
1

Maximal linear deadlock avoidance policies for
sequential resource allocation systems:

characterization, computation and approximation
Michael Ibrahim, Spyros Reveliotis and Ahmed Nazeem

Abstract—The problem of maximally permissive deadlock
avoidance for sequential resource allocation systems (RAS) is
a well-defined problem in the current controls literature. The
corresponding supervisor is known as the maximally permissive
deadlock avoidance policy (DAP), and it can be perceived as a
classifier effecting the dichotomy of the underlying state space
into its “safe” and “unsafe” subspaces. In the deployment of the
maximally permissive DAP, an important issue is the selection
of an effective and computationally efficient representation of
the aforementioned dichotomy. A popular such representation
is the “linear classifier”, where the admissibility of any given
RAS state is resolved based on its ability to satisfy a given set
of linear inequalities. However, linear classifiers cannot provide
effective representation of the maximally permissive DAP for all
RAS instantiations. Hence, this paper provides a methodology
for synthesizing linear DAPs for any given RAS instance that
might not be maximally permissive in the original sense of this
term, but observe a more relaxed notion of “maximality” that
is defined within the particular space of the DAPs that admit
a linear representation. The presented developments formally
define this new DAP class, and provide the necessary algorithms
for the synthesis or the systematic approximation of maximal
linear DAPs for any given RAS instance.

Keywords: sequential resource allocation systems, liveness-
enforcing supervision, algebraic deadlock avoidance policies

I. INTRODUCTION

Sequential resource allocation systems (RAS) [1] is a class
of discrete event systems (DES) [2] that has received exten-
sive attention in the corresponding literature. The supervisory
control problem of deadlock avoidance that underlies the
operation of these systems, seeks to coordinate the sequential
allocation of a finite set of reusable resources to a set of
concurrently executing processes so that all these processes
are able to receive the requested resources with finite delays,
and eventually complete their execution and exit the system
[1]. Furthermore, there is an additional request for maximal
permissiveness for the corresponding supervisory control poli-
cies; i.e., these policies should ensure the aforementioned
capability of all activated processes to run successfully to their
completion, while imposing the minimum possible restriction
to the original behavior that is generated by the uncontrolled
system. Such a maximally permissive supervisor – also, known

M. Ibrahim is with the Department of Computer Engineering, Cairo Uni-
versity, Egypt; email: michael.nawar@eng.cu.edu.eg. S. Reveliotis
is with the School of Industrial & Systems Engineering, Georgia Institute of
Technology; email: {spyros@isye}.gatech.edu. A. Nazeem is with
Facebook; email: nazeem.35@gmail.com This work has been partially
supported by NSF grant ECCS-1707695.

as a maximally permissive deadlock avoidance policy (DAP) –
is well-defined and unique for the RAS instantiations studied
in [1]. But it is also true that computing the maximally
permissive DAP is an NP-hard problem for almost all RAS
classes of interest [3].

Nevertheless, recognizing that the sought DAPs act as
classifiers that dichotomize the underlying RAS state space
into admissible and inadmissible subspaces, the corresponding
research community has developed methodology that enables
the off-line synthesis of representations for these policies that
are very parsimonious, and therefore amenable for real-time
control [1]. Among these DAP representations, one of the
most interesting and tractable, in terms of, both, analysis and
implementation, is that of a “linear” classifier [4], [5], [6]. A
linear classifier determines the admissibility of any given state
based on the ability of this state to satisfy a certain set of linear
inequalities. In the following, we shall refer to DAPs that admit
such a linear representation of their state-admissibility logic as
“linear” DAPs.1

But as established in [7], [8], linear representation of the
maximally permissive DAP is not a viable option for all
RAS instantiations of practical interest. To circumvent this
limitation, the works of [9], [10], [11], [12] have proposed
additional representations for the sought classifiers that either
employ nonlinear discriminant functions of the RAS state, or
they constitute “non-parametric” classification schemes that
rely on the efficient storage and processing of explicit infor-
mation about the structure of the underlying state space. These
alternative representations have been shown to be complete,
i.e., they will always provide an effective representation of
the target DAP.

Yet, in spite of the aforementioned developments, in many
application contexts, DAPs that admit linear representation
are still a most desirable solution, due to the analyzability of
these policies, and their easy integration into broader decision-
making frameworks. And, in fact, the literature avails of
methodology that can synthesize correct linear (but not nec-
essarily maximally permissive) DAPs for a large spectrum of
RAS classes of practical interest. Some characteristic examples
of this methodology can be found in [13], [14], [15], [16], [17],
[18], while a more comprehensive treatment of these methods
is provided in Chapter 6 of [1]. But the existing theory does
not allow for an explicit characterization and/or control of the
extent of the sub-optimality of the DAPs that are derived by

1A more formal definition of this concept is provided in Section II.

2

this theory with respect to the maximally permissive DAP.
Motivated by the last remark in the previous paragraph, in

this work we seek to develop a method for the systematic
deployment of linear DAPs that are appropriate for the major
RAS classes defined in [1], and observe a “maximality”
requirement in terms of their permissiveness that is defined
in the more restricted policy space of linear DAPs. In more
specific terms, the first part of this work provides a complete
formal characterization of the class of linear DAPs and of the
notion of “maximality” that is observed by our policy design.
This part also establishes the existence of such maximal linear
DAPs for any given instance from the RAS classes that are
considered in this work. Furthermore, it is shown that these
policies might not be unique for any given RAS instance.

The second part of the work details the necessary repre-
sentations and algorithms for the effective computation of the
target policies for any given instance from the considered RAS
class. In principle, the presented algorithms have the potential
to provide an effective enumeration of all the maximal linear
DAPs for these RAS instances. In practice, however, this
potential is limited by a very high computational complexity.
Nevertheless, it is shown that these algorithms still can provide
a very effective instrument for synthesizing high-quality ap-
proximations of the target set of policies, where, as it is typical
in the corresponding literature, the quality of the different
policies is compared and measured by the relative size of
their admissible subspaces. A series of numerical experiments
presented in the last part of the paper (i) exemplify the
aforementioned developments, (ii) demonstrate and assess the
scalability of the presented algorithms, and also (iii) showcase
the ability of some of these algorithms to return near-optimal
linear DAPs for very large RAS configurations.

From a methodological standpoint, the employed definition
of the “maximal linear DAP”, and also the representations and
the algorithms that we propose for the effective computation
of these policies, build upon the geometrical representations
and the corresponding insights that are provided in [4], [6],
[7] for the computation of a linear representation of the
maximally permissive DAP, whenever this last DAP admits
a linear representation. In fact, as it will be seen in the
following, the earlier developments of [4] constitute the very
first stage in the overall computation that is pursued by the
algorithms that are presented in this work. In this way, it
is ensured that the newly developed algorithms will return
the (unique) maximally permissive DAP itself, whenever this
policy admits a linear representation. Furthermore, the “an-
choring” of our results to those past developments, and the
particular representations that have been employed by them,
is critical for ensuring the computational tractability of the
pursued computations.

In view of the above positioning of the paper content and
its intended contribution, the rest of it is organized as follows:
The next section provides a formal characterization of the
RAS class that is the primary focus for this work, and of
the corresponding supervisory control problem of deadlock
avoidance. This section also overviews the existing results
on the computation of a parsimonious linear representation
of the maximally permissive DAP, and the conditions for

the existence of such a linear representation. Subsequently,
Section III introduces the new class of the maximal linear
DAPs, explaining the rationale that underlies the definition of
these policies, and establishing their well-posedness for any
given instance from the considered RAS class. Section IV
addresses the more practical issues of the computation and
the approximation of maximal linear DAPs for any given
RAS instance. Section V presents the numerical experiments
that were mentioned in the previous paragraphs. Finally,
Section VI concludes the paper and provides some direc-
tions for potential future work. Furthermore, the develop-
ments that are presented in this manuscript, are complemented
and supported by an electronic supplement that is accessi-
ble at https://www2.isye.gatech.edu/∼spyros/
maxlinDAP-sup.pdf. This supplement provides (i) the
formal proof of a technical result that is of a more supportive
nature to the main correctness analysis of the algorithms that
are presented in the paper, (ii) an extensive discussion on the
implementational details for the presented algorithms, and (iii)
a detailed complexity analysis of these algorithms and their
supporting procedures.

Closing this introductory section, we also notice, for com-
pleteness, that a preliminary version of the results that are
presented in this paper, was presented in IEEE CDC 2018
[19]. That earlier version of the results focused primarily on
the theoretical positioning of the class of the maximal linear
DAPs along lines similar to those pursued in Section III of this
document, and also provided a basic outline of the algorithm
that can be used, in principle, for the enumeration of the
entire set of the maximal linear DAPs. On the other hand, the
theoretical analysis of this algorithm, the necessary implemen-
tational details and the modifications of this algorithm that will
establish a tractable computation, and also the computational
results that demonstrate and assess the efficacy of the final
outcome, is material that is presented for the first time in this
work.2

II. THE CONSIDERED RAS CLASS AND THE
CORRESPONDING PROBLEM OF DEADLOCK AVOIDANCE

Disjunctive-Conjunctive RAS: The main ideas that define the
methodology to be presented in this work, are applicable to the
entire spectrum of the RAS classes that are defined in [1]. But
for better clarity and specificity, in the rest of this paper we
focus primarily on the class of Disjunctive-Conjunctive (D/C-)
RAS. This is a pretty broad RAS class that allows for (i) an
arbitrary structure of the resource requests that are posed by
the different processing stages, and also for (ii) the presence
of routing flexibility in the supported process plans. A formal
definition of the D/C-RAS class is as follows:

2While this work was in review, manuscript [20] appeared in the liter-
ature. The problem addressed in that work is conceptually very similar to
the problem that is addressed in this paper. However, our perusal of that
manuscript has revealed that it suffers from essential technical problems; the
most critical of these problems is a confounding of fundamental concepts in
Petri net theory [21], like those of liveness, reversibility and deadlock, during
the basic positioning of the problem that is addressed in that manuscript, since
this problem subsequently compromises all the technical claims that are made
in the paper.

3

Definition 1: A Disjunctive-Conjunctive (D/C-) Resource
Allocation System (RAS) is a 4-tuple Φ = 〈R, C,P, D〉, where:

1) R = {R1, . . . , Rm} is the set of the system resource
types.

2) C : R → Z+ – the set of strictly positive integers – is
the system capacity function, characterizing the number
of identical units from each resource type available in the
system. Resources are assumed to be reusable, i.e., each
allocation cycle does not affect their functional status or
subsequent availability, and therefore, C(Ri) ≡ Ci

3

constitutes a system invariant for each i.
3) P = {Π1, . . . ,Πn} denotes the set of the system

process types supported by the considered system con-
figuration. Each process type Πj is a composite ele-
ment itself, in particular, Πj = 〈Θj ,Gj〉, where: (a)
Θj = {θj,1, . . . , θj,lj} denotes the set of processing
stages involved in the definition of process type Πj ,
and (b) Gj is an acyclic digraph with its node set,
Qj , being bijectively related to the set Θj . Denoting
by Q↗j (resp., Q↘j) the set of source (resp., sink) nodes
of Gj , the available process plans for process type Πj

are represented by the paths leading from some node
qs ∈ Q↗j to some node qf ∈ Q↘j in digraph Gj . Each
processing stage θj,k, j = 1, . . . , n, k = 1, . . . , lj , is an
entity that is distinct from all the remaining processing
stages that are supported by the considered RAS; in
particular, ∀j, q with j 6= q, Θj ∩ Θq = ∅. Also, in
the following, we shall set Θ ≡

⋃n
j=1 Θj and ξ ≡ |Θ|.

4) D : Θ →
∏m
i=1{0, . . . , Ci} is the resource allocation

function associating every processing stage θj,k with
the resource allocation vector D(θj,k) required for its
execution; it is further assumed that ∀j, k, D(θj,k) 6= 0.

