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Abstract This paper extends the existing theory on maximally permissive liveness-enforcing
supervision of resource allocation systems (RAS) so that it can handle RAS with reader /
writer (R/W-) locks. A key challenge that is posed by this new RAS class stems from the
fact that the underlying state space is not necessarily finite. We effectively address this ob-
stacle by taking advantage of special structure that exists in the set of inadmissible states
and enables a finite representation of this set through its minimal elements.
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1 Introduction

The problem of deadlock avoidance – or, liveness-enforcing supervision – for sequential
resource allocation systems (RAS) has been studied extensively in the Discrete Event Sys-
tems (DES) literature. Some comprehensive expositions of the relevant results can be found
in Reveliotis (2005); Zhou and Fanti (2004), and Li et al (2008). Many of these results were
initially motivated by the supervisory control (SC) needs of flexibly automated production
systems (e.g., Viswanadham et al (1990); Banaszak and Krogh (1990); Ezpeleta et al (1995);
Reveliotis and Ferreira (1996); Fanti et al (1997)), but the theory was subsequently applied
to additional applications, like the traffic management of automated transport systems (e.g.,
Reveliotis (2000); Wu and Zhou (2007); Roszkowska and Reveliotis (2008); Reveliotis and
Roszkowska (2011)) and the management of the resource allocation in automated workflow
systems (e.g., Park (2004)). More recently, the aforementioned theory has been employed
and extended in order to address deadlock-related issues that arise in the context of multi-
threaded programs, a programming paradigm that becomes more and more prevalent due
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to the multi-core architectures that are promoted by the computer industry; the correspond-
ing developments are collectively known as the “Gadara project”.1 More specifically, in the
context of the Gadara project, a series of recent papers (Nazeem et al (2011); Wang et al
(2009, 2010); Liao et al (2013b,a,c)) have studied the problem of deadlock avoidance in
multi-threaded programs where the concurrently running threads coordinate their execution
in their critical section through mutual exclusion locks (mutexes). From the standpoint of
RAS theory, mutexes can be abstracted as reusable resources of unit capacity, and the pro-
gram threads contesting for these resources, while trying to access their critical section,
define the RAS processes. The resulting RAS models have enabled the development of SC
policies that establish deadlock-free allocation of the aforementioned mutexes to the con-
testing processes in a way that ensures maximal permissiveness.2 In Nazeem and Reveliotis
(2011, 2012), the original results were extended to also handle the allocation of semaphores,
which constitute resource types of multi-unit capacity.

In this work, we further extend the aforementioned results in order to address the prob-
lem of deadlock avoidance for multi-threaded programs involving reader / writer (R/W)
locks, besides mutexes and semaphores. Reader-writer synchronization, as introduced by
Courtois et al (1971), relaxes the constraint of mutual exclusion to permit more than one
process to inspect a shared resource concurrently, as long as none of them changes its value.
Thus, multiple threads can read from the shared resource simultaneously but a thread can
write to the shared resource only if no other thread is writing to, or reading from, this re-
source. We shall characterize this effect by saying that when perceived as resources, R/W-
locks work in two modes: (i) a “writing” mode where the resource capacity is equal to one,
and (ii) a “reading” mode where the capacity is infinite. We shall refer to a RAS that contains
R/W resource types as a R/W-RAS.

The novel attributes exhibited by the R/W-locks have implications for the behavior of
the R/W-RAS, differentiating them significantly from the previously studied RAS, and com-
plicating their analysis and their management. More specifically, due to the infinite capacity
of the R/W-lock when operating in the reading mode, it might not be possible to model
R/W-RAS with Finite State Automata or bounded Petri nets. As a result, their behavioral
analysis is not immediately amenable to the elementary, enumerative techniques that can
provide the basic characterization for deadlock and deadlock avoidance in the case of the
previously studied RAS. In fact, the logical behavior of R/W-RAS cannot be modeled even
by unbounded Petri nets (when staying within the basic definition of this formalism). In-
deed, a process seeking the allocation of R/W-locks must consider not only the availability
of their capacity, but also their current operational mode; in particular, a writing stage can be
performed only if there are no active readers allocated the corresponding lock. In view of the
infinite capacity of R/W-locks in their reading mode, the latter test can be supported only
through the introduction of inhibitor arcs in the underlying PN model (Peterson (1981)).
Thus, the past PN-based structural approaches for the synthesis of a deadlock avoidance
policy (e.g. Ezpeleta et al (1995); Huang et al (2006)) are not transferrable to the new RAS
model.

1 A comprehensive exposition of the Gadara project, including its goals and its current achievements,
can be found at: http://gadara.eecs.umich.edu. We should also notice, for completeness, that the very
first studies on the problem of deadlock avoidance took place in the 1960’s / early 1970’s in the context of
the computing technologies of that era (e.g., Dijkstra (1965); Coffman et al (1971); Holt (1972)). But the
connection of deadlock avoidance to DES theory took place primarily through the works mentioned above.

2 Maximal permissiveness and all other technical concepts appearing in this introductory discussion will
be formally defined in the subsequent sections.
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Yet, in the rest of this work, we establish that the maximally permissive deadlock avoid-
ance policy (DAP) is effectively computable for R/W-RAS, in spite of all the aforementioned
challenges. The key enabler of this result is the fact that the set of inadmissible – or unsafe –
states in the considered SC problem possesses a monotonicity property that endows it with
qualities similar to those of an upward-closed set (Chen and Chen (2009); Valk and Jantzen
(1985)). In particular, it is well known that an upward-closed set of nonnegative integer vec-
tors, even of infinite cardinality, will admit an effective, finite representation by the subset
of its minimal elements, as long as this subset is effectively enumerable (Valk and Jantzen
(1985)).

We have exploited such a parsimonious representation of the set of unsafe states by
means of its minimal elements, in order to develop an efficient implementation of the max-
imally permissive DAP, even in the context of the more conventional RAS that we have
studied in our past work (Nazeem and Reveliotis (2011, 2014)). The basic idea underlying
this implementation is (i) to first identify all the minimal unsafe states, and (ii) subsequently
to store them in a pertinent advanced data structure, like the “TRIE” data structure and the
(n-ary) decision diagrams (Commer and Sethi (1977)), which will enable the efficient iden-
tification and blockage of transitions that lead to problematic behavior; more specifically, in
view of the monotonicity property of safety and the induced upward-closed structure of the
unsafe subspace, a tentative transition must be blocked if it leads to a state that dominates
some element in the stored set of minimal unsafe states. In this work, we show that such an
implementation of the maximally permissive DAP is still plausible for RAS with R/W-locks,
since the set of minimal unsafe states remains effectively enumerable, in spite of the infinite
cardinality of the underlying state space and the intricacies in the system behavior that are
introduced by the new dynamics of the R/W-locks.

More specifically, and in view of all the above discussion, the main technical results
and the corresponding contributions of this paper can be summarized as follows: (i) We in-
troduce the class of R/W-RAS and we provide a formal characterization of its behavior by
means of a deterministic state automaton (Cassandras and Lafortune (2008)). (ii) We for-
mally define the problem of maximally permissive deadlock avoidance for this new RAS
and we establish the aforementioned upward-closure of the corresponding set of forbidden
(i.e., unsafe) states. (iii) Finally, we adapt the results of Nazeem and Reveliotis (2014) to-
wards the development of an algorithm for the enumeration of all the minimal unsafe states
in the new RAS class. Once the set of minimal states is available, (n-ary) decision diagrams
can be employed for the implementation of the maximally permissive DAP, in the spirit of
Nazeem and Reveliotis (2011) that was discussed in the previous paragraph. However, we
must also notice that the aforementioned developments are organized in two stages: In the
first stage, we consider a R/W-RAS model encoding a process behavior that is more re-
stricted than the finally targeted behavior of the program threads in the current multi-core
computer architectures. The initial study of this more restricted RAS model highlights more
clearly the key elements that enable the aforementioned implementation of the maximally
permissive DAP through the identification and storage of the minimal unsafe states, and
identifies the common elements between the developments presented in this work and the
developments presented in Nazeem and Reveliotis (2014). In the second stage, we extend
the original R/W-RAS model so that it enables the complete sequential logic for the process
behavior that is recognized by the Gadara RAS (Liao et al (2013b); Nazeem et al (2011)).3

Using some fundamental properties of the Gadara RAS that were established in Liao et al
(2013b), we show that the methodology developed in Stage 1 extends to the more complex

3 And, of course, it extends the original Gadara RAS model with the novel element of R/W-locks.
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RAS behavior that is addressed in this second stage, with some minimal adjustments in its
computational logic.

The rest of the paper is organized as follows: Section 2 introduces the initial version
of the R/W-RAS model to be considered in this paper, providing a formal characterization
of this model, the automaton-based representation of its behavioral dynamics, and the def-
inition of the problem of maximally permissive deadlock avoidance arising in this system.
Section 3 shows that, for the considered RAS, the set of minimal unsafe states is finite, and
outlines some possible methods for its effective enumeration. Sections 4 and 5 detail the
particular algorithm that we propose for enumerating the minimal unsafe states of the R/W-
RAS of Section 2, and Section 6 reports on a set of computational experiments that assess
and demonstrate the efficacy of the proposed approach. Section 7 discusses the extension
of the R/W-RAS model of Section 2, and the necessary modifications for the algorithm that
is presented in Section 5, that will ensure the compliance of the paper developments to the
Gadara modeling framework and the eventual applicability of these developments in the
context of multi-threaded programming. Finally, Section 8 concludes the paper and outlines
some directions for future work.

2 R/W-RAS and the corresponding deadlock avoidance problem

In this section, we introduce the more restricted version of the R/W-RAS, that, as discussed
in the Introduction, will be used as a stepping stone towards the final modeling of the dynam-
ics of the lock allocation that takes place in multi-threaded software. More specifically, the
version of the R/W-RAS that is defined in this section will help us (i) establish the finiteness
of the representation of the underlying unsafe subspace through the minimal unsafe states,
and (ii) develop the necessary algorithms for the enumeration of this state set. The necessary
extensions to cover the complete process behavior considered in this work are addressed in
Section 7.

The considered R/W-RAS class: An instance Φ from the R/W-RAS class considered in
this section is defined as a 5-tuple

〈
R ,R W ,C,P ,A

〉
where: (i) R = {R1, . . . ,Rm} is the set

of the (conventional) resources. (ii) R W = {RW1, . . . ,RWh} is the set of the reader/writer
(R/W) resources. In the sequel, we shall denote the total number of resource types, m+ h,
by µ. (iii) C : R → Z+ – , i.e., the set of strictly positive integers – is the system capacity
function, with C(Ri)≡Ci characterizing the number of identical units from resource type Ri
that are available in the system. Resources are considered to be reusable, i.e., they are en-
gaged by the various processes according to an allocation/de-allocation cycle, and each such
cycle does not affect their functional status or subsequent availability. (iv) P = {J1, . . . ,Jn}
is the set of the system process types supported by the considered system configuration.
Each process type J j is a composite element itself; in particular, J j = < S j,G j >, where: (a)
S j = {Ξ j1, . . . ,Ξ j,l( j)} is the set of processing stages involved in the definition of process
type J j, and (b) G j is an acyclic4 digraph (V j,E j) that defines the sequential logic of process
type J j, j = 1, . . . ,n. More specifically, the node set V j of graph G j is in one-to-one corre-
spondence with the processing stage set, S j, and furthermore, there are two subsets V↗j and

V↘j of V j respectively defining the sets of initiating and terminating processing stages for
process type J j. The connectivity of digraph G j is such that every node v ∈ V j is accessible
from the node set V↗j and co-accessible to the node set V↘j . Finally, any directed path of

4 The acyclicity requirement for digraphs G j will be removed in Section 7.
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G j leading from a node of V↗j to a node of V↘j constitutes a complete execution sequence –
or a “route” – for process type J j. (v) A :

⋃n
j=1 S j→∏

m
i=1{0, . . . ,Ci}× ∏

h
i=1{0,1,2} is the

resource allocation function, which associates every processing stage Ξ jk with a resource
allocation request A(Ξ jk)≡A jk. More specifically, each A jk is a µ-dimensional vector such
that:

– ∀i = 1 : m, A jk[i] indicates the number of resource units of resource type Ri necessary
to support the execution of stage Ξ jk.

