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Abstract— Guidepath-based traffic systems is a pertinent
abstraction that has been used extensively by the Discrete
Event Systems (DES) community for the study of the traffic
dynamics that take place in the automated unit-load material
handling systems (MHS) encountered in various production and
distribution facilities. A particular problem that has drawn
extensive attention in the DES-based investigation of these
systems, is the effective and efficient deployment of liveness-
enforcing supervision for the generated traffic, that will enable
each system vehicle to support successfully the arising transport
requests while imposing the minimal possible restriction on
the natural (or, “uncontrollable”) dynamics of this traffic. The
first part of this paper establishes that for a large subclass
of the considered traffic systems, the preservation of their
traffic liveness in a maximally permissive manner reduces
to the observation of a particular property that must be
possessed by the admitted traffic states. The second part of
the paper provides some complexity analysis for assessing the
aforementioned property on a given traffic state, under some
further assumptions regarding the operation of the considered
traffic systems and the structure of the traffic states under
consideration. 1
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I. INTRODUCTION

Guidepath-based traffic systems is a pertinent abstraction
that has been used extensively by the Discrete Event Systems
(DES) community for the study of the traffic dynamics that
take place in the automated unit-load material handling sys-
tems (MHS) encountered in various production and distribu-
tion facilities [1], [2], [3], [4], [5]. Perhaps the most familiar
instantiations of these MHS are the automated guided vehicle
(AGV) systems [6], [7], where a set of mobile robots are
transferring parts among a set of well-defined locations in the
underlying facility while moving on a set of lanes that isolate
the traffic of these robots from the activity that takes place in
the surrounding environment. Another popular realization of
such automated MHS is the overhead monorail systems that
are used in modern semiconductor manufacturing facilities
(also known as “fabs”); in this second case, the guidepath
network is physically defined by the monorails that are used
to support the motion of the system vehicles [8]. Finally,
a third major instantiation of the aforementioned unit-load
MHS are the complex gantry crane systems that have been
deployed at various logistical hubs, in particular, some major
ports and railway yards [7].

1This work was partially supported by NSF grant ECCS-1707695.

Fig. 1: An AGV deadlock.

In order to ensure collision-free traffic in all of the
aforementioned environments, the various links of the un-
derlying guidepath network are segmented into “zones” and
it is stipulated that each zone can be occupied by at most
one vehicle at a time. Occupation of a free zone by a
traveling vehicle must be negotiated with a central traffic
controller. In this way, the entire vehicle trip between an
origin and a destination location becomes a “resource (i.e.,
zone) allocation process”, where the traveling vehicle must
request and secure the different zones that it needs for the
execution of its trip in a sequential manner.

From a control-theoretic standpoint, an important require-
ment for the aforementioned zone-allocation process, is the
preservation of the “traffic liveness”, i.e., the ability of all
the system vehicles to complete their current assignments
and engage successfully to similar assignments in the future
operation of the system. This ability can be compromised
by the formation of deadlocks and livelocks among the
traveling vehicles that might result from: (i) an arbitrary
topology of the underlying guidepath network; (ii) an ar-
bitrary specification of the vehicle paths in this network;
(iii) a presumed irreversibility of the vehicle motion in their
currently occupied zones; and (iv) the further inability of
two vehicles that are located on neighboring zones to “swap”
their zones.2 A stylized deadlock formation taking place in
the context of an AGV system is depicted in Fig. 1.

For a systematic investigation of the notion of the “traffic

2All these assumptions about the structure of the considered MHS and
their operational capabilities are standard assumptions in the corresponding
DES literature; their justification can be traced in past publications in this
area, including the various survey papers that are published periodically on
the corresponding results, e.g. [9], [10].



liveness” that was defined in the previous paragraph, and
the corresponding control problem of liveness-enforcing su-
pervision (LES)” 3 for the considered traffic systems, it is
pertinent to classify these systems into “open” and “closed”.
The defining characteristic of the “open” subclass of such
systems is the presence of a location in the underlying
guidepath network where all idle vehicles can retire, possibly
recharging their batteries and receiving other types of service.
In the sequel, we shall refer to this location as the “home”
location of the considered traffic system, and we shall model
it as a zone in the underlying guidepath network with infinite
accommodating capacity.