At any point in time, RAS Φ contains a certain number
of (possibly zero) instances of each process type that exe-
cute one of the corresponding processing stages. A process
instance executing a non-terminal stage θj,k ∈ Qj\Q↘j , in
order to advance to a successor processing stage θj,q in the
corresponding digraph Gj , first must be allocated the resource
differential [D(θj,q)−D(θj,k)]+ and only then will it release
the resource units |[D(θj,q)−D(θj,k)]−| that are not needed
anymore.4 This resource allocation protocol further requires
that no resource type Ri ∈ R will be over-allocated with
respect to its capacity Ci at any point in time. Hence, a
process instance Jj can advance to one of its next processing
stages only if the resource units requested for this advancement
can be allocated from the slack capacity of the corresponding
resources.

Finally, for purposes of complexity considerations, we de-
fine the size |Φ| of RAS Φ by |Φ| ≡ |R|+ ξ +

∑m
i=1 Ci.

Modeling the D/C-RAS dynamics as a Finite State Automa-
ton: The dynamics of the RAS Φ = 〈R, C,P, D〉 that was
described in the previous paragraph, can be further formal-
ized by a Deterministic Finite State Automaton (DFSA) [2]
G(Φ) = 〈S,E, f, s0 , SM 〉, that is defined as follows:

3In this document, the notation ‘≡’ implies ‘equality by definition’.
4We remind the reader that ∀x ∈ R, [x]+ ≡ max{x, 0} and [x]− ≡

min{x, 0}.

1) The state set S consists of ξ-dimensional vectors s. The
components s[l], l = 1, . . . , ξ, of s are in one-to-one
correspondence with the RAS processing stages,5 and
they indicate the number of process instances executing
the corresponding stage in the considered RAS state.
Hence, S consists of all the vectors s ∈ (Z+

0)ξ that
further satisfy

∀i = 1, . . . ,m,

ξ∑
l=1

s[l] ·D(θl)[i] ≤ Ci (1)

where, according to the adopted notation, D(θl)[i] de-
notes the allocation request for resource Ri that is posed
by stage θl.6

2) The event set E is the union of the disjoint event sets
E↗, Ē and E↘, where:

a) E↗ = {er,p : r = 0, θp ∈
⋃n
j=1Q

↗
j }, i.e.,

event er,p represents the loading of a new process
instance that starts from stage θp.

b) Ē = {er,p : ∃j ∈ 1, . . . , n s.t.
θp is a successor of θr in graph Gj}, i.e.,
er,p represents the advancement of a process
instance executing stage θr to a successor stage
θp.

c) E↘ = {er,p : θr ∈
⋃n
j=1Q

↘
j , p = 0}, i.e,

er,p represents the unloading of a finished process
instance after executing its last stage θr.

3) The state transition function f : S × E → S is defined
by s′ = f(s, er,p), where the components s′[l] of the
resulting state s′ are given by:

s′[l] =

 s[l]− 1 if l = r
s[l] + 1 if l = p
s[l] otherwise

We also notice that f(s, er,p) is a partial function,
defined only if the resulting state s′ belongs in S
(i.e., it satisfies the condition of Equation 1). For any
state s ∈ S, the event set Γ(s) ≡ {er,p ∈ E :
f(s, er,p) is defined} constitutes the set of feasible
events at s.

4) The initial state s0 is set equal to 0, i.e., the state vector
with all its components equal to zero. This initial state
represents the situation where the system is empty of
any process instances.

5) The set of marked states SM is the singleton {s0}.
This specification of SM expresses the requirement for
complete process runs.

Letting f̂ denote the natural extension of the state transition
function f to S×E∗, the behavior of RAS Φ is modeled by the
language L(G) generated by DFSA G(Φ), i.e., by all strings
σ ∈ E∗ such that f̂(s0, σ) is defined. Furthermore, we define

5We also notice that in various parts of the paper we shall use this
correspondence between the state components s[l], l = 1, . . . , ξ, and the
processing stages θj,k, j = 1, . . . , n, k = 1, . . . , lj , in order to refer to
(and index) the various processing stages.

6Following standard practice in DES literature (cf., for instance, the relevant
definition in page 8 of [2]), in the rest of this document we will frequently
use the terms “space” and “subspace” in order to refer to the state set S and
its various subsets considered in this work.

4

the reachable subspace Sr of G(Φ) by

Sr ≡ {s ∈ S : ∃σ ∈ L(G) s.t. f̂(s0, σ) = s} (2)

and its safe subspace Ss by

Ss ≡ {s ∈ S : ∃σ ∈ E∗ s.t. f̂(s, σ) = s0} (3)

Also, in the following, we shall denote the complements of Sr
and Ss with respect to S by Sr̄ and Ss̄, and we shall refer to
them as the unreachable and unsafe subspaces. Finally, Sxy ,
x ∈ {r, r̄}, y ∈ {s, s̄}, will denote the intersection of the
corresponding sets Sx and Sy .

The target behavior of G(Φ) and the maximally permissive
DAP: The desired – or “target” – behavior of RAS Φ is
expressed by the marked language Lm(G), which is defined
by means of the set of marked states SM , as follows:

Lm(G) ≡ {σ ∈ L(G) : f̂(s0, σ) ∈ SM}
= {σ ∈ L(G) : f̂(s0, σ) = s0} (4)

Equation 4, when combined with all the previous defini-
tions, further implies that the set of states that are accessible
under Lm(G) is exactly equal to Srs. Hence, we have the
following definition of the maximally permissive deadlock
avoidance policy (DAP) ∆∗ for the considered RAS:

Definition 2: The maximally permissive deadlock avoidance
policy (DAP) ∆∗ for any instantiation Φ from the RAS class
of Definition 1 is a supervisory control policy7 that, at every
state s ∈ Srs, admits the transition that is defined by any event
er,p ∈ Γ(s) if and only if the resulting state s′ = f(s, er,p)
belongs in Ss. �

The reader should also notice that the above characterization
of the policy ∆∗ further implies that, for any given RAS
instance Φ, this policy is unique.

The maximally permissive DAP as a classifier: According
to Definition 2, the maximally permissive DAP ∆∗ can be
effectively implemented through any mechanism that recog-
nizes and rejects the unsafe states that are accessible through
one-step transitions from Srs. In the following, we shall
refer to these particular unsafe states as “boundary” unsafe
states, and we shall perceive the policy ∆∗ as a classifier
that distinguishes effectively between reachable safe states and
boundary unsafe states.

As discussed in the introductory section, methodology for
the effective development of such a classifier is provided in
[4], [9], [10], [11], [12], [8], [6]. A result that has proven
very useful in the development of the corresponding theory,
is the following “monotonicity” property that is exhibited by
the RAS state safety:

Proposition 1: Consider the partial order “≤” that is defined
on the state space S of any given RAS Φ through the following
comparison of the state components:

∀s, s′ ∈ S, s ≤ s′ ⇐⇒ (∀l = 1, . . . ξ, s[l] ≤ s′[l]) (5)

7We remind the reader that in DES supervisory control theory, a supervisory
control policy – or, more briefly, a supervisor – is a mapping that associates
every state s of the underlying state space S with some subset of Γ(s) that
defines the set of feasible events at state s that are also admissible by the
supervisor [2].

Then,
1) s ∈ Ss ∧ s′ ≤ s =⇒ s′ ∈ Ss
2) s ∈ Ss̄ ∧ s ≤ s′ =⇒ s′ ∈ Ss̄

�
In [4] it is shown that, thanks to Proposition 1, it is

possible to develop a classifier that will distinguish correctly
between (a) the states of the reachable and safe subspace
Srs, and (b) the boundary unsafe states, by focusing only
on the correct classification of the maximal elements of the
set Srs and the minimal boundary unsafe states. Furthermore,
additional efficiencies in this endeavor, and in the on-line
computational complexity of the developed classifier, can be
obtained by identifying and removing from the classified
vectors any components corresponding to processing stages
that do not impact the safety of the system state (e.g., the
terminal processing stages of any process type Πj). The reader
is referred to Chapter 4 of [1] for a concise and comprehensive
exposition of the corresponding theory on the effective and
efficient synthesis of the sought classifiers.

Linear representation of the maximally permissive policy
∆∗: As remarked in the introductory section, a desirable
representation of the classification logic that is effected by the
maximally permissive DAP ∆∗ is that of a linear classifier.
This last concept has been formally defined in [4] as follows:

Definition 3: Consider two vector sets G and H from a
ξ-dimensional vector space V .

1) We shall say that sets G and H are linearly separated
by a set of k linear inequalities {(ai, bi) : i = 1, · · · , k}
if and only if (iff)

(∀g ∈ G : ∀i ∈ {1, · · · , k}, aTi · g ≤ bi) ∧
(∀h ∈ H : ∃i ∈ {1, · · · , k}, aTi · h > bi) (6)

2) A linear classifier – or separator – for vector sets G and
H is structurally minimal, iff it employs the minimum
possible number of linear inequalities that can separate
these two sets.

�
In the case of the classification that is effected by the DAP

∆∗, the roles of the sets G and H in Definition 3 are played,
respectively, by the sets S̄rs and S̄brs̄ that contain the maximal
reachable safe states and the minimal boundary unsafe states.8

Moreover, Proposition 1 implies the following additional result
for the sought classifiers [4]:

Proposition 2: If the maximally permissive DAP ∆∗ of a
given D/C-RAS Φ admits a representation as a linear classifier
of Definition 3, then, there exists such a linear classifier with
nonnegative parameters (ai, bi) for all the involved inequali-
ties. �

On the other hand, it is also well known that the maximally
permissive DAP ∆∗ might not admit a linear representation

8 The astute reader will also notice that Definition 3 implies an asymmetry
for the role of the the sets S̄rs and S̄b

rs̄ in the design of the sought classifiers.
This asymmetry has been dictated by an intention for further implementation
of the developed classifiers in the Petri net (PN) modeling framework [21],
through the theory of monitor places [22], [23]; besides the FSA modeling
framework, Petri nets have been another major formal framework for the
modeling and the analysis of the dynamics of the RAS classes considered in
this work.

5

Fig. 1: Characterization of the safe and unsafe reachable states
for an example D/C-RAS with two resource types, R1 and R2, of
corresponding capacities C(R1) = C(R2) = 2, and two process
types, Π1 and Π2. Process type Π1 involves two processing stages,
θ1,1 and θ1,2, with processing stage θ1,1 preceding the processing
stage θ1,2; the corresponding resource requirements for these two
processing stages are respectively defined by the vectors (1, 0)T

and (0, 2)T . Process type Π2 also involves two processing stages,
θ2,1 and θ2,2, with processing stage θ2,1 preceding the processing
stage θ2,2, and the corresponding resource requirements for each
processing stage of this process type being defined by the vectors
(0, 1)T and (2, 0)T . Recognizing that the terminal processing stages
of these two process types will never get involved in a deadlock, we
can characterize state safety for this RAS by focusing only on the
state components s1 and s3, which correspond to the first processing
stage of each process plan.The above figure provides this reduced,
2-dimensional representation of the underlying state space, where
safe reachable states are depicted by rhombi and unsafe reachable
states by squares. The reader should notice that the convex hull of
the depicted safe states includes the unsafe state corresponding to
point (1, 1), and therefore, in this case, the reachable safe states and
the boundary unsafe states of the considered system are not linearly
separable.

along the lines of Definition 3 [7], [8], [24], [25]. Such a case
is presented in Figure 1, where it can be seen that the lack of a
linear representation for the corresponding DAP ∆∗ is due to
the inclusion of elements of the set S̄brs̄ in the convex hull9 of
Srs. As remarked in the introductory section, this problem
has been addressed through the development of additional
representations for the classification logic that is effected by
the target policy ∆∗. However, in Section I it was also pointed
out that linear DAPs are still very desirable due to (i) the
efficient representation and the analyzability of these DAPs by
means of popular modeling frameworks like the PN modeling
framework that is mentioned in Footnote 8, and (ii) the easy
integration of these DAPs into broader decision-making frame-
works concerning additional operational aspects of the consid-
ered RAS. One such possibility that is of particular interest in
an ongoing research program of ours is the inclusion of the
logic of the employed DAPs into some linear programming
formulations that seek to complement the preventive control of
deadlock avoidance with scheduling capability, and are known
as “fluid relaxations” of the underlying RAS dynamics [27],

9 We remind the reader that the convex hull of a finite set of points S is
the minimal convex polytope that contains all these points [26]. In this work,
we shall denote the convex hull of such a point set S by conv(S).