– ∀i = 1 : h, A jk[m+ i] equals 1 iff Ξ jk acquires RWi in the reading mode, and A jk[m+ i]
equals 2 iff Ξ jk acquires RWi in the writing mode. Otherwise A jk[m+ i] equals 0.

Furthermore, it is assumed that A jk 6= 0, i.e., every processing stage requires at least one
resource unit for its execution. According to the applied resource allocation protocol, a pro-
cess instance executing processing stage Ξ jk will be able to advance to a successor pro-
cessing stage Ξ j,k′ , only after it is allocated the resource differential (A j,k′ [i]−A jk[i])+,∀i ∈
{1, . . . ,µ}.5 And it is only upon this advancement that the process will release the resource
units |(A j,k′ [i]−A jk[i])−|,∀i ∈ {1, . . . ,µ}. Some further qualifications are necessary in order
to specify completely the considered resource allocation protocol w.r.t. the allocation of the
R/W resource types. In particular: (i) A process is allowed access to resource RWi in the
reading mode only if no other process is currently accessing RWi in the writing mode. (ii) A
process is allowed to access RWi in the writing mode only if no other process is accessing
RWi in either the reading or the writing modes. A process is also allowed to change its mode
of accessing a resource RWi as long as the two aforementioned rules are respected. Hence, if
A jk[m+ i] = 1 and A j,k′ [m+ i] = 2, then the process will be able to advance from stage Ξ jk
to stage Ξ j,k′ only if no other process is concurrently accessing RWi in the reading mode. On
the other hand, if A jk[m+ i] = 2 and A j,k′ [m+ i] = 1, then the process can advance imme-
diately from stage Ξ jk to stage Ξ j,k′ , changing the mode of acquisition of RWi from writing
to reading, when the allocation protocol constraints pertinent to the other resource types are
satisfied.

For notational convenience, in the following we shall set ξ ≡ ∑
n
j=1 |S j|; i.e., ξ denotes

the number of distinct processing stages supported by the considered R/W-RAS, across the
entire set of its process types. Furthermore, in some of the subsequent developments, the
various processing stages Ξ jk, j = 1, . . . ,n, k = 1, . . . , l( j), will be considered in the context
of a total ordering imposed on the set

⋃n
j=1 S j; in that case, the processing stages themselves

and their corresponding attributes will be indexed by a single index q that runs over the set
{1, . . . ,ξ} and indicates the position of the processing stage in the considered total order.
Given an edge e ∈ G j linking Ξ jk to Ξ j,k′ , we define e.src≡ Ξ jk and e.dst ≡ Ξ j,k′ ; i.e., e.src
and e.dst denote respectively the source and the destination nodes of edge e. The number of
edges in process graph G j that emanate from its node that corresponds to stage Ξ jk will be
denoted D(Ξ jk). Also, in the following, we shall use the notation G to refer to the “union” of
process graphs G j, j = 1, . . . ,n, i.e., G ≡ (V ,E), with V =∪n

j=1V j and E =∪n
j=1E j. Also,

ηkl , k = 1, . . . ,m, l = 1, . . . ,Ck, will denote the number of processing stages that require the
allocation of l units from resource type Rk, whereas ηm+k,1 (resp., ηm+k,2), k = 1, . . . ,h
will denote the number of processing stages accessing resource RWk in the reading (resp.,
writing) mode. Additionally, we define ηk ≡maxCk

l=1ηkl , k = 1, . . . ,m. Finally, in the sequel,
unless qualified otherwise, any reference to a resource will imply any member of the set
R ∪R W .

5 We remind the reader that a+ ≡max{a,0} and a− ≡min{a,0}.
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Modeling the dynamics of the R/W-RAS as a State Automaton: The dynamics of the
R/W-RAS Φ =

〈
R ,R W ,C,P ,A

〉
, introduced in the previous paragraph, can be formally

described by a Deterministic State Automaton (DSA) (Cassandras and Lafortune (2008)),
G(Φ) = (S,E, f ,s0,SM), that is defined as follows:

1. The state set S consists of ξ-dimensional vectors s. The components s[q], q = 1, . . . ,ξ,
of s are in one-to-one correspondence with the R/W-RAS processing stages, and they in-
dicate the number of process instances executing the corresponding stage in the R/W-RAS
state modeled by s. Hence, S consists of all the vectors s ∈ (Z+

0 )
ξ that further satisfy

∀i := 1 . . .m,
ξ

∑
q=1

s[q] ·A(Ξq)[i]≤Ci (1)

∀i := 1 . . .h, (∃q′ : s[q′]> 0 ∧ (A(Ξq′)[m+ i]) = 2)

=⇒
ξ

∑
q=1

s[q] · (A(Ξq)[m+ i]) = 2 (2)

Constraint 1 expresses the capacity constraints that must be observed w.r.t. the conventional
resources. Constraint 2 enforces the exclusive acquisition of a R/W resource in the writing
mode.

2. The event set E is the union of the disjoint event sets E↗, Ē and E↘, where: (i)
E↗ = {erp : r = 0, Ξp ∈

⋃n
j=1 V↗j }, i.e., event erp represents the loading of a new pro-

cess instance that starts from stage Ξp. (ii) Ē = {erp : ∃ j ∈ 1, . . . ,n s.t. Ξp is a successor of
Ξr in digraph G j}, i.e., erp represents the advancement of a process instance executing stage
Ξr to a successor stage Ξp. (iii) E↘ = {erp : Ξr ∈

⋃n
j=1 V↘j , p = 0}, i.e, erp represents the

unloading of a finished process instance after executing its last stage Ξr.
3. The state transition function f : S×E → S is defined by s′ = f (s,erp), where the

components s′[q] of the resulting state s′ are given by:

s′[q] =


s[q]−1 if q = r
s[q]+1 if q = p
s[q] otherwise

Furthermore, f (s,erp) is a partial function defined only if the resulting state s′ ∈ S.
4. The initial state s0 is set equal to 0.
5. The set of marked states SM is the singleton {s0}, indicating the request for complete

process runs.
It is important to notice that if a processing stage involves only access of R/W resources

in the reading mode, and no further allocation of any conventional resources, then an arbi-
trary number of processes might exist simultaneously in this stage, a fact that implies that
the state space of the automaton might be infinite.

The target behavior of G(Φ) and the maximally permissive DAP: In the following,
the set of states Sr ⊆ S that are accessible from state s0 through a sequence of feasible
transitions, will be referred to as the reachable subspace of Φ. We shall also denote by
Ss ⊆ S the set of states that are co-accessible to s0, i.e., Ss contains those states from which
s0 is reachable through a sequence of feasible transitions. In addition, we define Sr̄ ≡ S\Sr,
Ss̄≡ S\Ss and Sxy≡ Sx∩Sy, x= r, r̄, y= s, s̄. In the deadlock avoidance literature, the sets Srs
and Srs̄ are respectively characterized as the reachable safe and unsafe subspaces; following
standard practice, in the sequel, sometimes we shall drop the characterization “reachable” if
it is implied by the context.



Maximally Permissive Deadlock Avoidance for Resource Allocation Systems with R/W-Locks 7

The R/W-RAS unsafety characterized in the previous paragraph results from the forma-
tion of R/W-RAS deadlocks, i.e., R/W-RAS states where a subset of the running processes
are entangled in a circular waiting pattern for resources that are held by other processes in
this set, blocking, thus, the advancement of each other in a permanent manner. The R/W-
RAS unsafe states are those R/W-RAS states from which the formation of deadlock is un-
avoidable. In the following, the set of deadlock states will be denoted by Sd , while Srd will
denote the set of reachable deadlock states. Finally, it is clear from the above that Sd ⊆ Ss̄
and Srd ⊆ Srs̄.

A maximally permissive deadlock avoidance policy (DAP) for R/W-RAS Φ is a super-
visory control policy that restricts the system operation within the subspace Srs, guaran-
teeing, thus, that every initiated process can complete successfully. This definition further
implies that the maximally permissive DAP is unique and can be implemented by an one-
step-lookahead mechanism that recognizes and prevents transitions to unsafe states. On the
other hand, due to the potentially infinite nature of the state space of R/W-RAS, the compu-
tation of the maximally permissive DAP cannot be performed through the basic enumerative
techniques that are amenable for the more conventional RAS structures studied in the past.
Therefore, the technique proposed in this paper is of paramount importance for the effec-
tive deployment of the maximally permissive deadlock avoidance in the considered RAS
context.

Some monotonicities observed by the state unsafety concept: Next we review some
additional structure possessed by the set Ss̄, that enables the effective representation of the
maximally permissive DAP through the explicit storage of a finite (and typically very small)
subset of unsafe states of the underlying state space. It should be clear from the above that the
ability of the activated processes in a given R/W-RAS state s ∈ S to proceed to completion,
depends on the existence of a sequence < s(0) ≡ s,e(1),s(1),e(2),s(2), . . . ,s(N−1),e(N),s(N) ≡
s0 >, such that at every state s(i), i = 0,1 . . . ,N−1, the free (or “slack”) resource capacities
at that state enable the job advancement corresponding to event e(i+1). Furthermore, if such
a terminating sequence exists for a given state s, then the event feasibility condition defined
by Equations 1–2 implies that this sequence will also provide a terminating sequence for
every other state s′ ≤ s, where the inequality is taken component-wise. On the other hand,
if state s possesses no terminating sequences, then it can be safely inferred that no such
terminating sequences will exist for any other state s≤ s′ (since, otherwise, there should also
exist a terminating sequence for s, according to the previous remark). The next proposition
provides a formal statement of the above observation; these results are well known in the
literature, and therefore, their formal proof is omitted.6

Proposition 1 Consider the (partial) ordering relationship “≤” imposed on the state space
S of a given R/W-RAS Φ that is defined as follows:

∀s,s′ ∈ S, s≤ s′ ⇐⇒ (∀q = 1, . . .ξ, s[q]≤ s′[q]) (3)

Then,

1. s ∈ Ss ∧ s′ ≤ s =⇒ s′ ∈ Ss
2. s ∈ Ss̄ ∧ s≤ s′ =⇒ s′ ∈ Ss̄

�

6 We notice, for completeness, that a formal proof for these results can be obtained, for instance, through
the analytical characterization of state safety that is presented in Reveliotis and Ferreira (1996); Reveliotis
(1996).
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In the following, we shall use the notation ‘s < s′’ to denote that the condition of Eq. 3
holds as strict inequality for at least one component q ∈ {1, . . . ,ξ}. In the light of Proposi-
tion 1, we define the set of minimal reachable unsafe states S̄rs̄ ≡ {s∈ Srs̄ | @s′ ∈ Srs̄ s.t. s′ ≤
s}. Similarly, we define the set of minimal reachable deadlocks S̄rd ≡ {s ∈ Srd | @s′ ∈
Srd s.t. s′ ≤ s}. Proposition 1 implies that, for the considered R/W-RAS class, the maxi-
mally permissive DAP can be implemented as follows: First we find and store S̄rs̄ in an
appropriate data structure. Then, during the online stage, given a state s, we assess the un-
safety of s by searching the stored data for a state u ∈ S̄rs̄ such that s≥ u; if such a state u is
found, state s is unsafe; hence, the imminent event is blocked by the supervisory controller.
Otherwise, it is safe and the imminent event is allowed. As remarked in the introductory
section, an implementation of the maximally permissive DAP through the aforementioned
scheme in the context of more conventional RAS classes, using (n-ary) decision diagrams,
can be found in Nazeem and Reveliotis (2011). That work contains also an experimental
section that demonstrates and assesses the representational and computational efficiencies
that are established by the employment of (n-ary) decision diagrams and the “TRIE” data
structure for a more compact and more structured storage of the derived set of the minimal
unsafe states.