Furthermore, in the next section we shall show that, under
certain natural assumptions regarding the connectivity of the
underlying guidepath network, the requirement for liveness
in open, zone-controlled, guidepath-based traffic systems of
the type that are considered in this work, reduces to the
requirement for an ability to collect all traveling vehicles to
the “home” zone. A traffic state where such a routing scheme
is possible, will be characterized as a “live” traffic state in
the sequel. The notion of the “live traffic state” subsequently
defines the structure of the maximally permissive LES for the
considered traffic systems: this LES must admit or reject a
zone-allocation request on the basis of whether the resulting
traffic state is live or not. Hence, the ability to resolve
effectively and efficiently the liveness of any given traffic
state is critical for the effective deployment of the maximally
permissive LES in the considered traffic systems.

In view of the remarks of the previous paragraphs, a more
complete description of the contribution of this work to
the problem of characterizing and assessing the notion of
“(state) liveness” in open, zone-controlled guidepath-based
traffic systems is as follows:

1) In the first part of the work, we provide a systematic
characterization of the considered traffic systems, the
notion of “traffic liveness” that must be observed by
them, and the further notion of “state liveness” that is
induced in this context.

2) The second part of the work focuses on the complexity
of the decision problem of assessing state liveness. The
main results of the paper along these lines differentiate
further the considered class of traffic systems on the
basis of whether the routes followed by the system
vehicles during their various assignments are predeter-
mined or not; the corresponding cases are respectively
characterized as “static” and “dynamic” routing. In the
context of this further classification, our main results
can be described as follows:

a) For open, zone-controlled guidepath-based traffic
systems with static vehicle routing, we provide
a proof that the decision problem of (assess-
ing) “state-liveness” is NP-complete. A similar
result already exists in the literature [5]. But,
in this paper, the aforementioned result and its
proof are based on a slightly different set of
assumptions from the assumptions that underlie

3In the following, the “LES” acronym will mean either “liveness-
enforcing supervision” or “liveness-enforcing supervisor”, according to the
context.

the corresponding result of [5]. Furthermore, the
new developments that are presented in this paper
reveal more clearly the strong affinity between
the LES problem considered in this work and the
broader problem of liveness-enforcing supervi-
sion for complex resource allocation that has been
studied extensively in the DES literature [11].

b) For open, zone-controlled guidepath-based traffic
systems with dynamic vehicle routing, we con-
sider the particular case of traffic states where
the guidepath network is fully congested. For this
case, we show that state liveness can be resolved
with worst-case computational complexity that is
polynomially related to the size of the underlying
guidepath network.

On the other hand, currently, it is unclear whether it is
possible to resolve polynomially the liveness of any arbitrary
state coming from an open, zone-controlled guidepath-based
traffic system with dynamic vehicle routing. The systematic
investigation of this question is part of our ongoing research
on the considered traffic systems. But at the same time,
an additional value of this work is that it functions as
an “exponent” of this particular research problem to the
corresponding research community.

The rest of the paper is organized as follows: Section II
provides a formal characterization of the considered traffic
systems, and the various notions of “liveness” that are
employed in this work. Subsequently, Section III provides
our results on the complexity analysis of “state liveness”
that were outlined in the earlier parts of this section. Finally,
Section IV concludes the paper, and highlights some direc-
tions in our ongoing research on the class of problems that
are considered in this work.

II. THE CLASS OF GUIDEPATH-BASED TRAFFIC SYSTEMS
CONSIDERED IN THIS WORK AND THE CORRESPONDING

NOTION OF LIVENESS

A formal modeling of the considered traffic systems:
An instance of the particular sub-class of the guidepath-
based traffic systems considered in this work can be formally
defined by a pair (A, G), where the elements of this pair
denote, respectively, (a) the set of the system vehicles (or
“agents”) circulating in it, and (b) the guidepath graph G =
(V,E ∪ {h}) that is traversed by these agents.

Graph G is assumed to be undirected, connected, and
with a minimum vertex degree of 2.4 The edges e ∈ E of
G model the “zones” of the underlying guidepath network.
These edges can be traversed by a traveling agent a ∈ A in
either direction, and they can hold no more than one agent at
a time. On the other hand, edge h models the “home” zone
of the guidepath network. This edge is connected to the rest
of the guidepath network through a single vertex (i.e., edge
h is a self-loop of G), and it can hold an arbitrary number of
agents that either have not initiated or have completed their
assigned missions. Furthermore, in the following, we shall
denote by vh the vertex of graph G that is the single terminal

4As it will be revealed in the following, the imposed requirement of a
minimal vertex degree of 2 is necessitated by the presumed irreversibility
of the agent motion.



vertex for the self-loop edge h. Finally, in the considered
application context, it is also natural to assume that two
vertices v1, v2 of graph G may be connected by more than
one zones, and therefore, in stricter terms, graph G is actually
a multi-graph; but this feature does not impact substantially
our subsequent developments, and we shall keep referring to
G as a graph in the sequel.

