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Abstract

This paper considers the problem of computing an optimal policy for a Markov Decision
Process (MDP), under lack of complete a priori knowledge of (i) the branching probability
distributions determining the evolution of the process state upon the execution of the dif-
ferent actions, and (ii) the probability distributions characterizing the immediate rewards
returned by the environment as a result of the execution of these actions at different states
of the process. In addition, it is assumed that the underlying process evolves in a repetitive,
episodic manner, with each episode starting from a well-defined initial state and evolving
over an acyclic state space. A novel efficient algorithm for this problem is proposed, and
its convergence properties and computational complexity are rigorously characterized in the
formal framework of computational learning theory. Furthermore, in the process of deriving
the aforementioned results, the presented work generalizes Bechhofer’s “indifference-zone”
approach for the Ranking & Selection problem, that arises in statistical inference theory, so
that it applies to populations with bounded general distributions.

Keywords: Markov Decision Processes, Computational Learning Theory, Machine Learn-
ing, Efficient Probably Approximately Correct (PAC) Algorithms, Ranking & Selection, Un-
certainty Management

1 Introduction

The problem considered in this work can be stated as follows: A certain task is executed
repetitively in an episodic manner. Each episode starts from a well-defined initial state and
evolves sequentially over an acyclic state space. At each state, the task evolution is the result
of an action that is selected by a controlling agent; the execution of this action determines
probabilistically the subsequent state, but it also results in a certain reward for the controlling
agent. The returned reward can be of arbitrary sign,1 and it is a random quantity drawn from
some bounded2 general distribution that is dependent on the current state and the commanded
action. The agent’s objective is to select the actions to be commanded at the different states
of the underlying task in a way that maximizes the expected total reward to be collected
over any single episode. However, the initial knowledge of the controlling agent about the
underlying task and its operational environment is limited to (i) the set of the environmental
states, (ii) the available actions at each state, (iii) an upper bound for the magnitude of the

1A negative reward can be considered as a cost.
2i.e., a distribution with bounded support



Figure 1: The Optimal Disassembly Planning Problem

experienced rewards, and (iv) a set of action sequences that can lead with positive probability
to each of the environmental states, together with a lower bound for the corresponding state-
reaching probabilities. The agent knows neither (v) the branching probability distributions
that determine the state evolution as a result of the different actions, nor (vi) the type and
the moments of the distributions determining the experienced rewards. Hence, the agent must
compute a (near-)optimal policy for the aforestated objective, while observing and appropriately
compiling the results of its decisions on the operational environment.

From an application standpoint, the aforestated problem arises frequently in sequential de-
cision making contexts with a “decision-tree” structure [7] and with incomplete information
regarding the underlying problem parameters. An application that has been the primary mo-
tivation for our work is the Optimal Disassembly Planning (ODP) problem [14, 15, 16]. This
problem is depicted in Figure 1 and it can be briefly described as follows: Presently, under
the pressure of environmental, safety, and other societal and economic concerns, a number of
industrial sectors have started deploying additional operations that seek to retrieve the cor-
responding product units at the end of their functional life, extract from them any possible
value, and dispose the remaining material in an environmentally friendly manner. Hence, the
retrieved product units are brought to designated facilities, known as re-manufacturing centers,
where those in fairly good condition are refurbished and re-introduced in the supply chain,3

the remaining are disassembled in order to retrieve potentially re-usable components and/or
raw material, like glass, metals and plastics, and any remaining unusable material is forwarded
to landfills and/or incineration. The decision-making dynamics underlying this disassembly

3typically directed to a secondary market
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process are depicted in the lower part of Figure 1: Starting with the initially retrieved unit,
the decision maker must select a disposition option for this item, among those depicted in the
figure. Typically, this decision will be made without complete knowledge of the quality status
of the various components in this artifact and their salvage value. However, the missing in-
formation is partially regained through a number of measurements that are performed on the
considered artifact and classify it to a certain quality category, that will eventually influence
the decision making process. In case that the selected option is “disassembly”, a similar testing
and classification procedure will be applied to all the derived components, and this process will
repeat itself, until all the obtained artifacts have been directed to a certain disposition venue.
Hence, it is clear from this description that the considered decision making process is sequential
and it evolves in episodes over a finite, acyclic state space, with each episode corresponding to
the complete disposition of a particular product unit. Furthermore, in an optimized setting,
the decision taken at each stage must maximize the value extracted from the corresponding
artifact. However, the characterization of such an optimal policy is constrained by (i) the
stochastic nature of the quality status of the extracted items and their salvage value, and also
(ii) the stochasticity in the involved operational costs. Even worse, the a priori modeling of this
stochasticity is not possible, since it is determined by consumer behavior and market forces that
are not readily observable by the considered process. Hence, the process decision maker must
resort to techniques that will enable her to derive the optimal policy through the observation
and processing of the implications of her decisions during the process operation.

Problems and techniques that concern the incremental computation of (near-)optimal poli-
cies in lack of complete a priori information about the problem parameters fall in a broader
scientific area that is known as machine learning [13]. In fact, researchers in the area of ma-
chine learning should recognize the problem outlined above as a typical reinforcement learning
(RL) [18] problem, and therefore amenable to the available RL algorithms. For instance, under
the aforestated assumptions and some standard regularity conditions, the classical, by now,
Q-learning algorithm [20] can be applied with guaranteed convergence to optimality. Indeed,
references [15, 16] detail an implementation of the Q-learning algorithm for the aforementioned
ODP problem and establish conditions for its convergence to an optimal policy. However, these
results are of an asymptotic nature, and they do not provide any further information regarding
the rate of convergence. In general, RL – or as it is otherwise known, Neuro-Dynamic Program-
ming (NDP) – theory has currently focused primarily on (i) the development of algorithms
that will converge asymptotically to an optimal policy, and (ii) the pertinent representation
and compression of the information that is necessary for the effective and efficient learning of
the target (near-)optimal policies, especially in the case of tasks with very large discrete state
spaces; the reader is referred to [2, 18] for some excellent expositions of the relevant results.
On the other hand, the study of the complexity of the RL problem and of the convergence rate
of RL learning algorithms to an optimal policy falls into the realm of computational learning
theory (CLT) [11]. Currently, the CLT results on the RL problem are rather limited, and they
pertain primarily to algorithmic variations that facilitate the analysis of the problem complexity
rather than practical implementations, c.f., for instance, the works of [9, 10, 5, 6].