3 On the finiteness and computation of S̄rs̄

It is easy to see that S̄rs̄ is a set of incomparable vectors w.r.t. the partial order ‘≤’ defined
in Equation 3. That is, ∀x,x′ ∈ S̄rs̄, x 6≥ x′ ∧ x 6≤ x′. Therefore, by Dickson’s Lemma (c.f.
Dickson (1913), Lemma 2A), S̄rs̄ is a finite set.

A set U over ξ-dimensional vectors of natural numbers is called “upward-closed” (or
“right-closed”) if ∀x ∈U, y≥ x =⇒ y ∈U . Proposition 1 implies that the set Srs̄ resembles
the structure of upward-closed sets; however, because its elements must satisfy the resource
feasibility constraints (Eqs. 1-2) and they must also be accessible from s0, Srs̄ is not upward-
closed, in a strict sense. To circumvent the technical difficulties arising from this fact, we
define the set U(Srs̄)≡ Srs̄∪{y ∈ Nξ | ∃x ∈ Srs̄ s.t. y > x}. It can be easily seen that U(Srs̄)
is upward-closed, and that it shares the same set of minimal elements with Srs̄.

Let Nω ≡N∪{ω}, where the element ω denotes an arbitrarily large number; in particu-
lar, ∀n∈N, max{n,ω}= ω and min{n,ω}= n. Also, for any x∈Nξ

ω, define reg(x)≡ {x′ ∈
Nξ : x′ ≤ x}. In Valk and Jantzen (1985), it is established that the minimal elements of a
right-closed set U are effectively computable iff the decision problem ‘(reg(x)∩U 6= /0)?’ is
decidable for every x∈Nξ

ω. Also, that work provides an algorithm for the effective enumera-
tion of the set of minimal elements of a right-closed set U , when the test ‘(reg(x)∩U 6= /0)?’
is effectively computable (c.f. Theorem 2.14 in that work). In the light of that result, a po-
tential approach to effectively construct S̄rs̄, is by trying first to develop an algorithm for the
resolution of the test ‘(reg(x)∩U(Srs̄) 6= /0)?’ for every x ∈ Nξ

ω, and subsequently apply the
algorithm of Valk and Jantzen (1985). Furthermore, it is easy to see that as long as x remains
in Nξ, the question ‘(reg(x)∩U(Srs̄) 6= /0)?’ can be effectively resolved by constructing the
subspace of S that is contained in reg(x) and assessing the safety of every state in that sub-
space. The main challenge regarding the resolution of the above test is in the case that the
considered vector x contains ω elements, especially in the state coordinates that can be ar-
bitrarily large. These more complicated cases can be potentially resolved by developing an
upper bound for the number of process instances that can execute simultaneously any of the
RAS stages in a minimal unsafe state. In fact, the availability of such a bound B can enable
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an even more straightforward algorithm for the enumeration of S̄rs̄ than the aforementioned
algorithm in Valk and Jantzen (1985): One could just construct the partial state space con-
tained in reg([B,B, . . . ,B]T ) and identify the set of minimal unsafe states in that subspace;
this set would constitute the entire S̄rs̄.

However, in this work we pursue a different approach that takes advantage of addi-
tional structure that is present in the set of unsafe states Srs̄. More specifically, the proposed
methodology is motivated and enabled by the fact that, in the considered R/W-RAS, unsafety
is defined by unavoidable absorption into the system deadlocks. Hence, the unsafe states of
interest can be retrieved by a localized computation that starts from the R/W-RAS deadlocks
and “backtraces” the R/W-RAS dynamics until it hits the boundary between safe and unsafe
subspaces. In particular, our interest in minimal unsafe states implies that we can focus this
backtracing only to minimal deadlocks. The resulting algorithm decomposes naturally into a
two-stage computation, with the first stage identifying all minimal deadlocks, and the second
stage performing the aforementioned backtracing process in order to identify the broader set
of minimal unsafe states. The next two sections detail each of these two stages in the context
of the R/W-RAS introduced in Section 2. The presented results customize and extend to the
considered problem setting some similar results developed in Nazeem and Reveliotis (2014)
for the efficient enumeration of minimal unsafe states in more conventional RAS structures.
On the other hand, Section 7 extends the aforementioned approach to R/W-RAS encom-
passing the more complex process behavior that is modeled by the Gadara RAS, a pertinent
abstraction capturing the dynamics of lock allocation in multi-threaded programming.

4 Enumerating S̄rd

As pointed out in the previous section, the first step in the proposed enumeration of the
minimal unsafe states is the enumeration of the minimal deadlocks. This is the content of
this section. First, we define some terms and notation that will be used throughout the rest
of the paper. Next, we proceed to describe the flow of the proposed algorithm.

4.1 Preamble

Let s.Ri denote the total number of units from the conventional resource type Ri that are
allocated at state s. Furthermore, for a R/W resource RWi, we set s.RWi = 1 (resp., 2) iff RWi
is accessed in state s in the reading (resp., writing) mode by a single process, and s.RWi = 3
iff RWi is accessed in the reading mode by multiple processes; otherwise, s.RWi = 0. Then,
we can characterize the blocking dynamics of the considered RAS through the following
definitions:

Definition 1 Given an edge e ∈ G , e is “blocked” at state s iff s[e.src]> 0, and one of the
following four conditions is true:

1. ∃Rk ∈ R s.t. s.Rk +Ae.dst [k]−Ae.src[k]>Ck, or
2. ∃RWk ∈ R W s.t. Ae.src[m+ k] = 0, Ae.dst [m+ k] = 2, and s.RWk > 0, or
3. ∃RWk ∈ R W s.t. Ae.src[m+ k] = 0, Ae.dst [m+ k] = 1, and s.RWk = 2, or
4. ∃RWk ∈ R W s.t. Ae.src[m+ k] = 1, Ae.dst [m+ k] = 2, and s.RWk = 3.

Edge e is “enabled” at state s iff s[e.src]> 0 and e is not blocked. The set of enabled edges
at s will be denoted by g(s).
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In plain terms, an edge e is blocked at state s by a conventional resource if its slack
capacity is less than the required number of additional units needed for e.dst. Furthermore,
e is blocked by an R/W resource type RWk if (a) e.src does not access RWk, RWk is accessed
in any of its modes at s, and e.dst requests RWk in the writing mode, or (b) e.src does not
access RWk, RWk is accessed in the writing mode at s, and e.dst requests RWk in the reading
mode, or (c) e.src accesses RWk in the reading mode, RWk is accessed by multiple processes
in the reading mode at s, and e.dst requests RWk in the writing mode.

Definition 2 A processing stage q is blocked at state s iff all its outgoing edges are blocked.
Stage q is enabled at state s iff at least one of its outgoing edges is enabled.

The next definition introduces a more technical concept which is at the center of all the
technical developments that are presented in the rest of this work.

Definition 3 Given a set of states X, we define the state λX by λX [q] ≡ maxx∈X x[q], q =
1, . . . ,ξ. State λX will be characterized as the “combination” of the states in X.

By its definition, a minimal deadlock state sd is a state at which all its processing stages
with non-zero process content are blocked. Let {q1, . . . ,qt} denote this set of processing
stages. Then, we have the following proposition:

Proposition 2 A minimal deadlock state sd with active processing stages {q1, . . . ,qt} can
be expressed as the combination of a set of minimal states {x1, . . . ,xt} such that qi is blocked
at xi.

Proof: Consider the vectors xi, i = 1, . . . , t, that are obtained by starting from the deadlock
state sd and iteratively removing processes from this state, one at a time, until no further
process can be removed without unblocking stage qi. Then, clearly, each state xi is a minimal
state at which processing stage qi is blocked. Furthermore, by the construction of {xi, i =
1, . . . , t}, λ{x1,...,xt} ≤ sd , and λ{x1,...,xt} is itself a deadlock state. But then, the minimality of
sd implies that λ{x1,...,xt} = sd . �

Let {ei1, . . . ,eiD(qi)} refer to the set of edges emanating from node qi in graph Gi. Then,
by an argument similar to that in the proof of Proposition 2, we can perceive xi as a com-
bination of a set of minimal states {xi1, . . . ,xiD(qi)} such that ei j is blocked at state xi j, i.e.,
xi = λ{xi1,...,xiD(qi)

}. Each xi j is a state that has active processes at stage ei j.src, and satisfies
one of the four conditions in Definition 1; i.e.,

1. for some conventional resource type Rk s.t. Aei j .dst [k]−Aei j .src[k] > 0, xi j.Rk > Ck −
Aei j .dst [k]+Aei j .src[k]≡ l, or

2. for some R/W resource type RWk s.t. Aei j .src[m+ k] = 0∧Aei j .dst [m+ k] = 2, xi j.RWk =
1 ∨ xi j.RWk = 2, or

3. for some R/W resource type RWk s.t. Aei j .src[m+k] = 0∧Aei j .dst [m+k] = 1, xi j.RWk = 2,
or

4. for some R/W resource type RWk s.t. Aei j .src[m+k] = 1∧Aei j .dst [m+k] = 2, xi j.RWk = 3.

Hence, the minimal states that block ei j through Rk can be obtained by enumerating all the
minimal states that allocate l + 1, . . . ,Ck units of Rk, and the minimal states that block ei j
through RWk can be obtained by enumerating all the minimal states at which s.RWk = 1, 2, 3.
The reader should also notice that a minimal state at which s.RWk = 1(resp.,2) is a single
unit vector with one process instance at a processing stage that accesses RWk in the reading
(resp., writing) mode. On the other hand, a minimal state at which s.RWk = 3 is a state that
has exactly two processes executing a pair of processing stages that accesses RWk in the
reading mode.
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4.2 Outline of the proposed algorithm

The proposed algorithm for the enumeration of the set of minimal reachable deadlocks, S̄rd ,
is motivated by the analysis presented in the previous subsection, and it can be described as
follows:

1. For each conventional resource type Rk, and for each occupancy level l, 1 ≤ l ≤ Ck,
compute the set of minimal states MinStR[k][l] that allocate l units of Rk.

2. For each R/W resource type RWk, compute the sets of minimal states MinStR[m+ k][1]
and MinStR[m+k][2] at which RWk is acquired respectively in the reading and the writ-
ing modes.

3. For each edge e, compute the set of minimal states BlockEd[e] at which e is blocked.
4. For each processing stage q, compute the set of minimal states BlockPs[q] at which q is

blocked.
5. Finally, enumerate the set of minimal deadlocks through the following recursive scheme

that, for each processing stage q and each minimal state s∈ BlockPs[q], does the follow-
ing: It sets p1 := s, and then searches for an enabled processing stage q′ at p1. Next, it
branches for each minimal state x at which q′ is blocked (i.e., x ∈ BlockPs[q′]), combin-
ing such a state with p1 (i.e., it computes the combination λ{p1,x}). Let p2 be a (feasible)
state generated at one of those branches; i.e., p2 = λ{p1,x′}, x′ ∈ BlockPs[q′]. State p2 is
processed in a similar manner with state p1 above, and the branching continues across
all the generated paths of the resulting search graph until a deadlock state is reached on
each path.

The rest of this section details further the above algorithm. Steps 1 and 4 are exactly the
same in their algorithmic details with their counterparts in Nazeem and Reveliotis (2014)
(c.f. Procedures 1 and 3 in Nazeem and Reveliotis (2014)). Hence, while a high level de-
scription is provided in this manuscript for these two steps, the reader is referred to Nazeem
and Reveliotis (2014) for further details. Also, before delving into the more detailed descrip-
tion of the algorithm, we would like to highlight the fact that a process instance executing a
terminal processing stage can immediately exit the system upon completion; hence, termi-
nal processing stages do not have any active process instances at any minimal unsafe state.
Therefore, these stages are explicitly ignored by the proposed algorithm.

