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Abstract − The work presented in this paper extends 
recently developed results in the theory of resource 
allocation systems (RAS) to RAS behaviors that present 
synchronization requirements in the underlying process 
flows. More specifically, the paper first provides a 
formal definition of the considered RAS structures and 
behaviors by introducing the Petri net sub-class of 
Generalized Augmented Marked Graphs (G-AMG), and 
subsequently, it proceeds to the analysis of the liveness 
properties of the resource allocation underlying the G-
AMG operation. It is shown that similar to the case of 
some previously studied RAS structures, non-liveness of 
the resource allocation taking place in the G-AMG 
context can be attributed to a structural object known as 
resource-induced deadly marked siphon, that is 
developed in a properly defined projection of the net 
reachability space. Beyond its theoretical significance in 
terms of formally characterizing and understanding the 
nature of deadlock or livelock that can occur in the 
considered resource allocation context, the 
aforementioned result is also deemed to be important 
from the practical standpoint of synthesizing liveness-
enforcing supervisors (LES), since it is expected to 
enable LES synthesis through application of the 
correctness verification methodology originally 
developed in [5]; the actual potential of this approach is 
currently under investigation. 
 
 

I. INTRODUCTION 
 

Motivated by the ever increasing significance of the 
problem of characterizing and enforcing the liveness of 
sequential resource allocation systems (RAS) that underly 
many contemporary technological applications [1], the 
work presented in this paper seeks to extend the existing 
results on the Petri net (PN) based structural 
characterization of RAS liveness (e.g., [2], [3], [4], [5]), to 
RAS that involve synchronization constraints, similar to 
those arising in assembly and/or disassembly operations. 
Furthermore, similar to the work presented in [5], it is 
assumed that the resource allocation requests associated 
with the processing stages of the various (sub-)processes 
are structured quite arbitrarily in terms of the number of the 
involved resource types and units. The resulting RAS class 
will be characterized as the Assembly/Disassembly (A/D-) 
RAS.  

    Our key finding is that, similar to the case of the 
Conjunctive/Disjunctive-RAS1 studied in [5], the lack of 
liveness of the resource allocation taking place in the A/D-
RAS can be explained in the Petri net modeling framework 
by the development of a particular structural object known 
as resource-induced deadly marked siphon, which is 
detected, however, in a modified reachability space that 
constitutes a certain projection of the original net 
reachability space. Beyond its theoretical significance in 
terms of formally characterizing and understanding the 
nature of deadlock or livelock that can occur in the 
considered resource allocation context, this finding is also 
important from the practical standpoint of synthesizing 
liveness-enforcing supervisors (LES), since it is expected to 
enable LES synthesis through application of the correctness 
verification methodology originally developed in [5], an 
issue currently under investigation. Finally, we notice that 
some preliminary results regarding the structural 
characterization of liveness in the A/D-RAS context have 
been reported in [3], [4]; however, those works constrain 
the resource allocation taking place at each process stage to 
a single resource unit at time, and therefore, the developed 
results are of more limited applicability.2 
 

II.  ASSEMBLY/DISASSEMBLY RAS AND 
GENERALIZED AUGMENTED MARKED GRAPHS 

 
This section first revises the Petri net (PN) related 

concepts that are necessary for the formal modeling and 
analysis of the A/D-RAS, and subsequently, it provides a 
detailed PN-based characterization of these resource 
allocation environments introducing the PN class of 
Generalized Augmented Marked Graphs. For a more 
extensive discussion on the PN-based modeling framework 
and the currently available tools for structural and 
behavioral analysis of the resulting models, the reader is 
referred to [7], [8]. 
 

                                                           
1 The Conjunctive/Disjunctive (C/D)-RAS models sequential 
RAS behavior that allows (i) the association of arbitrarily 
structured resource allocation requests  with the various 
processing stages, and (ii) routing flexibility. It is studied 
extensively in [5], and currently it is one of the broadest 
RAS classes to be systematically studied in the literature. 
2 In fact, they can be considered as the specialization of the results 
presented herein to the more constrained A/D-RAS sub-class 
studied in those papers; c.f. [6] for a more technical 
characterization of this relationship. 



