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Abstract – Past works towards the effective deployment
of the maximally permissive liveness-enforcing supervisor
(LES) for sequential resource allocation systems (RAS) have
been stalled by (i) the NP-Hardness of the computation of
this policy for the majority of the considered RAS classes,
and (ii) the inability of the adopted more compact represen-
tations of the underlying RAS dynamics to provide an effec-
tive representation of the target policy for all RAS instanti-
ations. This paper proposes a novel approach to the afore-
mentioned problem, that can be perceived as a two-stage
process: The first stage computes the maximally permis-
sive LES by employing an automaton-based representation
of the RAS behavior and techniques borrowed from the Ra-
madge & Wonham (R&W) Supervisory Control framework.
The second stage seeks the development of a more com-
pact representation for the dichotomy into admissible and
inadmissible – or“ safe” and “unsafe” – sub-spaces of the
RAS state space, that is effected by the LES developed in
the first stage. This compact representation is obtained by
(i) taking advantage of certain properties of the underlying
sub-spaces, and (ii) the employment of pertinent data struc-
tures. The resulting approach is also “complete”, i.e., it will
return an effectively implementable LES for any given RAS
instantiation. Numerical experimentation demonstrates the
efficacy of the approach and establishes its ability to support
the deployment of maximally permissive LES for RAS with
very large structure and state spaces.

Note to Practitioners – The problem of designing and de-
ploying liveness-enforcing supervisors (LES) for sequential
resource allocation systems is well-documented and exten-
sively researched in the current literature. Acknowledging
the fact that the computation of the maximally permissive
LES is an NP-hard problem, most of the present solutions
tend to trade off maximal permissiveness for computational
tractability and ease of the policy design and implemen-
tation. In this work, we demonstrate that the maximally
permissive LES can be a viable solution for the resource al-
location taking place in many practical applications, by (a)
effectively differentiating between the off-line and on-line
problem complexity, and (b) controlling the latter through
the development of succinct and compact representations of
the information that is necessary for the characterization of
the maximal permissive LES.

Index Terms– Resource Allocation Systems, Liveness En-
forcing Supervision, Discrete Event Systems, Nonblocking
Supervisory Control, TRIE data structures

I. Introduction

The problem of liveness-enforcing supervision for
sequential resource allocation systems and its cur-
rent state of art The problem of liveness-enforcing su-
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pervision (LES)1 – or deadlock avoidance – for sequential
resource allocation systems (RAS) has received extensive
attention in the literature. In its basic definition, this
problem concerns the coordinated allocation of the finite
system resources to a set of concurrently executing pro-
cesses, that are competing for the staged acquisition and
release of these resources, so that every process can even-
tually proceed to its completion. In particular, the applied
control policy must avoid the development of circular wait-
ing patterns where a subset of processes are waiting upon
each other for the release of the resources that are needed
for their further advancement, a situation characterized as
“deadlock” in the relevant literature.

The study of the deadlock avoidance problem was initi-
ated in the late 60’s and early 70’s, in the context of the
computing technologies that were emerging at that time
[17], [16], [9], [18]. Some of the main contributions of that
era were (i) the formalization of the concept of deadlock
and of the resource allocation dynamics that lead to its
formation by means of graph-theoretic concepts and struc-
tures, and (ii) the identification of off-line structural condi-
tions and on-line resource allocation policies that would
guarantee the deadlock-free operation of the underlying
system. The design of the resource allocation processes
so that they do not give rise to any circular waiting pat-
terns is an example of the aforementioned structural con-
ditions, while Banker’s algorithm [12] is the best known
deadlock avoidance policy (DAP) of that era. An addi-
tional but later development of that era (late 70’s) was the
systematic study of the computational complexity of the
maximally permissive2 deadlock avoidance policy for any
given RAS and the establishment of its NP-hardness for
the majority of RAS behavior [1], [15].

The problem of deadlock avoidance was subsequently re-
vived in the late 80’s / early 90’s, primarily in the context of
the resource allocation taking place in flexibly automated
production systems and intelligent transportation systems.
The defining characteristics of these new studies were (i)
the better specificity, tractability and predictability of the
underlying resource allocation processes with respect to
their resource allocation requests, and (ii) the employment
of the simultaneously emerging qualitative Discrete Event
Systems (DES) theory [24], [31], [5] as a powerful and rig-
orous base for modeling, analyzing and eventually control-

1In the rest of this document, the abbreviation “LES” will stand
either for ”liveness-enforcing supervision” or for ”liveness-enforcing
supervisor”, depending on the context.

2Maximal permissiveness and all other technical concepts appearing
in this introductory discussion will be systematically defined in the
subsequent sections.
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ling the considered RAS dynamics. The combination of
these two effects has led to a more profound understand-
ing of the process of deadlock formation and of the RAS
structural attributes that affect this process, under various
DES-based representations. It has also given rise to a mul-
titude of methodologies that can provide effective deadlock
avoidance policies for many RAS classes.

Hence, it is currently known that the aforementioned
deadlock avoidance problem can be characterized in the
classical Ramadge & Wonham Supervisory Control (R&W
SC) framework [24], [31], [5] in a straightforward manner,
by (i) expressing the underlying resource allocation dynam-
ics through a Finite State Automaton (FSA) and (ii) re-
questing the confinement of the RAS behavior to the sub-
space of this FSA that is defined by its maximal strongly
connected component that contains the system state s0

where the RAS is idle and empty of any jobs. In fact,
this characterization of the problem and its solution estab-
lishes also a notion of optimality for the considered prob-
lem, since the resulting policy prevents the formation of
deadlock while retaining the maximum possible behavioral
latitude for the underlying RAS.3

However, when it comes to the implementation of the
control function, the standard approach of R&W SC the-
ory essentially employs the FSA representation of the con-
trolled system behavior under the target policy, and for
many practical RAS configurations the explicit storage and
on-line parsing of this information is of prohibitive com-
putational cost due to the enormous size of the involved
state spaces. Alternatively, one can consider a one-step
lookahead control scheme that would seek the “real-time”
– or the “on-line” – assessment of the co-accessibility of
any given RAS state to the empty state s0, a property
that is otherwise known as the state “safety”, in the rele-
vant terminology; but this approach is also computation-
ally challenged, since, for most RAS classes, the assessment
of state safety is an NP-complete problem [1], [15], [20].
The research community has tried to circumvent the afore-
mentioned computational challenges either (a) by compro-
mising for sub-optimal – i.e., non-maximally permissive –
solutions that are based on polynomially assessed proper-
ties of the relevant RAS states (e.g., [3], [30], [19], [13]),
or (b) by adopting alternative, more compact representa-
tions of the considered RAS dynamics and hoping that the
compactness of these alternative representations, combined
with further structural properties and insights revealed by

3We notice, for completeness, that most of the existing supervi-
sory control theory for sequential RAS assumes that the underlying
resource allocation function is fully observable and controllable. In
particular, it is assumed that there is a central controller that moni-
tors all the events taking place in the underlying RAS and authorizes
actions like the initiation of new processes or the advancement of ac-
tivated processes to their next processing stages, and the allocation
of the necessary resources. Such an assumption is in line with the
realities of the application domains for which this theory has been
developed, e.g., the control of workflow in flexibly automated pro-
duction systems, the traffic management of guidepath-based traffic
systems (like AGV and monorail systems), and, more recently, the
internet-based workflow management systems. For an overview of
the existing results on the theory of RAS liveness-enforcing super-
vision under uncontrollable behavior the reader is referred to ([29],
Chpt. 4). Also, some discussion on the impact of uncontrollable
behavior upon the results presented in this work is provided in the
concluding section.

them, will also lead, at least in most practical cases, to
fairly compact characterizations of the target policy and
to more efficient approaches for its derivation.

A modeling framework that seems to hold particular
promise for this second line of research, and therefore, has
been explored more persistently in the past, is that of Petri
nets (PN) [22]. In particular, the attribution of the non-
liveness of the RAS-modeling PNs to the formation of some
structural objects known as “empty – or, more generally,
deadly marked – siphons”, has led to the development of a
multitude of efforts that seek to characterize the maximally
permissive LES by imposing the minimum possible amount
of control that will prevent the formation of such deadly
marked siphons. However, a significant complication for
these approaches arises from the fact that the maximally
permissive LES might not admit a PN-based representation
[14], [26], and therefore, the practical potential and appli-
cability of these approaches is not fully explored and un-
derstood yet. Another prominent approach pursued within
the context of the PN modeling framework is that of the
“theory of regions” [2] and its derivatives. The key idea
behind the theory of regions, as implemented in the con-
sidered problem context, is to first compute the maximally
permissive LES using the standard R&W SC representa-
tions and methods mentioned in the previous paragraphs,
and subsequently encode this policy to a PN model. This
approach is also limited by the aforementioned potential in-
ability to express the maximally permissive LES as a PN.
Furthermore, even in its feasible cases, practical experience
has shown that it is very demanding computationally and
it results in PN representations of the maximally permis-
sive LES that are much larger than the PN modeling the
original RAS. The reader can find an extensive coverage of
all these past developments in [33], [29], [25], [21], and the
references cited therein.

