponds to a processing status on a failure-
prone server, s can also be part of the corresponding failing
mode. In both cases, s is co-reachable to the corresponding set
of marked states M(x) (in fact, in the second case it belongs
in the corresponding set M(x)).

To prove the last part of Proposition 3, consider a state (x, s)
with s ∈ Ŝcor, and an uncontrollable event q ∈ Σu ∪E that is
feasible in (x, s). Let (x′, s′) = δ(x, s, q). We need to show
that s′ ∈ Ŝcor. For this, we discern the following two cases:

13The notation |s| in the second part of this proposition implies the l1 norm
of the state vector s, i.e., the sum of all the components of s.
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Case 1 – q ∈ Σu: Let X(s) (resp., X(s′)) denote the modes
that satisfy the condition of Eq. 3 at state s (resp., s′). Then,
the case definition implies that X(s′) ⊂ X(s). This result,
together with the fact that s ∈ Ŝcor and Proposition 2, imply
that s′ ∈ Scor(x), ∀x ∈ X(s′). But then, s′ ∈ Ŝcor.

Case 2 – q ∈ E: In this case, s′ = s, and therefore it belongs
in Ŝcor by the working assumptions. �

Part #3 of Proposition 3 establishes formally that Ŝcor
contains, indeed, the uncontrollability of G(Φ). On the other
hand, an important implication of the first two parts of this
proposition is that the proposed restriction of the operation of
the s-DES G(Φ) in the subspace {(x, s) ∈ X × S : s ∈ Ŝcor}
does not impair the capability of the underlying RAS to
support the execution of each process type Jj , j = 1, . . . , n,
since, in the worst case, each of these process types can be
executed in isolation.

However, the “thinning” of the sets Scor(x), x ∈ X ,
that is effected by their suggested substitution with the set
Ŝcor of Eq. 9, can destroy the required co-reachability of the
states remaining in Ŝcor to the corresponding modal sets of
marked states M(x), x ∈ X . In other words, a DAP that
will seek to restrict the operation of the s-DES G(Φ) so that
it visits only local states in Ŝcor at every mode x ∈ X ,
can experience “policy-induced deadlocks” in the resulting
modal dynamics. We demonstrate this possibility through the
following example.

Example 2: In this example we consider an F-L-SU RAS with
four resource types, Ri, i = 1, . . . , 4, all of capacity Ci = 1,
and three process types Jj , j = 1, 2, 3. The corresponding
process plans are 〈R1, R2, R3〉, 〈R3, R2〉 and 〈R4, R1〉. The
set of failure-prone resources is RF = {R2, R3}.

Next, let us focus on the local state s that has three active
process instances j1, j2 and j3, with respective processing
stages Ξ11, Ξ21 and Ξ31. State s belongs in Ŝcor: In particular,
this state has a feasible terminating route in mode ∅ that first
advances j2 to completion, then j1, and eventually j3. Also,
in mode {R3}, which is the only other possible mode for
this state under the restriction of Eq. 3, process instance j1
can advance to resource R2, enabling process instance j3 to
terminate, and the same advancement enables the repetitive
execution of process type J3 that does not require the failing
resource R3.

On the other hand, there is no single-stage advancement for
any active process instance in state s that can lead to a state
s′ ∈ Ŝcor. The advancement of process instance j1 will result
in a deadlock of this process instance with process instance j2.
Also, the advancement of process instance j2 is not admissible
since the resulting state s′ will not allow process instance j3
to advance to completion in mode {R2}. �

To cope with the policy-induced deadlocks that are demon-
strated by Example 2, set Ŝcor must be post-processed in
order to identify and remove from it any local states, s,
that will constitute such deadlocks in any mode x ∈ X of
the underlying RAS. The removal of these states might also
necessitate the revision of the sets M(x), x ∈ X , themselves,
since some of the local marked states in these sets might
not be able any more to initiate the execution of all the

different process types that do not utilize the failing resources
in the corresponding mode; these states must be identified
and removed from all modal subspaces, as well. Another
possibility is that, due to the effected state pruning, some
local states might become unreachable in the local subspace
of mode ∅. If we want to have a complete and accurate
characterization of the reachable subspace of the target DAP
Ω, these states must also be identified and removed from all the
modal subspaces.14 The above thinning process must also be
iterative, since the removal of any set of local states from Ŝcor
might raise the need for the further thinning of this set due to
some other of the three reasons mentioned above. On the other
hand, the finite completion of this iterative computation with a
non-empty subset of Ŝcor, Scor, is guaranteed by parts #1 and
#2 of Proposition 3, which, as already mentioned, ensure the
capability of each process type Jj , j = 1, . . . , n, to execute in
isolation under the posed operational Requirements 1 and 2.

Finally, the computation of the set Scor along the aforemen-
tioned lines enables the implementation of the sought DAP Ω
through the “one-step-look-ahead” rule:

∀(x, s) ∈ X × S, ∀σ ∈ Σc s.t. δ(x, s, σ) is well defined,
σ is Ω-admissible ⇐⇒ δx(σ) ∈ Scor (10)

The systematic computation of the set Scor, that is critical
for the specification of the target policy Ω through Eq. 10, is
addressed in the next section. We close the current section by
highlighting and concretizing the above characterization of the
target DAP Ω and its admissible subspace ReachG(Φ; Ω)), by
means of the example F-L-SU RAS of Fig. 1.

Example 1 (cont.): In order to derive the maximally permissive
robust DAP Ω for the example F-L-SU RAS of Fig. 1 along
the lines that were discussed in the previous paragraphs,
first we derive the sets M(x) of marked states, and the
corresponding sets Scor(x) of the co-reachable states, for each
operational mode x of the underlying s-DES G(Φ). With these
two groups of sets available, subsequently we compute the
corresponding local-state set Ŝcor. Finally, we operate on the
obtained set Ŝcor through the iterative “thinning” process that
was described in the previous paragraphs, in order to obtain
the final set Scor that will provide a complete characterization
of the maximally permissive robust DAP for this RAS through
the condition of Eq. 10. Also, without any loss of generality,
in the subsequent discussion, the local-state set S is restricted
to the set Sreach(x0) that contains the states that are tabulated
in Table II (i.e., the local states that are reachable in mode ∅
of the considered RAS Φ).

According to Eqs 5, 6 and 7, the marked states for the four
modes xi, i ∈ {0, 1, 2, 3}, of the s-DES G(Φ) considered in
this example, are defined as follows:

M(x0) = {s0} (11)

14 On the other hand, the identification and removal of these unreachable
states from the modal subspaces is not essential for the effective implemen-
tation of the target DAP, since, due to the unreachability of these states, the
deployed policy will never be called to operate on them.
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M(x1) = {s1, s6, s20, s24} (12)

M(x2) = {s2, s8} (13)

M(x3) = ∅ (14)

In the STDs depicted in Figs 2–5, the corresponding marked
states are represented by the shaded nodes. With the marked
states for each mode xi, i = 0, 1, 2, 3, well defined, the co-
reachable state sets Scor(xi), i ∈ {0, 1, 2, 3}, can be obtained
from Eq. 8 as shown below:

Scor(x0) = Sreach(x0)\{s17, s21, s23, s26} (15)

Scor(x1) = {s1, s5, s6, s11, s20, s24, s25, s27} (16)

Scor(x2) = {s2, s5, s8, s9, s12, s16, s25, s28} (17)

Scor(x3) = {s5, s11, s12, s17, s25, s27, s28, s29} (18)

The results of the above computation are tabulated in the
first five columns of Table III. In this table, cells marked by
‘–’ correspond to local states that do not satisfy the condi-
tion of Eq. 3 at the corresponding mode, and therefore, the
corresponding global states are not realizable in the dynamics
of the underlying RAS Φ. On the other hand, cells marked
by ‘X’ correspond to local states that do not belong to the
corresponding set Scor(x).