In the light of the above discussion, the main objective of the work presented in this pa-
per is to establish that in the case of repetitive tasks evolving episodically over acyclic state
spaces, as is the case with the aforementioned ODP problem, one can obtain customized learn-
ing algorithms that are computationally efficient and (yet!) effectively implementable. More
specifically, for any given ε > 0 and δ ∈ (0, 1/2), a straightforward implementation of these
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algorithms returns an ε-optimal policy with probability 1 − δ,4 while the resulting computa-
tional complexity is significantly lower than the algorithmic complexity identified in [9, 10]
for more generally structured RL problems. This reduction in computational complexity and
the suggested implementational efficiency of our algorithms stem from (i) the ability to perti-
nently characterize and exploit, in the considered problem context, the flow of the information
necessary for the computation of the optimal policy, and (ii) results coming from the area of
statistical inference – in particular, the area known as “ranking & selection” (R&S) [12] – that
enable the systematic and rigorous resolution of the action selection problem arising at the
different problem states.5 Furthermore, another attribute that characterizes our algorithms
and facilitates their straightforward implementation is their “direct” nature, i.e., the fact that
they proceed to the computation of the target policy while avoiding the explicit estimation of
the missing problem parameters. We mention, for completeness, that the work of [5] develops
an alternative “indirect” algorithm for the considered problem that first estimates the missing
problem parameters to a certain level of accuracy, and subsequently computes an “apparently
optimal” policy through a standard Dynamic Programming (DP) computation. From a com-
putational standpoint, both algorithms end up having comparable computational complexity,
but, as mentioned above, we believe that the direct nature of the algorithm(s) presented herein
enables a more straightforward and unobtrusive implementation in the underlying operational
context.6

The rest of the paper is organized as follows: Section 2 provides a rigorous characterization
of the learning problem considered in this work, and Section 3 presents a notion of compu-
tational efficiency that is pertinent to machine learning algorithms. Subsequently Section 4
proposes a methodology for developing efficient learning algorithms for the learning task under
consideration, and finally, Section 5 concludes the paper by summarizing the key contributions
and by outlining the remaining research tasks that are necessary for the completion of the
proposed research and its implementation in the ODP context.7

2 A formal characterization of the considered learning problem

We begin our discussion of the learning problem of interest in this work, by providing a formal
characterization of the “environment” in which the considered learning task will take place.
This environment essentially constitutes a discrete-time Markov Decision Process (DT-MDP)
[2], the structure of which is completely characterized by a quadruple:

E = (X,A,P,R) (1)

where the components X, A, P, and R are further defined as follows:

• X is the finite set of the process states, and it is partitioned into a sequence of “layers”,
X0, X1, . . . , XL. X0 = {x0} and defines the initial state of the process, while states
x ∈ XL are its terminal states.

4As discussed in Section 3, such algorithms are characterized as probably approximately correct (PAC).
5At the same time, our work extends the past results on the R&S problem – in particular, Bechhofer’s

“indifference-zone” approach [1] – so that they apply to the more general statistical assumptions underlying our
work.

6An interesting future research issue would be the experimental comparative study of the “empirical” perfor-
mance of these two algorithms.

7We also notice, for completeness, that an abridged version of the presented results, which outlines the key
ideas but foregoes some of the technical derivations and the discussion provided in this manuscript, can be found
in [17].
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• A is a set function defined on X, that maps each state x ∈ X to the finite, non-empty set
A(x), comprising all the decisions / actions that are feasible in x. It is further assumed
that for x 6= x′, A(x) ∩ A(x′) = ∅. For subsequent development, we also define ¯|A| ≡
maxx∈X |A(x)|.

• P is the state transition function, defined on
⋃

x∈X A(x), that associates with every action
a in this set a discrete probability distribution p(·; a), that is unknown to the learning
agent. The support sets, S(a), of the distributions p(·; a) are subsets of the state set X
that satisfy the following property: For any given action a ∈ A(x) with x ∈ Xi for some
i = 0, . . . , L− 1, S(a) ⊆

⋃L
j=i+1 Xj ; for a ∈ A(x) with x ∈ XL, S(a) = X0. In words, the

previous assumption implies that the environment operates in an episodic fashion, where
each episode is an acyclic traversal of the underlying state space from the initial state to
a terminal state. Furthermore, it is assumed that every state x ∈ X can be reached from
the initial state x0 with positive probability, through some sequence of actions, and that
the learning agent knows (i) at least one such sequence of actions for every state, and also
(ii) a lower bound, q, for the corresponding state-reaching probabilities.8

• R is the immediate reward function, defined on
⋃

x∈X A(x), that associates with each
action a in this set a probability distribution, D(µ(a), v(a)), characterizing the immediate
reward experienced by the learning agent every time that action a is selected and executed.
The parameters µ(a) and v(a) denote respectively the mean and the maximum possible
magnitude of the rewards drawn from the distribution D(µ(a), v(a)), and they take finite
values for every a. On the other hand, the only information initially available to the
learning agent about R() is an upper bound v̄ for the quantities v(a), a ∈

⋃
x∈X A(x).