The proposed approach The above discussion reveals
that the primary challenges in deploying the maximally
permissive LES for any given RAS configuration are (i)
the NP-hardness of the computation of the target policy,
for most practical RAS classes, and (iii) the inability of the
PN modeling framework to guarantee an effective represen-
tation of the maximally permissive LES; we shall refer to
this last limitation by saying that the PN modeling frame-
work is an “incomplete” representational framework with
respect to the maximally permissive LES. In this work we
seek to address the limitations stated above, and to de-
velop a methodology that will effectively compute and im-
plement the maximally permissive LES for any given RAS
configuration, by taking advantage of the following two ob-
servations:

Observation 1: While the aforementioned NP-hardness
of the maximally permissive LES for the considered RAS
is an undisputable result, it is also pertinent to clearly dis-
criminate between (i) the computational complexity that
concerns the “off-line” computational effort that is neces-
sary for acquiring the target policy, and (ii) the computa-
tional complexity that concerns the “on-line” implementa-
tion of this policy. In general, one might be able to tolerate
a more lengthy computation for the off-line part of the pol-
icy development. On the other hand, the computational
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budget for the on-line part of the policy implementation
will tend to be quite stringent.

Observation 2: It might be possible to control the com-
putational complexity that is involved with the on-line part
of the policy implementation through the pertinent selec-
tion of the representation of the target policy. Furthermore,
this representation must be chosen in a way that guarantees
completeness.

As remarked in the previous paragraphs, the maximally
permissive LES for the considered RAS classes can be ob-
tained through the “trimming” of the finite state automa-
ton (FSA) that models the underlying RAS behavior, while
assessing state reachability and co-reachability with respect
to the RAS empty state. This is a well understood and
very straightforward calculation [31], [5]. The only prob-
lem is that the aforementioned FSA grows exponentially
large with respect to the “size” of the more compact repre-
sentations expressing the structure of the corresponding
RAS. Yet, the severity of this problem is mitigated by
the fact that the computation of the trimmed FSA that
characterizes the maximally permissive LES is an off-line
computation, and therefore, the increased requirements in
terms of time and other computational resources can be
more affordable. On the other hand, any real-time im-
plementation of the maximally permissive LES essentially
constitutes a mechanism that assesses whether any reach-
able RAS state belongs to the aforementioned trimmed au-
tomaton or not, a property that defines the notion of state
“safety” discussed above. The key thesis of this paper is
that in many practical applications of the considered RAS
theory, once the aforementioned trimmed FSA has been ob-
tained, it is possible to encode the information necessary to
resolve the underlying state safety problem in a “data struc-
ture / mechanism” sufficiently compact so that the problem
can be effectively addressed within the time and other re-
source constraints that typically arise in a real-time com-
putation. This result is enabled by:
1. a monotonicity property possessed by the partition of
the underlying state space to its safe and unsafe subspaces,
that allows the classification of the entire state space while
considering explicitly only a (typically very) small subset
of the underlying state space;
2. the selection of a pertinent data structure that will store
the information characterized in step 1 above in a compact
manner, and in a way that facilitates the on-line processing
of this information.

We also notice, for completeness, than an approach sim-
ilar to that described in the previous paragraphs has re-
cently been pursued in [23], [7], [6]. All these three works
use a set of linear inequalities in order to represent the
target policy. Furthermore, computational experimenta-
tion presented in the aforementioned papers reveals that,
when applicable, this representation can be quite compact,
employing only a small number of linear inequalities even
for RAS with very large state spaces. In addition, by ex-
pressing the target policy as a set of linear inequalities, the
results of [23], [7], [6] can be (re-)cast in the PN modeling
framework, using, for instance, the methodology presented
in [14]. On the other hand, it is also well known that, in
general, the safe and unsafe regions of the considered RAS

classes might not be linearly separable, and therefore, the
representation considered in [23], [7], [6] is not complete.4
The approach proposed in this paper addresses this defi-
ciency while maintaining a pretty efficient representation
of the target policy.

In the light of the above remarks, the rest of the pa-
per is organized as follows: Section II provides a formal
characterization of the RAS class considered in this pa-
per and of the problem of maximally permissive, liveness-
enforcing supervision arising in this class. It also provides
the aforementioned monotonicity property of the sought
partition of the RAS state space that will enable the sub-
sequent developments of the paper. Section III presents
the main results of the paper by detailing the methodolog-
ical approach pursued in this work. Section IV demon-
strates the applicability of the approach by implementing
it on an example problem instance, and it also reports our
experiences with implementations involving larger and/or
more complex RAS configurations. Section V concludes
the paper by summarizing its contributions and outlining
some further extensions of theoretical and practical inter-
est. Finally, some more detailed technical discussion and
arguments that support the results of Section III are pro-
vided in an appendix. Closing this introductory section, we
also notice, for completeness, that a preliminary version of
the results appearing in this manuscript was presented at
the 6th IEEE Conference on Automation Science and En-
gineering (CASE 2010).

II. The considered RAS class and the problem
of maximally permissive liveness-enforcing

supervision

The considered RAS For the sake of simplicity and
specificity, we present the main results of this paper in the
context of the Disjunctive / Conjunctive (D/C) class of
the RAS taxonomy presented in [29]. We notice, however,
that the presented ideas and results are extensible to more
complex classes of that taxonomy.

A Disjunctive / Conjunctive Resource Allocation Sys-
tem (D/C-RAS) is formally defined by a 4-tuple Φ =
< R, C,P, D >,5 where: (i) R = {R1, . . . , Rm} is the set
of the system resource types. (ii) C : R → Z+ – the set of
strictly positive integers – is the system capacity function,
characterizing the number of identical units from each re-
source type available in the system. Resources are assumed
to be reusable, i.e., each allocation cycle does not affect
their functional status or subsequent availability, and there-
fore, C(Ri) ≡ Ci constitutes a system invariant for each i.
(iii) P = {Π1, . . . ,Πn} denotes the set of the system process
types supported by the considered system configuration.
Each process type Πj is a composite element itself, in par-
ticular, Πj =< Sj ,Gj >, where: (a) Sj = {Ξj1, . . . ,Ξj,lj}
denotes the set of processing stages involved in the defini-

4The inability of linear separation of the safe and the unsafe sub-
spaces arises from the fact that the convex hull of the former might
contain elements of the latter; cf. [26] for a concrete example.

5The complete definition of a RAS, according to [29], involves an
additional component that characterizes the time-based – or quantita-
tive – dynamics of the RAS, but this component is not relevant in the
modeling and analysis to be pursued in the following developments,
and therefore, it is omitted.
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tion of process type Πj , and (b) Gj is an acyclic digraph
with its node set, Vj , being bijectively related to the set Sj .
Let V↗j (resp., V↘j ) denote the set of source (resp., sink)
nodes of Gj . Then, any path from some node vs ∈ V↗j
to some node vf ∈ V↘j defines a process plan for process
type Πj . Also, in the following, we shall let Ξ ≡

⋃n
j=1 Sj

and ξ ≡ |Ξ|. (iv) D :
⋃n
j=1 Sj →

∏m
i=1{0, . . . , Ci} is

the resource allocation function associating every process-
ing stage Ξjk with the resource allocation vector D(Ξij)
required for its execution. At any point in time, the sys-
tem contains a certain number of (possibly zero) instances
of each process type that execute one of the correspond-
ing processing stages. A process instance executing a non-
terminal stage Ξij ∈ Vi\V↘i , must first be allocated the
resource differential (D(Ξi,j+1)−D(Ξij))+ in order to ad-
vance to (some of) its next stage(s) Ξi,j+1, and only then
will it release the resource units |(D(Ξi,j+1) − D(Ξij))−|,
that are not needed anymore. The considered resource
allocation protocol further requires that no resource type
Ri ∈ R be over-allocated with respect to its capacity Ci at
any point in time. Finally, for the purposes of the complex-
ity analysis pursued in later parts of this work, we define
the size |Φ| of RAS Φ by |Φ| ≡ |R|+ |

⋃n
j=1 Sj |+

∑m
i=1 Ci.