In order to compute the local-state set Ŝcor, let us denote
by Seach(xi), i = 1, 2, 3, the subsets of the considered local-
state set Sreach(x0) that satisfy the condition of Eq. 3 at the
corresponding mode xi; each of these subsets consists of the
local states appearing in the corresponding STDs of Figs 2–5,
and they are represented by the “undashed” cells in Columns
2–5 of Table III. Then, the sought set Ŝcor can be obtained
from the following formula:15

Ŝcor = Sreach(x0) \
3⋃
i=0

(
Sreach(xi) \ Scor(xi)

)
(19)

Set Ŝcor is reported in the sixth column of Table III.
Juxtaposing the results of Table III with the state descriptions
that are provided in Table II, it can be easily seen that the
obtained set Ŝcor contains the local state 0 and also every
state of the set Sreach(x0) that has only one activated process
instance; this fact is in agreement with the first two results
of Proposition 3. Also, the juxtaposition of the results of
Table III with the STDs of Figs 2–5 reveals that there is
no transition from Scor(xi) to Sreach(xi) \ Scor(xi), for any
mode xi, i = 0, 1, 2, 3, due to the local uncontrollable events
!11{II − III} and !32{II − III}; this last fact is consistent

15More precisely, in view of the definition of the set S in the considered
example as the set of local states that are reachable in mode ∅, the set that is
computed by the formula of Eq. 19 is the set Ŝcor ∩ reach(G(Φ)).

TABLE III: Computing the local state set Ŝcor for Example
1. Cells marked by ‘–’ correspond to local states that do not
satisfy the condition of Eq. 3 at the corresponding mode. Cells
marked by ‘X’ correspond to local states that do not belong
to the corresponding Scor(x).

State x0 x1 x2 x3 Ŝcor Scor
s0 – – – X X
s1 – – X X
s2 – – X X
s3 – – – X
s4 – – – X X
s5 X X
s6 – – X
s7 – X –
s8 – – X
s9 – – X X
s10 – – – X
s11 X
s12 X
s13 – X –
s14 – – – X
s15 – X –
s16 – – X
s17 X X X
s18 X – –
s19 – – – X
s20 – – X
s21 X – X –
s22 – – – X
s23 X X – –
s24 – – X
s25 X
s26 X – – –
s27 X
s28 X
s29 X X
s30 X – –
s31 X – –

with the result of Proposition 2.
In the last part of this example, we use the results of

Table III in order to compute the desired set Scor, and thus,
characterize the maximally permissive robust DAP for the
considered RAS Φ. The corresponding computation evolves
through the following phases: In the first phase, this compu-
tation removes from the STDs depicted in Figs 2–5 all the
corresponding local states that do not belong in Ŝcor. As a
result of this removal, local states s6 and s24 loose their ability
to support the repetitive execution of the process type J2 in
mode x1, and local state s8 looses its ability to support the
repetitive execution of the process types J1 and J3 in mode
x2. The subsequent removal of these states from all the local
STDs renders in-coreachable the local state s16 in mode x2,
and hence, this local state has to be pruned from all STDs, as
well. Also, the removal of the local states s6, s8 and s16 from



14

the STD of Fig. 2 renders total deadlocks the states s3 and s10

in the STD of mode x0, and therefore, they must be pruned.
Due to all the above state prunings, states s14, s19, s20, s22

and s25 become unreachable from the initial state 0 in the
STD of mode x0 and they must also be removed from all
modal STDs, for a complete characterization of the reachable
subspace of G(Φ; Ω).

The results of the state-pruning process that was described
in the previous paragraph are reported in the last column of
Table III. These results are also depicted graphically by the
boldfaced nodes in the STDs of Figs 2–5.

Finally, at each reachable global state (x, s) of the consid-
ered RAS Φ, the maximally permissive robust DAP Ω that is
defined by the above results will admit a process-loading or
a controllable process-advancing event q ∈ Σc if and only if
the resulting local state s′ belongs in Scor.

V. COMPUTING THE MAXIMALLY PERMISSIVE ROBUST
DAP

In this section we present an algorithm for the obtaining
a distributed representation of the set Scor that defines the
maximally permissive DAP Ω for any given F-L-SU RAS
Φ. We also provide a formal analysis for this algorithm
that establishes its finite computation and the correctness of
the derived DAP w.r.t. to the specifications that were posed
in Sections II and IV, and we conclude with a series of
remarks that can lead to more efficient implementations of
the presented algorithm in terms of its execution time and /
or its memory requirements.