[28].10

Motivated by the above remarks and needs, in the rest of this
work, we define an approximation to the maximally permissive
DAP ∆∗ that (i) admits a linear representation along the lines
of Definition 3 and Proposition 2, and (ii) is effectively com-
putable for every instance Φ of the considered class of D/C-
RAS. The formal definition of these policies employs a notion
of “maximality” that intends to keep their permissiveness as
close as possible to the permissiveness of ∆∗. We provide
a formal characterization of this “maximality” concept, and
the necessary algorithms for the effective computation of the
corresponding policies, for any given D/C-RAS Φ.

III. MAXIMAL LINEAR DAPS

The formal definition of the maximal linear DAPs and its
motivation: This section introduces the new concept of the
“maximal linear DAP”, as it materializes in the considered
class of D/C-RAS. We shall formally define this new DAP
class by providing a complete set of conditions that must
be satisfied by the admissible subspaces of its constituent
policies.11

Hence, in order to proceed with the subsequent develop-
ments, let ∆ denote a tentative DAP from the considered
class for some given D/C-RAS Φ, and Sa(∆) ⊆ S denote
the corresponding policy-admissible subspace. We also define
Sā(∆) ≡ S \ Sa(∆). For the controlled dynamics of RAS Φ
to be well-defined, clearly we need

s0 ∈ Sa(∆) (7)

Then, we can also define Sr(∆), the reachable subspace of
Φ under policy ∆, as the limit set of the following recursion:

Sr(∆)(0) := {s0} (8)
Sr(∆)(k+1) := Sr(∆)(k) ∪ {s′ ∈ Sa(∆) :

∃s ∈ Sr(∆)(k), e ∈ Γ(s) with f(s, e) = s′} (9)

A primary requirement in the specification of the sought
policy ∆ is that it does not induce any new deadlocks or
livelocks; such a DAP is characterized as “correct” in the
relevant literature [1]. The correctness of ∆ translates into the
following requirement for the corresponding set Sr(∆) (c.f.
[1], Chapter 6):

∀s ∈ Sr(∆) \ {s0}, ∃e ∈ Γ(s) \ E↗, f(s, e) ∈ Sr(∆) (10)

In more natural terms, the condition of Equation 10 requires
that at every state s that is reachable in the considered
RAS under supervision by ∆, there is a policy-admissible
event e that concerns the stage advancement or the unloading
of an already initiated process instance; since the digraphs
Gj encoding the process plans of each process type Πj ,
j = 1, . . . , n, are acyclic, a repetitive invocation of this last
condition guarantees the existence of an entire event sequence

10Some other representative works that employ LP-based “fluid relaxations”
as instruments for computing efficient scheduling policies for sequential
resource allocation, can be found in [29], [30], [31], [32].

11We provide a systematic justification for this representational choice of
ours in the closing part of this section.

6

that will complete every process instance Jj that is activated
in some given state s ∈ Sr(∆).

An additional important operational requirement that must
be observed by our target policies is that they should enable
the execution of each process type Πj , j = 1, . . . , n, of
the underlying RAS Φ. DAPs that satisfy this requirement
will be characterized as “complete” in the following. The
requirement for completeness can be enforced through the
following condition:

∀j = 1, . . . , n, ∃e ∈ Γ(s0) :
(
s ≡ f(s0, e)

)
∧
(
s ∈ Sr(∆)

)
∧
(
s[i] = 1 =⇒ θi ∈ Q↗j

)
(11)

In more natural terms, the condition of Equation 11 im-
plies that, for each process type Πj , j = 1, . . . , n, there
is a policy-admissible event that activates this process type.
When combined with the “correctness” requirement for the
considered policies, this requirement implies the existence of
an admissible process plan for every process type Πj .

Next we address the requirement that the sought policy ∆
will admit a representation through the linear classifiers of
Definition 3. Furthermore, for the reasons that were explained
in the previous section, we also stipulate that the linear
representations for our target policies ∆ must satisfy the “non-
negativity” property of Proposition 2.

To formally state the conditions that will help us meet these
two requirements, let conv(Sr(∆)) denote the convex hull of
the set Sr(∆), according to the corresponding notation that
was introduced in Footnote 9, and also define the set Sbr̄(∆)
as follows:

Sbr̄(∆) ≡ {s′ ∈ Sr \ Sa(∆) :

∃s ∈ Sr(∆), e ∈ Γ(s) with f(s, e) = s′} (12)

The set Sbr̄(∆) contains all the states s that are reachable
through a single transition from Sr(∆) but are blocked by pol-
icy ∆. Hence, this set collects all the “boundary inadmissible”
states in the controlled dynamics of RAS Φ.

Then, in analogy to the corresponding results for the max-
imally permissive DAP ∆∗, the aforestated requirement for
a representation of the policy ∆ through a linear classifier
of Definition 3 with non-negative coefficients can be met
by introducing the following two conditions to the policy
specification:

∀s, s′ ∈ S, s′ ≤ s ∧ s ∈ Sa(∆) =⇒ s′ ∈ Sa(∆) (13)
conv(Sr(∆)) ∩ Sbr̄(∆) = ∅ (14)

Up to this point, we have articulated the requirements that
must be satisfied by the sought DAP ∆ for any given D/C-
RAS Φ so that (i) it is correct, (ii) complete, and (iii) admits
a desired linear representation, as qualified by Definition 3
and the condition of Proposition 2. Policy ∆ will also be a
“maximal” (correct) linear DAP for RAS Φ, if there is no
other correct linear DAP ∆′ for RAS Φ with an admissible
reachable subspace Sr(∆′) such that Sr(∆′) ⊃ Sr(∆).

The following definition provides a more formal expression
to all the previous discussion.

Definition 4: A policy ∆ is a linear DAP for some given
D/C-RAS Φ iff its admissible subspace Sa(∆), together with

the policy-reachable subspace, Sr(∆), and the set of the
boundary inadmissible states, Sbr̄(∆), satisfy the following
conditions:

Correctness: (s0 ∈ Sa(∆)) ∧ (∀s ∈ Sr(∆) \ {s0} ,

∃e ∈ Γ(s) \ E↗, f(s, e) ∈ Sr(∆)
)

Completeness: ∀j = 1, . . . , n, ∃e ∈ Γ(s0) :(
s ≡ f(s0, e)

)
∧

(
s ∈ Sr(∆)

)
∧(

s[i] = 1 =⇒ θi ∈ Q↗j
)

Monotonicity: ∀s, s′ ∈ S,

s′ ≤ s ∧ s ∈ Sa(∆) =⇒ s′ ∈ Sa(∆)

Linearity: conv(Sr(∆)) ∩ Sbr̄(∆) = ∅

Furthermore, a linear DAP ∆ for a given D/C-RAS Φ is
maximal iff there is no other linear DAP ∆′ for D/C-RAS Φ
with Sr(∆′) ⊃ Sr(∆). �

Example: Two maximal linear DAPs for the example D/C-
RAS of Figure 1, are the DAPs ∆1 and ∆2 that will admit
a state s ∈ S if its projection on the 2-dimensional space
that is defined by the state components s1 and s3, belongs,
respectively, in the sets S1

a ≡ {(0, 0), (1, 0), (2, 0), (0, 1)} and
S2
a ≡ {(0, 0), (1, 0), (0, 1), (0, 2)}.
Indeed, both of these policies admit the initial state s0 and it

can be easily checked that they do not suffer from any policy-
induced deadlock or livelock. Furthermore, they satisfy the
“completeness” and the “monotonicity” requirements of Defi-
nition 4, and the corresponding state sets Sr(∆i), Sbr̄(∆

i), i =
1, 2, will admit linear separation in the projected space that is
defined by the state coordinates s1 and s3. Finally, these two
policies are also maximal, since the only possible expansion
of the corresponding sets Sr(∆i), i = 1, 2, is by re-admitting
the blocked pairs (0, 2) and (2, 0) in the corresponding sets
Sia, i = 1, 2; but the policy that will result from any of these
two augmentations is ∆∗, and we know that this policy is not
linear.

The reader should also notice that Sr(∆1) 6= Sr(∆
2), and

therefore, the two policies ∆1 and ∆2 are essentially different.

Existence but non-uniqueness of maximal linear DAPs: The
closing remark in the previous example further implies that,
for any given D/C-RAS Φ, the maximal linear DAPs of
Definition 4 will not be unique, in general. Hence, for further
reference, we shall denote the set of linear DAPs for any given
D/C-RAS Φ by L(Φ), and its subset that contains its maximal
elements by L̄(Φ).

The next result is also important for the well-posedness of
the considered DAP class.

Proposition 3: For any given D/C-RAS Φ, L̄(Φ) 6= ∅.
Proof: For any given D/C-RAS Φ, consider the policy ∆̂

that admits a state s ∈ S iff (a) either it is the initial state
s0, or (b) it contains only one active process instance. Then,
it is easy to see that the policy ∆̂ is correct and complete,
and satisfies the “monotonicity” requirement of Definition 4.
It is also clear that the admissibility logic of this policy can

7

be expressed by the linear inequality
ξ∑
i=1

s[i] ≤ 1

Hence, the set of linear DAPs for any given D/C-RAS Φ,
L(Φ), is non-empty. Since this set is also finite, it will possess
well-defined maximal elements, and therefore, the set L̄(Φ) is
also non-empty.

Justifying the adopted representation for the sought poli-
cies: As stated in the opening paragraph of this section, the
entire characterization of the class of linear DAPs, L(Φ),
and the notion of “maximality” that is defined within the
scope of this policy class, was based on a representation
of its constituent policies ∆ by their admissible subspaces,
Sa(∆), and the additional state sets Sr(∆) and Sbr̄(∆) that
are induced by the set Sa(∆) and the qualitative dynamics of
the underlying RAS Φ. An alternative representation of this
class of policies can be based on the sets of linear inequalities
that define the corresponding classifiers (c.f. Definition 3 and
Proposition 2); a compact representation of any such set of
inequalities is through the corresponding pair (A,b), where
A is a (k × ξ)-dimensional nonnegative real matrix, b is a
k-dimensional nonnegative real vector, and k is the number
of inequalities in this set. Let L(Φ) denote the set of pairs
(A,b) with A ≥ 0, b ≥ 0, that define a correct, complete,
linear DAP ∆(A,b) for a given RAS Φ according to the
logic of Definition 4, and L̄(Φ) denote the subset of L(Φ)
that collects the maximal linear DAPs (always according to
Definition 4). Next, we provide a formal connection between
the two alternative representations of the target policy spaces,
i.e., the representation that is provided by the sets L(Φ) and
L̄(Φ), and the alternative representation for the same policy
spaces that is provided by the sets L(Φ) and L̄(Φ).