The Deterministic FSA abstracting the D/C-
RAS dynamics The dynamics of the D/C-RAS Φ =
< R, C, P, D >, described in the previous paragraph, can
be further formalized by a Deterministic Finite State Au-
tomaton (DFSA) [5], G(Φ) =< S,E, f, s0, SM >, that is
defined as follows:
1. The state set S consists of ξ-dimensional vectors s. The
components s[q], q = 1, . . . , ξ, of s are in one-to-one cor-
respondence with the RAS processing stages, and they in-
dicate the number of process instances executing the cor-
responding stage in the considered RAS state. Hence, S
consists of all the vectors s ∈ (Z+

0 )ξ that further satisfy

∀i = 1, . . . ,m,
ξ∑
q=1

s[q] ·D(Ξq)[i] ≤ Ci (1)

where, according to the adopted notation, D(Ξq)[i] denotes
the allocation request for resource Ri that is posed by stage
Ξq.6
2. The event set E is the union of the disjoint event sets
E↗, Ē and E↘, where:
(a) E↗ = {erp : r = 0, Ξp ∈

⋃n
j=1 V

↗
j }, i.e., event erp

represents the loading of a new process instance that starts
from stage Ξp.
(b) Ē = {erp : ∃j ∈ 1, . . . , n s.t. Ξp is a suc-
cessor of Ξr in graph Gj}, i.e., erp represents the advance-

ment of a process instance executing stage Ξr to a successor
stage Ξp.

6Following standard practice in DES literature (cf., for instance,
the relevant definition in page 8 of [5]), in the rest of this document
we will frequently use the terms “space” and “subspace” in order to
refer to set S and its various subsets considered in this work. We
want to emphasize, however, that S and its various subsets involved
in this work are not vector spaces in the sense that this term is used in
linear algebra since they are not closed to vector addition and scalar
multiplication.

(c) E↘ = {erp : Ξr ∈
⋃n
j=1 V

↘
j , p = 0}, i.e, erp rep-

resents the unloading of a finished process instance after
executing its last stage Ξr.
3. The state transition function f : S×E → S is defined by
s′ = f(s, erp), where the components s′[q] of the resulting
state s′ are given by:

s′[q] =

 s[q]− 1 if q = r
s[q] + 1 if q = p
s[q] otherwise

Furthermore, f(s, erp) is a partial function defined only if
the resulting state s′ ∈ S.
4. The initial state s0 = 0, which corresponds to the situ-
ation when the system is empty of any process instances.
5. The set of marked states SM is the singleton {s0}, and
it expresses the requirement for complete process runs.

Let f̂ denote the natural extension of the state transition
function f to S × E∗; i.e., for any s ∈ S and the empty
event string ε,

f̂(s, ε) = s (2)

while for any s ∈ S, σ ∈ E∗ and e ∈ E,

f̂(s, σe) = f(f̂(s, σ), e) (3)

In Equation 3 it is implicitly assumed that f̂(s, σe) is un-
defined if any of the one-step transitions that are involved
in the right-hand-side recursion are undefined.

The behavior of RAS Φ is modeled by the language L(G)
generated by DFSA G(Φ), i.e., by all strings σ ∈ E∗ such
that f̂(s0, σ) is defined. Furthermore, the reachable sub-
space of G(Φ) is the subset Sr of S defined as follows:

Sr ≡ {s ∈ S : ∃σ ∈ L(G) s.t. f̂(s0, σ) = s} (4)

We also define the safe subspace of G(Φ), Ss, by:

Ss ≡ {s ∈ S : ∃σ ∈ E∗ s.t. f̂(s, σ) = s0} (5)

In the following, we shall denote the complements of Sr
and Ss with respect to S by Sr̄ and Ss̄, respectively, and
we shall refer to them as the unreachable and unsafe sub-
spaces. Finally, Sxy, x ∈ {r, r̄}, y ∈ {s, s̄}, will denote the
intersection of the corresponding sets Sx and Sy.

The target behavior of G(Φ) and the structure of
the maximally permissive LES The desired (or “tar-
get”) behavior of RAS Φ is expressed by the marked lan-
guage Lm(G), which is defined by means of the set of
marked states SM , as follows:

Lm(G) ≡ {σ ∈ L(G) : f̂(s0, σ) ∈ SM}
= {σ ∈ L(G) : f̂(s0, σ) = s0} (6)

Equation 6, when combined with all the previous defini-
tions, further implies that the set of states that are acces-
sible under Lm(G) is exactly equal to Srs. Hence, starting
from state s0, a maximally permissive liveness-enforcing
supervisor (LES) must allow / enable a system-enabled
transition to a next state s if and only if (iff ) s belongs
to Ss. This characterization of the maximally permissive
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LES ensures its uniqueness for any given D/C-RAS instan-
tiation. It also implies that the policy can be effectively
implemented through any mechanism that recognizes and
rejects the unsafe states that are accessible through one-
step transitions from Srs. As we shall see in the following,
this last observation can decrease substantially the set of
unsafe states that must be explicitly considered in the de-
sign of any mechanism that will implement that maximally
permissive LES.

Some monotonicities observed by the state safety
and unsafety concepts We conclude this section by dis-
cussing an additional property of the considered RAS that
will prove very useful in the efficient implementation of
the maximally permissive LES sought in this work. It
should be clear from the above that the ability of the ac-
tivated processes in a given D/C-RAS state s ∈ S to pro-
ceed to completion, depends on the existence of a sequence
< s(0) ≡ s, e(1), s(1), e(2), s(2), . . . , s(n−1), e(n), s(n) ≡ s0 >,
such that at every state s(i), i = 0, 1 . . . , n− 1, the free (or
“slack”) resource capacities at that state enable the job ad-
vancement corresponding to event e(i+1). Furthermore, if
such a terminating sequence exists for a given state s, then
the event feasibility condition defined by Equation 1 implies
that this sequence will also provide a terminating sequence
for every other state s′ ≤ s, where the inequality is taken
component-wise. On the other hand, if state s possesses no
terminating sequences, then it can be safely inferred that
no such terminating sequences will exist for any other state
s ≤ s′ (since, otherwise, there should also exist a terminat-
ing sequence for s, according to the previous remark). The
next proposition provides a formal statement of the above
observations; these results are well known in the literature,
and therefore, their formal proof is omitted.7

Proposition 1: Consider the (partial) ordering relation-
ship “≤” imposed on the state space S of a given D/C-RAS
Φ that is defined as follows:

∀s, s′ ∈ S, s ≤ s′ ⇐⇒ (∀i = 1, . . . ξ, s[i] ≤ s′[i]) (7)

Then,
1. s ∈ Ss ∧ s′ ≤ s =⇒ s′ ∈ Ss
2. s ∈ Ss̄ ∧ s ≤ s′ =⇒ s′ ∈ Ss̄
2

In the light of Proposition 1, next we define the concepts
of maximal safe state and minimal unsafe state, that will
play an important role in the subsequent developments:

Definition 1: Let s < s′ (resp. s > s′) denote the fact
that s ≤ s′ (resp. s ≥ s′) and there is at least a pair of com-
ponents s[i], s′[i] for which the corresponding inequality is
strict. Then, given a D/C-RAS Φ =< R, C,P, D >,
1. a reachable safe state s ∈ Srs is maximal iff ¬∃ a reach-
able safe state s′ ∈ Srs such that s′ > s;
2. a reachable unsafe state s ∈ Srs̄ is minimal iff ¬∃ a
reachable unsafe state s′ ∈ Srs̄ such that s′ < s.
Finally, in the sequel, the set of maximal reachable safe
states will be denoted by S̄rs, and the set of minimal reach-
able unsafe states will be denoted by S̄rs̄.

7We notice, for completeness, that a formal proof for these results
can be obtained, for instance, through the analytical characterization
of state safety that is presented in [30], [27].

III. The proposed approach

Outlining the proposed approach As observed in
Section II, the effective implementation of the maximally
permissive LES for any given D/C-RAS, Φ, is equivalent
to the recognition and the blockage of transitions from the
safe to the unsafe region of the underlying state space S.
In the following, we shall refer to the reachable unsafe
states s ∈ Srs̄ that are reachable from the safe subspace
Srs through a single transition, as “boundary” reachable
unsafe states, and we shall denote the relevant set by Sbrs̄.
Then, in principle, an implementation of the maximal LES
for any given D/C-RAS Φ can be based on
• the explicit enumeration and storage of the set Sbrs̄, and
• a single-step lookahead scheme that, starting from the
initial state s0, enables any transition s′ = f(s, e) that is
system-enabled according to Equation 1, only if s′ 6∈ Sbrs̄.

A practical implementation of such a control scheme will
require (a) the effective computation of the set Sbrs̄ and
(b) its storage in such a manner that the test s′ 6∈ Sbrs̄
is tractable within the time budget constraints that are
enforced by the “embedded / real-time” nature of the im-
plemented supervisor. The rest of this section discusses
how to facilitate these two requirements and render the
above control scheme a viable solution for many practical
application contexts.