The proposed distributed algorithm: Motivated by the corre-
sponding results of [31], [32], the proposed algorithm dis-
tributes the computation of the target set Scor over a number
of threads Θx, x ∈ X , that are in one-to-one correspondence
with the distinct operational modes x of the underlying RAS
Φ. These threads communicate the partial results of their
computation through a message-passing mechanism [33] that
regulates the progress of the overall computation and guaran-
tees the correctness of the final outcome. Next, we detail the
logic that is executed by each of the aforementioned threads,
and the data structures and the communication mechanisms
that are employed in this execution; the complete pseudo-code
that is run by each thread Θx is provided in Figure 6.

We start by describing the communication mechanisms that
are used by the various threads of the considered algorithm.
As already mentioned, the key communication mechanism is
a message-passing mechanism that is implemented by a FIFO
message list, MessageQueuex, maintained by each thread
Θx, x ∈ X , and the 2-dim integer table COUNT [|X|, |X|]
where the entry COUNT [x, x′] reports the number of mes-
sages sent by Θx to Θx′ that are still unprocessed by Θx′ . The
messages exchanged through this mechanism are essentially
subsets of the local-state set S that must be pruned from some
corresponding state sets that are maintained by the recipient
thread. The table COUNT [|X|, |X|] is a data structure that
is shared among all threads Θx, x ∈ X . Another shared data
structure among these threads is the 1-dim array DONE[|X|],
with DONE[x] being a Boolean variable indicating whether

Input: S, Σ, δx, δ∅
Output: Scor(x)

/* INITIALIZATION */
1: MessageQueuex := NILL; DONE[x] := FALSE;
2: for all x′ ∈ X do
3: COUNT [x, x′] := 0;
4: end for
5: Sreach := {s ∈ S : ∃σ ∈ Σ∗, s = δ∅(s0, σ)};
6: Sreach(x) := Sreach \ {s ∈ Sreach : s 6` Eq 3};
7: M(x) := {s ∈ Sreach(x) : s ` Eqs 5 and 6};
8: if M(x) 6= ∅ then
9: Scor(x) :=M(x);

10: else
11: Scor(x) := Sreach(x);
12: end if
13: repeat
14: Qcor(x) := Scor(x);
15: Scor(x) := Scor(x) ∪

{s ∈ Sreach(x) : ∃σ ∈ Σ, δx(s, σ) ∈ Scor(x)};
16: until Qcor(x) = Scor(x);
17: Mx := Sreach(x) \ Scor(x);
18: if Mx 6= ∅ then
19: for all x′ ∈ X \ {x} do
20: COUNT [x, x′] + +; send Mx to Θx′ ;
21: end for
22: end if

/* PROCESS MESSAGE QUEUE */
23: repeat
24: if MessageQueuex 6= NILL then
25: DONE[x] := FALSE, Srm(x) := ∅;
26: while MessageQueuex 6= NILL do
27: Pop message Mx′ from MessageQueuex;
28: COUNT [x′, x]−−;
29: Srm(x) := Srm(x) ∪

(
Scor(x) ∩Mx′

)
;

30: end while
31: if Srm(x) 6= ∅ then
32: Scor(x) := Scor(x) \ Srm(x);
33: repeat
34: Qrm(x) := Srm(x);
35: oldScor(x) := Scor(x);
36: Scor(x) :=M(x) ∩ oldScor(x);
37: repeat
38: Qcor(x) := Scor(x);
39: Scor(x) := Scor(x) ∪ {s ∈ oldScor(x) :

∃σ ∈ Σ, δx(s, σ) ∈ Scor(x)};
40: until Qcor(x) = Scor(x);
41: Srm(x) := Srm(x) ∪

(
oldScor(x) \ Scor(x)

)
;

42: Qm(x) := {s ∈M(x) ∩ Scor(x) :
∀Jj ∈ P(x), δx(s, load(Jj)) ∈ Scor(x)};