A “mission” trip for an agent a ∈ A is defined by a
sequence of edges Σa = 〈ei ∈ E \ {h}〉 that must be visited
by agent a in the specified order.5 Furthermore, edge h can
be perceived as an implicit last edge in sequence Σa, a fact
that signifies the requirement of retiring those agents a that
have completed their mission trips to the “home” location.

While traversing an edge e ∈ E with e = {vi, vj},
an agent a will have a certain direction of motion that
will be indicated by the corresponding ordered pair (vi, vj)
or (vj , vi). Furthermore, we stipulate that agents cannot
switch the direction of their motion in the edges that are
currently allocated to them; hence, an agent a entering edge
e = {vi, vj} from vertex vi must leave this edge through
vertx vj , and vice versa.

An additional stipulation for the dynamics of the underly-
ing traffic is that an agent a will move from its current edge
e to a neighboring edge e′ 6= h only after it has been granted
permission by the traffic controller, and such a permission
can be granted by this controller only if the requested edge
e′ is free of any other agents. Besides preventing agent
cohabitation in the different zones of the guidepath network,
this last stipulation further implies that a set of agents cannot
simultaneously swap their current locations.

As remarked in the introductory section, the impossibility
of edge-swapping among the traveling agents, when com-
bined with the arbitrary topology of the underlying guidepath
network, can be a source of deadlock and livelock in the
considered class of traffic systems [1], [4]. Such formations
will prevent, or, more generally, restrict the future motion
of the agents involved, and will impair the ability of these
agents to complete their “mission” trips. Hence, an impor-
tant task of the traffic controller is the preservation of the
traffic “liveness”; i.e., the traffic controller must proactively
prevent the development of deadlock and livelock by further
restricting the admissibility of the “zone” allocations that
are requested by the traveling agents. Next, we formalize
further this “liveness” requirement for the considered traffic
systems, by abstracting the corresponding dynamics through
the formal modeling and analysis tools that are offered by
qualitative DES theory [12].

An automaton-based representation of the considered
traffic and a formal definition of the notion of “traffic
liveness”: The qualitative – or “untimed” – dynamics of
the guidepath-based traffic systems that were defined in
the previous subsection, can be formally represented by
an automaton Φ = 〈S,Q, f, s0, SM 〉 [12]. The state s of
automaton Φ is defined by the following elements: (i) the

5In order to obtain a more concrete feeling of these “mission” trips, the
reader can think of an AGV that, setting out from the “home” edge h, must
perform a sequence of transports, where each transport involves the pick up
of some material from the zone that is represented by edge ei in sequence
Σa and the deposition of this material to the zone represented by edge
ei+1.

placement of the system agents a ∈ A on the edges of the
guidepath network G, formally represented by the function
e(·; s) : A → E; (ii) for agents a ∈ A with e(a; s) 6= h,
their direction of motion in their allocated edges; and (iii)
the remaining visitation requirements for each agent a ∈ A,
that are communicated in the corresponding edge-sequence
Σa.

The resulting state set, S, that collects all possible states
s of automaton Φ, will not be finite, in general, since the
(remaining) visitation requirements associated with any agent
a ∈ A can be any string Σa ∈ (E \{h})∗, where (E \{h})∗
denotes the Kleene closure6 of the edge set (E \ {h}).

On the other hand, the event set Q that advances the state
s of the considered automaton is finite, and it contains two
different types of events: (i) The first event type consists of
all those events q that advance a single agent a ∈ A from its
current edge e(a; s) to a free neighboring edge e′, under the
further condition that this advancement is also compatible
with the direction of motion of the corresponding agent a
on its current edge e(a; s). Furthermore, in the case that
this advancement also satisfies the next visitation requirement
for agent a, the corresponding event will update accordingly
the sequence of the remaining visitation requirements Σa.
(ii) The second type of events in q ∈ Q will expand the
list of visitation requirements, Σa, for some agent a ∈ A,
by appending a single new requirement at the end of the
current list Σa. Furthermore, in the rest of this discussion,
we consider the type I events of Q as controllable by the
controller that manages the traffic in the considered traffic
systems, while type II events are uncontrollable.