An efficient computation of the set Sbrs̄ Given a
D/C RAS Φ =< R, C,P, D >, the computation of the set
Sbrs̄ essentially requires (i) the computation of the reach-
able state space Sr of the corresponding DFSA G(Φ), (ii)
the trimming of this state space with respect to its ini-
tial state s0 = 0, in order to obtain the sets Srs and Srs̄,
and (iii) the extraction of Sbrs̄ from Srs̄ by identifying all
those states s ∈ Srs̄ that are accessible from Srs through
a single transition. All these three steps are performed off-
line, during the controller design process, and therefore,
they are more amenable to the complications arising from
the expected (very) large sizes of the set Sr and its afore-
mentioned derivatives. Furthermore, as it was remarked in
the introductory section, these steps correspond to stan-
dard operations encountered in the R&W SC framework
[5], and therefore, in principle, they can be performed by
any procedure that has been developed in support of these
operations. However, in practice, the applicability of some
of these procedures might be challenged by the fact that
we want to target RAS configurations with very large state
spaces.

Hence, next we report a particular algorithm for the gen-
eration and storage of Sr that has been found to be espe-
cially efficient in our computational studies. This algorithm
provides an enumeration of Sr, by first identifying, as an
intermediary step, all the states corresponding to a feasible
resource allocation, according to the prevailing resource ca-
pacity constraints (c.f., Eq. 1); we shall refer to these RAS
states as “valid” states, and the corresponding state set
will be denoted by Sv. Once Sv has been constructed, a
subsequent procedure filters out from it the set of reachable
states Sr. Therefore, the whole computation is organized
naturally into two major procedures: (a) that of generating
state set Sv, and (b) that of reducing Sv to Sr. The in-
troduction of the intermediate step of generating the state
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Input: Representation of a given resource allocation sys-
tem Φ.
Output: The list of states that constitutes the valid state
space Sv.

1) Sv ← ∅; Q← ∅;
2) Insert s0 into Sv;
3) Ls0 := {Ξkij : ∀ = i ∈ {1, . . . , n},∀j ∈ {1, . . . , li},∀k ∈
{1, · · · ,Kij}};

4) Add Nodes0 ≡ (s0, Ls0) to Q;
5) while(Q! = ∅) do

a) Nodes ≡ (s, Ls)← Pop Q;
b) for each Ξrpq ∈ Ls do

i) s∗ ← Add(s,Ξrpq);
ii) Ls∗ ← {Ξkij : Ξkij can be added to state

s∗ ∧ ((i > p) ∨ ((i = p) ∧ (j > q)))};
iii) Push Nodes∗ ≡ (s∗, Ls∗) to queue Q;
iv) Insert s∗ into Sv;

6) Return Sv

Fig. 1. The algorithm constructing the set of valid states Sv .

set Sv does not increase substantially the complexity of the
involved computation, since, as will be revealed in the sub-
sequent discussion, both sets Sv and Sr are of comparable
sizes. On the other hand, performing the overall computa-
tion through the proposed sequence enables a more efficient
handling and storage of the information characterizing the
underlying FSA structure, and also the effective utiliza-
tion of the auxiliary memory in case that the involved data
structures grow so big that they cannot be accommodated
in the core memory.

To describe the first of the two procedures listed in the
previous paragraph, let us denote by Kij the maximum
number of process instances that can execute concurrently
a processing stage Ξij without violating the capacity re-
strictions imposed by the resources involved in the execu-
tion of this stage. In the following discussion we shall also
use Ξkij to denote the existence of k active process instances
at the processing stage Ξij , and sij to denote the state
component corresponding to processing stage Ξij . Given
a resource allocation state s, we shall say that (the “pro-
cess load” indicated by) Ξk

′

i′j′ can be added to state s iff
si′j′ = 0 and the state s′ ≡ {∀(i, j) 6= (i′, j′) : s′ij = sij
and s′i′j′ = k′} does not violate any resource capacity. The
proposed algorithm enumerates the set of valid states, Sv,
starting with state s0 ≡ 0, and subsequently considering
for every generated state s ∈ Sv, the possibility of adding
Ξk
′

i′j′ to it, for all i′, j′ and k′. This enumeration is system-
atized and facilitated by the following two data structures:
• A composite data structure called Nodes, that supports
the generation and processing of a single state s in the
overall enumeration process. This data structure consists
of the following two components:
– s: the vector representation of state s.
– Ls : a list containing all the “process loads” Ξkij that

can be added to state s.
• The queue, Q, that contains all the state nodes that are
waiting to be processed.

Processing a node Nodes implies (i) the generation of
all the states s′ that result from the addition to s of the
loads included in the list Ls, (ii) the construction of the
corresponding nodes Nodes′ , and (iii) the addition of these
nodes to queue Q. The complete algorithm for generat-
ing the valid state space Sv is provided in Figure 1, and
it is further discussed in Appendix-A. This appendix also
establishes that, in most practical applications of this algo-
rithm, its running time will be O(|Sv|), where |Sv| denotes
the cardinality of set Sv.8

The reader should also notice that whenever a state s
is processed by the algorithm of Figure 1, it is guaranteed
that it will not be considered again. This treatment is es-
sentially different from the treatment applied to the gener-
ated states by the standard search-type of algorithms that
are used for the direct enumeration of the reachable state
space Sr. This last class of algorithms need to constantly
check whether any newly reached state has been already
generated, and this operation can be computationally de-
manding. It also necessitates a continuous access to the
entire list of the generated states throughout the execution
of those algorithms. On the other hand, by not revisiting a
processed state, our algorithm does not need to keep such
a state in the core memory, and therefore, processed states
can simply be saved in a file on the hard disk.9 This remark
further implies that the memory consumption of the above
algorithm is mainly due to the maintenance of the queue
of unprocessed states, Q. But this consumption is quite
controllable: whenever Q becomes relatively large, we can
write some of the states in a file on the hard disk, remove
them from the memory, process the rest of the states, and
finally, re-load the saved file into the queue and continue
processing these additional states. Working in this way,
we have been able to process D/C-RAS Φ with extremely
large state spaces.

The second procedure that filters the set of valid states,
Sv, to extract the set of reachable states, Sr, is presented
in Figure 2. In this procedure, L is a list of states,
reachableStack is a stack of states, and isReachable is
a binary array whose length equals the length of L, and
such that isReachable(i) = 1 iff L(i) is a reachable state.
Then, it should be obvious that the depicted procedure
implements a “reaching scheme” that marks all the reach-
able states in the provided set Sv, while starting from the
initial state s0. In this reaching scheme, all the informa-
tion regarding the state reachability is processed and stored
through the binary array isReachable(), that is indexed
by the previously generated listing of Sv, and, therefore,
the memory footprint of the presented procedure remains
quite efficient. Furthermore, the systematic enumeration

8We should emphasize that, while the aforestated result indicates
a linear complexity of the algorithm of Figure 1 with respect to |Sv |,
Sv itself is, in general, exponentially sized with respect to the RAS
size |Φ|, and therefore, the algorithm of Figure 1 remains an “expen-
sive” computation. On the other hand, the established complexity
of O(|Sv |) implies that the algorithm of Figure 1 is an efficient algo-
rithm for enumerating the set Sv (among all the algorithms that can
support such an explicit enumeration). The practical implications of
this efficiency are revealed in the computational results reported in
Section IV.

9Continuous writing on the hard disk is not encouraged though.
So, we buffer the processed states and write them to the hard disk in
batches.
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Input: The set of valid states Sv.
Output: The set of states that constitutes the reachable
subspace Sr.

1) Initialize L with the elements of the input set Sv;
2) Sort L lexicographically in ascending order; /*The

empty state s0 will be the first state.*/
3) ∀i, isReachable(i)← 0; reachableStack ← ∅;
4) push L(0) onto reachableStack; isReachable(s0) := 1;
5) while (reachableStack! = ∅) do

a) s← pop reachableStack;
b) Identify all the events that can be executed

from s, and generate the corresponding list
of its successor states, Ns;

c) For each state s′ ∈ Ns do
if (isReachable(s′) == 0) then

– push s′ onto reachableStack;
– isReachable(s′)← 1;

6) Sr := {s ∈ Sv : isReachable(s) = 1};
7) Return Sr

Fig. 2. The algorithm extracting the set Sr from the set of valid
states Sv .

of the state set Sv established by the algorithm of Fig-
ure 1, provides also a linear ordering for the elements of
this set and an indexing scheme for direct accessing of
the elements of the array isReachable, upon the provi-
sion of the corresponding state s. Therefore, the prac-
tical (time) complexity of the algorithm depicted in Fig-
ure 2 is O(|Sr| · log(|Sr|)); this result is established in
Appendix-B. Finally, combining the results regarding the
computational complexities of the algorithms of Figures 1
and 2, and taking into consideration the additional fact
that |Sv| ≈ O(|Sr|), we can also infer that the practical
complexity of the entire computation of the set Sr, accord-
ing to the proposed scheme, is O(|Sr| · log(|Sr|)).