Example 1: We shall use the R/W-RAS configuration depicted in Table 1 as a running
example to demonstrate the application of the steps of the above introduced algorithm. The
considered R/W-RAS has three conventional resource types, R1,R2 and R3, and one R/W
resource type, RW1. Resources R1 and R3 have a capacity of one unit, whereas the capacity
of R2 is equal to two. The considered R/W-RAS has two process types, J1 and J2. For each
process type Ji, i = 1,2, Table 1 provides the structure of the corresponding graph Gi as well
as the resource allocation request that is posed by each processing stage Ξi j that appears in
those graphs. The reader should notice that process J1 presents routing flexibility. More
specifically, a job at the first processing stage Ξ11 can advance to stage Ξ12 ( acquiring one
unit of R2), or to stage Ξ13 ( acquiring one unit of R3). On the other hand, J2 has a simple
linear structure. For representational economy, in the subsequent discussion a state will be
represented by the multi-set of the processing stages with non-zero process content in it.

4.3 Computing MinStR[k][l] for Rk

A minimal state s that allocates l units of resource type Rk may be either a unit vector state
with s[q] = 1 for some component q ∈ {1, . . . ,ξ}, s[q′] = 0, ∀q 6= q′, and Aq[k] = l, or a
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Table 1: The R/W-RAS considered in Example 1

Resource Types: {R1,R2,R3} {RW1}
Resource Capacities: C1 =C3 = 1, C2 = 2

Process Type 1: Ξ11(R1)→ Ξ12(R2) or Ξ13(R3)→ Ξ14(read(RW1))

Process Type 2: Ξ21(write(RW1))→ Ξ22(R1)

Table 2: The array MinStR for Example 1

MinStR[1][1] {Ξ11}

MinStR[2][1] {Ξ12}

MinStR[2][2] {2Ξ12}

MinStR[3][1] {Ξ13}

MinStR[4][1] /0

MinStR[4][2] {Ξ21}

vector equal to s1 + s2 where s1 is a minimal state using j units of Rk and s2 is a minimal
state using l− j units of Rk. Based on this remark, MinStR[k][l] is initialized with the ηkl unit
vector states corresponding to the stages that request l units of Rk. In particular, MinStR[k][1]
will contain only these ηk1 unit vector states. Proceeding inductively for l > 1, and assuming
that, ∀ j≤bl/2c, MinStR[k][ j] has been already computed, we add each state in MinStR[k][ j]
to each state in MinStR[k][l− j], and insert the resultant states into MinStR[k][l], provided
that they satisfy the feasibility conditions of Eqs. 1-2.

Example 1 (cont.): Consider the resource type R2. Ξ12 is the only processing stage that
occupies one unit of R2. Hence, MinStR[2][1] contains only the state {Ξ12}. On the other
hand, to obtain a minimal state that occupies two units of R2, we can add any two members
of MinStR[2][1]. Since the state {Ξ12} is the only member in MinStR[2][1], adding it to itself
results in the state {2Ξ12} which is the only member of MinStR[2][2]. The complete array
MinStR computed for the conventional resource types in this example is depicted in the first
four rows of Table 2.

4.4 Computing MinStR[m+ k][1] and MinStR[m+ k][2] for RWk

As already pointed out, a minimal state s at which RWk is accessed by a single process in the
reading (resp., writing) mode can only be a unit vector state s[q] = 1 for some component
q ∈ {1, . . . ,ξ}, s[q′] = 0, ∀q 6= q′, such that Aq[m+k] = 1 (resp., Aq[m+k] = 2). Therefore,
MinStR[m+k][1] (resp., MinStR[m+k][2]) shall contain only the ηm+k,1 (resp., ηm+k,2) unit
vector states corresponding to the stages that access RWk in the reading (resp., writing) mode.

Example 1 (cont.): Consider the resource type RW1. Ξ14 is the only processing stage
that acquires RW1 in the reading mode. But since Ξ14 is a terminal stage, MinStR[4][1] is
empty. On the other hand, Ξ21 is the only processing stage that acquires RW1 in the writing
mode. Hence, the state {Ξ21} is the only member of MinStR[4][2].
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Table 3: The array BlockEd for Example 1

BlockEd[(Ξ11,Ξ12)] es1 = {Ξ11,2Ξ12}

BlockEd[(Ξ11,Ξ13)] es2 = {Ξ11,Ξ13}

BlockEd[(Ξ12,Ξ14)] es3 = {Ξ12,Ξ21}

BlockEd[(Ξ13,Ξ14)] es4 = {Ξ13,Ξ21}

BlockEd[(Ξ21,Ξ22)] es5 = {Ξ21,Ξ11}

Table 4: The array BlockPs for Example 1

BlockPs[Ξ11] ps1 = {Ξ11,2Ξ12,Ξ13}

BlockPs[Ξ12] ps2 = {Ξ12,Ξ21}

BlockPs[Ξ13] ps3 = {Ξ13,Ξ21}

BlockPs[Ξ21] ps4 = {Ξ21,Ξ11}

4.5 Computing BlockEd[e]

According to the remarks that were provided in Subsection 4.1, the computation of this
data structure can be organized as follows: For each conventional resource Rk s.t. Ae.dst [k]−
Ae.src[k] > 0, and for each occupancy level l s.t. l > Ck−Ae.dst [k] +Ae.src[k], we insert all
the states from MinStR[k][l] into BlockEd[e] after adding one process at e.src, if needed.
On the other hand, for each R/W resource RWk s.t. Ae.src[m+ k] = 0∧Ae.dst [m+ k] = 1, we
insert all the states from MinStR[m+ k][2] into BlockEd[e], whereas for each R/W resource
RWk s.t. Ae.src[m + k] = 0∧Ae.dst [m + k] = 2, we insert all the states from MinStR[m +
k][1]∪MinStR[m+ k][2] into BlockEd[e]; we also add one process at e.src in both cases.
Similarly, for each R/W resource RWk s.t. Ae.src[m+ k] = 1, Ae.dst [m+ k] = 2, we insert all
the states from MinStR[m+ k][1] after adding one process at e.src. If a process is added
at e.src, the resulting states must also be checked for feasibility. Finally, the non-minimal
states are removed from BlockEd[e]. The complete algorithm supporting this computation
is depicted in Procedure 1.

Example 1 (cont.): Consider the edge (Ξ11,Ξ12). Advancement across this edge re-
quires only the allocation of one unit from resource R2. According to Line 5 in Procedure 1,
only states in MinStR[2][2] can be used to block the edge. Thus, BlockEd[(Ξ11,Ξ12)] con-
tains only the state {Ξ11,2Ξ12}. The complete array BlockEd computed for this example is
depicted in Table 3.

4.6 Computing BlockPs[q]

Let {eq
1, . . . ,e

q
D(q)} be the set of edges emanating from q, where D(q), as defined in Sec-

tion 2, is the number of edges in process graph G that emanate from its node that corre-
sponds to stage q. Then, BlockPs[q] is computed by taking all the feasible combinations of
states from BlockEd[eq

1]×BlockEd[eq
2]× . . .BlockEd[eq

D(q)], while eliminating those com-
binations that result in non-minimal elements.
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Procedure 1 CompBlockEd(e)
Input: an edge e from the “union” process graph G
Output: BlockEd[e]
1: for k := 1→ µ do
2: startIdx← 1, endIdx← 0
3: if k ≤ m then
4: if Ae.dst [k]−Ae.src[k]> 0 then
5: startIdx←Ck−Ae.dst [k]+Ae.src[k]+1; endIdx←Ck;
6: end if
7: else
8: if Ae.dst [k] = 2 ∧ Ae.src[k] = 0 then
9: startIdx← 1; endIdx← 2

10: else if Ae.dst [k] = 2 ∧ Ae.src[k] = 1 then
11: startIdx← 1; endIdx← 1
12: else if Ae.dst [k] = 1 ∧ Ae.src[k] = 0 then
13: startIdx← 2; endIdx← 2;
14: end if
15: end if
16: for l = startIdx→ endIdx do
17: for s ∈MinStR[k][l] do
18: s′← s
19: if s′[e.src] = 0 then
20: s′[e.src]← 1
21: if Feasible(s′) then
22: Insert s′ into BlockEd[e]
23: end if
24: else
25: Insert s′ into BlockEd[e]
26: end if
27: end for
28: end for
29: end for
30: Remove non-minimal states from BlockEd[e]
31: return BlockEd[e]

Example 1 (cont.): Consider the processing stage Ξ11. It has two outgoing edges,
(Ξ11,Ξ12) and (Ξ11,Ξ13). It can be seen from Table 3 that es1 is the only member of
BlockEd[(Ξ11,Ξ12)], and that es2 is the only member of BlockEd[(Ξ11,Ξ13)]. Hence, the
combination operation (c.f. Definition 3) is applied to states es1 and es2 to generate the state
{Ξ11,2Ξ12,Ξ13}, which is a minimal state at which Ξ11 is blocked. Hence BlockPs[Ξ11] =
{Ξ11,2Ξ12,Ξ13}. The complete array BlockPs computed for this example is depicted in Ta-
ble 4.

4.7 Enumerating the minimal reachable deadlocks

The complete algorithm for enumerating the minimal reachable deadlock states is depicted
in Procedure 2. Lines 2-10 involve the computation of the lists MinStR, BlockEd, and
BlockPs. For each processing stage q, all the minimal deadlock states at which q has non-
zero processes are enumerated by Lines 11-28. In particular, for a given processing stage q,
we start by inserting into the list workingQueue each minimal state at which q is blocked.
In the “While” loop of Lines 14-26, we extract every state p from this queue and exam-
ine p for enabled processing stages. If p has no enabled processing stages, the function
getAnEnabledProcStg at Line 16 returns a value of 0; hence, it is inferred that p is a
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Procedure 2 EnumMinReachDeadlocks(Φ)
Input: A R/W-RAS instance Φ

Output: the list deadlockHT containing all the reachable minimal deadlocks of Φ

1: deadlockHT ← /0

2: for k = 1 : µ do
3: MinStR[k]← Compute MinStR[k]
4: end for
5: for all e ∈ E do
6: BlockEd[e]← Compute BlockEd[e];
7: end for
8: for q = 1 : ξ do
9: BlockPs[q]← Compute BlockPs[q]

10: end for
11: for q = 1 : ξ do
12: for s ∈ BlockPs[q] do
13: workingQueue← s;
14: while workingQueue 6= /0 do
15: p← dequeue(workingQueue)
16: q∗← getAnEnabledProcStg(p)
17: if q∗ = 0 then
18: Insert p into deadlockHT
19: else
20: for all x ∈ BlockPs[q∗] do
21: if Feasible(λ{x,p}) then
22: Insert λ{x,p} into workingQueue
23: end if
24: end for
25: end if
26: end while
27: end for
28: end for
29: Remove non-minimal states and unreachable states from deadlockHT
30: return deadlockHT

deadlock state at which q has non-zero processes, and it is inserted into the hash table
deadlockHT (c.f. Line 18). Otherwise, getAnEnabledProcStg returns an enabled process-
ing stage q∗. In this case, Lines 20-24 generate every feasible combination of state p with the
minimal states blocking q∗ and add them to workingQueue. workingQueue becomes empty
when all the deadlock states at which q has non-zero processes have been enumerated across
all the paths of the generated search graph. Finally, Line 29 removes the non-minimal and
unreachable deadlock states from deadlockHT . The reachability of any given state s in the
computed set deadlockHT can be resolved by reducing this decision problem to the assess-
ment of the co-reachability of s in the automaton Ĝ(Φ) that is obtained by reversing the
transitions of the automaton G(Φ) while maintaining the same set of states, S, as well as the
definitions the initial and the marked states.