A. Petri net Preliminaries 
 
 A marked Petri net (PN) is defined by a quadruple N = 
(P,T,W,M0), where P is the set of places, T is the set of 
transitions, W: (PxT) ∪ (TxP) → {0,1,2,…}≡ Z+ is the flow 
relation, and M0: P → Z+ is the net initial marking, 
assigning to each place p∈ P, M0(p) tokens. In the special 
case that the flow relation W maps onto {0,1}, the Petri net 
is said to be ordinary. The set of input (resp., output) 
transitions of a place p is denoted by •p (resp., p•). 
Similarly, the set of input (resp., output) places of a 
transition t is denoted by •t (resp., t•). This notation is also 
generalized to any set of places or transitions, X, e.g., •X = 
∪x∈X

•x. The ordered set X=<x1, x2,…,xn> ⊆ P∪T is a path, 
if and only if (iff) xi+1∈xi

•, i=1,…,n-1. Furthermore, a path 
is characterized as a circuit or cycle iff x1≡xn. Finally, an 
ordinary PN such that (s.t.) ∀t∈T, |t•|=|•t|=1 (resp., ∀p∈P, 
|p•|=|•p|=1), is characterized as a state machine (resp., 
marked graph). 
   Given a marking M, a transition t is enabled iff ∀p∈•t, 
M(p) ≥ W(p,t), and this is denoted by M[t>. A transition 
t∈T is said to be disabled by a place p∈•t at M iff M(p) < 
W(p,t). Furthermore, a place p∈P for which ∃t∈p• s.t. M(p) 
< W(p,t) is said to be a disabling place at M. Firing an 
enabled transition t results in a new marking M’, which is 
obtained by removing W(p,t) tokens from each place p∈•t, 
and placing W(t,p’) tokens in each place p’∈ t•. The set of 
markings reachable from M0 through any fireable sequence 
of transitions is denoted by R(N,M0). A marked PN N with 
initial marking M0 is said to be bounded iff all markings 
M∈R(N,M0) are uniformly bounded by some constant K, 
while N is said to be structurally bounded iff it is bounded 
for any initial marking M0. N is said to be reversible iff ∀ 
M∈R(N,M0), M0∈R(N,M). 
   In case that a marked PN is pure – i.e., ∀(x,y) ∈ 
(PxT)∪(TxP), W(x,y) > 0 ⇒ W(y,x) = 0 – the flow relation 
can be represented by the flow matrix Θ = Θ+-Θ-, where 
Θ+[p,t]=W(t,p) and Θ-[p,t]=W(p,t). A p-semiflow u is a |P|-
dimensional vector satisfying uT⋅Θ = 0 and u ≥ 0, and a t-
semiflow v is a |T|-dimensional vector satisfying Θ⋅v = 0 
and v ≥ 0. A p-semiflow u (resp., t-semiflow v) is said to be 
minimal iff  there is no p-semiflow u’ (resp., t-semiflow v’) 
such that ||u’|| ⊂ ||u|| (resp., ||v’|| ⊂ ||v||), where ||u|| = {p∈P: 
u(p)>0} (resp., where ||v|| = {t∈t: v(t)>0}). 
   Given a marked PN N=(P,T,W,M0), a transition t∈T is 
live iff ∀ M∈R(N,M0), ∃ M’∈ R(N,M) s.t. M’[t>, and t∈T 
is dead at M∈R(N,M0) iff there is no M’∈ R(N,M) s.t. 
M’[t>. A marking M∈R(N,M0) is a (total) deadlock iff 
∀t∈T, t is dead. A marked PN is quasi-live iff ∀t∈T, ∃ 
M∈R(N,M0) s.t. M[t>, it is weakly live iff ∀ M∈R(N,M0), ∃ 
t∈T s.t. M[t>, and it is live iff ∀t∈T, t is live. Of particular 
interest for the liveness analysis of marked PN is a 
structural element known as siphon, which is a set of places 
S⊆P s.t. •S⊆S•. A siphon is minimal if there is no other 
siphon S’ s.t. S’⊂S. A siphon is said to be empty at marking 
M iff M(S) ≡ Σp∈S M(p) = 0, and it is said to be deadly 
marked at marking M, iff  ∀t∈•S, t is disabled by some p∈S 
[5]. Obviously, empty siphons are deadly marked siphons. 

Furthermore, if S is a deadly marked siphon at some 
marking M, then (i) ∀t∈•S, t is a dead transition in M, and 
(ii) ∀ M’∈R(N,M), S is deadly marked. Finally, it is shown 
in [5] that if marking M∈ R(N,M0) is a total deadlock, then 
the set S of disabling places in M constitutes a deadly 
marked siphon (generalizing, thus, the relationship between 
total deadlocks and empty siphons in ordinary PN’s). 
 