Once Sr has been constructed, its partitioning to Srs
and Srs̄ can be performed through a reaching scheme simi-
lar to that performed by the algorithm of Figure 2, where,
however, the search for feasible transitions emanating from
each state is in the reverse direction (i.e., across its in-
coming arcs in the relevant state transition diagram). The
relevant details are straightforward and they are omitted
for space economy. We notice, however, that this step can
be supported with complexity O(t̄r · |Sr| · log(|Sr|)), where
t̄r denotes the maximum number of transitions that can
lead into any given state s ∈ Ss. Finally, the extrac-
tion of the set Sbrs̄ from Srs̄ is also straightforward, and
can be performed by an algorithm that, for every state
s ∈ Srs̄, generates all the states s′ that are accessible from
s through a single reverse transition, and rejects s iff all
the generated states s′ belong in Srs̄. Such an algorithm
can be implemented with a computational complexity of
O(t̄r · |Srs̄| · log(|Srs̄|)).

Obtaining a more compressed characterization of
the set Sbrs̄ The data set Sbrs̄, obtained through the com-
putation discussed in the previous paragraphs, can be fur-
ther compressed in a way that supports the informational
needs of the look-ahead scheme described in the opening
paragraph of this section, on the basis of the following two

observations:
Observation 3: Proposition 1 and Definition 1, provided

in Section II, imply that we can assess membership into
Sbrs̄ for any given state s ∈ Sr, by (i) explicitly storing only
the subset of its minimal elements, S

b

rs̄, and (ii) checking
whether there exists a state s′ ∈ Sbrs̄ such that s ≥ s′.

Observation 4: If a certain component q is equal to zero
for every state s ∈ Sbrs̄, then this component does not con-
tribute any significant information in the state comparisons
for the evaluation of the membership discussed in Obser-
vation 3 above, and therefore, can be neglected during the
execution of these comparisons. The (state) vector set that
is obtained from the elements of S

b

rs̄ after the elimination
of their redundant components, will be denoted by P (S

b

rs̄).

Observation 3 enables the further “thinning” of the set
of boundary reachable unsafe states Sbrs̄, by retaining only
its minimal elements. Observation 4 supports a dimen-
sionality reduction – or “projection” – of the elements of
this “thinned” set. From a computational standpoint, both
of these steps involve the post-processing of the set Sbrs̄
through some very simple and efficient computation.10 On
the other hand, as will be demonstrated in Section IV, each
of these two effects can lead to an extensive (frequently dra-
matic) reduction of the information that must be explicitly
stored and processed for the effective implementation of the
proposed control scheme. In fact, for many practical cases,
a simple array-based storage of the elements of P (S

b

rs̄) will
be quite adequate for effecting the on-line computation that
is involved in the implementation of the maximal LES de-
scribed in the previous paragraphs. However, in the rest
of this section, we also discuss an additional data structure
that can lead (i) to more efficient storage of the set P (S

b

rs̄)
and (ii) to more expedient algorithms for the on-line test
suggested by Observation 3. The relevant gains are further
demonstrated and assessed through the numerical experi-
mentation reported in Section IV.

Storing the set P (S
b

rs̄) through n-ary decision di-
agrams The (n-ary) decision diagrams proposed in the
context of this work for the storage and on-line process-
ing of the set P (S

b

rs̄), is an adaptation of the concept of
the binary decision diagram (BDD) that has been used for
the efficient storage and manipulation of boolean functions
[8]. They can be systematically introduced by first defining
the (n-ary) decision tree for the storage of k l-dimensional
vectors {v1,v2, . . . ,vk}: This tree has a dummy root node,
n0, of depth 0, and l layers of nodes with depths from 1 to l
that correspond to the l dimensions of vectors vi. Starting
with node n0 as the single node of layer 0, the tree nodes at
each of the remaining layers are defined recursively as fol-
lows: The children of a node n at layer l(n) ∈ {0, . . . , l−1}
correspond to all the possible values of coordinate l(n) + 1
in the vector subset of {v1,v2, . . . ,vk} that is obtained by
fixing the first l(n) coordinates at the values specified by
the path from the root node n0 to node n. The coordinate
value that corresponds to each node n in layers 1 to l, ac-

10Once again, we forego the relevant details due to space economies.
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(b) The corresponding decision diagram
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(a) The decision tree

Fig. 3. A decision tree and the corresponding decision diagram stor-
ing the vector set {[1, 2, 1, 1], [2, 1, 1, 1], [1, 1, 3, 2], [1, 2, 3, 0]}.

cording to this node generation scheme, is characterized as
the “content” of n. Obviously, the nodes generated for layer
l according to the previous recursion have no children, and
they constitute the leaf nodes of the tree. In the resulting
tree structure, every vector vi, i = 1, . . . , k, is represented
by the path to one of the leaf nodes. We should also notice
that the n-ary decision tree introduced in this paragraph,
is a rather standard tool for efficient string storage and
retrieval; typically, it is characterized as the “trie” (data)
structure, and there are many variations of it and a consid-
erable literature investigating their properties (cf. [4] and
the references cited therein).11

The decision tree described in the previous paragraph
is converted to a decision diagram by iteratively identi-
fying and eliminating duplicate sub-graphs in the gener-
ated structure, while starting from the last layer l. Two
subgraphs – or sub-diagrams – originating at given layer
i ∈ {1, . . . , l} are considered duplicate if (i) they are
isomorphic and (ii) each isomorphically related pair of
nodes has the same content. Figure 3 exemplifies the
above definitions by depicting the decision tree and the
corresponding decision diagram that store the vector set
{[1, 2, 1, 1], [2, 1, 1, 1], [1, 1, 3, 2], [1, 2, 3, 0]}.

Algorithmic construction of n-ary decision dia-
grams An algorithm for the systematic construction of an
n-ary decision diagram for the compact representation of a
set of k l-dimensional vectors V = {v1,v2, . . . ,vk} is pro-
vided in Figure 4. The data structure that is employed by
this algorithm in order to represent a node of the derived
decision diagram consists of (i) an integer field for storing
the node “content”, (ii) and two pointer lists that respec-
tively provide the parents and the children of this node in
the constructed diagram.12 As can be seen in Figure 4, the

11“trie” is supposed to stand for “reTRIEval”. We also note that
the literature contains some additional attempts to use the BDD con-
cept and its extensions/ variations not only for data storage, but for
the representation and analysis of DES-related dynamics; cf., for in-
stance, the works of [11], [32]. In this work, we place the emphasis
primarily on the storage and the retrieval efficiencies that are sup-
ported by this type of data structures. The computation of the stored
content itself is based on techniques that are motivated by and cus-
tomized to particular attributes of the considered application, and
as discussed in the previous parts of this manuscript, they lead to
additional informational compression and storage economies.

12Since a decision diagram is an acyclic graph, both of these two
concepts make sense for each node. On the other hand, since the

Input: A set of l-dimensional vectors V = {v1, . . . ,vk}.
Output: An n-ary decision diagram providing a compact
representation for V .

/* Initial Decision Diagram */
1) Construct the two dummy nodes n0 and nf ;
2) for i := 1 : k do

a) p:=new Node; p.val := vi[1];
b) Add(p, n0.children); Add(n0, p.parents);
c) for j := 2 : l do

i) q:=new Node; q.val := vi[j];
ii) p.children := q; Add(p, q.parents);
iii) p := q;

d) p.children := nf ; Add(p, nf .parents);

/* Downwards Compression */
3) Q := NIL; /* an empty queue of nodes */
4) Enqueue(n0,Q);
5) while (Q! = NIL) do

a) p := Dequeue(Q);
b) q := p.children;
c) while (q! = NIL) do

i) AddtoQ := FALSE;
ii) r := q.next;
iii) while (r! = NIL) do

• if (q.val == r.val) then
– AddChildren(r, q);
– Remove1(r, p.children);
– AddtoQ :=TRUE;

• r + +;
iv) if (AddtoQ) then

Enqueue(q,Q);
v) q + +;

/* Upwards Compression */
6) Q := NIL; /* an empty queue of nodes */
7) Enqueue(nf ,Q);
8) while (Q! = NIL) do

a) p := Dequeue(Q);
b) q := p.parents;
c) while (q! = NIL) do

i) AddtoQ := FALSE;
ii) r := q.next;
iii) while (r! = NIL) do

• if (Equivalent(q, r)) then
– AddParents(r, q);
– Remove2(r);
– AddtoQ :=TRUE;

• r + +;
iv) if (AddtoQ) then

Enqueue(q,Q);
v) q + +;

Fig. 4. The algorithm constructing the n-ary decision diagram that
provides a compact representation for a given set of vectors V .
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TABLE I