The learning agent controls the selection of the action to be executed at every state of the
environment. More specifically, starting from the initial state x0 at period t = 0, and at every
consecutive period t = 1, 2, 3, . . . , the agent (i) observes the current state of the environment,
xt, (ii) selects an action at ∈ A(xt) and commands its execution upon the environment, and
subsequently (iii) it experiences a reward rt, where the latter is a random sample drawn from
the distribution D(µ(at), v(at)). Hence, at the end of some period t, the agent has experienced
an entire “history”

x0, a0, r0, x1, a1, r1, . . . , xt, at, rt (2)

The ultimate objective of this agent is to determine an action selection scheme – or, in the
relevant terminology, a policy – π∗, that maps each state x ∈ X to an action π∗(x) ∈ A(x) in
a way that maximizes the expected total reward experienced over any single episode. Letting
M denote the (random) duration of any single episode in terms of number of periods, t, the
aforestated objective can be formally expressed as follows:

π∗ = arg max
π

Eπ[
M∑
t=0

rt|x0 = x0] (3)

8The reader should notice that this characterization of the state transition function ignores the multi-threading
effect that results from the disassembly operation in the ODP problem. We have opted to omit this particular
feature from the basic positioning of the problem considered in this work, since it would complicate the exposition
of the main ideas without contributing substantially to the underlying analysis. The extension of the developed
results in order to accommodate this particular feature is very straightforward and it is briefly outlined in the
concluding section.
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In the above equation, the expectation Eπ[·] is taken over all the possible episode realizations
under policy π. It is easy to see that, in the considered operational context, an optimal policy
π∗ can be obtained through the following simple recursion:

∀x ∈ XL,

π∗(x) := arg max
a∈A(x)

{µ(a)} (4)

V ∗(x) := µ(π∗(x)) (5)

∀x ∈ Xi, i = L− 1, . . . , 0,

π∗(x) := arg max
a∈A(x)

{µ(a) +∑
x′∈S(a)

p(x′; a) · V ∗(x′)} (6)

V ∗(x) := µ(π∗(x)) +∑
x′∈S(π∗(x))

p(x′;π∗(x)) · V ∗(x′) (7)

The quantity V ∗(x) appearing in the above recursion is known as the (optimal) value of the
corresponding state x, and it expresses the expected return to be collected by the learning
agent in a single episode, when it starts from state x and follows the optimal policy π∗ until
the completion of the episode.

Yet, despite the fact that it provides a pertinent characterization of the optimal policy,
the algorithm defined by Equations 4–7 is not directly applicable in the considered problem
context, since the quantities µ(a) and p(x; a), x ∈ X, a ∈ A(x), are not initially known to the
agent. Furthermore, as discussed in the introductory section, the application of standard RL
algorithms, like Q-learning [20], guarantees only asymptotic convergence to optimality, and to
the best of our knowledge, currently there are no formal results characterizing the convergence
rate of the “standard” Q-learning algorithm to an optimal policy. At the same time, Q-learning
is notorious for rather slow convergence. Hence, in the rest of this document, we seek to
exploit the special structure of the considered problem in order to derive customized learning
algorithms with proven convergence and complexity properties. However, before delving into
this discussion, we shall formalize the notions of computational complexity and efficiency to be
employed in the considered problem context.

3 Efficient PAC learnability

In computational learning theory [11], a learning algorithm is characterized as probably approx-
imately correct (PAC), if, upon its completion, it provides with probability at least (1− δ), an
approximation, ĥ, of the target concept h∗, that differs from h∗ by an “error”, err(ĥ), less than
or equal to ε. In this definition, both δ and ε are externally specified parameters, and the quan-
tity err(ĥ) is appropriately specified from the attributes of the target concept h∗. In addition,
a PAC algorithm is said to be efficient , if it executes in a number of steps that is a polynomial
function of 1/δ, 1/ε, and some additional parameters that characterize the complexity of the
learning task and the “size” of the target concept h∗.

In the context of the learning problem considered in this work, the target concept is any
optimal policy π∗, and a natural solution space is the set Π consisting of all the deterministic
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policies π that map each state x ∈ X to a unique action π(x) ∈ A(x). For these policies, we
define:

err(π) = Eπ∗ [
M∑
t=0

rt|x0 = x0]− Eπ[
M∑
t=0

rt|x0 = x0] (8)

On the other hand, the complexity of the considered learning problem is measured by the
magnitude of the environmental parameters |X|, ¯|A|, L, v̄, and 1/q, respectively characterizing
the size of the task state space, the extent of choice at each state, the length of the decision
sequences, the magnitude of the collected rewards, and the difficulty of accessing the various
states of the task state space.

In the light of the above characterizations, an efficient PAC algorithm for the learning
problem considered in this work is defined as follows:

Definition 1: An efficient PAC algorithm for the RL problem considered in this work is an
algorithm that, for any environment E = (X,A,P,R) and parameters δ ∈ (0, 1/2) and ε > 0,

i. will execute in a finite number of steps, that is polynomial with respect to 1/δ, 1/ε, |X|,
¯|A|, L, v̄ and 1/q, and

ii. upon its completion, will return, with probability at least 1−δ, a policy π̂ with err(π̂) ≤ ε.
�

The next section discusses the special structure of the considered RL problem that enables
the development of an efficient PAC algorithm for it.

4 Developing an efficient PAC learning algorithm for the con-
sidered RL problem

The PAC algorithm proposed in this work for the RL problem of Section 2 is strongly based
upon the following fundamental observation:
Observation 1: According to Equations 4–7, that characterize the structure of an optimal policy,
π∗, for the RL problem considered in this work, we can assess the optimal value V ∗(x) of any
state x ∈ X only when we have already computed the optimal values V ∗(x′) for all the states
x′ ∈ X that constitute successor states of x through some action a ∈ A(x). Therefore, any
learning agent that will base the identification of an optimal policy on the computation of the
optimal value function V ∗, must acquire its knowledge proceeding from the terminal states,
x ∈ XL, of the underlying state space to the initial state, x0. This observation subsequently
suggests the following basic structure for the proposed algorithm:

• Starting with the set of terminal states, XL, the proposed algorithm maintains a “frontier
set of actively explored states”, for which it tries to learn the optimal action π∗(x).