The state transition function f : S × Q → S of
the automaton Φ provides a formal representation of the
transitional dynamics that are implied by the above definition
of state s and the event set Q. Furthermore, following [12],
we assume f to be a partial function that is defined only for
those (s, q) pairs for which the corresponding state transition
is feasible within the scope of the aforestated operational
assumptions. We also extend f in the set S × Q∗ in the
natural manner, and we use the notation R(s) to denote the
states s′ of Φ that are reachable from a given state s, through
the dynamics that are defined by the extended function f ;
i.e., ∀s′ ∈ S, s′ ∈ R(s) ⇐⇒ ∃σ ∈ Q∗ : s′ = f(s, σ).

Finally, we also notice, for completeness, that the elements
s0 and SM in the tuple that defines the considered automaton
Φ denote, respectively, the initial state of this automaton and
the set of its marked states. These elements will be further
specified in the later parts of this discussion.

In the context of the traffic dynamics that are described
by the above automaton Φ, a first intuitive characterization
of the notion of “traffic liveness” is as follows: We shall say
that the traffic generated by any instance of the considered
traffic systems is “live” when initialized at some traffic state
s0, if and only if (iff ) for every reachable state s ∈ R(s0),
there exists an event sequence σ, consisting of type I events
only, that will satisfy all the agent visitation requirements at
state s. On the other hand, the presumed uncontrollability of
the type II events of the automaton Φ also implies that, at the

6We remind the reader that the Kleene closure, X∗, of a finite set X
consists of all the finite strings with elements from the set X , including the
empty string ε.



state s′ = f(s, σ), the visitation requirements for each agent
a ∈ A might be updated arbitrarily to some new sequences
Σ′a, and since the state s′′ that will result from these updates
is a reachable state of Φ, it must also satisfy the “liveness”
condition that was stipulated for state s. The insights that
are provided by these remarks can be formalized by defining
the notion of “liveness” for the considered traffic systems as
follows:

Definition 2.1: Consider the automaton Φ abstracting the
dynamics of a guidepath-based traffic system considered in
this work, and let s0 ∈ S be an arbitrary initial state for this
automaton. Then, the traffic that is represented by automaton
Φ is live, iff

∀s ∈ R(s0),∀a ∈ A,∀e ∈ E∪{h},∃s′ ∈ R(s) : e(a; s′) = e

�
Definition 2.1 has two important properties:
1) It does not consider explicitly the visitation require-

ments Σa, a ∈ A.
2) The assessment of the “reachability” condition that

eventually defines the notion of liveness in this def-
inition, can be resolved by analyzing the projected
dynamics of the automaton Φ on the event set QI ⊂ Q,
that contains only the type I events.

The realization of these two facts is important since they
further imply that the liveness of the considered traffic
systems can be studied by means of a simplified automaton
Φ′ that is obtained from the original automaton Φ by:
• eliminating the visitation requirements Σa, a ∈ A, as

a component of state s,
• substituting the original event set Q by QI , and
• restricting accordingly the state transition function f .
The above redefinition of state s is especially important

for the subsequent developments, since the new state set S′,
for the new automaton Φ′, is finite; i.e., Φ′ is a finite state
automaton (FSA) [12].

Furthermore, in an effort to prevent a potential profusion
of the employed notation, in the following, we shall denote
this new FSA by Φ, as well, and we shall carry over to this
new automaton all the notation that was originally introduced
in the context of the original automaton Φ.

State liveness: In [4] it is further shown that the liveness
condition of Definition 2.1 is equivalent to the following
condition that must be satisfied by every state s ∈ R(s0).

Proposition 2.1: Consider the automaton Φ abstracting
the dynamics of a guidepath-based traffic system of the
type that is considered in this work, and let s0 ∈ S be an
arbitrary initial state for this automaton. Then, the resulting
traffic that is represented by automaton Φ is live, iff for
every state s ∈ R(s0), the corresponding subspace R(s)
contains a strongly connected component Ψ(s) that satisfies
the following condition:

∀(a, e) ∈ A× E ∪ {h}, ∃s′ ∈ Ψ(s) : e(a; s′) = e

�
The liveness condition of Proposition 2.1 is more

amenable to the control objective of liveness-enforcing su-
pervision for the considered traffic systems, since it implies
that such a traffic system has the potential to exhibit live

behavior as long as it is in a state s that satisfies this condi-
tion. More specifically, the maximally permissive liveness-
enforcing supervisor (LES) for these traffic systems will
allow transition to any state s ∈ R(s0) iff state s satisfies
the condition of Proposition 2.1. Hence, in the following, we
shall characterize a state s that satisfies the liveness condition
of Proposition 2.1, as “live”, and we shall denote the entire
subset of live states by Sl.