Example 1 (cont.): Consider the iteration of Procedure 2 that starts from stage Ξ11 and
state ps1 = {Ξ11,2Ξ12,Ξ13}. To block Ξ12, we combine state ps2 with state ps1 (c.f. Table 4)
resulting in state {Ξ11,2Ξ21,Ξ13,Ξ21} which is a state at which all the active processing
stages are blocked; hence it is a deadlock state. Continuing the application of the algorithm
does not yield any other minimal deadlock state. �

The next theorem establishes the correctness of Procedure 2.
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Theorem 1 Procedure 2 enumerates all the minimal reachable deadlock states of its input
R/W-RAS Φ.

Proof: Let sd be an arbitrary minimal deadlock state, and {q1, . . . ,qt} be the set of process-
ing stages that have active processes at sd . Then, according to Lemma 2, there exists a set of
states {x1, . . . ,xt} such that x j ∈ BlockPs[q j], x j ≤ sd , and sd = λ{x1,...,xt}. x1 will be picked
by Line 12. Without loss of generality (w.l.o.g.), assume that q2 = getAnEnabledProcStg(x1).
Then, Line 22 implies that the state p2 = λ{x1,x2} is inserted into workingQueue; hence, it
will be eventually extracted at Line 15. Repeating the same argument, assume that q3 =
getAnEnabledProcStg(p2); then, we will have the state p3 = λ{x1,x2,x3} inserted into working
Queue. Let t ′ ≤ t be the last processing stage in this tracing sequence. Thus, pt ′ = λ{x1,...,xt′}
is a deadlock state. But, pt ′ = λ{x1,...,xt′} ≤ λ{x1,...,xt} = sd . Therefore, by the minimality of
sd , it must be that sd = pt ′ . Hence sd is enumerated. �

Complexity Considerations: A complete complexity analysis of Procedure 2 and of its
supporting subroutines is provided in Nazeem (2012). It is shown that the overall computa-
tional complexity of Procedure 2 can be characterized as O(ξ · µ2·|E | ·η2·C·|E |+K), where
µ denotes the total number of the conventional and R/W resources types in the input R/W-
RAS Φ, η ≡ maxµ

k=1 ηk, and C ≡ maxm
k=1Ck. On the other hand, the term K that appears in

the above expression denotes the effort that must be expended for the execution of Step 29
of the depicted algorithm. In general, this effort will depend on the cardinality of the con-
structed set deadlockHT and on the number of active process instances that appear in these
elements. The minimality of the constructed deadlocks in deadlockHT implies that both of
these numbers will tend to stay at fairly small values. In fact, empirical evidence suggests
that the practical run time of Step 29 is very small when compared with computational cost
of some other stages of the algorithm.7 Hence, we can conclude that the algorithm complex-
ity is most sensitive to the capacity of the conventional resource types and to the number of
the distinct event types that take place in the underlying R/W-RAS.

5 Enumerating S̄rs̄

In this section, we present the algorithm that enumerates the entire set of minimal unsafe
states, S̄rs̄, by backtracing from the set of minimal deadlocks, S̄rd , for the R/W-RAS of
Section 2. As it will be revealed in the following discussion, once the applying blocking
mechanisms have been detailed according to the analysis provided in Section 4, the remain-
ing logic of the considered algorithm is determined by (i) the definition of state unsafety as
unavoidable absorption to some deadlock state, and (ii) some further properties that this def-
inition implies for the topology of the underlying state space w.r.t. the classification induced
by the notion of (minimal) unsafety. However, the definition of unsafety and the aforemen-
tioned properties that are involved in the algorithm development are common for the class
of the R/W-RAS considered in this section and the more conventional RAS classes consid-
ered in Nazeem and Reveliotis (2014). Therefore, the developments of this section parallel
closely those of Section IV in Nazeem and Reveliotis (2014), and the reader is referred to
that work for formal correctness and complexity analyses of the presented algorithm. On

7 This claim is substantiated by the computational experiments that are presented in Section 6. Also, we
notice that it is possible to skip the elimination of the reachable unsafe states in the construction of the
list deadlockHT , without compromising the correctness of the resulting implementation of the maximally
permissive DAP that was discussed in Section 2. However, the presence of the unreachable deadlock states
in deadlockHT would have an adversarial impact on the complexity of the computation of the set S̄rs̄ that is
discussed in Section 5, that is much more severe than the computational cost of their removal from that list.
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the other hand, in Nazeem and Reveliotis (2014), the convergence of the presented algo-
rithm was established on the finiteness of the underlying state space. Therefore, the algo-
rithm convergence is revisited in this work. To smoothen the flow of the exposition and
for self-containment, some of the content of Nazeem and Reveliotis (2014) is recapitulated
here. Hence, we proceed as follows: First, we introduce all the necessary definitions for the
description of the algorithm. Next, we introduce the algorithm itself and demonstrate its
application in the context of the considered R/W-RAS, by means of two R/W-RAS configu-
rations. Finally, we prove the convergence of the algorithm.

5.1 Preamble

Given a minimal deadlock-free unsafe state u from the R/W-RAS class introduced in Sec-
tion 2, we notice the following: (i) No unloading event is enabled at u, since otherwise u
would not be minimal. (ii) The unsafety of u is a consequence of its current process content
and it does not require the loading of any new processes in order to manifest itself. (iii) The
advancement of any unblocked process at u leads to another unsafe state; however, this new
unsafe state can be minimal or non-minimal. The following definition characterizes further
the dynamics that result from the advancement of unblocked processes in a minimal unsafe
state.

Definition 4 Given a minimal unsafe state u such that g(u) = {e1, . . . ,eK}, let h1, . . . , hK
be the respective states that result from executing events e1, . . . ,eK at u. Then, ∀i = 1 : K,
nextMin(u,ei)≡ {zi1, . . . ,ziw(i)} where ∀ j = 1 : w(i), zi j ≤ hi is a minimal unsafe state. We
also set nextMin(u)≡

⋃K
i=1 nextMin(u,ei). Finally, we denote by si j the result of backtracing

ei at zi j.

It is easy to see that if hi, in the above definition, is a minimal unsafe state, then w(i) = 1,
zi1 = hi, si1 = u. Otherwise, to show that si j is well-defined, it suffices to show that: (i)
zi j[ei.dst] = hi[ei.dst], and (ii) state si j is a feasible state according to Eqs. 1-2. To establish
item (i), first notice that ei.dst is the unique entry for which hi is greater than u. Hence, if
item (i) was not true, then zi j < u, a result that violates the minimality of u. On the other
hand, item (ii) is established by the fact that zi j < hi. It can also be seen that if zi j < hi, then
si j < u. Combined with the minimality of u as an unsafe state, this last result implies that si j
is a safe state in this case. The structure revealed by Definition 4 and the above discussion is
depicted schematically in Figure 1.

As explained in Section 3, the algorithm proposed in this work seeks to enumerate all the
minimal reachable unsafe states starting from the minimal reachable deadlocks, and tracing
backwards the dynamics that are described in Definition 4. This reconstructive process can
be described as follows: Let us first characterize a safe state a as a “boundary safe” state iff
it is one-transition away from reaching some unsafe state. During the course of its execution,
the proposed algorithm generates, both, unsafe and safe states. The generated safe states are
all boundary safe states, and they are used as “stepping stones” to reach further parts of the
unsafe state space. More specifically, the proposed algorithm employs three different mech-
anisms to generate states in its exploration process: (i) backtracing from an unsafe state; (ii)
combining two boundary safe states according to the logic of Definition 3 (i.e., taking the
maximum number of processes at each processing stage); and (iii) adding some processes to
a boundary safe state to make it unsafe. The first two mechanisms can return, both, safe and
unsafe states, whereas the last mechanism returns only unsafe states. In the case of the first
two mechanisms, once a state a has been generated, its potential unsafety will be identified
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Fig. 1: A schematic diagram of the transitional structure that is leveraged by the proposed algorithm for the
enumeration of S̄rs̄.

by running upon it a search-type algorithm that assesses the state co-reachability w.r.t. the
target state s0. If a is found to be unsafe, it is also tested for non-minimality w.r.t. the pre-
viously generated unsafe states; if it is minimal, it is backtraced to generate its immediate
predecessors, and then it is saved. On the other hand, if the generated state a is safe, then, it
is endowed by an additional attribute that is computed upon its generation; this attribute will
be denoted by τa and it constitutes a set of edges that emanate from state a and are known
to lead to unsafe states. The set of the unsafe states that are reached from a through the
edges in τa will be denoted by U(a). The detailed algorithm for the computation of the set
τa depends on the particular mechanism that generated safe state a, and it can be described
as follows:

– If state a was generated by tracing back upon edge e from unsafe state u, then, the
algorithm sets τa = {e}. Clearly, firing e at a leads to unsafety.

– If a was generated by combining two previously generated boundary safe states a1 and
a2 (i.e., a = λ{a1,a2}), then, τa = (τa1 ∪ τa2)∩ g(a). Indeed, it is easy to see that firing
any enabled transition among τa1 ∪τa2 at state λ{a1,a2} will lead to a state that dominates
a state in U(a1)∪U(a2); hence to an unsafe state.

Furthermore, it is possible that a boundary safe state a will be generated more than
once in the execution of the proposed algorithm. In fact, it might happen that a′1 = a′2,
but τa′1 6= τa′2 . This will happen if a′1 and a′2 are generated by different mechanisms, by
backtracing from different unsafe states, or by combining different pairs of boundary safe
states. Assume w.l.o.g. that a′1 was generated first in the course of the algorithm execution.
Then, a′2 will be discarded upon its generation, but τa′1 will be updated to τa′1 := τa′1 ∪τa′2 .

The rationale for basing the overall search process for minimal unsafe states upon the
three state-generation mechanisms that were described above, can be explained as follows:
The first mechanism is the primary backtracing mechanism employed by the proposed al-
gorithm, and therefore, its role is self-explanatory. On the other hand, in order to explain
the role of the second and the third mechanisms, we remind the reader that Definition 4
implies that a boundary safe state a might be dominated by another minimal unsafe state
leading to unsafe states that dominate some state(s) in U(a) (c.f. also Figure 1); these two
state-generation mechanisms enable the proposed algorithm to reach these additional min-
imal unsafe states. More specifically, by applying the second mechanism on any pair of
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boundary safe states a1 and a2, we obtain the state λ{a1,a2} that dominates both a1 and a2
w.r.t. the partial state order that is established by “≤ ”. This domination further implies that
g(λ{a1,a2}) ⊆ g(a1)∪ g(a2). If τλ{a1 ,a2}

≡ {τa1 ∪ τa2}∩ g(λ{a1,a2}) 6= /0, the aforementioned
domination also implies that g(λ{a1,a2}) contains transitions to states that dominate unsafe
states and, therefore, they are themselves unsafe. Hence, the constructed state λ{a1,a2} is
either an unsafe state, or if it is safe, it remains boundary. In the former case, the mecha-
nism has succeeded in its objective of reaching a new part of the unsafe region, as described
above. In the second case, the mechanism provides another boundary safe state that can be
used for the generation of new unsafe states through the second and the third mechanism.
Finally, when using the third mechanism, we seek to add some processes to a boundary safe
state a, in order to obtain a state y such that g(y) ⊆ τa. Thus, any enabled transition at y
leads to a state that dominates a state in U(a); hence to an unsafe state. Therefore, y is also
unsafe.

The following definitions provide a more formal characterization for the second and the
third mechanisms.

Definition 5 Consider a pair of boundary safe states a1 and a2. The pair (a1,a2) is “com-
binable” iff (i) λ{a1,a2} satisfies Equation 1-2, and (ii) τλ{a1 ,a2}

≡ {τa1 ∪ τa2}∩g(λ{a1,a2}) 6=
/0.

Definition 6 Given a boundary safe state a, define the set of states Con f ine(a, τa) as fol-
lows: x′ ∈ Con f ine(a, τa) iff (i) x′ > a, (ii) g(x′) ⊆ τa, (iii) @y < x′ that satisfies (i) and
(ii).

Condition (iii) in Definition 6 eliminates non-minimal unsafe states. The next proposi-
tion shows that any state in Con f ine(a, τa) is an unsafe state.