B. Generalized Augmented Marked Graphs  
 
For the purposes of this work, the A/D-RAS is modeled by 
a PN sub-class to be called Generalized Augmented Marked 
Graph (G-AMG). Here, first we provide a formal 
characterization of the G-AMG sub-class, and subsequently 
we indicate how this characterization translates to a set of 
modeling assumptions regarding the operation of the A/D-
RAS. 
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Fig. 1: The G-AMG net structure 
 
Definition 1: A Generalized Augmented Marked Graph (G-
AMG) is a marked PN N=(P,T,W,M0) such that 
1. P = PS ∪ PI ∪ PF ∪P0 ∪ PR,, where PX = ∪i=1

nPXi, 
∀X∈{S,I,F}, P0 = ∪i=1

n{p0i}, PR = {r1,…,rm}, and PX ∩ 
PY = ∅, ∀ X,Y ∈ {Si: i=1,…,n} ∪ {Ii: i=1,…,n} ∪ {Fi: 
i=1,…,n} ∪ {0,R} with X≠Y. 

2. T=TS ∪ TI  ∪ TF, where TS = ∪i=1
nTSi, TI = ∪i=1

n{tIi},  
TF = ∪i=1

n{tFi},  and TX ∩TY = ∅, ∀ X,Y ∈ {Si: 
i=1,…,n} ∪ {I,F} with X≠Y. 

3. W: (PxT) ∪ (TxP) → Z+ satisfies the following 
requirements: 
a. ((PS ∪ PI ∪ PF ∪P0)xT) ∪ (Tx(PS ∪ PI ∪ PF ∪P0)) 

→ {0,1} s.t. ∀j≠i,  ((PSj ∪ PIj ∪ PFj ∪P0j)xTi) ∪ 
(Tix(PSj ∪ PI j∪ PFj ∪P0j)) → {0}. 

b. ∀i, ({p0i}x(TSi∪{tIi,tFi})) → {1} for (p0i,tIi), and 
{0} otherwise. Similarly, ∀i, ((TSi∪{tIi,tFi})x{p0i}) 
→ {1} for (tFi,p0i), and {0} otherwise. 

c. ∀i, ({tIi}xPIi) → {1} and ({tIi}x(PSi∪PFi)) → {0}. 
Similarly, ∀i, (PFix{tFi}) → {1} and 
((PSi∪PIi)x{tFi}) → {0}. 

d. (PRxTS) ∪ (TSxPR) → Z+ and (PR x 
(TI∪TF))∪((TI∪TF)xPR) → {0}. 

4. ∀i, i=1,…,n, the subnet Ni generated by PSi ∪ PIi ∪ PFi 

∪{p0i} ∪ TSi ∪ {tIi, tFi} is a strongly connected marked 
graph s.t. every cycle contains {p0i}. 



5. ∀r∈PR, ∃ a minimal integral p-semiflow ur s.t. ||ur||∩PR 
= {r}, ||ur||∩(P0∪PI∪PF) = ∅, ||ur||∩PS ≠ ∅, and 
ur(r)=1. 