For this, let us define the following binary relation ‘∼’ on
L(Φ):

(A,b) ∼ (A′,b′)⇐⇒ Sr(∆(A,b)) = Sr(∆(A′,b′)) (15)

The relation ‘∼’ is an equivalence relation on L(Φ). The
equivalence classes, [(A,b)], that are defined in the set L(Φ)
by the relation ‘∼’, correspond to the elements of the set L(Φ)
that was defined in the previous paragraphs of this section.
Furthermore, the set L̄(Φ) that collects the maximal linear
DAPs under the (A,b)-based representation of these policies,
can be expressed as

L̄(Φ) =
{

(A,b) : [(A,b)] ∈ L̄(Φ)
}

(16)

The connection among the sets L(Φ) (resp., L̄(Φ)) and
L(Φ) (resp., L̄(Φ)) that was established in the previous para-
graph, essentially expresses the fact that the separation of the
sets Sr(∆) and Sbr̄(∆) can be attained by an infinite number
of systems of linear inequalities (A,b), A ≥ 0, b ≥ 0, when
these two sets are linearly separable according to the logic
of Definition 4. Hence, the sets L(Φ) and L̄(Φ) will have
an infinite cardinality. On the other hand, it is clear from
the relevant definitions that were provided in the previous
parts of this section, that the sets L(Φ) and L̄(Φ) have
finite cardinality, and therefore, they are amenable to explicit

enumeration. This realization explains our focus on the two
sets L(Φ) and L̄(Φ) as the primary representation for the
developments that are pursued in this work.

Finally, with the notion of the “maximal linear DAPs” and
their effective representation well-defined, next we turn to the
development of the necessary algorithms that will enable us to
obtain some elements from the two sets L̄(Φ) and L(Φ) that
will constitute highly permissive linear DAPs, for any given
D/C-RAS Φ.

IV. COMPUTATION AND APPROXIMATION OF THE
MAXIMAL LINEAR DAPS

A. Preamble
In this section, we consider the computation of the maximal

linear DAPs for any given D/C-RAS Φ. We start with the intro-
duction of a basic algorithm that, in principle, can enumerate
all the maximal linear DAPs ∆ ∈ L̄(Φ), for any given D/C-
RAS Φ, and we formally prove the algorithm correctness and
the finiteness of its computation. This algorithm essentially
effects a search process for the target policies, using a “branch
& bound (b&b)” scheme that is methodologically similar to
the b&b schemes that are used in combinatorial optimization
[33], [34].

But as is the case with many other combinatorial-
optimization problems and the corresponding b&b schemes,
the computational cost of a complete execution of the afore-
mentioned algorithm may be prohibitively high, for most
practical cases. At the same time, it is also well known from
the corresponding combinatorial optimization theory, that this
high computational cost can be significantly controlled through
a careful selection of (i) the representations, and the corre-
sponding data structures, that are employed by the algorithm,
and (ii) the “branching logic” that drives the underlying search
process. Hence, in the second part of this section, we also
discuss those implementational details and modifications that
we have effected upon the original algorithm in an effort to
expedite its execution.

The algorithm that is obtained from the aforementioned
modifications, can be executed on some pretty sizable D/C-
RAS configurations within very reasonable computational
times, and it will provide linear DAPs that might not be
provably maximal, but they are still capable to admit a very
large subset of the set Srs that is admitted by the maximally
permissive DAP ∆∗. Also, the relative coverage of the refer-
ence set Srs by the obtained DAPs ∆ is effectively measurable
during the algorithm execution, and this capability enables our
algorithms to effect a controlled trade-off between the extent
of their computation and the quality of the derived DAPs. In
this way, the algorithmic developments of this section become
a practical instrument for the effective and the controlled
synthesis of high-quality linear DAPs for any given D/C-RAS
Φ.

The aforestated computational developments are comple-
mented in Section V by extensive numerical experimentation
that seeks to (a) demonstrate the efficacy of these devel-
opments, and (b) assess the quality of the DAPs that will
be practically obtained by them. Also, as remarked in the
introductory section, some further material regarding (i) the

8

Algorithm 1 The main algortihm for computing L̄(Φ)

Input: DFSA G(Φ)
Output: L̄(Φ)

/* INITIALIZE */
1: STORE := NULL; EXPLORE := 〈S̄rs〉;

/* MAIN ITERATION */
2: while EXPLORE 6= NULL do
3: S̄r := POP(EXPLORE);
4: Sbr̄ := {s ∈ S :

(
∃s′ ∈ S, s′′ ∈ S̄r, e ∈

Γ(s′) s.t. f(s′, e) = s AND s′ ≤ s′′
)

AND
(
6 ∃ s′′′ ∈

S̄r s.t. s ≤ s′′′
)
};

5: S̄br̄ := {s ∈ Sbr̄ : 6 ∃s′ ∈ Sbr̄ s.t. s′ 6= s AND s′ ≤ s};
6: if ((S̄r, S̄br̄) linearly separable) AND

(6 ∃ S̄′r ∈ STORE : Sr(∆(S̄′r)) ⊇ Sr(∆(S̄r))) then
7: Remove from STORE any element sets S̄′′r s.t.

Sr(∆(S̄′′r)) ⊂ Sr(∆(S̄r));
8: Enter S̄r in STORE;
9: else

10: for all s ∈ S̄r do
11: S̃r := PRUNE(S̄r, s, G(Φ));
12: if (∆(S̃r) complete) AND (6 ∃ S̄′r ∈ STORE :

Sr(∆(S̄′r)) ⊇ Sr(∆(S̃r))) then
13: PUSH(S̃r;EXPLORE);
14: end if
15: end for
16: end if
17: end while

/* TERMINATE */
18: return STORE;

Algorithm 2 Function PRUNE(S̄, s̃, G(Φ))

Input: DFSA G(Φ), maximal-state set S̄, pruned state s̃
Output: PRUNE(S,G(Φ))

1: Ŝr := {s0};
2: while Ŝ := {s ∈ S \ (Ŝr ∪ {s̃}) : (∃s′ ∈ Ŝr, e ∈

Γ(s′) with f(s′, e) = s) AND (∃s′′ ∈ S̄ s.t. s ≤ s′′)} 6= ∅
do

3: Ŝr := Ŝr ∪ Ŝ;
4: end while
5: while Ŝ := {s ∈ Ŝr : ∀e ∈ Γ(s)\E↗, f(s, e) 6∈ Ŝr} 6= ∅

do
6: Ŝr := Ŝr \ Ŝ;
7: end while
8: S̄r := {s ∈ Ŝr :6 ∃s′ ∈ Ŝr s.t. s′ > s};
9: return S̄r;

establishment of the correctness of the presented algorithms,
(ii) the specification of certain implementational details for
these algorithms, and (iii) a detailed complexity analysis of the
algorithms themselves and their supporting procedures, can be
found in an electronic supplement to this paper that is accessi-
ble at: https://www2.isye.gatech.edu/∼spyros/
maxlinDAP-sup.pdf.

B. A basic algorithm for the enumeration of the set L̄(Φ)

Description of the proposed algorithm: The basic structure
of the algorithm that we propose for the complete enumeration
of the policy set L̄(Φ), for any given D/C-RAS Φ, is presented
in the pseudo-code of Algorithm 1. This algorithm starts
with the computation of the set of reachable and safe states,
Srs, that defines the reachable subspace under the maximally
permissive DAP ∆∗, and seeks to detect all the maximal
subsets of this set – including the set Srs itself – that will
define correct linear DAPs.

In more specific terms, Algorithm 1 starts by computing the
set Srs of the reachable and safe states of the considered D/C-
RAS Φ; this computation can be performed straightforwardly
through basic reachability and co-reachability analyses of the
underlying state space with respect to the empty state s0 [2].
Subsequently, the algorithm tests whether the obtained set Srs
is linearly separable from the set of the boundary reachable
unsafe states, Sbrs̄, and if this test is positive, then the algorithm
infers that, for the considered RAS instance Φ, the maximally
permissive DAP ∆∗ is linearly representable; hence, it exits
returning the set Srs as the single element of the set L̄(Φ). On
the other hand, if the maximally permissive DAP ∆∗ is not
linearly representable, the algorithm will run a search process
for all those proper subsets of Srs that constitute the reachable
subspace for a maximal linear DAP ∆ ∈ L̄(Φ).

Each proper subset of Srs that is considered by this search
process, is obtained from a “parent” subset in the generated
“search graph” by (i) first removing a single maximal element
of the “parent” set, and subsequently (ii) pruning any addi-
tional states that need to be removed in order to restore the
correctness of the induced DAP ∆. Furthermore, the DAP ∆
that is obtained through this processing, must be tested for
membership in L(Φ).

Some possible ways to perform the linearity test for the
maximally permissive DAP ∆∗ – and also for all the other
DAPs ∆ that will be considered by Algorithm 1 during its
search process – are through the algorithms that are provided
in [4] for the construction of a linear separator for the DAP
∆∗ whenever such a linear separator is available. However,
according to our numerical experimentation that is reported in
Section V, the most efficient way to conduct the DAP-linearity
tests that are performed in this work, is by computing the sets
S̄r and S̄br̄ , containing, respectively, the maximal reachable
states and the minimal boundary inadmissible states under
the considered policy ∆, and, subsequently testing the linear
separability of each state u ∈ S̄br̄ from the states s ∈ S̄r, by
formulating and solving the following linear program (LP) for
each u ∈ S̄br̄ :

max
a≥0,b≥0

0 (17)

s.t.

aT si ≤ b , ∀si ∈ S̄r (18)
aT · u ≥ b+ ε (19)

In the above LP formulation, ε is a preselected parameter
such that ε→ 0+. This LP is essentially a feasibility test for
the constraints that appear in it. A negative outcome for this
test implies that the considered minimal boundary inadmissible
state u is not linearly separable from the set of the ∆-maximal

9

admissible states, S̄r, and therefore, ∆ 6∈ L(Φ). Furthermore,
all those states u ∈ S̄br̄ that will fail the test of Equations 17-
19, will be used by Algorithm 1 in order to spawn from
policy ∆ some new candidate policies ∆′, according to the
“state-elimination” scheme that was mentioned in the previous
paragraph.12

Another salient point for the complete understanding of
the pseudo-code that is presented in Algorithm 1, is that
the aforementioned subsets of Srs that are generated during
the search process, will be represented by means of their
maximal elements; in the presented pseudo-code, this fact is
indicated by “barring” or “tilding” the corresponding sets. In
the statement of Algorithm 1, we also denote the policy ∆ that
is induced by such a set of maximal states, S̄r, by ∆(S̄r).
Furthermore, in accordance with our previously defined no-
tation, the entire reachable subspace for the policy ∆(S̄r) is
denoted by Sr(∆(S̄r)). A detailed discussion on the buildup
and the maintenance of the particular representations that are
employed by Algorithm 1 throughout its entire execution, is
provided in the electronic supplement of this paper.

The search process that was described in the previous
paragraphs, is facilitated in Algorithm 1 through the employ-
ment of the two lists STORE and EXPLORE. The list
STORE holds the subsets of Srs that correspond to linear
DAPs and are maximal among the currently detected such sets.
The list EXPLORE holds those subsets of Srs that have
been generated as potential candidates for specifying maximal
linear DAPs, but have not been assessed and processed yet.
The detailed processing of a set S̄r extracted from the list
EXPLORE is defined in Lines 3–16 of Algorithm 1, and it
consists of the following steps: First it is checked whether this
set defines a linear DAP, through the test that was presented in
the previous paragraphs. If this is the case, and, furthermore,
the processed set S̄r is not dominated by any set already in
STORE, it is entered in STORE as the reachable subspace
of a tentative maximal linear DAP. During this stage, STORE
is also cleared by any already stored sets that are dominated
by the new entrance. If, on the other hand, the considered set
does not specify a linear DAP, then it spawns a number of
entries for the list EXPLORE. As already explained, each
of these entries is generated through (i) the removal of a
maximal element from the “parent” set, and (ii) the further
pruning of the resulting set in order to ensure that it specifies
a correct DAP. The function that performs this pruning is
listed in Algorithm 2, and it constitutes a convergent iterative
computation that seeks to establish the correctness condition
of Definition 4. Finally, the policy ∆(S̄r) that corresponds to
the state set S̄r that is returned by Algorithm 2, is tested for
completeness, and the set S̄r will enter the list EXPLORE
only if ∆(S̄r) is complete and not dominated by any of the
current entries in STORE.