• An actively explored state x is assigned an “apparent optimum action”, π̂(x), when it
satisfies a criterion to be defined in the following. At that point, x is declared as “fully
explored”, and it leaves the “frontier” set, while action π̂(x) is the action to be executed
at state x, any time that this state is visited until the completion of the algorithm.

• On the other hand, a state x ∈
⋃L−1

i=0 Xi becomes an actively explored state as soon as
all the states x′ ∈ X that constitute successor states of x through some action a ∈ A(x),
become fully explored.
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• The algorithm pursues the above exploration pattern for a pre-defined number of episodes,
N , and it terminates either upon the selection of an action π̂(x0), for the initial state x0,
or upon the depletion of the episode budget, N . In the first case, the algorithm returns
the computed policy π̂(x), ∀x ∈ X, while in the second case it reports failure. �

Notice that the algorithm defined in Observation 1 can fail either (i) because it did not
manage to determine a complete policy π̂(x), ∀x ∈ X, within the specified episode budget, N ,
or (ii) because the chosen policy π̂(x), ∀x ∈ X, had an error err(π̂) > ε. Letting δI and δII

denote the respective probabilities of failure according to the modes (i) and (ii), we obtain, by
the Bonferroni inequality, that

δ ≤ δI + δII (9)

where δ denotes the total probability of failure of the considered algorithm. Therefore, we can
guarantee a success probability of at least 1− δ for this algorithm, by picking δI and δII such
that δI +δII = δ. For expository purposes, in the following we shall assume that δI = δII = δ/2.

Generally speaking, the proposed algorithm will fail according to mode (ii) only because
it was not able to assess adequately the consequences of its various actions upon the environ-
ment, which further translates to inadequate observation and exploration of these consequences.
Hence, the ability of the proposed algorithm to satisfy a particular PAC requirement, expressed
in terms of the tolerated error ε and the failing probability δII = δ/2, will depend on the
establishment of a pertinent and adequate exploration scheme. On the other hand, in order
to prevent failure according to mode (i), the proposed exploration scheme must be efficient ,
i.e., there must exist an episode budget, N , that is polynomially related to 1/δ, 1/ε, |X|, ¯|A|,
L, v̄ and 1/q, and will permit the execution of the aforementioned exploration scheme with
probability at least 1− δI = 1− δ/2. We address each of these two issues below.

4.1 Establishing the PAC capability of the proposed algorithm

In this section we establish that the aforestated PAC requirement for the algorithm of Observa-
tion 1 – i.e., the requirement that the policy π̂(x), ∀x ∈ X, returned by the algorithm defined
in Observation 1, will have an error err(π̂) ≤ ε with probability at least 1 − δII = 1 − δ/2
– can be replaced by the following more local requirement: At every actively explored state,
x, the algorithm must be able to identify, with a certain probability of success, 1 − δ(x), an
action π̂(x) ∈ A(x) with an expected total reward that differs by at most ε(x) from the max-
imal expected total reward that can be collected by performing some action a ∈ A(x), while
in state x, and subsequently following the pre-determined policy, π̂, until the environment re-
sets itself to the initial state x0. This localized version of the PAC policy resolution problem
can be addressed through results from statistical inference. One particular approach is that
presented in the next theorem, which constitutes a generalization of Bechhofer’s “indifference-
zone” (IZ) approach for the “ranking-and-selection” (R&S) problem [1], to populations with
bounded general distributions.

Theorem 1 Suppose that there are k populations distributed according to some bounded general
distributions with respect to some attribute of interest, and that v̄ constitutes a known uniform
absolute bound for this attribute. Furthermore, suppose that the means µi of these k populations
are unknown, and that it is desired to determine which population has the largest mean µi. In
particular, the experimenter specifies a confidence level 1− δ and an “indifference” parameter
ε with the requirement that

µ[k] − µ[k−1] ≥ ε =⇒ PCS ≥ 1− δ (10)
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where µ[1] ≤ . . . ≤ µ[k] are the ordered population means and PCS is the probability for correct
selection, i.e., the probability of correctly identifying the population with the largest mean µi.

Then, this problem can be resolved by:

1. taking a sample from each of the k populations, of size

n = d4v̄2

ε2
ln(

k − 1
δ

)e (11)

2. computing the corresponding sample means X̄i, i = 1, . . . , k, and

3. selecting the population with the largest sample mean.

Proof: The probability for correct selection, PCS, can be bounded as follows:

PCS = Pr{select k} (12)
= Pr{X̄k > X̄i, ∀i 6= k} (13)
= Pr{X̄i − X̄k − (µi − µk) < −(µi − µk), ∀i 6= k} (14)
≥ Pr{X̄i − X̄k − (µi − µk) < ε, ∀i 6= k} (15)

Equation 12 above holds by the definition of PCS and the assumption that µ[k] = µk and
µk − µi ≥ ε, ∀i 6= k, Equation 13 holds from the definition of the selection procedure provided
in Theorem 1 (c.f. Step 3), and Equation 15 holds from the fact that µk − µi ≥ ε, ∀i 6= k.
Setting

Ei ≡ {X̄i − X̄k − (µi − µk) < ε}, ∀i 6= k (16)

and applying the Bonferroni inequality, we get:

PCS ≥ Pr(
k−1⋂
i=1

Ei) (17)

≥ 1−
k−1∑
i=1

[1− Pr(Ei)] (18)

= 1−
k−1∑
i=1

Pr{X̄i − X̄k − (µi − µk) ≥ ε} (19)

Recognizing that each single observation Xi will belong in the interval [−v̄, v̄], for all i ∈
{1, . . . , k}, and using the relevant Hoeffding inequality for the difference of two sample means
(c.f. [8], Eq. 2.7) , we get:

Pr{X̄i − X̄k − (µi − µk) ≥ ε} ≤ e−nε2/(2v̄)2 (20)