43: Srm(x) := Srm(x) ∪ (M(x) \Qm(x));
44: M(x) := Qm(x);
45: until Qrm(x) = Srm(x);
46: Mx := Srm(x);
47: for all x′ ∈ X \ {x} do
48: COUNT [x, x′] + +; send Mx to Θx′ ;
49: end for
50: end if
51: DONE[x] := TRUE;
52: end if
53: until

(∑
x,x′∈X COUNT [x, x′] = 0

)
∧
∧

x∈X DONE[x];
54: return Scor(x);

Fig. 6: The sequential logic that is executed by each thread
Θx, x ∈ X , of the presented algorithm.



15

thread Θx is in a processing or an idling mode. The terminat-
ing condition for the entire algorithm is the condition of Line
53 in Fig. 6, where all sent messages have been processed by
their recipient threads, and each thread is in an idling mode.

The main phases of the sequential logic in Fig. 6 that is
executed by each thread Θx is as follows: After initializing the
aforementioned data structures and mechanisms that facilitate
the thread communication (Lines 1–4), the thread computes
the corresponding set M(x) in Lines 5–7. This is done by
first computing the set Sreach(x) containing all the local states
that are reachable in mode x (Lines 5–6), and subsequently
computing the set M(x) as the subset of Sreach(x) that
satisfies the conditions of Eqs 5 and 6. Finally, the set Scor(x)
is computed from M(x) through the iterative (“fixed point”)
computation of Lines 8–16. Furthermore, in Lines 17–22
the algorithm synthesizes the message Mx containing all the
reachable states in mode x that are not co-reachable to the set
of the local marked states M(x), and if Mx is not empty, it
broadcasts this message to every other thread Θx′ .

Subsequently, thread Θx checks its message queue for any
received messages, and processes these messages by first
compiling all their contents in the set Srm(x) (Lines 23–
30). If Srm(x) is non-empty, then the contents of this set
are removed from the maintained set Scor(x) (Lines 31–32),
and this removal triggers a further revision of the sets M(x)
and Scor(x) so that they remain consistent with their original
definitions in the context of the more restricted dynamics that
result from the aforementioned elimination of the local states
in Srm(x). More specifically, thread Θx goes into the loop of
Lines 33–45 where, at each iteration, it first updates Scor(x) to
its subset of states that remain co-reachable to the set M(x)
after the aforementioned removal of Srm(x) (Lines 34–40).
Subsequently, it also updates the set M(x) to its subset of
states that enable the initiation of every process type in P(x)
under the restricted local dynamics that are defined by the
updated value of Scor(x) (Lines 41–44). The loop that is
defined by Lines 33-45 concludes when no further updating
of Scor(x) or M(x) is necessary. Furthermore, during the
execution of this loop, thread Θx compiles in the set Srm(x)
all the local states that are removed from Scor(x) and M(x),
and these states are subsequently broadcasted to all other
threads Θx′ (Lines 46–50).

After completing the processing of its current messages
as described in the previous paragraph, thread Θx sets the
Boolean variable DONE[x] to TRUE (Line 51) and goes
into an idling mode until (i) either some new message(s) are
received, in which case the above processing cycle of Lines
23–52) is repeated on this new set of messages, (ii) or Θx

finds out that the terminating condition of Line 53 is satisfied,
in which case it exits, returning the set Scor(x) as the final
outcome of its computation.

Algorithmic analysis: The next theorem establishes the finite-
ness and the correctness of the algorithm that is described in
the above paragraphs.

Theorem 1: The application of the distributed algorithm
defined by the pseudo-code of Fig. 6 on any given F-L-SU
RAS instance Φ

1) will terminate in a finite number of steps, and
2) the SC policy Ω that admits a local controllable transi-

tion in any mode x ∈ X iff the resulting state δx(s, σ)
belongs in the corresponding set Scor(x) that is returned
by the thread Θx, is the maximally permissive robust
DAP for RAS Φ.