The entire algorithm is initialized with list STORE empty

12The efficiency of the DAP-linearity test that is defined by Equations 17-
19, compared to the corresponding tests that can be induced from the material
of [4], is due to the fact that this test does not try to construct a parsimonious
linear separator for the considered DAP ∆, in the case that this DAP is indeed
linear. On the other hand, the corresponding algorithms of [4] can be used,
after the execution of Algorithm 1, for the construction of parsimonious linear
separators for each DAP ∆ that will be returned by this algorithm.

and list EXPLORE containing the set Srs (but represented
by the subset of its maximal elements, S̄rs). Hence, as
explained at the beginning of this subsection, the algorithm
will first assess whether the maximally permissive DAP ∆∗ is
a linear DAP, and if this is the case, it will terminate without
considering any other policies. In the opposite case, it will run
as described in the previous paragraphs, and eventually it will
terminate when the list EXPLORE becomes empty. At this
point, the algorithm will return the contents of the STORE
list as its output.

Concluding the description of Algorithm 1, we also notice
that the set inclusions that are tested in certain parts of the
algorithm, can be resolved by means of the maximal elements
that are stored in the employed representation of these sets,
through the following criterion:

Sr(∆(S̄r)) ⊇ Sr(∆(S̄′r)) ⇐⇒ ∀s′ ∈ S̄′r, ∃s ∈ S̄r : s ≥ s′

(20)
Similarly, the “completeness” test that is conducted by

Algorithm 1 for the generated policies ∆(S̄r), can be based
on Equation 11, where, however, the condition s ∈ Sr(∆(S̄r))
is replaced by the equivalent condition ∃s′ ∈ S̄r : s′ ≥ s.

Proving the correctness of Algorithm 1 and the finiteness
of its computation: Next we proceed to prove the correctness
of Algorithm 1 and the finiteness of its computation. In order
to derive these results, we shall start with a more technical
proposition that will ensure that the policies ∆ induced by the
sets S̄r that are stored in the lists EXPLORE and STORE
of Algorithm 1, satisfy the “monotonicity” requirement of
Definition 4. In order to establish this result, we must also
specify more explicitly the sets Sa(∆) that consist of all the
admissible states by any such policy ∆. Hence, for the needs of
the subsequent discussion, we shall define the set Sa(∆(S̄r)),
for any DAP ∆(S̄r) that is induced by a set S̄r generated in
the search process of Algorithm 1, as follows:

Sa(∆(S̄r)) ≡
{
s ∈ Sr : ∃s′ ∈ S̄r s.t. s ≤ s′

}
∪ Sr̄s (21)

The first set of states in the right-hand-side of Equation 21
contains all the reachable states of the FSA G(Φ) that are
dominated by some element of the policy-defining set S̄r, and
therefore, are admissible by the corresponding policy ∆(S̄r)
according to the logic of Algorithm 1 that was discussed in
the previous part of this subsection. The second set is the set
of all the safe but unreachable states of G(Φ). Since these
states are unreachable in the original dynamics of the FSA
G(Φ), they will never materialize when this FSA is controlled
under the considered policy ∆(S̄r). But their inclusion in the
set Sa(∆(S̄r)) is technically necessary in order to ensure that
this set will contain the entire sub-lattices of (Z+

0)ξ that are
dominated by each of its elements (since some elements of
these sub-lattices might be unreachable).

With the sets Sa(∆(S̄r)) well-defined through Equation 21,
now we can state the following result that is necessary for the
eventual establishment of the correctness of Algorithm 1.

Proposition 4: The sets Sa(∆(S̄r)), corresponding to the
policies ∆(S̄r) that are generated by Algorithm 1 through
Equation 21, satisfy the “monotonicity” condition of Defini-
tion 4. �

10

The proof of Proposition 4 can be based on a double
induction, where the outer induction runs on the sets that enter
list EXPLORE, and the inner induction is defined on the
state sets that are pruned during the iterations that take place
in Lines 5–7 of Algorithm 2. But due to the technical nature
and the length of the arguments that are involved in this proof,
we have opted to provide it in the electronic supplement of
this paper.

Next, we state and prove the main technical result of this
subsection, that concerns the correctness and the finiteness of
the computation of Algorithm 1.

Theorem 1: When applied on any given D/C-RAS Φ,
Algorithm 1 will terminate in a finite number of steps, and
it will return a nonempty output that is a correct enumeration
(under the adopted representation) of the set L̄(Φ).

Proof: The finiteness of the algorithm computation results
from the following facts: At each iteration, the number of
the generated sets S̄r that enter list EXPLORE for further
processing is finite, and the corresponding sets Sr(∆(S̄r)) are
of smaller cardinality than their counterparts at the “parent”
nodes. Also, the starting set Srs is a finite set, and each
generated subset of this set will be processed through the
EXPLORE list a finite number of times. Finally, each single
operation that is performed by the algorithm is also of finite
length.

Next, we prove the correctness of the algorithm, i.e., that
the algorithm will compute correctly the target set L̄(Φ). We
have already seen that the first set S̄r that is considered by
Algorithm 1 as the reachable subspace for a candidate policy
∆, is the set S̄rs, that induces the maximally permissive DAP,
∆∗, according to Definition 2. Hence, the algorithm will return
the maximally permissive DAP ∆∗ as its unique output, if this
policy is also found to be linear.

On the other hand, if ∆∗ does not admit a linear represen-
tation, and the algorithm must search for alternative policies,
then, Line 11 of the algorithm, together with the definition
of function PRUNE in Algorithm 2, ensure that every set
S̄r that enters the lists EXPLORE and (possibly) STORE,
induces a policy ∆(S̄r) that satisfies the “correctness” condi-
tion of Definition 4. Also, Proposition 4 ensures that all these
policies satisfy the “monotonicity” condition of Definition 4.
Similarly, the first condition in the “if” statement in Line 6
of the algorithm, together with the first condition in the “if”
statement in Line 12, ensure that a policy ∆ will enter list
STORE only if it is linear and complete. Finally, the way that
the sets S̄r are generated by pruning their “parent” sets by one
maximal element at a time, together with the set-inclusion tests
that are performed in Lines 6 and 7 of the algorithm, ensure
that the eventual content of list STORE will be the maximal
subsets of the set Srs that pass the aforementioned tests.

In order to complete the “correctness” part of the proof, we
must also establish that there is no advantage in removing a
non-maximal element from the “parent” sets that are handled
by the pursued search process over the subsets of Srs. This can
be seen upon noticing that these state eliminations essentially
seek to separate the convex hulls of the resulting sets S̄r and
S̄br̄ for the corresponding policy ∆(S̄r). But it is clear that any
state elimination that maintains intact the “parent” set S̄r will

not be able to effect the aforementioned separation.
Finally, the claimed non-emptiness of the STORE list that

is returned by Algorithm 1, follows from (i) the algorithm
correctness, that was established in the previous paragraphs,
and (ii) Proposition 3, which established that L(Φ) 6= ∅ for
every D/C-RAS Φ.

C. Complexity considerations

From a computational standpoint, Algorithm 1 is a very ex-
pensive operation. The primary sources of this high complexity
can be identified as follows:

1) The representation and the processing of the consid-
ered policies ∆ by means of their reachable subspaces
Sr(∆). As shown in the electronic supplement of this
paper, the procedures that are employed by Algorithm 1
for the construction and the manipulation of these sets,
are of (a low-degree) polynomial worst-case computa-
tional complexity with respect to the cardinality of these
sets. But it is also well-known that the cardinality of
the reachable state space Sr of any given D/C-RAS Φ,
that is the starting point of the algorithm computation
and the “parent” set for all the generated sets Sr(∆),
is a super-polynomial function of the RAS size |Φ|
[1]. Characteristically, in Section V.A of the electronic
supplement of the paper, it is shown that, for any D/C-
RAS Φ where every processing stage requires only a
single unit from a single resource type for its execution,
the cardinality of the corresponding state space S is
given by |S| = Πm

i=1
(Ci+|Θ(Ri)|)!
Ci!·|Θ(Ri)|! ; in this expression,

Ci is the capacity of resource Ri, for i = 1, . . . ,m,
according to the notation introduced in Definition 1, and
|Θ(Ri)| denotes the number of processing stages that are
supported by resource Ri. Also, even though we do not
have a closed-form expression for the cardinality of S
for any arbitrary RAS Φ coming from the broader D/C-
RAS class, it is expected that the growth of this quantity
with respect to the defining elements of the considered
RAS Φ will present a similar behavior.

2) The dynamics of the search process that is conducted by
Algorithm 1. In the electronic supplement of the paper it
is also shown that (i) the worst-case computational com-
plexity of the main iteration of Algorithm 1 is O(|S|2),
(ii) the total number of iterations for this algorithm is
O(|S| · 2|S|), and (iii) the combination of these two
results implies a worst-case computational complexity
for Algorithm 1 of O(|S|3 · 2|S|). This result highlights
very clearly the practical intractability of Algorithm 1
and its underlying sources.

As is also the case with our earlier works of [4], [9], the
computational challenge that is described in the first item of
the above list, can be effectively addressed by the possibility
to represent and process the considered policies ∆ using only
the maximal elements of their admissible subspaces. This
possibility is established by the “monotonicity” property that
characterizes the targeted policies, and it enables the reduction
of the size of the employed representations by many orders of
magnitude. The definition of the necessary data structures, and

11

Fig. 2: A schematic demonstration of the “branching” logic that is
employed by Algorithm 3.

the organization of the various operations that are performed
by Algorithm 1 in a way that takes full advantage of these
compressed representations, is a non-trivial issue; but given
the more procedural nature of the corresponding material, and
the imposed page limits for this document, we provide the
corresponding developments in the electronic supplement of
this manuscript.

When it comes to the second item of the above list, first
we want to clarify that the exponential 2|S| in the expression
O(|S| · 2|S|) arises from the facts that (i) Algorithm 1 must
search within the power-set of the set Srs for those maximal
subsets of this set that define complete, linear DAPs for the
underlying RAS Φ, and (ii) the cardinality of this power-set is
2|Srs|, which is O(2|S|). In most practical cases, the number
of subsets that will be explicitly considered by Algorithm 1
will be much smaller that 2|Srs|, and it will depend on (a)
the relative placement of the minimal boundary unsafe states
with respect to the boundary of the convex hull of the set
Srs, and (b) the ability of Algorithm 1 to detect and separate
the most problematic of these boundary unsafe states in an
effective and expedient manner. But it will also remain a
significant percentage of 2|Srs|, and therefore, it will still grow
exponentially with respect to |Srs|. In this work, we have
sought to address the computational challenge that is defined
by this exponential dependency, by confining further the search
process that is conducted by Algorithm 1. More specifically,
acknowledging the intractability of the exhaustive search over
the power-set of Srs that is attempted by Algorithm 1, we
propose to settle for a more partial search process that will seek
the identification of a single linear DAP; but this new search
process will be biased in a way that will guarantee a very
high state-admissibility by the resulting policy. We provide
the details of the resulting algorithm in the next subsection.

D. Efficient computation of near-optimal linear DAPs through
a pertinent structuring of the underlying search process

We start this subsection by considering in further detail the
“branching logic” of Algorithm 1 that will drive the generation

and the processing of new candidate policies ∆′, any time that
a processed policy ∆ fails the linearity test of Algorithm 1. We
remind the reader that in the basic definition of Algorithm 1
(c.f. Section IV-B), each of the aforementioned policies ∆′ is
generated from the original policy ∆ by removing a maximal
state s′ from the corresponding set Sr(∆), and further pro-
cessing the resulting state set through the PRUNE function
of Algorithm 2 in order to establish the correctness of the new
DAP.