When combined with Equations 17–19, Equation 20 implies that

PCS ≥ 1− (k − 1)e−nε2/(2v̄)2 (21)

Setting
1− (k − 1)e−nε2/(2v̄)2 ≥ 1− δ (22)
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and solving for n, we get:

n ≥ 4v̄2

ε2
ln(

k − 1
δ

) (23)

Equation 23 implies the selection of the sample size n stated in Theorem 1, and concludes the
proof. �

In order to completely characterize the application of Theorem 1 in the context of the
algorithm outlined in Observation 1, we need to specify the parameters δ(x), ε(x) and v̄(x) to
be employed at each state x ∈ X. The pricing of v̄(x) is a direct consequence of the acyclic
structure presumed for the underlying task state space.
Observation 2: For any given state x ∈ X l, l = 0, 1, . . . , L, any action sequence leading the
environment from state x to the initial state x0 will contain at most L − l + 1 actions. As a
result, the magnitude of the total reward collected by the execution of any such action sequence
will be bounded from above by (L− l + 1)v̄. �

The pricing of the remaining parameters ε(x) and δ(x) is performed through the following
two lemmas:

Lemma 1 Under the assumption that PCS = 1 at every state x ∈ X, the policy π̂, returned
by the algorithm defined in Observation 1, will have err(π̂) ≤ ε, if the “indifference” parameter
ε(x), employed during the implementation of Theorem 1 at each state x ∈ X, is set to a value
ε(x) ≤ ε/(L + 1).

Proof: Let V π̂(x) denote the value of state x under policy π̂, i.e., the expected total reward
to be obtained by starting from state x ∈ X and following policy π̂ until the environment resets
itself to the initial state x0. We shall prove Lemma 1 by establishing the stronger result that

∀l = 0, . . . , L, ∀x ∈ X l, V ∗(x)− V π̂(x) ≤ L− l + 1
L + 1

· ε (24)

This last result is proven with induction on l, starting from l = L and proceeding to l = 0.
The satisfaction of the base case for l = L is immediately implied by the definition of V ∗(x)
and V π̂(x) for x ∈ XL (e.g., c.f. Equation 5) and the proposed value for the “indifference”
parameter, ε/(L + 1). Next, suppose that the inequality of Equation 24 holds true for x ∈⋃L

i=l X
i. We shall show that it also holds true for x ∈ X l−1. For this, consider a state x ∈ X l−1

and let π̂(x) denote the action selected by policy π̂. Also, let Qπ̂(x, a) (resp., Q∗(x, a)) denote
the expected total reward obtained by initializing the environment at state x, executing the
action a ∈ A(x) in that state, and following the policy π̂ (resp., an optimal policy π∗) thereafter,
until the environment resets itself to state x0. Finally, let â = arg maxa∈A(x){Qπ̂(x, a)} and
a∗ = arg maxa∈A(x){Q∗(x, a)}. Then,

V ∗(x)− V π̂(x) = Q∗(x, a∗)−Qπ̂(x, π̂(x)) (25)
= Q∗(x, a∗)−Qπ̂(x, â) +

Qπ̂(x, â)−Qπ̂(x, π̂(x)) (26)

≤ Q∗(x, a∗)−Qπ̂(x, â) +
ε

L + 1
(27)

= Q∗(x, a∗)−Qπ̂(x, a∗) + Qπ̂(x, a∗)

−Qπ̂(x, â) +
ε

L + 1
(28)

≤ Q∗(x, a∗)−Qπ̂(x, a∗) +
ε

L + 1
(29)
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Equation 25 is an immediate consequence of the definitions of V ∗(x), V π̂(x), Q∗(), Qπ̂(), a∗,
and π̂(x). Equation 27 results from the definition of the “indifference” parameter ε(x) for state
x and the assumption that PCS = 1 at every node x ∈ X. Finally, Equation 29 results from
the definition of â. We also have that:

Q∗(x, a∗)−Qπ̂(x, a∗) =
∑

x′∈S(a∗)

p(x′; a∗) ·

[V ∗(x′)− V π̂(x′)] (30)

≤ [
∑

x′∈S(a∗)

p(x′; a∗)] ·

L− l + 1
L + 1

· ε (31)

=
L− l + 1

L + 1
· ε (32)

Equation 30 results from the definition of Q∗() and Qπ(), Equation 31 results from the induction
hypothesis, and Equation 32 results from the fact that S(a) is the support set for the discrete
distribution p(·; a). The combination of Equations 29 and 32 gives:

V ∗(x)− V π̂(x) ≤ L− l + 1
L + 1

· ε +
1

L + 1
· ε (33)

=
L− (l − 1) + 1

L + 1
· ε (34)

and completes the inductive argument for the proof of Equation 24.
Finally, the proof of Lemma 1 is established by applying Equation 24 for l = 0. �

Lemma 2 The policy π̂, returned by the algorithm defined in Observation 1, will have err(π̂) ≤
ε, with probability at least 1 − δ/2, if, during the implementation of Theorem 1 at each node
x ∈ X,

1. the “indifference” parameter ε(x) is set to ε(x) = ε/(L + 1), and

2. the PCS parameter δ(x) is set to δ(x) = δ/(2|X|).

Proof: The validity of Lemma 2 is an immediate consequence of the proof of Lemma 1,
when noticing that, for a nodal PCS value of 1−δ(x), the conditions of Lemma 1 will hold with
probability [1−δ(x)]|X|. Hence, setting 1−δ/2 ≤ [1−δ(x)]|X|, we obtain δ(x) ≤ 1−(1−δ/2)1/|X|.
The result of Lemma 2 is implied from this last inequality, when noticing that, for δ ∈ (0, 1),
(1− δ/2)1/|X| ≤ 1− (1/|X|) · δ/2. �

4.2 Establishing the efficiency of the proposed algorithm

In order to establish the efficiency of the proposed algorithm, we need to show that, for any
environment E = (X,A,P,R) and parameters δ ∈ (0, 1/2) and ε > 0, the sampling scheme
defined by Observation 1, the results of Theorem 1, Observation 2 and Lemma 2 can be executed,
with probability of success at least 1 − δI = 1 − δ/2, within an episode budget, N , that is
polynomially related to 1/δ, 1/ε, |X|, ¯|A|, L, v̄ and 1/q. This result is established in the rest of
this section. In the subsequent discussion, Ψ(x, a) denotes an observation of the total reward
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obtained by the learning agent when selecting action a ∈ A(x), while in state x ∈ X, and
subsequently following the pre-determined policy π̂ until the end of the running episode.