However, assessing state liveness for any given traffic state
s through the characterization of Proposition 2.1 requires
a global view of the corresponding subpsace R(s), and
therefore, such a test will not be easily tractable for most
practical instantiations of the considered traffic systems.
Fortunately, in the rest of this section we establish that,
for the considered FSA Φ, state liveness can be succinctly
characterized by some alternative (co-)reachability condition
that must be satisfied by any state s of practical interest in
the operation of the considered traffic systems.

A central position in the following developments of this
section is held by the particular state of FSA Φ where all
agents a ∈ A are collected in the “home” edge h. We shall
characterize this state as the “home” state of Φ, and we
shall denote it by sh. Obviously, state sh defines a natural
initial state for the considered traffic systems. It also defines a
natural “target” state for every state s ∈ R(sh), since edge h
constitutes the final destination of every executed “mission”
trip.7 Next, we show that, for the case of open guidepath-
based traffic systems, a necessary and sufficient condition
for the liveness of any state s ∈ R(sh) is, indeed, its co-
reachability to the “home” state sh.

Theorem 2.1: In the class of open guidepath-based traffic
systems that are considered in this work, a state s ∈ R(sh)
is live iff it is co-reachable to the “home” state sh. 8

Proof: First we establish the necessity of the co-
reachability condition of Theorem 2.1 for the liveness of
the considered state s. Without loss of generality, suppose
that s 6= sh, and let a1 denote an agent with e(a1; s) 6= h.
Then, according to the condition that defines state liveness
in Proposition 2.1, there is a feasible event sequence σ
that takes agent a1 to the “home” edge h. Furthermore, the
definition of edge h implies that we can obtain a subsequence
σ′ of σ that transfers agent a1 to h without relocating the
agents that are already on h in state s. Let the resulting
state be denoted by s1. If s1 = sh, then, the co-reachability
condition of Theorem 2.1 has been met. Otherwise, select an
agent a2 with e(a2; s) 6= h, and repeat the above argument.
Since every invocation of this argument increases the number
of agents that are located on edge h by one, and the entire
set of agents, A, is finite, it follows that eventually we shall
reach a state where all agents are located on edge h, i.e.,
state sh.

For the sufficiency part of the proof, first we notice that,
since the guidepath graph G of the considered traffic systems

7In the more formal terminology of FSA-based modeling, the role of state
sh as the “target” state for any state s ∈ R(sh) is expressed by setting
SM = {sh} for FSA Φ.

8We notice, for completeness, that the notion of “state liveness” of
Theorem 2.1 is equivalent to the notion of “state safety” for open guidepath-
based transport systems that has been used in some past works on liveness-
enforcing supervision for these traffic systems (e.g., [1]).



has a minimal vertex degree of 2, when the system is in
state sh, there is always a feasible event sequence σ that
takes any given agent a ∈ A to any given edge e ∈ E and
brings a back to the “home” edge h.9 Hence, state sh is part
of a strongly connected component of R(sh) that satisfies
the state-liveness condition of Proposition 2.1. But then, any
state s ∈ R(sh) that is co-reachable to state sh satisfies this
condition as well. �

In [14], [15] it is shown that in the class of open,
dynamically routed guidepath-based traffic systems where
the traveling agents can reverse the direction of their motion
in their allocated zones, it holds that Sl = S; i.e., the
co-reachability condition of Theorem 2.1 will always be
satisfiable for every state s ∈ R(sh). Indeed, if the traveling
agents can reverse the direction of their motion in their
current zones, it is always possible to send these agents back
to the “home” edge h, starting with the agents that are located
closer to this edge; then, the necessary edges for each agent
route are guaranteed to be free.

But for irreversible guidepath-based traffic systems, such
a routing scheme might not be possible, since the traveling
agents that are closest to the “home” edge h, might have
the “wrong” orientation in their current edges. In fact, in
this new regime, the co-reachability of any state s ∈ R(sh)
to state sh is not guaranteed any more, due to potentially
unavoidable formations of deadlocks and livelocks. Hence,
for irreversible guidepath-based traffic systems, the set of
live states, Sl, is usually a strict subset of the state set S,
and as already remarked, the traffic controller must be able
to resolve effectively and efficiently the condition s ∈ Sl,
for any given state s ∈ S. In the rest of the paper we present
some results regarding the computational complexity of this
decision problem.