Proposition 3 If x′ ∈ Con f ine(a, τa), then x′ is an unsafe state.

Proof: Consider a transition t1 ∈ g(x′). Definition 6 implies that t1 ∈ τa. Hence, firing t1 at
a leads to an unsafe state u1. By Definition 6 again, x′ > a. Therefore, firing t1 at x′ leads to
a state that dominates u1, and therefore, to an unsafe state. Since t1 was chosen arbitrarily
among the transitions of g(x′), it follows that all the enabled transitions at x′ lead to unsafety.
Hence, x′ is an unsafe state. �

5.2 The proposed algorithm and its analysis

The complete logic for the enumeration of minimal reachable unsafe states is detailed in
Algorithm 3. Algorithm 3 employs the queue Q to store unprocessed unsafe states, the list
U̇ to store processed unsafe states, and the hash table Ȧ to store boundary safe states. The al-
gorithm starts by enumerating all the minimal reachable deadlock states using Procedure 2,
and adds the returned states to Q. For each state u in Q, u is traced back by one transition in
Line 6. Then, in Line 7, the states generated in Line 6 are partitioned into the sets Sa f e Prev
and Unsa f e Prev (i.e., the safe and unsafe state subsets of Prev(u)), using standard reacha-
bility analysis w.r.t. the target state s0. In Line 8, the elements of Unsa f e Prev are inserted
into Q to be processed later. On the other hand, the function Combine in Line 12 returns λa,ȧ
if a and ȧ are combinable according to Definition 5. Otherwise, it returns /0. Hence, in Lines
9-17, for each state a ∈ Sa f e Prev, the Combine function is applied with every state ȧ ∈ Ȧ,
and the result is inserted in Za. In Line 14, Za is partitioned using standard reachability anal-
ysis into its subset of safe states, Sa f e(Za), and its subset of unsafe states, Unsa f e(Za). As
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Algorithm 3
Input: A RAS instance Φ

Output: the list U̇ containing all the reachable minimal unsafe states of Φ

1: U̇ , Ȧ← /0; k← 0;
2: Q← EnumMinReachDeadlocks(Φ)
3: while Q 6= /0 or k < |Ȧ| do
4: if Q 6= /0 then
5: u← dequeue(Q);
6: Prev(u)← Backtrace(u);
7: (Sa f e Prev, Unsa f e Prev) ← Classify(Prev(u))
8: Insert Non Min(Unsa f e Prev, Q, U̇)
9: for each a ∈ Sa f e Prev do

10: Za← /0

11: for all ȧ ∈ Ȧ do
12: Za← Za ∪Combine(ȧ,a)
13: end for
14: (Sa f e(Za),Unsa f e(Za))←Classi f y(Za)
15: Insert a, Sa f e(Za) into Ȧ
16: Insert Non Min( Unsa f e(Za), Q, U̇)
17: end for
18: Insert Non Min(u, U̇ , Q)
19: else
20: while k < |Ȧ| do
21: ak ← Ȧ[k++];
22: U∗←Con f ine(ak, τak )
23: Insert Non Min(U∗, Q, U̇)
24: end while
25: end if
26: end while
27: Remove Unreachable(U̇)
28: return U̇

explained in the opening part of this section, the states of Sa f e(Za) are boundary safe states
by construction; hence, they are inserted into Ȧ at Line 15. Whenever a boundary state a′
is inserted into Ȧ, we check first if ∃ȧ ∈ Ȧ s.t. a′ = ȧ; in this case τȧ is updated to τȧ ∪ τa′ ,
and a′ is discarded. On the other hand, the states of Unsa f e(Za) are unsafe; hence they are
inserted into Q. If Q is empty, then we apply the Con f ine operation to every state in Ȧ that
has not been subjected to this operation yet. The mechanism of the Con f ine operation is
very similar to that of Lines 12-27 in Procedure 2, but instead of seeking to block enabled
processing stages, the Con f ine procedure seeks to block the enabled edges that do not be-
long to τa. On the other hand, the subroutine Insert Non Min(U, Q1, Q2) invoked in Lines
16, 18 and 23 removes the non-minimal unsafe states that are generated during the course
of the execution of the algorithm. In particular, Insert Non Min(U, Q1, Q2) is invoked to
insert the minimal states in U into Q1, while removing any non-minimal state vectors from
Q1 ∪Q2. In other words, a state u ∈U is inserted into Q1 iff the set Q1 ∪Q2 does not con-
tain any state dominated by u. Furthermore, if u is dominated by a state x ∈ Q1 ∪Q2, x is
removed from Q1∪Q2.

Complexity Considerations: In Nazeem (2012) it is shown that the overall complexity
of Algorithm 3 can be characterized as O(µ|E |+1 ·ηC·|E | ·ξ · |E | ·2α·|E |+K′). The quantity α

that appears in this expression denotes the total number of unsafe states that are added to list
Q throughout the entire execution of the algorithm. η and C are defined as in the complexity
analysis of Procedure 2. |E | is the total number of edges in the process graph G . O(K′)
is an upper bound to the running time required for the co-reachability analysis for all the
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Table 5: The R/W-RAS considered in Example 2

Resource Types: {R1,R2},{RW1,RW2}
Resource Capacities: C1 =C2

Process Type 1: Ξ11(R1)→ Ξ12(R2)→ Ξ13(read(RW1))

Process Type 2: Ξ21(write(RW1))→ Ξ22(R2)→ Ξ23(read(RW2))

Process Type 3: Ξ31(write(RW2))→ Ξ32(R2)→ Ξ33(R1)

states generated throughout the algorithm in Lines 7 and 14, in addition to the reachability
analysis performed at Line 27 for the states in U̇ . The reachability and the co-reachability
analysis are implemented using depth-first search supported with hash tables to mark visited
states, and, as in the case of Procedure 2, the empirical complexity of the corresponding
computation is very benign.

From the above discussion, it can be concluded that the computational complexity of
Algorithm 3 is particularly sensitive to the capacities of the conventional resource types, the
number of the distinct event types, and the number of enumerated unsafe states. In addi-
tion, the computational experiments presented in Section 6 will reveal that, statistically, the
algorithm running time is mostly correlated with the size of the constructed list Ȧ.

The correctness of Algorithm 3 is shown in the last part of this section. Next, we present
two examples that demonstrate the respective application of the Combine and the Con f ine
operations.

Example 2: To illustrate the application of the Combine operation, consider the R/W-
RAS configuration depicted in Table 5. It has two conventional resource types, R1 and R2,
all with a single unit capacity, and two R/W resource types, RW1 and RW2. It also has three
process types, J1,J2 and J3, all with simple linear structure. Applying Procedure 2 results
in the minimal deadlock states u1 = {Ξ11,Ξ32}, u2 = {Ξ12,Ξ21}, and u3 = {Ξ22,Ξ31}. Ta-
ble 6 depicts the minimal unsafe states obtained by applying Algorithm 3, and the result of
backtracing from each of them. The underlined processing stages indicate the source nodes
of the backtraced edges in τa. As a more concrete example, consider state u1 = {Ξ11,Ξ32}.
Ξ11 cannot be traced back because this is an initiating stage. Backtracing on (Ξ31 → Ξ32)
yields state a1 = {Ξ11,Ξ31}, which is a safe state. The algorithm starts by inserting u1, u2,
and u3 into Q. First, u1 is backtraced, adding state a1 to Ȧ. Next, u2 is backtraced, gen-
erating the boundary safe state a2. Assessing the combinability of a1 and a2, we can see
that λ{a1,a2} = {Ξ11,Ξ21,Ξ31}, with the enabled edges g(λ{a1,a2}) = {Ξ11 → Ξ12,Ξ21 →
Ξ22,Ξ31→ Ξ32} and τλ{a1 ,a2

} = {Ξ11→ Ξ12,Ξ31→ Ξ32}. Hence a1 and a2 are combinable.
Moreover, λ{a1,a2} is an unsafe state, call it u4. Hence, u4 is added to Unsa f e(Za), and con-
sequently into Q. The same process is repeated with u3, but combining a3 with each of a1
and a2 yields u4 again. Hence u4 can be constructed by applying the Combine operation to
any pair of {a1,a2,a3}. On the other hand, u4 can not be traced back because all its process-
ing stages are initiating stages. Thus, after the fourth iteration, Q = /0 and Ȧ = {a1,a2,a3}.
Applying the Con f ine operation to the elements of Ȧ does not generate any minimal unsafe
state. Hence, the algorithm terminates. �

Example 3: To illustrate the application of the Con f ine operation, consider the R/W-
RAS configuration depicted in Table 7. The considered R/W-RAS has three conventional
resource types, R1,R2 and R3, all with a single unit capacity, and the R/W resource type
RW1. It also has three process types, J1,J2 and J3, all with simple linear structure and single-
type resource allocation, except for processing stage Ξ22 which requests the allocation of,
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Table 6: Tracing back from the minimal unsafe states for Example 2

u Sa f e Prev Unsa f e Prev
u1 = {Ξ11,Ξ32} a1 = {Ξ11,Ξ31} /0

u2 = {Ξ12,Ξ21} a2 = {Ξ11,Ξ21} /0

u3 = {Ξ22,Ξ31} a3 = {Ξ21,Ξ31} /0

u4 = {Ξ11,Ξ21,Ξ31} /0 /0

Table 7: The RAS considered in Example 3

Resource Types: {R1,R2,R3}, RW1

Resource Capacities: C1 =C2 =C3 = 1
Process Type 1: Ξ11(R1)→ Ξ12(R2)→ Ξ13(read(RW1))

Process Type 2: Ξ21(write(RW1))→ Ξ22({R2, R3})
Process Type 3: Ξ31(R3)→ Ξ32(R1)

both, R2 and R3. The application of Procedure 2 yields the minimal deadlock state u1 =
{Ξ12,Ξ21}. Backtracing from u1 yields a1 = {Ξ11,Ξ21}, which is a safe state: τa1 = (Ξ11→
Ξ12), whereas g(a1) = {Ξ11 → Ξ12,Ξ21 → Ξ22}. Applying the Con f ine operation to a1 to
block the edge (Ξ21→ Ξ22) yields the second minimal unsafe state u2 = {Ξ11,Ξ21,Ξ31}. �

Proving the correctness of Algorithm 3: To establish the correctness of Algorithm 3,
we need to show that (i) Algorithm 3 terminates in a finite number of steps, and that (ii)
upon its termination, the algorithm will have enumerated correctly all the minimal unsafe
states of its input R/W-RAS Φ.

To establish that the algorithm enumerates correctly all the minimal reachable unsafe
states, we start by observing that Theorem 1 establishes that Procedure 2 enumerates cor-
rectly all the minimal deadlock states. Thus, our goal is to show that Algorithm 3 enumerates
also all the deadlock-free minimal unsafe states. The main idea is to show that a minimal un-
safe state is missed only if a “next” minimal unsafe state – i.e., a member of the set nextMin
introduced in Definition 4 – is also missed by the algorithm. Then, the algorithm correct-
ness can be based upon the elimination of the possibility of having cyclical dependencies in
the relationship that is defined by the nextMin operator. For the R/W-RAS of Section 2, the
aforementioned absence of cyclic dependencies can be argued from the acyclic structure of
the process digraphs Gi, i ∈ {1, . . . ,n}. Thus, every chain of dependencies among the min-
imal unsafe states that is defined by operator nextMin, will end up in a minimal deadlock,
and the sought result will be obtained from Theorem 1. A formal proof that relies on the
above idea can be found in Nazeem and Reveliotis (2014)-Section IV.

On the other hand, the next proposition proves the proper termination of the algorithm.

Proposition 4 Algorithm 3 terminates in a finite number of steps.