6. N is pure and strongly connected. 
7. M0: P→ Z+ with M0(p) ≥ 1, ∀p∈P0∪PR, and M0(p)=0, 

otherwise.  
♦ 
 
   The basic structure implied by the above definition of G-
AMG nets is depicted in Figure 1. The entire net is 
decomposed to n process subnets, interconnected through 
the set of resource places PR. The elements of PR are in one-
to-one correspondence with the various resource types 
available in the underlying A/D-RAS, and their marking 
during the evolution of the net dynamics models the 
availability of these resources in the original A/D-RAS. In 
particular, ∀k, M0(rk) ≡ Ck, i.e., the initial marking of place 
rk defines the capacity of the corresponding resource type. 
On the other hand, each process subnet Ni is further 
decomposed to its idle place p0i and a remaining acyclic 
marked graph (c.f. item 4 in Definition 1) that expresses the 
sequential logic of the corresponding job type. Place p0i 
contains all the tokens corresponding to process instances 
waiting to be loaded into the system, and it is also the final 
destination of all the process instances that have completed 
their execution into the system. Its introduction to the 
process subnet is a typical convention adopted in all the 
relevant PN-based RAS models, allowing the explicit 
representation of all the process instances that are re-
circulated in the considered process subnet, defining thus 
one of the system invariants  (c.f., for instance, [2], [3], 
[5]).  The initiation of the execution of a process instance 
situated in place p0i is represented by the firing of transition 
tIi, which deposits one token in each place pIi,k ∈ PIi, and 
initiates, thus, an instance from each sub-process involved 
in the execution of process net Ni. The entire sequential 
logic of process net Ni is defined by the subnet generated by 
PSi ∪ TSi, while the involved resource allocation is 
expressed by the connectivity of the transitions in TSi to the 
places in PR. The execution of any process instance is 
considered to be complete only when all the required 
outcomes have been obtained. This completion requirement 
is expressed by the presence of a token in each place pFi,k ∈ 
PFi; the completion event itself is expressed by the firing of 
transition tFi, which returns a single token to place p0i. 
Finally, the next definition extends to the class of G-AMG, 
the notion of modified marking, originally introduced in [5] 
for analyzing the liveness of the PN subclass modeling the 
behavior of C/D-RAS. 
 
   Definition 2: Given a G-AMG net N=( PS ∪ PI ∪ PF ∪P0 

∪ PR,, TS ∪ TI  ∪ TF, W, M0), the modified marking M(p) is 
defined by M(p)=M(p), if p∉ P0, and 0, otherwise. 
Furthermore, the set of all modified markings induced by 
the net reachable markings in defined by R(N,M0) = {M: 
M∈ R(N,M0)}. ♦ 
 
 
 

 
III. STRUCTURAL ANALYSIS AND CONTROL OF  

G-AMG NETS 
 

This section first investigates the liveness, quasi-liveness 
and reversibility of G-AMG nets, and their relationship to 
the structural concept of deadly marked siphon. At the same 
time, the presented analysis systematizes and generalizes 
the methodology developed in [5] for deriving similar 
structural characterizations of liveness and reversibility in 
the class of PN’s modeling C/D-RAS. The last part of the 
section discusses how the derived structural 
characterization of liveness can support the synthesis of 
liveness-enforcing supervisors (LES) for the considered 
RAS class. 
 
A. Siphon-based Characterization of Liveness in G-AMG 
nets 
 
We start the discussion on the siphon-based 
characterization of liveness in G-AMG nets with the 
following lemma, which is instrumental for the 
development of all the subsequent results. 
 
   Lemma 1: Consider a G-AMG net N=( PS ∪ PI ∪ PF ∪P0 

∪ PR,, TS ∪ TI  ∪ TF, W, M0). If ∃ M ∈ R(N,M0) s.t. M≠M0 
and the corresponding modified marking M is a total 
deadlock, then ∃ siphon S s.t. 

i. S is deadly marked at M; 
ii. S ∩ PR ≠ ∅; 
iii. ∀p ∈ S ∩ PR, p is a disabling place at M. 
 

   Proof: Let S denote the set of disabling places in 
modified marking M. Since M is a total deadlock, S is a 
deadly marked siphon [5]. 
   To establish that S ∩ PR ≠ ∅, first notice that items (4) 
and (7) in Definition 1 imply that each process subnet Ni is 
a live marked graph (c.f. [8], Theorem 3.15). Furthermore, 
the special structure of the circuits in Ni, i=1,…,n, 
presumed by item 4 of Definition 1, combined with the 
facts that M ∈ R(N,M0) and M≠M0, imply that any removal 
of tokens from places p0i, I=1,…,n, required by Definition 
2, still maintains the liveness of each process subnet Ni with 
M(p0i) ≠M0(p0i). Hence, the occurrence of the system 
deadlock at M must be caused by insufficiently marked 
resource places. 
   Finally, part (iii) of Lemma 1 is an immediate 
consequence of the above definition of set S. ♦ 
 
   In the following, a deadly marked siphon S satisfying also 
the conditions (ii) and (iii) in Lemma 1, will be called a 
resource-induced deadly marked siphon. Lemma 1 
essentially specializes the well-established connection in 
general PN theory between total deadlocks and badly 
marked siphons to the considered class of resource-process 
nets. As it is shown in the sequel, it provides a vehicle for 
connecting the non-liveness and/or non-quasi-liveness 
arising in this RAS class to resource-induced deadly 
marked siphons, by establishing that the lack of (any of) 



these properties implies the existence of a reachable 
marking M≠M0 with a total deadlock in the modified 
marking M. In this way, it reveals and establishes the 
natural connection between the concept of deadlock in the 
classical resource allocation system theory and its 
counterpart in the PN theory. The investigation of the 
implications of this connection for even broader classes of 
resource allocation systems modeling modern workflows, is  
undertaken in [6]. 
 