III. SOME COMPLEXITY RESULTS ON ASSESSING THE
STATE LIVENESS OF THE CONSIDERED TRAFFIC SYSTEMS

A. An NP-completeness result

We start the developments of this section by showing that
under a static routing of the system agents, the problem of
assessing the state-liveness condition of Theorem 2.1 on any
given state s ∈ S is NP-complete [16]. As remarked in the
introductory section, a similar result was first established in
[5] as a corollary to some complexity results that concerned
the assessment of state liveness for traffic systems where
the traveling agents are free-ranging over a certain area. The
current developments provide an alternative proof for this
result that enhances its applicability, and also reveals more
vividly the connection of the considered traffic management
problems to the broader resource allocation problems that
have been studied by certain groups of the DES community.

In more specific terms, the NP-completeness proof that
we shall develop in the rest of this section, is based on a
polynomial reduction to the considered (traffic) state-liveness
problem of the problem of assessing the “state safety in
single-unit resource allocation systems (SU-RAS)”; this last
problem is formally defined as follows [11]:

9A complete formal proof of this fact can be found in [13].

Definition 3.1: SU-RAS state safety with unit resource
capacities: Consider a set of m reusable resources R =
{R1, . . . , Rm} and another set of n process instances
Π = {J1, . . . , Jn} that need to utilize these resources for
their execution. More specifically, each process instance
Jj , j = 1, . . . , n, is defined by a resource sequence Sj =
〈R[1; j], . . . , R[lj ; j]〉; R[k; j] ∈ R, ∀k ∈ {1, . . . , lj}, that
constitutes the corresponding “process plan” and must be
interpreted according to the following semantics: Process
instance Jj , j = 1, . . . , n, currently holds exclusively
resource R[1; j] ∈ Sj and it further needs the sequential and
exclusive allocation of the remaining resources in Sj in order
to advance to its completion. The allocation of the system
resources to these process instances is coordinated by a cen-
tral controller, and a requested resource allocation is feasible
only if the considered resource is currently free. Furthermore,
a process instance Jj will release its currently allocated
resource, R[k; j], only after it has been granted the next
required resource, R[k + 1; j], in the corresponding process
plan Sj . Finally, the system controller will grant any resource
allocation requests that satisfy the aforestated conditions one
at a time (and will recheck the feasibility of the remaining
requests in the RAS state that will result from the execution
of the selected allocation). We need to resolve whether there
exists a resource allocation sequence for advancing process
instances Jj , j = 1, . . . , n, through their various processing
stages that are defined by the corresponding process plans
Sj ; more specifically, this resource allocation sequence must
be feasible w.r.t. the aforestated resource allocation protocol,
and it must allow each process instance Jj to complete
successfully the corresponding process plan Sj .

In [5] it is shown that the decision problem of Defini-
tion 3.1 is NP-complete in the strong sense. Next we use
this result in order to establish the following result:

Theorem 3.1: The problem of assessing the liveness of
any given traffic state s ∈ S of an open, zone-controlled
guidepath-based traffic system with pre-specified agent
routes is NP-complete in the strong sense.

Proof: Consider a traffic state s ∈ S, and let σ ∈ Q∗

denote a feasible event sequence that leads from state s
to the “home” state sh. Under the working assumptions,
the remaining route for each traveling agent is completely
pre-specified. Hence, the length of sequence σ is exactly
equal to the sum of all these remaining routes, and therefore,
polynomially related to the problem data. Furthermore, the
validity of sequence σ can be assessed through simulation,
and this task is also of polynomial complexity w.r.t. the size
of the underlying traffic system. Therefore, the considered
problem is in NP.

In order to establish NP-completeness for this problem,
we shall reduce to it the SU-RAS state safety problem that
was introduced in Definition 3.1. So, consider an instance
of this second problem, and let s denote the corresponding
RAS state. The traffic state s′ that will be constructed
by the proposed reduction is depicted in Figure 2. The
corresponding guidepath network possesses a central node
Nc and m + 1 edges ei, i = 1, . . . ,m + 1, that are
incident to this node in a “hub & spoke” sense. At the
second node of each edge ei there is a “self-loop” edge;
for edges ei, i = 1, . . . ,m, the corresponding “self-loop”



Fig. 2: The traffic state s′ that is constructed in the reduction
of the proof of Theorem 3.1.

edge corresponds to resource Ri, while the “self-loop” edge
at the end of edge em+1 is the “home” edge h. Each
process instance Jj , j = 1, . . . , n, is represented in the
constructed traffic state s′ by an agent aj located at the
“self-loop” edge that corresponds to resource R[1; j]; this is
indicated by representing this “self-loop” edge as a directed
edge (the exact sense of direction is not important for this
construction). Finally, the agent corresponding to process
instance Jj must visit each of the “self-loop” edges that
correspond to the resources R[k; j], k = 2, . . . , lj , according
to the sequence that is specified by the corresponding process
plan Sj , and furthermore, it cannot visit any other edge that
is not absolutely necessary for the realization of this process
plan.