Proof: First, we remind the reader that an unsafe state is discarded if it dominates some
other state in U̇ ∪Q. Second, we notice that the algorithm will diverge only if it keeps
adding states to Q forever. To trace the states added to Q, let L1 and L2 be two sets of states
such that when a state s is added to Q, if s is incomparable with all the states in L1, s is added
to L1. Otherwise, i.e., if s is dominated by some state in L1, s is added to L2. The third case,
i.e., s dominates some state in L1 is ruled out by the opening remark in this proof. Thus L1
is a set of incomparable vectors, and thus, by Dickson’s Lemma, L1 can never grow to be
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Table 8: A sample of our computational results regarding the efficacy of Algorithm 3
|ξ| |S̄rs̄| γ α |Ȧ| dec. diag. tn tr

stor. reqs.
42 8427 13159 31838 58750 34223 2531 0
42 3733 8260 21014 27433 20170 566 0
42 15715 28712 75836 134231 67964 14152 2
27 1887 2165 5480 5254 3939 39 0
27 11510 13566 30651 32488 17964 1619 0
27 3370 5122 9090 12123 7656 205 0
27 1714 1901 2845 4885 2372 22 0
42 14796 20638 25177 33996 19040 1379 2
36 5684 6473 10205 33831 7794 512 1
36 2092 3412 7342 9789 7403 86 0
39 3446 8116 13601 8998 20428 108 0
39 4813 8601 17606 15505 26538 313 0
45 13773 26780 73735 128306 63612 19318 1
45 22609 45119 118370 171071 68660 31434 9
45 9610 22202 43249 40825 58482 1592 0
42 6585 14967 30030 27562 30060 740 0
42 5806 9276 22043 40055 27752 866 0
48 18692 44411 91397 53362 76599 5962 1
39 9288 17802 43676 55320 41346 4174 1
48 32861 69247 129651 94059 141651 11179 1
42 37006 57230 129443 150807 138205 22030 3
42 17445 33188 98009 192840 76121 35909 3

an infinite set. But, if L1 is a finite set, then L2 will also be a finite set (because the number
of states dominated by each state in L1 is finite). Thus the algorithm terminates in a finite
number of steps. �

6 Computational results

In this section we report a set of experiments that demonstrate the applicability and assess the
efficacy of Algorithm 3, by applying this algorithm upon a number of randomly generated
instantiations of the R/W-RAS class that was defined in Section 2. Each of the generated
instances was further specified by:

– The number of conventional resource types in the system; the range of this parameter
was between 3 and 16.

– The number of the R/W resource types in the system; the range of this parameter was
between 1 and 4.

– The capacities of the conventional resource types in the system; the range of this param-
eter was between 1 and 4.

– The number of process types in the system; the range of this parameter was between 3
and 5.

– The number of processing stages in each process; the range of this parameter was be-
tween 3 and 16. Furthermore, in order to remain consistent with the R/W-RAS structure
defined in Section 2, no processing stage has a zero resource-allocation vector.

Both the employed R/W-RAS generator and Algorithm 3 were encoded and compiled
in C++. All our computational experiments were performed on a 2.66 GHz quad-core Intel
Xeon 5430 processor with 6 MB of cache memory and 32 GB RAM; however, each job ran
on a single core.



24 Ahmed Nazeem, Spyros Reveliotis.

Table 8 reports the results that were obtained in our experiments. Column 1 in Table 8
reports the total number of processing stages ξ. Column 2 reports the cardinality of the set of
minimal reachable unsafe states. Column 3 (γ) reports the number of minimal unsafe states
generated by Algorithm 3 without performing the reachability evaluation of the generated
states (Line 28). Column 4 (α) reports the total number of unsafe states added to Q through-
out the course of the execution of Algorithm 3. Column 5 reports the cardinality of the list
Ȧ at the end of the execution of Algorithm 3. Column 6 reports the total storage capacity, in
terms of integer entries, that is required for the storage of the decision diagram that encodes
S̄rs̄. Finally, Columns 7 (tn) and 8 (tr) report, respectively, the amount of time (in seconds)
spanned by Lines 1-26 and Line 27 of Algorithm 3.

It is clear from Table 8 that Algorithm 3 facilitates the effective computability and the
development of a parsimonious representation of the maximally permissive DAP for R/W-
RAS of extensive size and behavioral complexity. Also, as pointed out in earlier parts of
this manuscript, the data presented in Table 8 further indicates that (i) the computational
complexity of the algorithm is mostly dependent on the cardinality of the set Ȧ, and that (ii)
the empirical complexity of the computation in Line 27 of Algorithm 3 is very benign.

7 Extension of the presented results to encompass the complete process behavior that
is exhibited by the Gadara RAS

The RAS model defined in Section 2 allows its constituent processes to possess routing flex-
ibility; each process J j, j = 1, . . . ,n, can execute through any of the paths connecting some
source node v ∈ V↗j to a node v′ ∈ V↘j of the corresponding graph G j. On the other hand,
by requesting that the graphs G j are acyclic, that model precludes the presence of cyclic
behavior in the defining logic of these processes. However, RAS models that seek to capture
the behavior of the various threads of multi-threaded computer programs executing in their
critical region, may need to express behavior that results from conditional loops like the
“while” or the “until” loops that are encountered in these programs. This, in turn, requires
the provision for potential cyclic behavior in the specification of the process-defining graphs
G j. In this section, we extend the RAS model of Section 2, and the results that were devel-
oped in the previous parts of this work, so that they encompass potential cyclic behavior by
the constituent processes. In particular, under the modeling extensions to be introduced in
this section, the dynamics for the process routing to be supported by the resultant RAS class
will be equivalent to the dynamics for the process routing that are supported by the Gadara
RAS (Liao et al (2013b)); as remarked in the introductory section, the latter is an established
abstraction in the current literature for modeling the dynamics of (mutex) lock allocation in
multi-threaded programs.

The proposed modification for the RAS model of Section 2 can be described as follows:
In the new RAS model, the process-defining graphs G j still encode the sequential logic for
the corresponding process types J j as paths leading from some node v ∈ V↗j to a node v′ ∈
V↘j , but these paths need not be acyclic anymore. Furthermore, following the rationale that
underlies the specification of the Gadara RAS (Liao et al (2013b)), we separate the process
routing dynamics from the dynamics that pertain to resource allocation. To formalize this
idea, consider an edge (v,v′) in some graph G j, j = 1, . . . ,n, and let Ξ(v), Ξ(v′) denote the
corresponding processing stages. Then, we stipulate the following condition for the extended
R/W-RAS model that is considered in this section:
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Condition 1 Consider an instance Φ from the R/W-RAS class defined in this section, and an
edge (v,v′) in the corresponding “union” graph G = (∪n

j=1V j,∪n
j=1E j). If the out-degree8

of node v in G is greater than one, then, A(Ξ(v)) = A(Ξ(v′)).

The practical implication of Condition 1 is that, in the considered RAS, branching de-
cisions by the running process instances can be effected without altering the resources allo-
cated to these processes. A dual interpretation of this observation is that, in the considered
RAS, the aforementioned branching decisions are not impacted by the underlying resource
allocation function. These two remarks substantiate the aforementioned separation of the
process routing dynamics from the dynamics that pertain to resource allocation. We fur-
ther insist that this separation is respected by the applied DAP. Formally, we stipulate the
following:

Condition 2 Consider an instance Φ from the R/W-RAS class defined in this section, and an
edge (v,v′) in the corresponding “union” graph G = (∪n

j=1V j,∪n
j=1E j). If the out-degree

of node v in G is greater than one, then, the state transitions that correspond to edge (v,v′)
in the state automaton G(Φ) are uncontrollable transitions.

Conditions 1 and 2 render the process routing dynamics in the considered RAS equiva-
lent to the process routing dynamics in the Gadara RAS. Then, one can establish the follow-
ing result:9

Proposition 5 Consider an instance Φ from the R/W-RAS class that is considered in this
section. Then, for every unsafe state u ∈ Srs̄, there exists a deadlock state d ∈ Srd that is
accessible from u.

Proof: Let u be some arbitrary unsafe state in the subspace Srs̄ of the considered RAS
Φ, and also let J (u) denote the set of process instances that are active in state u. For each
process instance j j ∈ J (u), also let Ξ( j j) denote the processing stage executed by j j in u,
and J( j j) denote the corresponding process type; obviously, J( j j)≡ Jk for some k∈ 1, . . . ,n.
Finally, for each process instance j j ∈ J (u), pick a shortest path in the corresponding graph
Gk, that defines the process type Jk, leading from the node corresponding to Ξ( j j) to the
set of terminal nodes of Gk, V↘k ; let these paths be denoted by p( j j). For any R/W-RAS
Φ with well-defined process types, there will exist at least one shortest path p( j j) for every
j j ∈ J (u), and these paths will exhibit no cyclic behavior (since, otherwise, an even shorter
path can be obtained by removing the appearing cycles).

Next, consider any transition sequence σ in the automaton G(Φ) that emanates from
state u and seeks to advance the active process instances j j ∈ J (u) to their completion while
following the pre-selected paths p( j j). The acyclic nature of the paths p( j j) implies that σ

is finite; let û(σ) denote the reached final state. The unsafety of state u further implies that
û(σ) 6= s0. Let J (û(σ)) ⊆ J (u) denote the process instances in u that have not completed
in state û(σ). Obviously, the inability of the process instances j j ∈ J (û(σ)) to advance any
further towards the corresponding terminal stages in the paths p( j j) is due to the lack of
some resource(s) needed for their next processing stage on p( j j); i.e., all these processes
are deadlocked when restricted on the corresponding paths p( j j). But, then, Condition 1
also implies that the processing stages of the considered process instances j j in state û(σ)

8 We remind the reader that the out-degree of a node v in a digraph G is equal to the number of edges that
emanate from v.

9 This result is similar to a result that is established in the “⇐=” part of the proof for Theorem 1 in Liao
et al (2013b). Here we state and prove the result in the context of the representational formalisms for the
R/W-RAS and their behavioral dynamics that are employed in this work.
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do not involve any branching. Hence, state û(σ) belongs in Srd and constitutes (one of) the
deadlock state(s) d that is asserted by the considered proposition. �

Proposition 5 ensures that the fundamental idea underlying the methodology that is pro-
posed in this work still applies in the dynamics of the considered RAS model: one can still
try to retrieve all the unsafe states in Sr by backtracing from the reachable (minimal) dead-
locks. However, the implementation of this idea in the dynamics of the modified R/W-RAS
that is considered in this section, must also address any potential complications that might
result from the uncontrollable dynamics that are introduced by Condition 2. The first issue
to observe along these lines is that the introduced uncontrollability does not compromise
the monotonicity of the (un-)safety property that is implied by Proposition 1. Indeed, con-
sider an instance Φ from the considered R/W-RAS class, and a reachable unsafe state u of
G(Φ). Under the presence of uncontrollable behavior, it is generally possible that the addi-
tion of a process instance j j to state u might lead to a state u′ that is safe. More specifically,
this will happen if the unsafety of state u is due to some uncontrollable state transition that
would take the system to its unsafe subspace Ss̄, and the addition of process instance j j to
u blocks this transition by allocating to j j some of the resources that are necessary for the
execution of this transition. However, Conditions 1 and 2 imply that such a blocking effect
is not possible in the considered RAS model, and therefore, the monotonicity of (un-)safety
is preserved.10

Yet, while the argument that was provided in the previous paragraph establishes the
preservation of the monotonicity of the (un-)safety property in the considered RAS, it also
reveals a need for revising the concept of the state unsafety in the new RAS dynamics; the
following definition provides this revision in an inductive manner:

Definition 7 In the R/W-RAS class considered in this section, the revised set of reachable
unsafe states, S′rs̄, is inductively defined as follows:

1. S′rs̄ contains the set Srs̄ defined in Section 2, i.e., all the states u ∈ Sr that are not co-
accessible to state s0.

2. Furthermore, S′rs̄ contains any state u ∈ Sr that has (i) an uncontrollable transition to
S′rs̄ or (ii) all its transitions leading to S′rs̄.

