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Abstract

Lagrangian relaxation has been pursued as a pertinent methodology for many hard scheduling
problems. From standard duality theory, the method is known to provide good-quality bounds
to the performance of the optimal solutions of these problems, and in certain cases, the optimal
Lagrange multipliers can function as a starting point for the construction good suboptimal
solutions for the original (primal) problem. In this work we consider the application of the
method on a class of novel scheduling problems that concern the routing of a set of mobile
agents over the edges of an underlying guidepath network. Besides the introduction of these
new scheduling problems and the proposed Lagrangian relaxations, our primary contribution is
an “ascent” algorithm for the corresponding dual problem that is characterized by (i) monotonic
improvement of the generated solutions and (ii) finite convergence to an optimal solution.

1 Introduction

The basic problem that motivates the research results that are presented in this paper can be briefly
stated as follows: Given a set of agents that circulate on the edges of a connected graph, to be
called the “guidepath network” in the following, we want to coordinate the traffic of these agents
so that (i) they move from their current edges to some destination edges in the minimum possible
time, and at the same time (ii) the generated motion observes a set of rules regarding the edge
occupancy by these agents. A typical example of such guidepath-based traffic is provided by the
zone-controlled automated guided vehicle (AGV) systems that are used in many modern production
and distribution facilities [8]. In a typical configuration of such a system, a fleet of mobile robots
is used to facilitate the material transfers that must take place among a set of locations in the
underlying facility. The transported material is organized in “standard” loads, and each vehicle
can carry one load at a time. Also, for safety and other reasons, the vehicle motion is constrained
into certain “corridors” that are defined either physically or virtually,1 and all these corridors are
linked together into the corresponding “guidepath network”. Furthermore, in order to avoid any
collisions among the AGVs, the links of the “guidepath” network are split up into “zones”, and it
is required that, at any time point, each zone is occupied by at most one vehicle. This requirement
refines the original guidepath network to a larger graph with similar overall topology but with the
graph nodes and edges defined by the specified zones and their connectivity. Also, it introduces
a need for controlled allocation of the zones of the resulting guidepath network to the traversing
vehicles. In addition, in the emergent operational regime, it is physically impossible for any two

1e.g., by some sort of painted strip or duct tape that must be scanned by the robot during its motion, or by radio
signals that “guide” the robot.
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vehicles to “swap” the occupation of two neighboring zones.2 Finally, in most topologies of the
underlying guidepath network, the motion restrictions that are described above can give rise to
deadlocks among the circulating AGVs, and raise the need for an appropriate deadlock avoidance
policy (DAP) [17].

The operational characteristics and the traffic coordination problems that were described in the
previous paragraph for the current AGV systems extend to any other unit-load, guidepath-based
automated material-handling system that is employed in the contemporary industrial sectors, like
(a) the over-head monorail systems that are used in the current semiconductor fabs [19], and (b) the
complex crane systems that are used in many ports and freight terminals [8]. But our work is also
motivated more directly by another application that arises in the context of quantum computing
[14]. This application concerns the physical medium and operations that implement the elementary
logical operations and the corresponding “(logical) gates” in quantum computing, especially as
they are represented in the GTRI Quantum Machine Parameterizer (QMP). In this computational
paradigm, information is stored in “qubits”, i.e., in discrete elements that obey quantum mechanics
(e.g. electron states in trapped ions), and the processing of this information is performed by the
transfer of the corresponding qubits in certain locations where they will have their states changed,
possibly through their interaction with other qubits that are brought simultaneously to the same
location. However, the storage and the transfer of those qubits during this entire operation must
be done in a very controlled manner that preserves the quantum state of the qubits involved. An
abstracted model of the ion trap implementation is taken as the base case, where ions are steered
around an ion trap maze, but it is easily extendable to other technologies. Operations are thus
described as storing and guiding ions through a sequence of “ion traps”, that essentially isolate
the considered atoms from the rest of their operational environment. Furthermore, it should be
obvious that qubits cannot coexist uncontrollably in any of the provided ion traps, since any such
uncontrollable coexistence can lead to the uncontrollable interaction between these ions and to the
eventual loss of the information stored in them. For similar reasons, the physical swapping of ions
is taken as not physically possible, although this constraint can be relaxed in certain cases. Hence,
these traffic systems also enforce strict exclusivity and other constraints in the allocation of the
various zones (in this case, the ion traps) of the guidepath network to the traveling agents, which
can give rise to deadlocking effects, as in the case of the AGV traffic networks.