The set of vectors used in the Example of Figure 5

v1 v2 v3 v4 v5

1 1 1 1 1
0 0 0 0 1
1 0 0 0 0
0 2 1 0 0
0 1 1 1 0
0 0 1 2 0
2 2 2 0 2

(a)Initial decision diagram

(b)Downwards compression (c)Upwards compression

Fig. 5. The decision diagrams produced at the end of each of the
three major phases of the algorithm of Figure 4 when applied to the
vector set of Table I. The node content is encoded as follows: white
corresponds to 0, grey to 1, and black to 2. The dummy nodes n0

and nf are depicted as multi-colored nodes.

overall computation of the considered algorithm is orga-
nized in three major phases: The first phase, consisting of
Steps 1–2 in the algorithm, constructs an acyclic digraph
with a single source node n0 and a single sink node nf ,
and with its internal nodes encoding the vectors vi ∈ V as
distinct, non-overlapping paths from n0 to nf . Clearly, the
digraph produced at this phase is layered, with l internal
layers. Furthermore, each of these internal layers contains
k(≡ |V |) distinct nodes, and each such node has a single
parent and a single child in the digraph. Finally, each such
internal node is labeled by the numerical value of the com-
ponent that it represents in the considered vector set V ;
as already mentioned, this label defines the “content” of
the node. The second phase of the algorithm in Figure 4,
consisting of Steps 3–5, is an operation of “downwards com-

derived structure is a diagram and not a tree, each node can have
more than one parent in it.

pression”. This part of the computation essentially seeks to
identify all the nodes in the diagram generated by phase I
that correspond to identical prefixes for the vectors passing
through them, and merge them in a single node. Finally,
the third phase of the algorithm in Figure 4, consisting of
Steps 6–8, is an operation of “upwards compression”. This
part of the computation seeks to identify nodes in the di-
agram generated by Phase II that correspond to the same
sets of possible suffixes for the state vectors passing through
them, and merge them.

A more expansive discussion on the computational logic
underlying the various phases of the algorithm of Figure 4,
and on the correctness of the algorithm, can be found in
Appendix-C. This appendix also establishes that the com-
putational complexity of this algorithm is O(lk2c), where
l, k are respectively the dimensionality and the cardinality
of the stored vector set V , while c denotes the maximum
number of children in any node of the resulting diagram.

Figure 5 exemplifies the algorithm of Figure 4 by depict-
ing the decision diagrams that result after the execution of
each of its three phases on the vector set of Table I. We
also notice that while the dummy terminal node nf is use-
ful for the algorithmic construction of the decision diagram
according to the logic described above, it does not play any
substantial role during the on-line use of this diagram, and
therefore, eventually it can be removed; this is the version
of decision diagrams that we shall consider in the sequel.

On-line implementation of the maximally permis-
sive LES through n-ary decision diagrams The em-
ployment of the n-ary decision diagram in the context of
the single-step lookahead control scheme described at the
beginning of this section, is supported through the algo-
rithm provided in Figure 6. More specifically, the algo-
rithm of Figure 6 takes as input the decision diagram of a
vector set V and a vector v′, and it checks whether there
is a vector v ∈ V such that v ≤ v′. Starting with the
root dummy node n0, this algorithm essentially performs
a depth-first search for a path to a leaf node, such that, at
every layer j = 1, . . . , l, it engages a node with content no
greater than the value of component v′[j]. If such a path
is identified, the algorithm returns ‘TRUE’, (i.e., ∃v ∈ V
such that v ≤ v′, namely, the vector defined by the node
contents of the constructed path). In the opposite case, the
algorithm returns ‘FALSE’. The worst case computational
complexity of this algorithm is O(n̄), where n̄ denotes the
number of nodes in the decision diagram of V .

Further considerations Closing this discussion on n-
ary decision diagrams and their role in the supervisory con-
trol problem addressed in this work, we also notice that,
in principle, it is possible to enhance the compactness of
the corresponding representation of any given vector set
V , by permuting the components of its vector elements.
However, the identification of an optimal permutation –
i.e., a permutation that leads to a decision diagram with
the smallest possible number of internal nodes – is an NP-
complete problem [10]. In the light of this result, one can
seek the development of heuristics that adapt, to the con-
sidered application context, ideas and techniques borrowed
from the area of combinatorial optimization. This effort
should also exploit and integrate further insights regarding
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Input: The decision diagram of a vector set V and a vector
v′.
Output: A boolean variable indicating whether there is a
vector v ∈ V such that v ≤ v′.

1) l̄ := dim(v); EXIT := FALSE;
2) Push (n0, 0) on SearchStack;
3) while (SearchStack 6= ∅ ∧ ¬EXIT ) do

a) (n, l)← pop SearchStack;
b) l := l + 1;
c) For each child n′ of n;

if (content(n′) ≤ v′[l] ∧ ¬EXIT ) then
if l = l̄ then EXIT := TRUE;
else push (n′, l) onto SearchStack;

4) Return EXIT ;

Fig. 6. An algorithm that takes as input the decision diagram of a
vector set V and a vector v′, and checks whether there is a vector
v ∈ V such that v ≤ v′.

the dynamics that arise in the merging process of the al-
gorithm in Figure 4. The development of such heuristics
and a detailed investigation of their potential is part of our
future research.

IV. Experimental Results

In this section we report a number of computational ex-
periments that demonstrate the efficacy of the proposed
approach and assess its applicability in the context of the
RAS class considered in this work. We begin the presen-
tation of these results by considering the application of
our methodology to the synthesis of the maximally per-
missive LES for the D/C-RAS configuration defined in Ta-
ble II. The considered D/C-RAS has seven resource types,
{R1, . . . , R7}, each with capacity Ci = 3. It also has four
process types, {Π1,Π2,Π3,Π4}, with each process type de-
fined by the linear route provided in Table II. In particular,
each of the depicted routes constitutes a sequence of pro-
cessing stages with each stage engaging a single resource
type at the amount indicated by the corresponding coef-
ficient; for instance, the first processing stage of the first
process type engages a single unit of resource R2, the sec-
ond stage of the same type engages two units of resource
R7, etc. Hence, the depicted D/C-RAS has 20 distinct
processing stages, in total, and this number defines the di-
mensionality of its state vector according to the definitions
provided in Section II.

The application of the LES design methodology of Sec-
tion III revealed that the considered RAS has a reachable
state space of 351,604 states, with 135,414 of them being
safe states and the remaining 216,190 being unsafe states.
Among the boundary unsafe states, 49 of them are min-
imal. In these 49 minimal unsafe states, 6 out of the 20
state components are always equal to zero, and therefore,
the dimensions that need to be explicitly stored are only
the remaining 14. The corresponding decision diagram has
180 nodes and it is depicted in Figure 7. The storage of
this diagram in a core computer memory requires 399 in-
teger locations, 180 of these locations for storing the nodal
content itself, and the remaining 219 locations for storing
the pointers that correspond to the arcs of this diagram.

On the other hand, the storage of the 49 14-dim vectors
of P (S

b

rs̄) in a 2-dim array involves 49 × 14 = 686 integer
entries. Therefore, the alternative storage mechanism of
Figure 7 utilizes only a little more than 58% of the storage
space utilized by the array-based storage of P (S

b

rs̄). Fi-
nally, we also notice that through a methodology similar
to that presented in [23], it can be established that the max-
imally permissive LES for the considered D/C-RAS cannot
be expressed as a set of linear inequalities, and therefore,
the construction of the maximally permissive LES for this
D/C-RAS configuration is not amenable to the Petri net-
based methodologies discussed in the introductory section.

Table III reports the results that were obtained from the
application of the proposed method for the deployment of
the maximally permissive LES on 10 additional D/C-RAS
configurations.13 More specifically, for each of these config-
urations, Table III reports: (i) the total number of process-
ing stages (and therefore, the dimensionality of the corre-
sponding state space); (ii) the cardinality of the reachable
safe subspace Srs; (iii) the cardinality of the reachable un-
safe subspace Srs̄; (iv) the cardinality of the set of minimal
boundary unsafe states S

b

rs̄; (v) the dimensionality of the
projected subspace P (S

b

rs̄) that is obtained after removing
the dimensions that are identically equal to zero in S

b

rs̄;
(vi) the number of integer entries that would be necessary
for the storage of the elements of P (S

b

rs̄) in a 2-dim array
– the entries of this column are obtained by multiplying
the entries of the previous two columns in the table; (vii)
the number of the nodes employed by the corresponding
decision diagram; (viii) the total storage capacity, in terms
of integer entries, that is required for the storage of the en-
tire structure of the corresponding decision diagram; (ix)
the storage compression attained by the n-ary decision di-
agram – the entries of this column are obtained by taking
the ratio of the entries in columns (viii) and (vi) of the
depicted table, i.e., the storage compression is measured
as the ratio of the storage requirements posed by the n-ary
decision diagram to the storage requirements that would be
necessary in case of a 2-dim array-based representation of
the vector set P (S

b

rs̄); (x) the total computational time, in
seconds, that is required for the construction of the decision
diagram for each of the listed cases. Figure 8 also depicts
the attained storage compression for an even broader data
set of 42 D/C-RAS configurations (this data set includes
the configurations involved in Table III).