As a first step, we argue that focusing on the number of the budgeted episodes in order to
establish the polynomial complexity of the proposed algorithm is justifiable, since the execution
of each single episode is of polynomial complexity with respect to the parameters of interest.
This result is formally stated in the following observation:
Observation 3: The combined computational cost experienced by the proposed algorithm with
respect to (i) the action selection and (ii) the collection and processing of a single observation,
Ψ(x, a), during any single episode, is O(L ¯|A|). Also, for any actively explored state x that has
completed the sampling requirements of Theorem 1, the determination of the apparent optimum
action π̂(x) is of complexity O( ¯|A|). Hence, the overall computational cost experienced by the
proposed algorithm during any single episode is O((L + 1) ¯|A|). �

On the other hand, the total number of observations Ψ(x, a) that must be taken across
all the state-action pairs, (x, a), of the environment, is σ =

∑
x∈X |A(x)| · n(x), where n(x) is

obtained from Equation 11, by substituting: (i) k with |A(x)|; (ii) v̄ with (L− l + 1)v̄, where l
is the level of node x; (iii) ε with ε(x) = ε/(L + 1); and (iv) δ with δ(x) = δII/|X| = δ/(2|X|).
Hence, we have:
Observation 4: The total number of observations, Ψ(x, a), that must be taken across all the
state-action pairs, (x, a), of the environment, is

σ = O(
|X| ¯|A|(L + 1)4v̄2

ε2
ln(

|X| ¯|A|
δ

)) (35)

i.e., σ is a polynomial function of 1/ε, 1/δ and the parameters ¯|A|, |X|, L and v̄, that characterize
the problem “size”. �

However, the stochastic nature of the state transitions taking place in the considered envi-
ronment, implies that the number of episodes n(σ) required to collect these σ observations will
be, in general, larger than σ; in fact, n(σ) can be infinitely large, in the worst case. A systematic
characterization of the statistics of n(σ) can be facilitated by the following observation.
Observation 5: Under the assumption that, at every unexplored state x, the proposed algorithm
selects the exercised action a ∈ A(x) in a way that maintains a positive probability for accessing
the set of actively explored states, the materialization of an observation Ψ(x, a) at any single
episode constitutes a Bernoulli trial [4], with its probability of success bounded from below by
q. �

Next, we show that the combination of Observations 4 and 5 enables the determination of
an episode budget, N , that is polynomially related to the problem parameters and will suffice
for the collection of the σ requested observations, with probability at least 1−δI = 1−δ/2. For
this, we make the very conservative but simplifying assumption that the requested observations,
Ψ(x, a), are pursued one at a time; i.e., at every single episode, the algorithm focuses on a
particular observation Ψ(x, a) that it tries to achieve, and it ignores any other potentially
available observations. Focusing on this particular algorithmic implementation enables the
determination of the required budget, N , according to the decomposing scheme described below
in Observation 6. Furthermore, the derived result remains applicable to the more practical
algorithmic implementations where actively explored states are sampled in parallel, since these
more realistic operational schemes do increase the probability of reaching an actively explored
state at any single episode.
Observation 6: An episode budget, N , that is adequate for the collection of the σ observations
of Equation 35, with probability at least 1 − δI = 1 − δ/2, and is polynomially related to the
problem parameters 1/δ, 1/ε, |X|, ¯|A|, L, v̄, 1/q, can be obtained by:
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a. first determining an episode budget, N(x, a), that (i) will enable the considered algorithm
to obtain a single observation Ψ(x, a) with probability of success 1 − δI/σ = 1 − δ/(2σ)
and (ii) it is polynomially related to σ and the aforementioned parameters of interest, and

b. subsequently setting N = σ ·N(x, a).

�
The result of Observation 6 is an immediate consequence of the application of the Bonferroni

inequality to the particular algorithmic implementation described above. The next lemma
determines an episode budget N(x, a) that satisfies the requirements of Observation 6.

Lemma 3 An episode budget, N(x, a), that guarantees the collection of a single observation,
Ψ(x, a), with probability at least 1− δ/(2σ), is

N(x, a) = d1
q

ln(
2σ

δ
)e (36)

Proof: It is well known from basic probability theory [4], that the number of failures, y,
before the first success, in a sequence of independent Bernoulli trials with success probability
q, follows a geometric distribution with cdf

F (y) =
{

1− (1− q)byc+1 if y ≥ 0
0 otherwise

(37)

In the context of Lemma 3, we are essentially requesting that the number of failures experienced
in the involved sequence of Bernoulli trials, does not exceed N(x, a) − 1 with probability at
least 1− δ/(2σ). Hence, according to Equation 37, the allocated budget, N(x, a), must satisfy:

1− (1− q)N(x,a) ≥ 1− δ/(2σ) ⇐⇒ (38)

(1− q)N(x,a) ≤ δ/(2σ) (39)

Notice that, since Equation 38 applies for any state-action pair (x, a), we have used the minimal
success probability q. From the well-known inequality 1− y ≤ e−y, it follows that Equation 39
can be satisfied by picking N(x, a) such that:

e−N(x,a)q ≤ δ/(2σ) (40)

Solving Equation 40 for N(x, a), we obtain:

N(x, a) ≥ 1
q

ln(
2σ

δ
) (41)

which proves the validity of the lemma. �
The above discussion can be recapitulated as follows: Observation 3 establishes that the

execution of a single episode under the proposed algorithm has a computational cost that is a
polynomial function of the problem-defining parameters, |X|, ¯|A|, L, v̄ and 1/q. Furthermore,
Observation 4 establishes that the total number of observations, σ, that must be collected across
all state-action pairs (x, a), in order to guarantee the PAC performance of the proposed algo-
rithm, is polynomially related to the parameters 1/ε, 1/δ, |X|, ¯|A|, L, v̄ and 1/q. Observation 5
establishes that the acquisition of a single observation, Ψ(x, a), can be perceived as a Bernoulli
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trial with its success probability bounded from below by q, and Lemma 3 exploits this result
in order to determine an episode budget, N(x, a), that enables the acquisition of Ψ(x, a) with
probability at least 1 − δ/(2σ) and is polynomially related to the parameters 1/ε, 1/δ, |X|,
¯|A|, L, v̄ and 1/q. Finally, Observation 6 establishes that the episode budget N = σ ·N(x, a)

is adequate for collecting the requested σ observations with probability 1 − δI = 1 − δ/2 and
it remains a polynomial function of 1/ε, 1/δ, |X|, ¯|A|, L, v̄ and 1/q. Hence, the proposed
algorithm is efficient . A detailed description of this algorithm, according to its basic charac-
terization in Observation 1 and its further parametrization through the results of Sections 4.1
and 4.2, is provided in Figure 2. Furthermore, the next theorem is an direct consequence of all
the previous developments.

Theorem 2 The algorithm of Figure 2 is an efficient PAC algorithm for the RL problem con-
sidered in this work.

5 Conclusions

In this paper we investigated the RL problem for the case that the underlying target task
evolves in an “episodic” manner over a state space with a well-defined initial state and acyclic
structure. The departing point of our analysis was the observation that the acyclic structure
of the underlying state space implies a certain information flow for the overall learning process,
which admits a natural and effective translation to an exploration strategy. Subsequently, the
main body of our results combined this exploration strategy with further relevant results from
the area of statistical inference, in order to design a RL algorithm customized to the special
structure of the considered problem. The derived algorithm is computationally simple, and
therefore, easily implementable in “real-world” applications. It was also shown to be efficient,
according to the formal characterizations of efficiency provided by computational learning the-
ory. By taking advantage of the admittedly simpler structure of the RL problem considered in
this work, the proposed algorithm presents significantly lower computational complexity than
the efficient PAC learning algorithm proposed in [9, 10] for more general RL problems, and it
also compares favorably, in terms of computational complexity and implementational feasibility,
with the algorithm developed in [5], which also addresses episodic RL problems evolving over
acyclic state spaces. Finally, an additional contribution of the presented work was the extension
of the applied statistical theory itself, through Theorem 1, which establishes a new criterion for
Ranking & Selection that is applicable to populations with general distributions.

We should also notice, at this point, that the developed algorithm is immediately extensible
to the more complex version of the problem where, at every episode, a task is splitting to a
number of subtasks that execute in parallel and contribute to the total reward collected by the
learning agent. This is actually the case with the ODP problem described in the introductory
section, where a single episode involves the concurrent processing of all the items extracted at the
different stages of the disassembly process. The only necessary modification for accommodating
this additional problem element concerns the appropriate evaluation of the quantity v̄(x) in a
way that it applies to the notion of observations Ψ(x, a) experienced by the learning agent
in this new operational context, and we leave the resolution of this technical detail to the
reader. Furthermore, the proposed methodology is also extensible to the case of RL problems
where the immediate rewards can be drawn from unbounded distributions, which, however,
possess bounded mean and variance. Under the assumption that the learning agent possesses
a uniform upper bound, v̄, for the variances of the aforementioned distributions, and using
the Chebychev instead of the Hoeffding inequality in the relevant derivation, one can establish
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Input: L; X l, l = 0, . . . , L; A(x),∀x ∈ X; v̄; q; ε; δ
Output (under successful completion): π̂(x),∀x ∈ X

I. Initialization

(a) Compute X ≡
⋃L

l=0 X l; |X|; |A(x)|,∀x ∈ X;

(b) Set
v̄(x) := (L− l + 1)v̄, ∀l = 0, . . . , L, ∀x ∈ X l;
ε(x) := ε/(L + 1), ∀x ∈ X;
δ(x) := δ/(2|X|), ∀x ∈ X;
n(x) := d4v̄(x)2

ε(x)2
ln( |A(x)|−1

δ(x) )e,∀x ∈ X;
σ :=

∑
x∈X |A(x)|n(x);

N := σd(1/q) ln(2σ/δ)e;
Q(x, a) := 0,∀x ∈ X, ∀a ∈ A(x);
O(x, a) := 0,∀x ∈ X, ∀a ∈ A(x);
AE := XL; UE :=

⋃L−1
l=0 X l;

i := 1

II. Policy Computation
while (AE 6= ∅ ∧ i ≤ N) do

(a) Initiate a new episode by placing a token at the initial state, x0, and try to route
this token to an actively explored state, x ∈ AE, by picking actions that maintain a
positive probability to reach such a state;

(b) If successful

i. select an action a ∈ A(x) for which O(x, a) < n(x);
ii. obtain an observation Ψ(x, a), by accumulating the total reward obtained by

exercising action a at state x, and subsequently following the pre-computed
policy π̂ until the termination of the current episode;

iii. Q(x, a) := Q(x, a) + Ψ(x, a); O(x, a) := O(x, a) + 1;
iv. If (O(x, a) = n(x))

• Q(x, a) := Q(x, a)/n(x);
• If (∀a′ ∈ A(x), O(x, a′) = n(x))

– π̂(x) := arg maxa∈A(x){Q(x, a)};
– remove state x from AE;
– Remove from UE every state x′ ∈ UE for which all the immediately

successor states are not in AE ∪ UE, and add them to AE.