   Lemma 2: Consider a G-AMG net N=( PS ∪ PI ∪ PF ∪P0 

∪ PR,, TS ∪ TI  ∪ TF, W, M0). If N is not quasi-live, then, ∃ 
M ∈ R(N,M0) s.t. M≠M0 and the corresponding modified 
marking M is a total deadlock. 
 
   Proof: Since N is not quasi-live, there exists a transition 
t* that is dead at M0. Let t* belong to the process subnet 
Ni*. From Definition 1, it is clear that t*≠ tIi*, since tIi* is 
enabled at M0. Let M’ denote the marking of N reached 
from M0 by firing tIi* once. Then, the fact that the subnet 
obtained from Ni* with the removal of its idle place p0i* is a 
connected acyclic marked graph with tIi* as its unique 
source node, implies that every transition sequence σ s.t. 
M’[σ> and ∀t ∈σ, t ∈ TSi* ∪ {tFi*}, has finite length. 
Consider such a maximal transition sequence σ* and let 
M’[σ*>M. The deadness of t* implies that tFi* is not 
included in σ* (c.f. [8], Prop. 3.16). Therefore, M(p0i) 
≠M0(p0i). Furthermore, M is a total deadlock for N, since 
∀i≠i*, Ni is empty of tokens, and therefore, all its 
transitions are dead, while the deadness of the transitions in 
Ni* is established by the maximality of σ*. ♦ 
 
   Lemma 3: Consider a quasi-live G-AMG net N=( PS ∪ PI 

∪ PF ∪P0 ∪ PR,, TS ∪ TI  ∪ TF, W, M0). If N is not live, 
then, ∃ M ∈ R(N,M0) s.t. M≠M0 and the corresponding 
modified marking M is a total deadlock. 
 
   Proof: Since N is not live, ∃ M’∈ R(N,M0) and t*∈ T s.t. 
t* is dead at M’. We claim that ∃ M∈ R(N,M’) s.t. M≠M0 
and every transition t∉TI is disabled. Indeed, the structure 
of the process subnets Ni, i=1,…,n, specified by Definition 
1, implies that every transition sequence σ s.t.(i) M’[σ> and 
(ii) for all t∈σ, t is not in TI, is of finite length. Consider 
such a maximal transition sequence σ* and let M’[σ*>M. 
Then, M≠M0, since otherwise the quasi-liveness of N 
implies that t* is not dead at M’. To see that M is a total 
deadlock for N, simply notice that the specification of M, 
by setting M(p0i) = 0, ∀i, essentially disables all transitions 
t ∈ TI, that are the only transitions potentially enabled in M. 
♦ 
 
   Theorem 1: Let N=( PS ∪ PI ∪ PF ∪P0 ∪ PR,, TS ∪ TI  ∪ 
TF, W, M0) be a marked G-AMG net. N is live if and only if 
the space of modified reachable markings, R(N,M0) 
contains no resource-induced deadly marked siphons. 
 
   Proof: To show the necessity part, suppose that there 
exists M∈ R(N,M0) s.t. M contains a resource-induced 

deadly marked siphon S. Let r∈S∩PR be one of the 
disabling resource places, and consider t ∈ r• s.t. M(r) < 
W(r,t). The definition of deadly marked siphon implies that 
∀t’∈ •r, t’ is dead in R(N,M). Furthermore, Definition 2 
also implies that ∀M’∈ R(N,M), M’(r) ≤ M(r) = M(r), since 
the re-introduction of the removed tokens in places p∈P0, 
and their potential loading into the system, can only 
decrease the resource availabilities. Therefore, t is a dead 
transition at M, which contradicts the assumption of the net 
liveness. 
   To show the sufficiency part, suppose that N is not live. 
Then, the combination of Lemmas 2 and 3 imply that there 
exists M∈ R(N,M0) s.t. M≠M0 and the corresponding 
modified marking M is a total deadlock. But then, Lemma 1 
implies that R(N,M0) contains a resource-induced deadly 
marked siphon, which contradicts the working hypothesis. 
♦ 
 