It is not difficult to see that, under the aforestated speci-
fication of the route to be followed by each traveling agent,
the construction of the previous paragraph essentially defines
a bisimulation between the original RAS dynamics and the
dynamics of the induced traffic system. Hence, the original
RAS state s will be safe iff the induced state s′ is live.
Furthermore, it is clear that the size of the employed repre-
sentation of the constructed state s′ is related polynomially
to the size of the employed representation for the RAS state
s. Hence, the claim of Theorem 3.1 is true. �

A careful study of the structure and the dynamics of the
induced traffic system that is defined in Fig. 2, will also
reveal that the above proof of Theorem 3.1 does not require
the assumption of the irreversibility of the agent motion
within their current zones. Hence, this assumption was not
included in the statement of the result of this theorem.
These remarks further imply that the high complexity of
the “state liveness” problem that is addressed in this section
essentially results from the complete pre-specification of
the agent routes that is presumed by Theorem 3.1. On the
other hand, the perusal of the proof of the corresponding
complexity result that is provided in [5], will reveal that that
proof relies substantially on the irreversibility of the agent
motion within their allocated zones that is presumed by that
result. This differentiation of the significance of the “motion
irreversibility” assumption in each of these two results is due

to the fact that, in the reduction of [5], the agent routes are
partially restricted, but not completely pre-specified.

The remarks in the previous paragraph reveal the sensitiv-
ity of the complexity results that are pursued in this paper
and in [5] on the detailed operational assumptions for the
underlying traffic system. With this realization in mind, in
the next subsection, we shift attention to the complementary
subclass of open, zone-controlled guidepath-based traffic
systems where the system agents are dynamically routed to
their various destinations.

B. An instantiation of the considered “state-liveness” prob-
lem that admits polynomial solution

In this section, we consider the complexity of assessing
state liveness in open, zone-controlled guidepath-based traffic
systems where the system agents are dynamically routed to
their various destinations. Furthermore, since according to
the closing discussion of Section II, the combination of (i)
an open structure for the guidepath network, (ii) reversibility
of the agent motion in their allocated zones, and (iii) dynamic
agent routing implies that Sl = S, we also assume that
the direction of the agent motion in their currently allocated
zones is irreversible. Finally, in order to formally state the
main result of this section, we also need to introduce the
following concept:

Definition 3.2: A state s of an open, zone-controlled
guidepath based traffic system is totally congested iff the
zone corresponding to every edge e ∈ E of the guidepath
network G is occupied by a traveling agent a ∈ A.

Then, the main result of this subsection is stated as
follows:

Theorem 3.2: Consider an open, zone-controlled guide-
path based traffic system (A, G) where the direction of the
agent motion in their currently allocated zones is irreversible.
Also, let ŝ ∈ S denote a totally congested state of this traffic
system, and consider the directed graph Ĝ = (V,E) that
is induced from the original graph G and the considered
state ŝ by assigning to each edge e ∈ E the direction of
motion on edge e of the agent a ∈ A that occupies the
corresponding zone in state ŝ. Then, state ŝ is live iff every
vertex v ∈ V \ {vh} of Ĝ is co-reachable to the vertex vh.

Proof: We remind the reader that, according to Theo-
rem 2.1, in the considered class of guidepath systems, a state
s is live iff it is co-reachable to the “home” state sh. We shall
utilize this characterization of the state liveness in order to
prove the result of Theorem 3.2.

First, we prove the sufficiency of the condition that is
stated in Theorem 3.2 for the liveness of the considered
state s. Since every vertex v ∈ V is co-reachable to vertex
vh, for every vertex v ∈ V , there exists a simple directed
path π(v) that leads from v to vh.10 Consider such a path
π(v) for some v ∈ V . Then, it is easy to see that all agents
a ∈ A that are located on the edges of this path in state ŝ
can be transferred to the “home” zone h, one at a time,
starting with the agent a on the edge e of π(v) that is
incident to vertex vh. Let ŝ′ denote the state that results
from the considered state ŝ through the clearance of the