Proof: The finiteness of the computation of the considered
algorithm can be established through the following two obser-
vations: First, we notice that the set Sreach that is computed
in Line 5 of the pseudo-code of Fig. 6, is a finite set, due to
(i) the finiteness of the resource capacities Ci, i = 1, . . . ,m,
and (ii) the structure of the resource allocation function A
of the underlying RAS Φ. Hence, all the initially obtained
sets Scor(x) are finite, since they are subsets of Sreach.
Furthermore, the broadcasting of a message Mx by some
thread Θx, x ∈ X , implies the strict reduction of (at least)
the corresponding set Scor(x). Hence, the number of messages
that can be exchanged among all the threads Θx is finite,
and therefore, eventually all these threads will find themselves
simultaneously in the idling mode with no further messages
to be processed.

To prove that the policy Ω induced by the computed sets
Scor(x), x ∈ X , is the maximally permissive DAP for the un-
derlying RAS Φ, first we notice that each thread Θx, x ∈ X ,
computes correctly the corresponding set Scor(x), as defined
by Eq. 8. In particular, Scor(x) will contain the local states s
that are co-reachable to the sets inM(x) if the latter set is non-
empty (i.e., if there are process types Jj in mode x that do not
require the failing resources for their execution), or it will be
equal to the set Sreach(x) otherwise. Furthermore, any pruning
of the sets Scor(x) and M(x), x ∈ X , that is effected by the
corresponding thread Θx in response to a received message
Mx′ , is necessary in the face of (i) the uncontrollable nature of
the resource failing and restoration events in the corresponding
set E, and (ii) the behavioral specifications that are posed by
Requirements 1 and 2. Finally, the original construction of the
sets M(x) and Scor(x), x ∈ X , and the logic that drives the
subsequent pruning of these sets, guarantee that, at each mode
x ∈ X , the counterparts of these sets that are obtained upon the
termination of the considered algorithm, still present the basic
structure that was requested for the original sets M(x) and
Scor(x) in order to express the corresponding Requirements 1
and 2 for that mode.

The above remarks imply that the policy Ω that is induced
by the sets Scor(x), x ∈ X , according to the logic of
Theorem 1, satisfies the local Requirements 1 and 2 at each
mode x ∈ X , in a maximally permissive manner. To conclude
the proof of the second part of Theorem 1, next we shall also
show that policy Ω will not experience any deadlocks in its
global state space X × S. In particular, we shall show that
for each global state (x, s) that is reachable under policy Ω,
there exists at least one corresponding sequence σ ∈ (Σ∪E)∗

that leads to the state (∅,0) while visiting only Ω-adimissible
global states.

To establish this last result, first we notice that, for the
considered state (x, s), there will always be an event sequence
σ1 ∈ E∗ leading from this global state to the corresponding
global state (∅, s) without violating the policy Ω; sequence σ1
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will consist of the restoration events for all the resources that
are failing in mode x, in any order, and it is Ω-admissible
since, if it passed through some global state (x′, s) with
s 6∈ Scor(x

′), then local state s would have been removed
from Scor(x) by Θx in response to a message received from
Θx′ . On the other hand, since state s belongs to the returned
set Scor(∅), state s is co-reachable to the setM(∅) in mode ∅
through an Ω-admissible event sequence σ2 ∈ Σ∗. But M(∅)
is the singleton {(∅,0)}. Hence, the sought sequence σ is the
sequence σ1σ2.16 �

We conclude the analysis of the presented algorithm with
two additional remarks. First we remind the reader that ac-
cording to the discussion that was provided in Section IV,
the maximally permissive robust DAP for the considered RAS
will always be able to support the execution of all the process
types Jj , j = 1, . . . , n, of the underlying RAS Φ, possibly
running only single instances from each of these process types
in isolation. Hence, the sets Scor(x) that are returned by each
thread Θx, x ∈ X , of the considered algorithm will be non-
empty.

Furthermore, in the context of the distributed computation
of the presented algorithm and the corresponding results in
Theorem 1, the sought policy Ω is determined by the sets
Scor(x) that are returned by each thread Θx, x ∈ X . However,
it is not hard to see that policy Ω can also be defined as the
one-step-look-ahead policy that admits a controllable transition
at any given RAS state (x, s) iff the resulting local state s′

belongs in the set
⋃
x∈X Scor(x); this last set is essentially a

representation of the set Scor that was used in Section IV in
order to define the policy Ω through Eq. 10.