The results of Table III and Figure 8 corroborate that the
proposed method is effectively applicable to D/C-RAS with
very large state spaces and it can lead to a very compact
representation of the corresponding maximally permissive
LES. The informational compression and the correspond-
ing storage gains that are attained by the application of the
n-ary decision diagrams are substantial - in most of the re-
ported cases the attained compression is more than 80%.
Furthermore, the plot of Figure 8 reveals that the attained
storage efficiencies become more prominent as the storage

13Space limitations do not allow a detailed description of these con-
figurations. This information can be obtained by contacting the au-
thors.
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TABLE II

The D/C-RAS considered in the example of Section IV

Resource Types: {R1, R2, . . . , R7}
Resource Capacities: Ci = 3, ∀i ∈ {1, 2, . . . , 7}
Process Type 1: R2 → 2R7 → 2R4 → 2R3

Process Type 2: 3R4 → 3R2 → 2R4 → 3R7 →
2R3 → R5 → R4

Process Type 3: R1 → 2R5 → 3R1 → R7 → 2R6

Process Type 4: 2R2 → R3 → R4 → 3R2

requirements for the more conventional, array-based rep-
resentation of the set P (S

b

rs̄) become larger. Finally, it
should also be noticed that none of the RAS configurations
employed in the presented experiments accepts a charac-
terization of its maximally permissive LES as a set of lin-
ear inequalities, and therefore, they are not amenable to
the Petri net-based methodologies discussed in the intro-
ductory section; this effect was verified through techniques
similar to those reported in [23], and it manifests another
powerful attribute of the considered approach with respect
to other approaches reported in the current literature.

Closing this section on our computational experiments,
we also report that these experiments were performed on a
2.66 GHz quad-core Intel Xeon 5430 processor with 6 MB
of cache memory and 32 GB RAM; however, each job ran
on a single core. The algorithms were encoded in C++,
and they were compiled and linked by the GNU g++ com-
piler under Unix. In all cases, the overall time necessary
for the computation of the maximally permissive LES and
its representation through the corresponding n-ary decision
diagram did not exceed the 600 sec; in fact, as revealed by
the computational times reported in Table III, in the ma-
jority of the considered cases the required computational
time was less than 60 sec.14

V. Conclusions

This work has proposed a novel approach for the syn-
thesis of maximally permissive LES for sequential RAS,
and it has demonstrated the ability of this method to pro-
vide effectively computable and practically implementable
solutions for RAS with (very) large state spaces. In ad-
dition, the proposed method is complete, i.e., it is appli-
cable to any RAS configuration from the considered RAS
class. These capabilities arise from the development of an
efficient customized algorithm for the enumeration of the
underlying state space, and from the ability to encode the
information that is necessary for on-line implementation of
the maximally permissive LES in a very compact manner.

A future extension of the presented work concerns the
further compression of the data structure that stores the
projections of the minimal boundary unsafe states that are
employed by our approach. As discussed in Section III,
this can be achieved through a pertinent re-arrangement –

14We also note that a more detailed breakdown of these computa-
tional times reveals that most of the computational effort is expended
on (i) the extraction of the set of boundary unsafe states, Sb

rs̄, from
the set of reachable unsafe states, Srs̄, and (ii) the identification of
the minimal elements in Sb

rs̄.

Fig. 7. The acyclic digraph storing the vector set P (S
b
rs̄) for the

example D/C-RAS of Table II. The white, light gray, dark gray and
black nodes correspond to nodes having respective “content” values
of 0, 1, 2 and 3.
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Fig. 8. The information compression in the storage of the set P (S
b
rs̄)

attained through the employment of the n-ary decision diagrams pro-
posed in this work. The x-axis reports, for each considered D/C-RAS

configuration, the product of the cardinality of P (S
b
rs̄) with the di-

mensionality of its elements; this product should be perceived as the

total number of integer entries that are necessary to store P (S
b
rs̄) in a

2-dim array. The y-axis reports the storage capacity employed by the
corresponding n-ary decision diagram as a percentage of the storage
needs indicated in the x-axis.
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TABLE III

A sample data set obtained from the performed experiments

# proc. # safe # unsafe # min reduced # tab. # dec. dec. diag. compression comp.
stages states states unsafe states dim entries nodes stor. reqs ratio time (sec)

24 115766 28510 12 11 132 52 114 .86 1
32 163439 192381 131 23 3013 286 643 .21 7
40 42571 69016 188 30 5640 716 1580 .28 1
48 80343 691959 241 39 9399 818 1788 .19 24
52 1622861 2600349 257 37 9509 678 1473 .15 150
64 118470 1253425 612 54 33048 1895 4178 .13 55
70 10956 289962 338 58 19604 1245 2749 .14 12
77 15763 364985 1119 70 78330 2951 6472 .08 17
88 53080 1410311 1046 74 77404 3247 7069 .09 81
99 8425 413822 845 85 71825 3039 6682 .09 20

more formally, a permutation – of the coordinates of the
RAS state vector. The resulting optimization problem is of
a combinatorial nature and it is NP-Hard. Hence, our fu-
ture work will seek to provide heuristics for the effective se-
lection of an optimized permutation. An additional line of
research will seek the modification of the method presented
in this work in order to facilitate the storage and processing
of state vectors that include symbolic information; this is,
for instance, the case with the state vectors that have been
employed in the past for the compact encoding of the dy-
namics of AGV and monorail systems.15 In a similar vein,
it is interesting to study how the presence of uncontrollable
elements in the plant behavior will impact the implemen-
tational details of the presented method and the resulting
(in-)efficiencies. In general, the presence of uncontrollabil-
ity in the RAS behavior might cancel the monotonicity of
the safety concept discussed in Section II, and therefore,
it will have a negative impact on the computational and
representational efficiencies established in this paper. The
extent that the presented approach remains tractable in the
absence of these efficiencies, as well as the identification of
structural and behavioral conditions that will (partially)
preserve them need to be systematically considered. Fi-
nally, another research line will seek the development of
more analytical representations for the compact encoding
of the dichotomy of the RAS state space in safe and unsafe
states. A first set of results along this line, that pertain to
RAS sub-classes with binary state spaces, is presented in
[23].

Appendix

A. A detailed description and complexity analysis of the
algorithm of Figure 1

Some remarks that can help the further understanding of
the algorithm in Figure 1 are as follows: Since, according
to the definitions provided in Section III, every process-
ing stage Ξij can have up to Kij active jobs, the list Ls0 ,
constructed in step 3, contains all the possible states that
can be obtained from state s0 by activating only one pro-
cessing stage, Ξij , to some number of jobs in the interval
[1,Kij ]. On the other hand, the while loop in Step 5, that

15Certain components of these state vectors encode the vehicle di-
rection of motion; c.f. [28], [29].

processes the state nodes that are stored in queue Q, is bro-
ken down in the following steps: Step 5a extracts a node
(s, Ls) stored in queue Q for further processing. For every
element Ξrpq in list Ls, Step 5b(i) constructs a new state s∗

from Ξrpq and s such that s∗ = {∀(i, j) 6= (p, q) : s∗ij = sij
and s∗pq = r}. Step 5b(ii), constructs the list Ls∗ for the
node Nodes∗ corresponding to state s∗ constructed in step
5b(i). This list contains all Ξkij that satisfy the following
conditions: First, load Ξkij can be added to state s∗, i.e.,
(a) s∗ij = 0 and (b) adding the k jobs at stage Ξij to all
the active jobs at state s∗ does not violate any resource
capacities. Second, the index (

∑i−1
a=0 la + j) of processing

stage Ξij in the state vector is strictly greater than the in-
dex (

∑p−1
a=0 la + q) of the processing stage Ξpq in the state

vector, which is true iff (i > p) ∨ ((i = p) ∧ (j > q)). The
first condition essentially filters the set of processing stages
to detect those that can have active jobs concurrently with
the active jobs in s∗. The second condition is necessary in
order to avoid the generation of a state more than once.
Step 5b(iii) queues the constructed node Nodes∗ for fur-
ther processing. The loop is terminated when all the state
nodes entered in queue Q have been processed. It should
be clear from the above, that at this point, all the valid
states have been generated.