10We remind the reader that in a directed graphG, a simple (directed) path
π of length n is an edge sequence (v0, v1), (v1, v2), . . . , (vn−1, vn) with
vi 6= vj for any pair (i, j) such that i = 0, 1, . . . , n−1, j = i+1, . . . , n.



aforementioned paths π(v), v ∈ V , from their occupying
agents. Also, let e = (v, v′) denote an edge of the digraph
Ĝ that does not belong to any of the paths π(v). From the
above definition of state ŝ′, it should be clear that (i) edge
(v, v′) is occupied by an agent a in state ŝ′ that is heading
towards vertex v′, and (ii) agent a can be routed all the way
to the “home” edge h through the freed path π(v′). Since
edge (v, v′) was chosen arbitrarily, it follows that all edges
e ∈ E that are still occupied by agents in state ŝ′ can have
their agents routed to “home” edge h. Therefore, state sh is
reachable from state ŝ′, and consequently, from state ŝ.

Next, we prove the necessity of the co-reachability con-
dition of Theorem 3.2 for the liveness of the considered
state ŝ. For this, we prove the contrapositive result that if
the co-reachability condition of Theorem 3.2 does not hold
in state ŝ, then, state ŝ is not live. Since, by the working
assumption, the co-reachability condition of Theorem 3.2
does not hold in state ŝ, the vertex set V of digraph Ĝ can be
partitioned to two nonempty subsets Vc and Vn, with subset
Vc (resp., Vn) containing the vertices that are (resp., are not)
co-reachable to vertex vh. Furthermore, since the guidepath
graph G is connected, the cut C among the vertex sets Vc
and Vn is non-empty. The definition of the partition {Vc, Vn}
also implies that every edge e ∈ C is occupied by an agent
that moves towards the vertex v of e that belongs in Vn.
Then, consider the subgraph of digraph Ĝ that is induced by
the edges e ∈ C ∪ (E ∩ Vn × Vn). It is not hard to see that,
in the considered state ŝ, each of these edges is occupied
by an agent a ∈ A, and all these agents are entangled in a
deadlock. Hence, state ŝ is not live. �

The next corollary is an immediate implication of Theo-
rem 3.2.

Corollary 3.1: Assessing the liveness of a totally con-
gested state s of an open, zone-controlled guidepath based
traffic system (A, G) where the direction of the agent motion
in their currently allocated zones is irreversible, is a task of
linear complexity w.r.t. the size of the underlying guidepath
network G.

Proof: Let Ĝr denote the digraph that is obtained from
the digraph Ĝ of Theorem 3.2 by reversing the direction of
its edges. Then, in digraph Ĝr, the co-reachability condition
of Theorem 3.2 reduces to the requirement for reachability
of each vertex v ∈ V \ {vh} from vertex vh through a
simple directed path of Ĝr. Clearly, this last condition can
be tested in linear computational complexity w.r.t. the size
of the digraph Ĝr [17], and therefore, w.r.t. the size of the
original graph G. �

It is evident from the proof of Theorem 3.2 that this
result, and therefore, the result of Corollary 3.1 as well,
rely substantially on the assumption of dynamic routing
of the system agents that is stated in that theorem. But
equally substantial for the proof of Theorem 3.2 is the
assumption that the considered state ŝ is fully congested. An
important open problem is the computational complexity of
assessing state liveness for open, zone-controlled guidepath
based traffic systems (A, G) where the direction of the agent
motion in their currently allocated zones is irreversible but
the considered state s is not totally congested. This issue is
part of our ongoing investigations.

IV. CONCLUSIONS

The first part of the paper has defined a notion of “traffic
liveness” for a class of guidepath traffic systems that abstracts
the operation of the automated, unit-load MHS employed
in modern production and distribution environments. This
notion of “traffic liveness” has also been reduced to more
localized conditions that must be satisfied by each traffic
state that is admissible by the maximally permissive LES for
these systems. The second part of the paper has undertaken a
systematic investigation of the computational complexity of
assessing the state-based conditions that characterize traffic
liveness, and it has demonstrated the strong dependence of
this complexity on the particular assumptions that define the
structure and the operation of the underlying system, and
also the structure of the state under consideration.

A first part of our future work will seek to extend the
aforementioned complexity study to states coming from
open, zone-controlled, dynamically routed guidepath-based
traffic systems and possessing more arbitrary structure than
the structure that is presumed in the results of Section III-B.
Furthermore, a longer-term objective is the embedding of all
the results that we shall obtain from these investigations, into
the Model Predictive Control (MPC) scheme for the real-time
traffic management of the considered traffic systems that has
been outlined in [13].
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