In the following, we shall denote the minimal elements of S′rs̄ by S̄′rs̄. The new definition
of the state unsafety necessitates some modification of the logic of Algorithm 3 in order to
characterize correctly the (un-)safety of the various states that are generated during its execu-
tion. In particular, every time that the algorithm backtraces from some unsafe state u upon
an uncontrollable transition, the generated state u′ must be immediately recognized as an
unsafe state. This modification affects the state classification that is performed in Line 7 of
Algorithm 3. On the other hand, the same modification further implies that all the remaining
states, that are processed through Lines 9-25 of the algorithm, are connected to the recog-
nized unsafe region through controllable transitions only; hence, the logic of the “combine”
and “confine” operations that are performed in those lines will remain unchanged.

Example 4: Consider the R/W-RAS configuration depicted in Figure 2. It has two
conventional resource types, R1 and R2, both with single-unit capacities, and the R/W re-
source type RW1. It also has two process types, J1 and J2. Process type J1 contains the loop
Ξ11 → Ξ12 → Ξ14 → Ξ11. Furthermore, Condition 2 implies that the branching transitions
Ξ12 → Ξ13 and Ξ12 → Ξ14 (depicted by dashed lines) are uncontrollable. It can also be
checked that A(Ξ12) = A(Ξ13) = A(Ξ14), i.e., the branching transitions do not alter the

10 It is interesting to notice that the preservation of the monotonicity of (un-)safety in the face of the under-
lying uncontrollable behavior has been accepted rather silently in the previous works on the Gadara RAS.
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Table 9: Tracing back from the minimal unsafe states for Example 4

s Sa f e Prev Unsa f e Prev
s10 = {Ξ11,Ξ14} /0 s5 = {Ξ11,Ξ12

}
s12 = {Ξ21,Ξ13} /0 s6 = {Ξ21,Ξ12

}
s5 = {Ξ11,Ξ12} /0 /0

s6 = {Ξ21,Ξ12} /0 s4 = {Ξ21,Ξ11}

s4 = {Ξ21,Ξ11} /0 s13 = {Ξ21,Ξ14}
s13 = {Ξ21,Ξ14} /0 s6 = {Ξ21,Ξ12

}

resource allocation to the corresponding process instances, and thus, Condition 1 is also
satisfied. We further notice that the R/W resource RW1 is requested by the last processing
stage of J1 in the reading mode, and by the first processing stage of J2 in the writing mode.
Finally, processing stage Ξ22 requests the allocation of both R1 and R2.

As indicated in Section 4, terminal processing stages do not participate in any deadlock
formation. Hence, they need not be explicitly considered in the subsequent analysis. In the
context of the considered example, the implicit representation of the terminal processing
stages in the modeling of the underlying RAS dynamics enables the representation of these
dynamics by a finite state automaton (FSA), since the only stage that can support an infinite
number of active process instances is the terminal processing stage Ξ15. The state transition
diagram (STD) of this FSA is depicted in Figure 3. Using co-reachability analysis on the
STD of Figure 3, we can see that the set of states Srs̄, from which state s0 is not accessible,
equals to {s4,s6,s10,s11,s12,s13,s14,s15}; this set of states are marked in gray in Figure 3.
On the other hand, the highlighted state s5 has the following path to sate s0: s5→ s9→ s1→
s3 → s7 → s0. But state s5 enables the uncontrollable transition Ξ12 → Ξ14 that leads to
state s10, a member of Srs̄. Hence s5 is an unsafe state, and S′rs̄ = Srs̄∪{s5}. It can be easily
verified that S̄rs̄ = {s4,s6,s10,s12,s13}, and that S̄′rs̄ = S̄rs̄∪{s5}. Finally, the set of minimal
reachable deadlocks is S̄rd = {s10,s12}.

Next, we demonstrate the application of Algorithm 3 on the considered R/W-RAS. Ap-
plying Lines 1-10 of Procedure 2, we get that BlockPs[Ξ11] = {{Ξ11,Ξ13},{Ξ11,Ξ14}},
BlockPs[Ξ12] = /0, BlockPs[Ξ13] = {{Ξ13,Ξ21}}, BlockPs[Ξ14] = {{Ξ14,Ξ11}}, BlockPs[Ξ21]
= {{Ξ21,Ξ11}, {Ξ21,Ξ13}, {Ξ21,Ξ14}}. Subsequently, applying the rest of Procedure 2, we
get the minimal deadlock states S̄rd = {s10,s12}.

Table 9 depicts the minimal unsafe states obtained by applying Algorithm 3, and the re-
sult of backtracing from each of them. The underlined processing stages indicate the source
nodes of the backtraced edges in the corresponding states; double underlining further im-
plies backtracing on uncontrollable transitions. As a more concrete example, backtracing on
the uncontrollable transition (Ξ12→ Ξ14) from the minimal unsafe state s10 yields the min-
imal unsafe state s5. In this example, backtracing from the unsafe states does not yield any
safe states. Hence, Lines 9-23 in Algorithm 3 are not executed for this example. The algo-
rithm yields the set of states {s4,s5,s6,s10,s12,s13}, which is identical to the set S̄′rs̄ obtained
using co-reachability analysis. �

We close the developments of this section by formally stating and proving the correct-
ness of Algorithm 3 when applied to the enumeration of the reachable minimal unsafe states
of the R/W-RAS that are considered in this section. The finite convergence of the algorithm
can be established exactly in the same way as the finite convergence of its counterpart pre-
sented in Section 5.
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Fig. 2: The R/W-RAS considered in Example 4. Dashed lines correspond to uncontrollable transitions.

Theorem 2 Under the unsafety interpretation of Definition 7, Algorithm 3 will enumerate
correctly all the minimal reachable unsafe states of any instance Φ from the R/W-RAS con-
sidered in this section.

Proof: Consider the set of minimal unsafe states S̄′rs̄ of an instance Φ from the considered
R/W-RAS, and the transition structure that is induced upon this set by the sets nextMin(u,ei)
that were introduced in Definition 4; that is, in the considered transition system, there is a
transition (u,u′) with u,u′ ∈ S̄′rs̄, iff u′ ∈ nextMin(u,ei) for some enabled event ei ∈ g(u).
Next, we also consider the state transition diagram (STD) of this transition system and the
communication structure that is present in this diagram.11 Proposition 5 implies that all the
terminal nodes in the corresponding condensation graph are defined by the minimal dead-
locks in S̄′rs̄. Furthermore, since the model and the algorithm modifications presented in the
earlier parts of this section do not affect the notion of the minimal deadlock for the con-
sidered RAS, Theorem 1 implies that all the minimal deadlocks in S̄′rs̄ will be correctly
identified by Algorithm 3 through the execution of Line 2. Next, we use an inductive argu-
ment, that employs a partial order of the nodes in the aforementioned STD condensation, in
order to establish that Algorithm 3 will detect all the communication classes of S̄′rs̄ and all
the states that are included in each communication class.

More specifically, let us consider the imposition of a partial order on the nodes of the
condensation of the considered STD, based on a “leveling” scheme that is defined as follows:
Level 0 collects all the terminal nodes of this condensation. Level 1 collects all the nodes in
the STD condensation with emanating edges leading only to Level-0 nodes. Level 2 collects
those nodes of the STD condensation with emanating edges leading to nodes in Levels

11 We remind the reader that two nodes v,v′ in a digraph G = (V,E) are communicating if there are di-
rected paths in G that lead from each of these two nodes to the other one. Nodal communication defines an
equivalence relationship on the node set V of G and the corresponding equivalence classes are known as the
communication classes of G . The condensation of G that is induced by this relationship, is the digraph Ĝ that
is obtained by collapsing each communication class to a single (macro-)node while retaining all edges that
connect nodes in different communication classes. By its construction, Ĝ is an acyclic digraph.
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Fig. 3: The finite state automaton modeling the (simplified) dynamics of the R/W-RAS instantiation consid-
ered in Example 4. Dashed lines correspond to uncontrollable transitions. The gray states are the members of
Srs̄, whereas the highlighted state s5 is the only member of the revised set of reachable unsafe states S′rs̄ that
does not belong to Srs̄.

0 and 1 (we notice, however, that each Level-2 node must have at least one emanating
edge leading to a Level-1 node, since, otherwise, it would be a Level-1 node). Generalizing
the above pattern, Level i of the considered partial order, collects the nodes of the STD
condensation with emanating edges to nodes in Levels 0,1, . . . , i− 1, and there must be
at least one edge leading to a Level-(i− 1) node. The aforementioned induction runs on
this leveling structure. The base case, concerning the Level-0 nodes, was already addressed
in the previous paragraph. Next, suppose that Algorithm 3 has already identified all the
states in all the communicating classes that are contained in Levels 0, . . . , i of the considered
leveling scheme. We shall show that the algorithm must also discover all the states in any
communicating class that corresponds to a Level-(i+1) node in the condensed STD.

First, we assume that the considered communication class is a singleton, i.e., it consists
of a single minimal state u ∈ S̄′rs̄. Then, all the edges emanating from u must be leading
to minimal states in communicating classes belonging in Levels 0,1, . . . , i, and therefore,
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already detected by the algorithm (according to the inductive hypothesis). But then, an ar-
gument very similar to that for the establishment of Proposition 4 in Nazeem and Reveliotis
(2014) will establish that the considered algorithm will identify state u as well.12

Next we address the case where the considered communication class contains two or
more states from S̄′rs̄. For this case, the following remarks are in order: First we notice that
the communicating relationship of all the states that belong to the considered class, together
with the fact that the events ei that define the underlying transition mechanism do not in-
volve the loading of any new process instances, imply that all these states will have the same
process content. This realization further implies that once the considered algorithm identi-
fies any state in the considered class, then it is guaranteed to identify any other state in it
through the basic backtracing step that is performed in Lines 6-8. It remains to characterize
a state in the considered communication class that is guaranteed to be traceable by Algo-
rithm 3. The communicating structure of the considered state class, when combined with
the underlying dynamics that govern the process routing and the transition mechanism of
the considered STD, imply that there will be some state u of this class with a state tran-
sition (u,u′) to some lower level class in the STD condensation, and this transition will
correspond to a process-branching event e′. We claim that the set nextMin(u,e′) that results
from the aforementioned transition is the singleton {u′}, and therefore, the detection of state
u′ by Algorithm 3, according to the induction hypothesis, guarantees also the detection of
state u, through the basic backtracing step that is performed in Lines 6-8. We establish the
above claim, by referring to the topological structure that is depicted in Figure 1. Suppose
that nextMin(u,e′) 6= {u′}, and pick a state z′i in nextMin(u,e′). Also, let s′i denote the state
that results by backtracing from z′i upon event e′. The discussion in the paragraph that fol-
lows Definition 4, in Section 5, guarantees the feasibility of this backtracing step, and it
also requires the safety of state s′i. But state s′i is connected to the unsafe state z′i through
an uncontrollable transition, and therefore, it must be an unsafe state; this contradiction es-
tablishes the validity of our claim, and also concludes the argumentation of the second case
considered the inductive step.

The proof completes by noticing that the two cases that were addressed in the previous
paragraphs cover all the communication classes that are contained in Level (i+ 1) of the
condensed STD. �

8 Conclusion

This work has extended the definition of the RAS abstraction to encompass the dynamics of
R/W-locks. It also proposed an algorithm for the effective enumeration of the set of minimal
unsafe states for any given R/W-RAS, and established the significance of this capability for
the effective implementation of the maximally permissive DAP in the context of this new
RAS class. The presented results address the behavioral scope of the Gadara RAS, which is
a well established abstraction for modeling the dynamics w.r.t. the lock allocation that takes
place in multi-threaded programming.

Future work will seek to extend the presented results to R/W-RAS with even more com-
plex process behavior. It will also consider the plausibility of employing symbolic computa-
tion for the support of the computation that is involved in the proposed algorithms, and the
potential gains that might result from such an endeavor.

12 For the sake of brevity, we refer to Nazeem and Reveliotis (2014) for the relevant details.
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