Regarding the (time) complexity of the algorithm of
Figure 1, first we notice that Step 5a as well as Steps
5b(i) through 5b(iv) are executed O(|Sv|) times. On the
other hand, the running time of Steps 5a, 5b(iii) and
5b(iv) is O(1). The running time of Step 5b(i) is O(ξ).
The running time of Step 5b(ii) is O(

∑n
i=1

∑li
j=1Kij).

Therefore the overall running time of the algorithm is
O((ξ +

∑n
i=1

∑li
j=1Kij) · |Sv|). Since, typically, (ξ +∑n

i=1

∑li
j=1Kij)� |Sv|, we can say that the practical run-

ning time of the algorithm is O(|Sv|).

B. Complexity analysis of the algorithm of Figure 2

The (time) complexity of the algorithm depicted in Fig-
ure 2 can be characterized as follows: Let t̄ be the maxi-
mum number of transitions that emanate from any given
state s ∈ Sr. It is easy to see that t̄ is upper-bounded by∑n
i=1 |V

↗
i |+

∑n
i=1

∑
v∈Vi\V↘i

outdegree(v) +
∑n
i=1 |V

↘
i |,

according to the notation introduced in Section II, and
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therefore, it relates polynomially to the parameters defining
the size of the underlying RAS. The while loop in Step 5 is
executed O(|Sr|) times. Step 5c is executed O(t̄) times in a
single iteration of the while loop. Checking the if-condition
inside Step 5c upon any given state s′ takes O(log(|Sr|))
time, using binary search. So, the overall complexity of the
above algorithm is O(t̄ · |Sr| · log(|Sr|)). Since, typically
t̄ � |Sr|, we can also say that the practical complexity of
the considered algorithm is O(|Sr| · log(|Sr|)).

C. A detailed description and complexity analysis of the
algorithm of Figure 4

As remarked in Section III, the algorithm of Figure 4 is
a three-phase algorithm, where: (i) the first phase, con-
sisting of Steps 1–2 in the algorithm, constructs an acyclic
digraph with a single source node n0 and a single sink node
nf , and with its internal nodes encoding the vectors vi ∈ V
as distinct, non-overlapping paths from n0 to nf ; (ii) the
second phase, consisting of Steps 3–5, is an operation of
“downwards compression” that identifies all the nodes in
the diagram generated by phase I corresponding to iden-
tical prefixes for the vectors passing through them, and
merges these nodes in a single node; and (iii) the third
phase, consisting of Steps 6–8, is an operation of “upwards
compression” that identifies nodes in the diagram gener-
ated by phase II that correspond to the same sets of pos-
sible suffixes for the vectors passing through them, and
merges them. Next we provide a more detailed description
of the operations performed by the second and the third
phase of the considered algorithm. This discussion will also
allow us to ague the technical correctness of the algorithm.
We close with a complexity analysis of the algorithm.

In more technical terms, the downwards compression,
that is performed in the second phase of the considered al-
gorithm, is attained as follows: The digraph constructed in
phase I is traversed on a layer-by-layer basis, starting from
the source node n0, and at each visited node, all of its
children with equal labels are merged to a single node. In
particular, the function AddChildren(r, q) is meant to add
the child of node r to the children of node q, and to rede-
fine q as the parent of this added child.16 Subsequently, the
function Remove1(r, p.children) removes node r from the
children of node p and releases the corresponding memory.
This traversal continues until a layer is reached where no
node merging occurs; at that point, Q will become empty
and the algorithm will exit the loop of Step 5, which is the
main loop for this phase of the computation. The reader
should notice that as a result of the performed nodal merg-
ing, some of the internal nodes will have more than one
children at the end of phase II, but this merging preserves
the single-parent property for the internal nodes. Hence,
it is clear that each cluster of merged nodes corresponds
to the same vector prefix, as initially stated, and the per-
formed merging does not distort the “information content”
of the graph; i.e., the vector set that is defined by all the
paths from the source to the sink node remains equal to V .

On the other hand, during its third phase, the considered

16The fact that node r has only one child is a consequence of the
structure of the diagram that is returned by Phase I of the algorithm
and the graph traversal pattern that is applied in Phase II.

algorithm traverses again the digraph obtained in phase II
on a layer-by-layer basis, but this time, the traversal starts
from the sink node nf . At each visited node, the algo-
rithm checks the list of its parents, to see whether there
are equivalent nodes. Two nodes q and r are character-
ized as “equivalent” if they have the same content and the
same lists of children; the relevant testing is performed by
function Equivalent(q, r) in the algorithm. A simple induc-
tion on the number of traversed layers can show that node
equivalence essentially implies the same sets of possible suf-
fixes for all the paths passing through them, and therefore,
the nodal merging that is performed by the algorithm is
consistent with the phase objective that is stated at the
opening paragraph of this sub-section. The merging of the
equivalent nodes q and r is performed by the following two
functions: Function AddParents(r, q) adds the parent of
node r to the parents of node q and also it updates the
list of children of this added node by replacing node r in
it by node q. Subsequently, the function Remove2(r) re-
moves node r from the parent lists of all its children and re-
leases the memory allocated for the storage of this node.17

Similarly to the second phase of the algorithm, the graph
traversal described above terminates when a layer is en-
countered where no node merging takes place. Clearly, the
information content of the digraph is also preserved under
this new phase of node merging. Hence, the algorithm is
correct.

An analysis of the computational complexity of the al-
gorithm of Figure 4 can be performed as follows: First, we
notice that the first phase of the algorithm runs in time
O(kl) and results in a diagram with O(kl) nodes.

To analyze the computational complexity of the second
phase of the algorithm, for every layer j = 1, . . . , l, let us
consider the equivalence relation Vj that is defined on the
vector set V by the equality of the vector prefixes across
the layers 1 to j − 1; i.e., the equivalence classes Eij of Vj
consist of all the vectors in V that have their first j − 1
coordinates equal. For every such equivalence class Eij of
the partitioning Vj of V , let us also consider the set con-
sisting of the distinct values of the j-th coordinate for the
vectors in Eij , and let cij denote the cardinality of that set.
Finally, set c ≡ maxj,i{cij}. From a more intuitive stand-
point, c defines the maximum possible number of siblings
(i.e., children of the same parent) that can exist in the di-
agram constructed by phase II of the algorithm. Then,
some additional remarks that are important for charac-
terizing the computational complexity of phase II of the
algorithm are the following: During the processing of any
nodal layer j ∈ {1, . . . , l} by this phase, the correspond-
ing nodes are partitioned into sibling classes, and from the
previous discussion, it follows that the node contents of ev-
ery such class can take at most c distinct values. This last
remark, when combined with the fact that every merged
node is removed from the children list of its parent, fur-
ther implies that the while loop of Step 5c will be exe-
cuted at most c times for every class. Also, every such
execution will go through the while loop of Step 5c(iii) a

17Note that since, by the notion of equivalence, q and r have the
same children, there is no need to add q in the parent lists of the
children of r.
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number of times that is no greater than the number of sib-
lings in that class. Hence, the number of executions of the
while loop of Step 5c(iii) across all the sibling classes of
any single layer of the considered diagram will be O(kc);
and when considered across all layers, this number will be
O(lkc). To obtain the complete characterization of the
computational complexity of this phase, it remains to char-
acterize the computational complexity of the operations
involved in the merging of the nodes q and r, i.e., the com-
putational complexity of the functions AddChildren(r, q)
and Remove1(r, p.children). Obviously, under the pointer-
based implementation of the lists employed by the algo-
rithm, the complexity of Remove1(r, p.children) is O(1).
The complexity of AddChildren(r, q) is also O(1), since as
already remarked, node r will have only a single child and
this child does not belong to the current children of node q.
Hence, the overall complexity of phase II remains O(lkc).

The computational complexity of the third phase of
the algorithm can be obtained through analysis similar
to that performed for the complexity of phase II. Some
key observations that lead to the characterization of this
complexity are as follows: During the execution of this
phase, for every nodal pair (r, q) appearing in the function
AddParents(r, q), node r has a single parent that is differ-
ent from the parent of node q and this parent node of r
has at most c children (since nodes q and r are equivalent
and the diagram obtained by Phase II has a trie struc-
ture). Hence, the complexity of function AddParents(r, q)
is O(c). Obviously, the complexity of function Remove2(r)
is alsoO(c) (since the number of children of a node does not
increase in this phase). Finally, the evaluation of the func-
tion Equivalence(q, r) is also O(c) (since equivalent nodes
have the same nodal content and the same children lists).
Hence, the entire computational complexity of an iteration
of the while loop of Step 8c(iii) is O(c). An analysis similar
to that performed for the complexity of phase II can estab-
lish that the aforementioned loop will be executed O(lk2)
times by the algorithm. Hence, the entire computational
complexity of this phase is O(lk2c). Since this is the phase
with the highest computational complexity, its complex-
ity defines also the computational complexity of the entire
algorithm.
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