However, as pointed out in the previous subsection, the
spawning of a new policy ∆′ for every single element of the
set S̄r(∆) implies a very rapid expansion of the underlying
search space and a prohibitively high computational complex-
ity for most instantiations of the considered RAS. Hence, it
is imperative to try to control the extent of “branching” that
will take place at each node of the directed acyclic graph
(DAG) that represents the underlying search process. At the
same time, this restriction must be performed in a way that
will not compromise considerably the quality of the DAPs
that will be obtained by the resulting algorithm. In particular,
we would like the policies that are returned by the modified
algorithm to present a state-admissibility level that is pretty
close to the state-admissibility level that is attained by the
policies in the target set L̄(Φ); in the following, we shall
characterize those linear DAPs that attain this objective as
“near-optimal”. Finally, we would like to obtain these near-
optimal linear DAPs in an expedient manner.

The objectives that were stated in the previous paragraph,
can be addressed in a pertinent manner when considering the
reason for the nonlinearity of any processed DAP ∆; i.e., the
presence of elements of the set S̄br̄(∆) in the convex hull of
the set Sr(∆). This situation is schematically demonstrated
through the 2-dimensional example of Figure 2. The states
si, i = 1, . . . , 5, depicted in Figure 2 denote the maximal states
of the set Sr(∆) in the considered situation, while state u is a
minimal boundary ∆-inadmissible state that is in the convex
hull of Sr(∆).

From the geometry that is depicted in Figure 2, it is easy to
see that the selection of the elements of the set S̄r(∆) for the
generation of the new policies ∆′ can be restricted to the set
S̄′r(∆) ⊆ S̄r(∆) that contains those elements of S̄r(∆) that
constitute vertices – or, more formally, extreme points – of
the convex hull of the set Sr(∆), without compromising the
correctness of Algorithm 1. The possibility for this restriction
is formally stated and justified in the electronic supplement
of the paper. In fact, the corresponding part of the electronic
supplement shows that the set S̄′r(∆) can be thinned even
further to another set S̄′′r (∆) ⊆ S̄′r(∆), which will lead to
a further reduction of the “branching” that is effected by the
underlying search process.

However, in spite of the reduction of the extent of “branch-
ing” that is attained by the remarks that were provided in
the previous paragraph, the computational requirements of the
corresponding implementation of Algorithm 1 remain very
high in terms of, both, time and memory. Hence, next we
present a more “heuristic” algorithm that can be perceived
as an execution of Algorithm 1 over a single thread of the
underlying search process for some linear DAP. Central in the

12

Algorithm 3 A heuristic algorithm for computing a near-
optimal linear DAP

Input: DFSA G(Φ)
Output: S̄r

/* INITIALIZE */
1: S̄r := S̄rs;
2: Sbr̄ := {s ∈ S :

(
∃s′ ∈ S, s′′ ∈ S̄r, e ∈

Γ(s′) s.t. f(s′, e) = s AND s′ ≤ s′′
)

AND
(
6 ∃ s′′′ ∈

S̄r s.t. s ≤ s′′′
)
};

3: S̄br̄ := {s ∈ Sbr̄ : 6 ∃s′ ∈ Sbr̄ s.t. s′ 6= s AND s′ ≤ s};
/* MAIN ITERATION */

4: while (S̄r, S̄br̄) not linearly separable do
5: Select u ∈ S̄br̄ s.t. (S̄r,u) not linearly separable;
6: Ŝ(u) := {s ∈ S̄r : I∗s > 0}, where I∗s is obtained

through the solution of the linear program defined by
Equations 22 – 24;

7: for all s ∈ Ŝ(u), in increasing order of ||s− u||2 do
8: S̄r := PRUNE(S̄r, s, G(Φ));
9: if (S̄r,u) linearly separable then

10: Break from this for-loop;
11: end if
12: end for
13: Compute the sets Sbr̄ and S̄br̄ for the newly obtained set

S̄r, as in Steps 2 and 3 above;
14: end while

/* TERMINATE */
15: return S̄r;

design of this heuristic algorithm is the specification of the
selection process of the maximal states to be removed from
the various sets Sr(∆) that are generated during the execution
of the algorithm, in a way that the obtained linear DAP in
near-optimal.13

A formal statement of the heuristic algorithm that is pro-
posed in this subsection, is provided in Algorithm 3. Similar
to Algorithm 1, when applied on a given D/C-RAS Φ, Al-
gorithm 3 first sets S̄r := S̄rs, and tests whether this set
is linearly separable from the corresponding set of minimal
boundary reachable unsafe states, i.e., the corresponding set
S̄br̄ . If this is true, Algorithm 3 returns the current set S̄r as
the set of the maximal states that are admitted by the computed
DAP ∆, and therefore, the returned policy ∆ is the maximally
permissive DAP ∆∗.

If, on the other hand, ∆∗ 6∈ L(Φ), then S̄br̄∩conv(Sr) 6= ∅.14

Algorithm 3 selects arbitrarily a state u from this set, and
formulates and solves the following LP for some ε→ 0+:

min
a≥0, b≥0,

∀s∈S̄r,Is≥0

∑
s∈S̄r

Is (22)

13We also want to notice that, even though it is not scalable to larger
D/C-RAS instantiations, the detailed implementation of Algorithm 1 that is
presented in the electronic supplement of the paper is still very useful for this
study, since its application on some smaller RAS configurations (i) enables an
experimental investigation of the structure of the set L̄(Φ), and (ii) provides
a benchmark for the assessment of the heuristic algorithm; both of these
possibilities are pursued in Section V.

14We remind the reader that the state set S̄b
r̄(∆) ∩ conv(Sr(∆)) will be

among the outcomes of the linearity test that is defined by Equations 17-19,
for those policies ∆ that turn out to be nonlinear.

s.t.

aT · s ≤ b+ Is , ∀s ∈ S̄r (23)
aT · u ≥ b+ ε (24)

Let 〈a∗; b∗; I∗s , s ∈ S̄r〉 denote the obtained optimal solution
for the above LP. Then, the set Ŝ(u) containing the elements
of S̄r that will constitute the “seeds” for the spawned policies
∆′, is defined as follows:

Ŝ(u) :=
{
s ∈ S̄r : I∗s > 0

}
(25)

More specifically, Algorithm 3 will order the elements of the
set Ŝ(u) in increasing Euclidean distance from the considered
state u, and it will keep removing these states from the set
S̄r, one at a time, until it obtains a subset of S̄r, let’s say S̄′r,
that induces a correct DAP ∆′ and is linearly separable from
the considered state u. At this point, the algorithm computes
the minimal boundary inadmissible states for the DAP ∆′,
and uses this information in order to assess its linearity.
If ∆′ is found to be linear, then the algorithm terminates
returning the newly obtained set S̄′r as the representation of
this DAP. Otherwise, the algorithm picks a minimal boundary
inadmissible state u′ ∈ S̄br̄(∆′)∩ conv(Sr(∆

′)) and performs
another iteration along the lines that were described in the
previous paragraphs, using the pair (S̄′r,u

′).
In more conceptual terms, the LP of Equations 22 – 24 that

is employed by Algorithm 3 in order to compute the set Ŝ(u),
essentially computes a hyperplane that is defined by the pair
(a, b) and minimizes the total violation of the inequalities

aT · s ≤ b , ∀s ∈ S̄r

that should be satisfied by this hyperplane, if it acted as a
separatrix of the set S̄r from the selected state u. A positive
value for the variable I∗s corresponding to state s ∈ S̄r,
indicates a state s that is not easily separable from the
considered inadmissible state u. Therefore, this state should
be in the set Ŝ(u) consisting of the elements of S̄r that will
constitute the “seeds” for the newly spawned policies ∆′;
more specifically, these policies will be obtained through the
iterative elimination of the elements of Ŝ(u) from the set S̄r,
as discussed in the previous paragraph.

Example: The “branching” logic that was defined in the
previous paragraphs is exemplified in Figure 2 by means of
the straight line AB. Assuming that this line constitutes an
optimal solution for the corresponding LP of Equations 22 –
24, we can see that, in the depicted case, the states that will
constitute “seed” states for the generation of the new DAPs ∆′,
are the states s2, s4 and s5, i.e., the states si that are above
the line AB. These states will be processed by the ‘FOR’-
loop of Algorithm 3 in the sequence 〈s4, s5, s2〉, which is
determined by the Euclidean distances of these states from
the depicted state u; these distances are provided by the red
lines in Figure 2. �

The previous example demonstrates schematically the abil-
ity of the “branching logic” that is employed by Algorithm 3 to
generate a pertinent subset of the set S̄r(∆) that will advance
the conducted search for a good linear DAP. Furthermore,
in Section V of the electronic supplement it is shown that

13

the worst-case computational complexity of Algorithm 3 is
O(|S|1+a · ξ), for some a ∈ (1.25, 2.5), which is substan-
tially lower than the worst-case computational complexity
of Algorithm 1. Indeed, extensive numerical experimentation
that is reported in Section V, will show that by using the
aforementioned “branching” scheme, Algorithm 3 can con-
sistently identify near-optimal linear DAPs, within a very
reasonable running time, even for some very large D/C-RAS
configurations.

Finally, as it is also the case with other heuristic algorithms
that involve some arbitrary choice in their defining logic,
the quality of the DAP that will be obtained by means
of Algorithm 3 for any given D/C-RAS configuration, can
be further enhanced through the repetitive execution of the
algorithm, either in a sequential or in a parallel mode, while
randomizing the selection of the state u that will be employed
during the various iterations of each of these executions. The
finally implemented DAP will be selected among the DAPs
that will be returned by each of these executions.

V. COMPUTATIONAL RESULTS

In this section, we present the results from a number of
numerical experiments that intend to (i) assess the scalability
of Algorithms 1 and 3, (ii) identify certain factors that will im-
pact this scalability, and also (iii) get some insights regarding
the structure of the target policy spaces L̄(Φ). The considered
algorithms were coded using the JAVA programming language,
where the formulated LPs were solved using the CPLEX 12.8
package, and all the experiments were executed on a Windows
10 computational platform with an Intel Core i7, 2.8 GHz
processor, and 64GB memory. The results obtained from these
experiments are organized in Tables I, II and III.

More specifically, Table I reports the execution of Algo-
rithms 1 and 3 on 15 Conjunctive (C-)RAS configurations
on which Algorithm 1 was able to execute completely within
a provided time budget of 48 hours. The table is organized
in four major sections, with the first section providing some
information on the size and the structure of each configuration.
More specifically, column “Res” reports the number of the
resource types involved, column ”Cap” reports the (common)
capacity level for these resource types, and column “Proc.”
reports the number of processing stages for each process type
that is uspported by the corresponding RAS. The second sec-
tion of Table I reports the size of the reachable safe and unsafe
subspaces of the 15 configurations, and also the cardinalities of
the sets of the maximal safe states and the minimal boundary
unsafe states, that are the primary sets eventually used by the
considered algorithms. The third section of Table I reports
(i) the number of the maximal linear DAPs identified by
Algorithm 1 for each configuration, (ii) the number of the
states that are in the admissible spaces of all the returned
DAPs, (iii) the minimal and the maximal state-admissibility
levels among these DAPs, and finally (iv) the execution time
of the algorithm. The fourth section of Table I reports the
execution of Algorithm 3 on the considered configurations.
More specifically, this section reports (i) the execution time
of the algorithm, (ii) the number of the admissible states by
the returned DAP ∆, and (iii) the ratio of the cardinality of

the ∆-admissible subspace to the maximal cardinality among
the subspaces that are admitted by the maximal linear DAPs.