B. Practical Implications of Theorem 1 
 
From a more practical standpoint, the main concern in the 
control of contemporary RAS is that all activated processes 
can proceed to completion and get unloaded from the 
system without external intervention, i.e., that the running 
processes do not get entangled in deadlock or livelock. 
Given the characterization of the G-AMG initial state M0, 
in item 7 of Definition 1, the above requirement for 
deadlock and livelock-free operation essentially translates 
into a requirement for reversibility, in the PN modeling 
framework. It should be obvious, however, that in the 
context of G-AMG nets, liveness is a necessary condition 
for reversibility. The next theorem establishes that liveness 
is also a sufficient condition for reversibility, and therefore, 
in the considered context, these two notions are equivalent. 
 
  Theorem 2: In the class of G-AMG nets, liveness implies 
reversibility. 
 
   Proof: Consider a live G-AMG net N, and a marking M 
∈ R(N,M0) s.t. M≠M0. Then, using an argument similar to 
that used in the proof of Lemma 3, one can construct a 
finite-length firing sequence σ leading to a marking M’ s.t. 
every transition t∉TI is disabled in M’. We claim that 
M’=M0. Indeed, by construction, M’ is a total deadlock of 
N, and if M’≠M0, Lemma 1 implies that M’ contains a 
resource-induced deadly marked siphon. But then, Theorem 
1 implies that N is not live, which contradicts the working 
hypothesis. ♦ 
 
   As it was pointed out in the Introduction, it is expected 
that by connecting the net liveness and reversibility to the 
absence of resource-induced deadly marked siphons, the 
results of Theorems 1 and 2 will facilitate the synthesis of 
liveness-enforcing supervisors  (LES) for quasi-live G-
AMG’s through the analytical methodology originally 
developed in [5] for the liveness-enforcing supervision of 
C/D-RAS. The key requirement for the application of this 
methodology in the A/D-RAS context, is the identification 
of a LES class that (i) will admit a PN-based representation; 



(ii) when superimposed on the original uncontrolled RAS-
modelling PN, it will preserve the structure of the G-AMG 
net;3 (iii) for the case of G-AMG’s with quasi-live process 
sub-nets, it will guarantee the structural liveness of the 
controlled system with respect to marking of the 
superimposed control subnet, i.e., the existence of a 
marking for the superimposed control places such that the 
resulting controlled net is live. Assuming the existence of 
such a LES class, a correct supervisor can be obtained by 
searching the marking space of the control subnet for a 
marking that does not give rise to resource-induced deadly 
marked siphons in the modified reachability space of the 
controlled system. This search can be based on a 
mathematical (integer) programming formulation that was 
developed in [5]; we refer the reader to that work for the 
further details. 
   Finally, the combination of Lemmas 1 and 2 implies that, 
in principle, the aforementioned computational technique of 
[5] can provide also an analytical sufficiency test for the 
quasi-liveness of any given G-AMG process net. The 
resolving power of this test will be rather limited, but still 
its availability is quite important, since it has been already 
established in [9] that evaluating the quasi-liveness of a G-
AMG process net is an NP-complete problem.  
 

IV. CONCLUSION 
 

The work presented in this paper first introduced the PN 
class of Generalized Augmented Marked Graphs (G-
AMG’s) for modeling the behavior of RAS with 
synchronization constraints, and subsequently it established 
that the lack of liveness and/or quasi-liveness in this new 
PN class can still be attributed to the development of 
resource-induced deadly marked siphons in the modified 
reachability space. In this way, it extended past similar 
results concerning the structural characterization of liveness 
in PN’s modeling the behavior of C/D-RAS. From a more 
practical standpoint, it was highlighted how the derived 
results can provide the basis for (i) the development of a 
methodology for verifying the liveness and quasi-liveness 
of G-AMG nets, and (ii) the synthesis of LES that are 
appropriate for the A/D-RAS operational context, by 
building upon some computational tools developed in [5]. 
   Future work will seek (i) to fully develop the 
aforementioned methodology regarding the evaluation of 
G-AMG liveness and quasi-liveness, and the synthesis of 
the necessary LES, and (ii) to extend the siphon-based 
characterization of non-liveness and deadlock derived in 
this work,  to RAS classes with more complex behavioral 
patterns. Some initial results towards the latter direction are 
reported in [6].  
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