Complexity and other implementational considerations: We
conclude the section on the computation of the sought policy Ω
by providing some further remarks on the practical tractability
of this task, and some additional possibilities that can influence
that necessary computational time and the memory require-
ments.

For a start, the reader should notice that in the distributed
computation that was discussed in the earlier parts of this
section, the computation that is executed by each thread Θx

evolves on the local state space S which is commensurate to
the state spaces that are addressed in the context of failure-free
RAS, and therefore, this computation is manageable through
the recently emerged techniques that were discussed in the
introductory section of this paper. A particularly promising
approach can be based on the adoption of a symbolic rep-
resentation for the underlying RAS dynamics similar to that
employed in [12]. Alternatively, one can also seek to extend
the methodology of [10], [11] to the considered application
context; the complete realization of such an extension will also
require a more systematic investigation of the monotonicity
properties that are implied by the defining logic of the maxi-
mally permissive DAP Ω.

16More precisely, the execution of the event sequence σ2 might be inter-
rupted by a number of resource outages and the corresponding excursion of
the RAS dynamics to some other operational modes than mode x0. However,
each of these outages eventually will be restored, returning the considered
RAS to its mode x0 for the continuation of the execution of the transition
sequence σ2.

Finally, it is also possible to consider an alternative im-
plementation of the computation that was presented in the
earlier parts of this section, where all threads Θx, x ∈ X ,
work on a single copy of the state set Sreach, that will
constitute a shared data structure for all these threads. Under
this new computational scheme, the contents of this set will be
iteratively modified by the running threads Θx; in particular,
each thread will further prune this state set on the basis of (i)
the current content of the set, and (ii) the thread pruning logic
that was detailed in the previous parts of this section. Such a
realization can reduce extensively the memory footprint of the
presented algorithm, at the expense of a reduced concurrency
in the overall computation. In fact, this new scheme can even
be implemented through a single computational thread that
executes the pruning logic corresponding to each mode x ∈ X
as a separate subroutine that is invoked iteratively during the
execution of the algorithm. The interesting feature of this
scheme is that the memory footprint for the entire algorithm
is no more than the size of the local state space S; i.e., the
presence of many operational modes in the underlying RAS
Φ does not increase the corresponding memory requirements.

VI. CONCLUSION

In this work, we have revisited the problem of the compu-
tation of a robust DAP for a RAS class that involves potential
temporary resource outages and has been primarily motivated
by the buffer allocation taking place in flexibly automated
production cells. By taking advantage of the modeling and the
computational capabilities that are provided by the recently
emerged paradigm of switched Discrete Event Systems (s-
DES) [31], [32], we were able to provide (i) a succinct
characterization of the maximally permissive robust DAP Ω for
the considered RAS class, and (ii) a distributed algorithm for
the computation of a practically implementable representation
of this policy. At the same time, the developments presented
in this work extend the existing s-DES SC theory so that it
can handle nonblocking supervision, in addition to the “safety”
requirements that were the primary specifications addressed in
the original work of [31], [32].

A possible extension of the presented work concerns the
systematic investigation of the monotonicity properties that
are possessed by the admissible subspace of the target SC
policy Ω, and the potential efficiencies that can be incurred
by these properties in the computation of Ω in line with
similar developments that are presented in [13], [8]. Further
extensions can try to adapt the notion of “robust deadlock
avoidance” to other operational contexts that are amenable to
the fundamental abstraction of the sequential RAS. This line of
extensions could even try to come up with alternative notions
of “robustness” that will mitigate the typical restrictiveness of
the corresponding DAPs at the expense of certain operational
risks that might be tolerated by these policies. Finally, it
is interesting to apply the modeling and the computational
methodology developed in this work to s-DES structures
and dynamics that transcend the concept of the sequential
RAS; certain classes of games as well as other DES with a
multimodal structure for their underlying dynamics are natural
candidates for such applications.
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