Table II reports the execution of Algorithms 1 and 3 on 15
Conjunctive (C-)RAS configurations on which Algorithm 1
was not able to execute completely within the provided time
budget of 48 hours. The structure of this Table is similar to
that of Table I. However, the numbers reported in the third
section of this table refer to the policies that were obtained by
Algorithm 1within the 48 hours of its execution, and not to the
entire sets of the maximal linear DAPs for the corresponding
configurations. Also, recognizing that Algorithm 1 might have
failed to identify the maximal linear DAP with the maximum
possible cardinality for its admissible state space, in the fourth
section of this table we take a rather conservative approach in
the evaluation of the relative performance of the policy ∆
that is returned by Algorithm 3; more specifically, the column
“ratio” in this section reports the ratio |Sr(∆)|/|Srs|. Since
|Srs| is an upper bound of the maximal cardinality among the
subspaces that are admissible by the maximal linear DAPs,
the algorithm performance index that is reported in column
“ratio” is an under-estimate of the actual performance that is
attained by the algorithm.

Table III reports primarily the performance of Algorithm 3
when applied on some larger C-RAS configurations that –
as expected – will challenge the execution of Algorithm 1.
The primary scaling of the employed RAS configurations that
has taken place in this case, is in terms of the number of
processes that are supported by each of these configurations;
the corresponding notation ‘n×m’ in column “proc” implies n
processes with each process possessing m processing stages.
In the second section of this table, it can also be seen that
the aforementioned scaling results in significantly larger state
(sub-)spaces compared to the corresponding sizes that are
reported in Tables I and II. The third section of Table III is sim-
ilar to the fourth section of Table II; in particular, this section
focuses on the execution of Algorithm 3 on the corresponding
configurations and the quality of the returned policies. Also,
as in the case of Table II, the column “ratio” reports the
ratio |Sr(∆)|/|Srs|, for each considered configuration. Finally,
the fourth section of Table III reports the times that it took
Algorithm 1 to identify the first linear DAP when applied
on the considered configurations, and an evaluation of these
DAPs that are obtained by Algortihm 1 along lines similar to
those used in the third section for the evaluation of the DAPs
that are returned by Algorithm 3. The indication “no policy”
for the last two configurations, in this section, implies that
Algorithm 1 was not able to identify a linear DAP within the
allowed 48 hours for its execution.

Next we provide some remarks that highlight certain aspects
of the results that are reported in Tables I–III, and communi-
cate our current understanding of these results.

We start this discussion by noticing that, for those con-
figurations that are amenable to a complete enumeration of
the corresponding policy spaces L̄(Φ) by Algorithm 1, these
policy spaces have turned out to be of quite low cardinality.
Also, for these configurations, the maximal linear DAPs pro-
vide an extensive coverage of the corresponding sets Srs that
are admitted by the maximally permissive DAP ∆∗. Finally,

14

TABLE I: Results from the execution of Algorithms 1 and 3 on some RAS configurations for which Algorithm 1 completes with 48 hours.

Configuration State Space Algorithm 1 Algorithm 3
Res Cap Proc. Safe Uns. Max. Min. Cnt Com Min Max Time Time |S̄r| ratio

Safe Uns. (sec.) (sec.)
1 8 4 {8, 8, 8} 109 1379 57 35 2 94 98 105 26 0.448 105 1
2 7 4 {8, 8, 9} 144 961 53 32 2 122 125 141 42 0.414 141 1
3 7 4 {7, 8, 10} 128 2215 69 41 2 114 118 124 123 0.525 124 1
4 8 4 {7, 7, 8} 87 490 42 29 2 75 77 85 2 0.352 85 1
5 6 4 {6, 8, 8} 99 1371 49 35 2 84 88 95 98 0.461 95 1
6 8 4 {8, 8, 10} 99 1218 61 44 2 92 95 96 3 0.554 95 0.989
7 7 4 {8, 8, 8} 101 1461 52 28 2 87 91 97 23 0.448 97 1
8 6 4 {7, 8, 8} 139 1688 76 23 3 119 123 135 1062 0.459 135 1
9 7 4 {6, 7, 8} 105 910 59 31 3 83 87 101 137 0.425 101 1
10 6 4 {6, 7, 7} 100 906 55 31 3 78 82 96 31 0.369 96 1
11 7 4 {7, 7, 9} 104 1686 55 37 2 90 94 100 2 0.448 100 1
12 6 4 {6, 7, 8} 91 772 44 31 2 77 81 87 109 0.405 87 1
13 6 4 {7, 7, 8} 121 1481 66 21 3 101 105 117 1163 0.419 117 1
14 7 4 {7, 8, 8} 89 962 44 26 2 77 79 87 3 0.328 87 1
15 8 4 {7, 8, 10} 94 1214 57 44 2 87 90 91 15 0.456 90 0.989

TABLE II: Results from the execution of Algorithms 1 and 3 on some RAS configurations for which Algorithm 1 does not complete with
48 hours.

Configuration State Space Algorithm 1 Algorithm 3
Res Cap Proc. Safe Uns. Max. Min. Cnt Com Min Max Time |S̄r| ratio

Safe Uns. (sec.)
1 10 4 {8, 8, 8} 593 2756 81 32 3 395 399 527 1.106 542 0.913
2 9 4 {7, 7, 8} 175 885 46 20 2 122 126 165 0.426 163 0.931
3 7 4 {6, 7, 7} 455 2160 53 25 2 268 269 410 0.758 409 0.898
4 10 4 {7, 8, 8} 569 2744 80 32 2 384 385 508 1.015 519 0.912
5 9 4 {7, 8, 8} 554 2550 75 31 2 444 445 507 0.998 506 0.913
6 7 4 {8, 8, 8} 602 2751 79 32 2 491 492 553 1.342 548 0.910
7 7 4 {7, 8, 8} 634 3087 82 32 2 486 487 573 1.277 574 0.905
8 7 4 {7, 8, 8} 1181 6483 112 38 2 804 805 1073 2.191 1059 0.896
9 7 4 {6, 7, 8} 1031 5175 98 32 3 723 724 927 1.823 912 0.884

10 8 4 {6, 8, 8} 610 3075 81 32 2 501 502 554 1.143 551 0.903
11 8 4 {6, 7, 8} 577 3018 72 32 2 382 383 520 1.056 520 0.901
12 9 4 {6, 7, 7} 1112 4294 178 23 3 829 831 1043 1.128 1064 0.956
13 8 4 {6, 6, 7} 453 1925 56 24 3 269 272 397 0.759 408 0.901
14 7 4 {5, 7, 8} 444 1749 53 23 3 328 331 396 2.345 396 0.892
15 7 4 {5, 7, 9} 1682 13608 194 36 3 1173 1174 1499 3.341 1473 0.875

as revealed by the columns “Com” in Tables I and II, there
is also a very large intersection among the subspaces that are
admitted by the maximal linear DAPs.

Another interesting remark can be based on the juxtaposi-
tion of the first two sections of Table I with their counterparts
in Table II. In particular, the RAS configurations, Φ, that are
involved in the experiments that are reported in these two
tables, are quite comparable in terms of the corresponding
RAS sizes, |Φ|. Yet, the running times of Algorithm 1 on
the configurations of Table I will not exceed more than a
few minutes, while, for all of the configurations of Table II,
Algorithm 1 will fail to complete in 48 hours. A plausible
explanation for this dramatic difference in the performance
of Algorithm 1 with respect to these two RAS sets, might
be provided by the ratio (Max Safe / Safe) for the involved
RAS instances: this ratio is significantly higher for the RAS
instances of Table I, and this fact might imply that the searches
that are conducted by Algorithm 1 over the subsets of the set
Srs for the RAS instances of Table I, might be more “shallow”,
and therefore, less expensive, than the corresponding searches
that are conducted by this algorithm for the RAS instances
of Table II. More generally, however, this difference in the
execution times of Algorithm 1 with respect to the RAS
instances in Tables I and II implies that it is not possible to

characterize and predict the (in-)tractability of this algorithm
merely through the structural elements that define any given
D/C-RAS Φ according to Definition 1.

An additional observation that pertains to the execution of
Algorithm 1 on the RAS configurations of Table II, is that
Algorithm 1 made all of its progress, in terms of obtaining
some very good DAPs, within less than 24 hours, and it spent
the remaining time of its execution essentially “validating”
the quality of the policies that were derived in the first
part of its computation. Such a behavior is typical of the
broader class of the b&b algorithms that are used on some
very hard combinatorial optimization problems, and, from a
more practical standpoint, it implies that, in many cases, these
algorithms might be able to turn out some good-quality results
even if they are terminated prematurely.

When it comes to Algorithm 3, all three Tables I–III
demonstrate very clearly the ability of this algorithm to return
DAPs that are very competitive in terms of the size of
their admissible state spaces, in short computational times. In
particular, Table III demonstrates that this capability extends
to RAS with quite sizable state spaces. It is also interesting
to notice that in the cases that are reported in Table III,
Algorithm 3 is able to come up with a linear DAP that has a
higher state admissibility than the linear DAP that is computed

15

TABLE III: Results from the execution of Algorithms 1 and 3 on some larger RAS configurations.

Configuration State Space Algorithm 3 Algorithm 1
Res Cap Proc. Safe Uns. Max. Min. Time |S̄r| ratio Time |S̄r| ratio

Safe Uns. (minutes) (hours)
1 8 4 7× 8 21099 906478 1271 225 2.364 20480 0.971 1.09 17884 0.85
2 9 4 8× 5 42571 69016 6148 188 0.573 42466 0.997 0.326 42448 0.997
3 9 4 6× 4 94431 72238 1694 71 29.396 85608 0.906 11.53 85196 0.90
4 11 4 6× 4 115766 28510 1401 12 1.336 114731 0.991 0.608 112891 0.975
5 8 4 6× 8 10913 96361 766 163 0.660 10499 0.962 0.112 10164 0.93
6 10 4 8× 3 104550 49620 3840 67 3.805 103569 0.991 1.52 103753 0.99
7 8 4 8× 8 34695 1773193 2860 427 8.153 33363 0.961 2.59 32376 0.93
8 9 4 8× 8 118470 1253425 4335 612 6.962 118150 0.997 0.743 118158 0.98
9 11 4 11× 8 53080 1410311 7716 1046 21.494 51894 0.977 8.62 51835 0.98
10 4 4 6× 4 196021 11451 13998 15 0.376 195983 0.999 2.84 195878 0.999
11 11 4 13× 3 757699 700781 36267 89 50.512 753652 0.995 no policy
12 8 4 13× 5 396931 1146292 29545 559 43.661 393966 0.993 no policy

by Algorithm 1, and this DAP is also obtained in a much
shorter time.

The superior quality of the policy that is obtained by
Algorithm 3 testifies to the pertinence of the “branching logic”
that is employed by this algorithm. On the other hand, the
expediency of the corresponding computation is the result
of (i) the aforementioned quality of the “branching logic”
and the pertinent guidance that it provides to the underlying
search process, but also (ii) the fact that the implementation
of Algorithm 3 was further streamlined by considering the
fact that this algorithm essentially executes a single thread of
the broader search that is conducted by Algorithm 1. More
specifically, the adherence to a single path in the search that
is conducted by Algorithm 3, enables a much lighter memory
“footprint” for this algorithm, and, therefore, the execution of
the algorithm on pretty large configurations without resorting
to the secondary memory. This remark also indicates that, at
the very end, a considerable “bottleneck” in many of the more
difficult executions of the algorithms that are presented in this
work, might not be the required computational time per se,
but an explosion of the memory requirements involved that
necessitates the usage of the secondary memory and slows
down the algorithm very dramatically. Furthermore, it might
be possible to resolve this sort of “bottlenecks” through a more
pertinent definition of the data structures that are employed
by the algorithms, and a closer attention to issues like the
“memory leakages” that might occur during their execution.

Finally, we also used the data that are provided in Tables I–
III in order to compute the correlation – or, in more tech-
nical, statistical terms, the R-value [35] – between (i) the
number of states that are pruned from the sets Srs that are
processed by Algorithm 3 when applied on the considered
RAS configurations, and (ii) the corresponding running times
of this algorithm. The obtained R-value was R ≈ 0.8, which,
according to [35], is an indicator of “fairly strong positive
linear correlation” between the two considered quantities. This
result substantiates, in a strong quantitative sense, our claims
in the earlier parts of this paper that the empirical computa-
tional complexity of the presented algorithms is determined
significantly by the extent of the state-pruning that must be
performed during the computation of the target policies.