(c) i := i + 1;

endwhile

III. Exit
If (AE = ∅) return π̂(x),∀x ∈ X, else report failure

Figure 2: The proposed PAC algorithm for the RL problem considered in this work
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a R&S criterion similar to that of Theorem 1, with the new sample size being equal to n =
d2(k−1)v̄

ε2δ
e, and with the parameters k, ε and δ having the same interpretation with that stated

in Theorem 1. A third important aspect of the results developed herein is that they are directly
applicable to partially observable (PO-) MDP’s. This capability stems from the direct, on-line
nature of the proposed algorithm, which enables it to forego the explicit characterization of the
internal system dynamics, and to work exclusively on the space induced by the measurement /
observation sequences. This situation is exemplified by the state space definition of the ODP
problem discussed in the introductory section, and it is reminiscent of the class of Augmented
MDP (AMDP) algorithms in the emerging PO-MDP literature (cf. [19], Chpt. 16).

When viewed from a more practical implementational standpoint, the PAC nature of the
proposed algorithm implies that it should be perceived as the “Phase I” of a broader learning
process, during which the agent tries to learn a (near-)optimal policy fast and with very high
probability. Once the execution of this algorithm has been completed, the agent will switch to
“Phase II”, where a more standard – e.g., the Q-learning – RL algorithm will be employed, in a
way that incorporates and exploits the information obtained in Phase I. Notice that maintaining
some active exploration in Phase II is important, since (i) this exploration can counter-balance
the potential of error tolerated, through the error probability δ, in Phase I, and (ii) it enables the
reaction of the learning agent to any non-stationarity of the environmental parameters. On the
other hand, the above interpretation of the presented algorithm as a “Phase I” computation in a
broader learning process naturally raises the question of how much effort should be expended on
it. Clearly, this effort depends on the “tightness” of the PAC requirement, as expressed by the
values of the parameters ε and δ, and while the resolution of this issue will be context-specific,
in general, some relevant observations are in order. First of all, it should be clear from the above
developments that the proposed algorithm is more “exploration” than “exploitation”-oriented.
More specifically, during the algorithm execution, the primary concern underlying the applied
action selection policy is the coverage of the necessary sampling requirements that will lead
to the identification of a target ε-optimal policy, rather than the maximization of the value
accumulated during that period. Such a strategy is consistent with the implicit stationarity
assumption underlying the problem statement, since in that case, the earlier an optimized
strategy is identified, the higher the long-run profitability of this strategy will be. On the other
hand, things are different in a non-stationary operational context. In that case, expending an
extensive effort to find an optimized policy for the prevailing conditions might be futile, since
this policy will be rendered irrelevant by the future evolution of the system dynamics. In fact,
for highly non-stationary environments, the execution of the considered algorithm might not
be even feasible, since the system sojourn in any particular parametric regime might not be
long enough in order to perform the necessary sampling. Hence, in the case of non-stationary
operational environments, one should compromise for a rapidly obtainable policy with a decent
performance and maintain a high level of exploration in the algorithm implementing the “Phase
II” computation.9 From a more technical standpoint, the selection of a pertinent value for the
performance parameter ε, that characterizes the suboptimality of the derived policy, should
be relativized with respect to the magnitude of the expected immediate rewards. In fact, this
relativistic interpretation of the value of ε is applied automatically by the algorithm of Figure 2,
since in the calculation of n(x) – the only place where the parameter ε is actually involved during
the algorithm implementation – the factor 4v̄(x)2/ε(x)2 can be rewritten as 1/(ε(x)/(2v̄(x)))2.
At the same time, the formulae determining the episode budget, N , in Figure 2, also reveal

9More generally, there is an obvious trade-off between the “tightness” expressed by the parameters ε and δ,
and the level of exploration that must be maintained in Phase II.
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that this quantity is affected by the second performance parameter, δ, only through the value of
ln(1/δ). Hence, one can afford to be more demanding regarding the success of the computation
performed in Phase I rather than the quality of the result of this computation. This last remark
corroborates the above suggestion that, in many applications, a pertinent implementation of the
developed algorithm should seek to compute with high success an initial near-optimal policy,
rather than expend a very large amount of effort for getting (very close) to the optimal policy.

Future work will seek to enhance the efficiency of the developed algorithm and to detail its
implementation from a more practical standpoint. It is clear from all the previous discussion
that the main focus of this work was the establishment of the PAC nature of the proposed
algorithm and its efficiency, where this last concept was interpreted according to the definitions
provided by computational learning theory. In particular, all the presented developments sought
to explicitly establish the ability of the proposed algorithm to guarantee the PAC requirement,
within a number of episodes that is polynomially related to the parameters of interest, rather
than provide the tightest possible bound for such an episode budget. Hence, in a first line of
our future research, we shall seek to identify a tighter bound for the episode budget, N , that
will guarantee the PAC performance of the algorithm. Such an immediate improvement can
be achieved, for instance, by replacing the calculation N = σN(x, a) = σd(1/q) ln(2σ/δ)e, in
the algorithm of Figure 2, with another calculation that computes the required episode budget,
N , by inverting the binomial distribution for any given triplet of σ, q and 1− δI . In a similar
vein, we shall consider the possibility of replacing the R&S criterion of Theorem 1 with other
R&S criteria that will employ sampling techniques of more sequential nature, e.g., similar to
those discussed in [3, 12]. Finally, two additional issues that concern the further detailing of
the implementation of the algorithm outlined in Figure 2, are (i) the design of more pertinent
strategies to be followed by the algorithm when trying to obtain the required samples Ψ(x, a)
for the different state-action pairs (x, a), and (ii) the organization of the information provided
in the collected rewards in a concise set of data structures that will enable the more expedient
application of the applied R&S criteria. Obviously, all the above issues are extensively inter-
related and constitute part of our current investigations.
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