VI. CONCLUSIONS

The first part of this paper introduced the new class of
maximal linear DAPs for the sequential RAS that have been
studied in [1], providing a complete, formal characterization
of this class of policies, and enabling, thus, a more systematic
measure for assessing the various heuristic methodologies that
have sought to provide linear DAPs for those RAS. The second
part of the work focused on the more operational problems of
the computation and the approximation of the target set of
the maximal linear DAPs, for any given (D/C-)RAS Φ. More
specifically, this part of the work first presented a b&b algo-
rithm that, in principle, can provide a complete enumeration of
the corresponding set of the maximal linear DAPs, L̄(Φ), but
acknowledging the very high computational complexity of this
algorithm, subsequently it developed a heuristic algorithm that
is motivated by the original algorithm and can return a high-
quality linear DAP for the considered RAS Φ in a consistent
and expedient manner. Finally, the numerical experimentation
that accompanies the more theoretical developments of the
paper, has demonstrated the efficacy of the aforementioned
results, and the ability of the heuristic algorithm to generate
correct linear DAPs that are very close to the elements of
the target set L̄(Φ) in terms of the state admissibility that is
attained by these policies.

From a methodological standpoint, our heuristic algorithm is
able to achieve the aforementioned performance by taking an
extensive view of the “geometry” of the underlying subspaces,
and not focusing only on the structural and the behavioral
characteristics of the controlled RAS that are usually traced by
some of the most popular methodologies for the development
of the sought linear DAPs. In this way, this new algorithm
complements the earlier efforts that have pursued the devel-
opment of linear DAPs for the RAS classes considered in this
work, in a substantial manner. It will be interesting to assess
more systematically the potential gains in state admissibility
that are attained by this new approach, and the underlying
trade-off between the computational intensity of this new
method and the quality of the returned DAPs. This task will
be part of our future investigations in this area.

REFERENCES

[1] S. Reveliotis, “Logical Control of Complex Resource Allocation Sys-
tems,” NOW Series on Foundations and Trends in Systems and Control,
vol. 4, pp. 1–224, 2017.

16

[2] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems (2nd ed.). NY, NY: Springer, 2008.

[3] S. Reveliotis and E. Roszkowska, “On the complexity of maximally
permissive deadlock avoidance in multi-vehicle traffic systems,” IEEE
Trans. on Automatic Control, vol. 55, pp. 1646–1651, 2010.

[4] A. Nazeem, S. Reveliotis, Y. Wang, and S. Lafortune, “Designing max-
imally permissive deadlock avoidance policies for sequential resource
allocation systems through classification theory: the linear case,” IEEE
Trans. on Automatic Control, vol. 56, pp. 1818–1833, 2011.

[5] Y. F. Chen and Z. W. Li, “Design of a maximally permissive liveness-
enforcing supervisor with a compressed supervisory structure for flexible
manufacturing systems,” Automatica, vol. 47, pp. 1028–1034, 2011.

[6] R. Cordone and L. Piroddi, “Parsimonious monitor control of petri
net models of flexible manufacturing systems,” IEEE Trans. on SMC:
Systems, vol. 43, pp. 215–221, 2013.

[7] S. Reveliotis and A. Nazeem, “Optimal linear separation of the safe and
unsafe subspaces of sequential RAS as a set-covering problem: algorith-
mic procedures and geometric insights,” SIAM Journal on Control and
Optimization, vol. 51, pp. 1707–1726, 2013.

[8] R. Cordone, A. Nazeem, L. Piroddi, and S. Reveliotis, “Designing
optimal deadlock avoidance policies for sequential resource allocation
systems through classification theory: existence results and customized
algorithms,” IEEE Trans. Autom. Control, vol. 58, pp. 2772–2787, 2013.

[9] A. Nazeem and S. Reveliotis, “Designing maximally permissive dead-
lock avoidance policies for sequential resource allocation systems
through classification theory: the non-linear case,” IEEE Trans. on
Automatic Control, vol. 57, pp. 1670–1684, 2012.

[10] ——, “A practical approach for maximally permissive liveness-enforcing
supervision of complex resource allocation systems,” IEEE Trans. on
Automation Science and Engineering, vol. 8, pp. 766–779, 2011.

[11] ——, “Efficient enumeration of minimal unsafe states in complex
resource allocation systems,” IEEE Trans. on Automation Science &
Engineering, vol. 11, pp. 111–124, 2014.

[12] Z. Fei, S. Reveliotis, S. Miremadi, and K. Akesson, “A BDD-based ap-
proach for designing maximally permissive deadlock avoidance policies
for complex resource allocation systems,” IEEE Trans. on Automation
Science and Engineering, vol. 12, pp. 990–1006, 2015.

[13] J. Ezpeleta, J. M. Colom, and J. Martinez, “A Petri net based deadlock
prevention policy for flexible manufacturing systems,” IEEE Trans. on
R&A, vol. 11, pp. 173–184, 1995.

[14] S. A. Reveliotis and P. M. Ferreira, “Deadlock avoidance policies for
automated manufacturing cells,” IEEE Trans. on Robotics & Automation,
vol. 12, pp. 845–857, 1996.

[15] M. Lawley, S. Reveliotis, and P. Ferreira, “A correct and scalable
deadlock avoidance policy for flexible manufacturing systems,” IEEE
Trans. on Robotics & Automation, vol. 14, pp. 796–809, 1998.

[16] J. Park and S. A. Reveliotis, “Deadlock avoidance in sequential resource
allocation systems with multiple resource acquisitions and flexible
routings,” IEEE Trans. on Automatic Control, vol. 46, pp. 1572–1583,
2001.

[17] Z. Li and M. Zhou, “Elementary siphons of Petri nets and their
application to deadlock prevention in flexible manufacturing systems,”
IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems
and Humans, vol. 34, no. 1, pp. 38–51, 2004.

[18] F. Tricas, F. Garcia-Valles, J. M. Colom, and J. Ezpeleta, “A Petri
net structure-based deadlock prevention solution for sequential resource
allocation systems,” in Proceedings of the ICRA 2005. IEEE, 2005,
pp. 271–277.

[19] M. Ibrahim and S. Reveliotis, “Maximal linear deadlock avoidance
policies for complex resource allocation systems,” in Proc. of the 57th
IEEE Conference on Decision and Control. IEEE, 2018, pp. –.

[20] X. Cong, A. Wang, Y. Chen, N. Wu, T. Qu, M. Khalgui, and Z. Li,
“Most permissive liveness-enforcing Petri net supervision for discrete
event systems via linear monitors,” ISA Trans., vol. 92, pp. 145–154,
2019.

[21] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, pp. 541–580, 1989.

[22] A. Giua, F. DiCesare, and M. Silva, “Generalized mutual exclusion
constraints on nets with uncontrollable transitions,” in Proceedings of the
1992 IEEE Intl. Conference on Systems, Man and Cybernetics. IEEE,
1992, pp. 974–979.

[23] K. Yamalidou, J. Moody, M. D. Lemmon, and P. J. Antsaklis, “Feedback
control of Petri nets based on place invariants,” Automatica, vol. 32, pp.
15–28, 1996.

[24] M. V. Iordache and P. J. Antsaklis, “Synthesis of deadlock prevention
supervisors using Petri nets,” IEEE Trans. on Robotics & Automation,
vol. 18, pp. 59–68, 2002.

[25] ——, “Design of t-liveness enforcing supervisors in petri nets,” IEEE
Trans. on Automatic Control, vol. 48, pp. 1962–1974, 2003.

[26] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, Linear Programming and
Network Flows (2nd ed.). NY, NY: John Wiley & Sons, 1990.

[27] M. Ibrahim and S. Reveliotis, “Throughput maximization of capacitated
re-entrant lines through fluid relaxation,” in Proc. of ACC’18. APS,
2018, pp. –.

[28] ——, “Throughput maximization of capacitated re-entrant lines through
fluid relaxation,” IEEE Trans. on Automation Science and Engineering,
vol. 16, pp. 792–810, 2019.

[29] G. Weiss, “On the optimal draining of re-entrant fluid lines,” Georgia
Tech and Technion, Tech. Rep., 1994.

[30] J. G. Dai and G. Weiss, “Stability and instability of fluid models for
certain re-entrant lines,” Math. of Op. Res., vol. 21, pp. 115–134, 1996.

[31] S. Meyn, Control Techniques for Complex Networks. Cambridge, UK:
Cambridge University Press, 2008.

[32] D. Bertsimas, E. Nasrabadi, and I. C. Paschalidis, “Robust fluid process-
ing networks,” IEEE Trans. on Automatic Control, vol. 60, pp. 715–728,
2015.

[33] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algortihms and Complexity. Mineola, NY: Dover, 1998.

[34] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver,
Combinatorial Optimization. NY, NY: Wiley-Interscience, 1998.

[35] E. R. Dougherty, Probability and Statistics for the Engineering, Com-
puting and Physical Sciences. Englewood Cliffs, NJ: Prentice Hall,
1990.

Michael Ibrahim received the B.Sc. and M.Sc.
degrees from the Cairo University, Faculty of En-
gineering, Department of Computer Engineering,
in 2012 and 2015, and the Ph.D. degree in In-
dustrial Engineering from the School of Industrial
& Systems Engineering at the Georgia Institute of
Technology, in 2019.

Currently, he is an Assistant Professor in the
Department of Computer Engineering at the Cairo
University.

His research interests include discrete event sys-
tems, operations research, and machine learning.

Spyros Reveliotis received the Diploma degree in
electrical engineering from the National Technical
University of Athens, Greece, the M.Sc. degree in
computer systems engineering from Northeastern
University in Boston, and the Ph.D. degree in in-
dustrial engineering from the University of Illinois
at Urbana-Champaign.

He is a Professor with the School of Industrial and
Systems Engineering, Georgia Institute of Technol-
ogy, in Atlanta, GA. His main research interests are
in discrete-event systems theory and its applications.

Dr. Reveliotis is an IEEE Fellow and a member of INFORMS. He has
served on the editorial boards of many journals and conferences in his areas
of interest; some of his most recent positions are Senior Editor for the IEEE
TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING,
Associate Editor for the Journal of Discrete Event Dynamic Systems, and the
Editor-in-Chief of the Editorial Board at the IEEE Conference on Automation
Science and Engineering (CASE). He has also served as the Program Chair
for the 2009 IEEE CASE Conference, and the General Co-Chair for the 2014
edition of the same conference. Finally, he has been a recipient of a number of
awards, including the 2014 Best Paper Award of the IEEE TRANSACTIONS
ON AUTOMATION SCIENCE AND ENGINEERING.

Ahmed Nazeem is an Operations Research Scientist
at Facebook in Menlo Park, CA. In his current
position, he develops analytical models for enter-
prise services and he conducts applied research
in machine learning and optimization. Dr. Nazeem
received his Ph.D. in Industrial Engineering from
Georgia Tech. He has his work published in several
academic journals and conferences, and he has also
filed multiple patent disclosures. He has been a
recipient of a number of awards, including the CASE
2011 Kayamori Best Paper Award, and the 2014 Best

Paper Award of the IEEE TRANSACTIONS ON AUTOMATION SCIENCE
AND ENGINEERING

	Introduction
	The considered RAS class and the corresponding problem of deadlock avoidance
	Maximal linear DAPs
	Computation and approximation of the maximal linear DAPs
	Preamble
	A basic algorithm for the enumeration of the set ()
	Complexity considerations
	Efficient computation of near-optimal linear DAPs through a pertinent structuring of the underlying search process

	Computational Results
	Conclusions
	References
	Biographies
	Michael Ibrahim
	Spyros Reveliotis
	Ahmed Nazeem