Furthermore, in, both, the AGV operational setting and that of the GTRI Quantum Machine
Parameterizer, the moving agents typically execute mulit-leg trips that require them to visit certain
“milestone” edges of the guidepath network in a certain sequence, and possibly interact at those
edges with other agents, before they continue with the subsequent legs of their trips. In our work,
these multi-leg trips will be coordinated by a “receding horizon” / model predictive control (MPC)
scheme [10], that decomposes naturally the overall routing and scheduling problem to a sequence
of subproblems that are defined by the immediate destinations of the traveling agents. Hence,
the problem described in the opening part of this section constitutes the core subproblem to be
repeatedly solved in this MPC framework. Following standard MPC practices,3 we propose to
address this last problem through a deterministic mathematical programming (MP) formulation.
Furthermore, the regularity / uniformity of (i) the zones employed in the AGV control setting, and
of (ii) the ion traps that constitute the guidepath links in the QMP framework, also enable a time-
discretizing approach based on the time that is required for the traversal of any of these guidepath
links by the system agents. The resulting MP formulation that characterizes the aforementioned
scheduling (sub-)problem for the QMP operational context, is a mixed integer program (MIP) [13]

2The physical infeasibility of such a swapping is especially obvious in the case of neighboring zones corresponding
to the same original corridor and occupied by vehicles moving in opposite directions in those zones.

3These practices result from the notion of “certainty equivalence” in MPC theory [3].

2



that is presented in detail in the next section.
However, the main focus of this paper is the solution of the (Lagrangian) dual problem [5] of

the aforementioned formulation, that is defined by the Lagrangian relaxation of some of the most
difficult constraints of the original MIP. From a practical standpoint, the capability to address
effectively the dual problem of the considered MIP formulation is significant since (a) the obtained
solutions provide bounds for the optimal value of the original MIP formulation, and (b) they
might also contain useful information for the synthesis of heuristic (near-)optimal solutions for the
original problem. From a more analytical standpoint, our main result is a dual ascent algorithm
that is customized to the considered MP formulation and the derived dual problem, and it is
further characterized by (i) a monotonic improvement of the solutions for the dual problem that
are generated by the algorithm iterations, and by (ii) finite convergence to an optimal solution of
this last problem.

In view of the above positioning of our work, the rest of the paper is organized as follows:
Section 2 provides a detailed description of the traffic coordination problem that was described at
the beginning of this introductory section, and proceeds to the analytical characterization of this
problem by means of a mixed integer programming (MIP) formulation. Section 3 introduces the
proposed Lagrangian relaxation for the MIP formulation of Section 2, defines the corresponding
dual problem, and develops a complete and streamlined methodology for the evaluation of the dual
function. Section 4 presents the proposed algorithm for the dual problem that is formulated in
Section 3, and establishes the properties of this algorithm that were mentioned in the previous
paragraph. Section 5 presents the application of the developed algorithm on an example problem
instance, and discusses the algorithm performance on this instance as well as some faced challenges.
Section 6 provides some further discussion on the presented results, including the positioning of
the presented developments in the context of the existing literature. Finally, Section 7 concludes
the paper and discusses directions for future work.

2 The basic scheduling problem considered in this work: Detailed
problem description and a MIP formulation

2.1 A detailed description of the considered scheduling problem

In this section we provide a detailed description of the particular scheduling problem that is the
focus of this work. For better motivation, but also for more specificity and concreteness, we present
this problem as it materializes in the operational context of the QMP operations that were discussed
in the introductory section. We remind the reader that, in this setting, we move quantum bits (or
“qubits”), manifested as physical particles, in a guidepath network composed of ion traps. These
particles must be sent to specific destinations in order to interact with one another, to receive
external inputs, or to be stored for later use.

Hence, to proceed with a more analytical formulation of the considered traffic coordination
problem, as a first step, we will model the guidepath network as a connected, directed graph
G = (V,E), where each edge e ≡ (i, j) ∈ E, connecting vertex i to vertex j, is assumed to be of unit
length. As explained in Section 1, the assumption that all edges e ∈ E have identical length results
from the uniformity of the ion traps that constitute the basic links of the guidepath network, and
facilitates the discretization of time in the eventual formulation of the considered problem.4

4We also notice, for completeness, that the physical edges of the considered guidepath networks do not possess any
sense of direction. Since, however, we need to capture the sense of direction in the motion of the agents traversing
these edges, we model each edge of the guidepath network by a pair of directed edges of opposite connectivity.
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The circulating qubits themselves are modeled as a set of agents, A, with each agent a ∈ A
being located on a particular edge at any given time. Furthermore, each agent a has an immediate
destination edge da associated with it, and the set collecting the destinations for all agents will be
denoted by ED. In the considered QMP context, ED includes locations where gate operations can
be performed, as well as storage zones.

We assume that every agent a ∈ A traverses any given edge e ∈ E in a consistent length of time,
to be considered as the unit time in the following. Besides the uniformity of the edge lengths that
was discussed in the previous paragraphs, the uniformity of the traversal time of the guidepath edges
by the traveling agents is also based on the further assumption that, when in motion (i.e., when
not blocked or holding at a particular position), each agent moves at an identical, deterministic
speed.5

We also assume that, unless they share a common destination location,6 agents cannot co-
habitate on a single edge, and they cannot pass one another by swapping edges. And lastly, we
will assume that an agent a can pass through a destination edge e ∈ ED that is not assigned to
it; more formally, if an edge e is an element of ED but e 6= da, agent a treats edge e as a normal
transit edge.

Given these assumptions, we seek to route all agents a ∈ A to their respective destinations
da in minimal time; that is, we seek (i) a selection of traveling routes for these agents, and (ii) a
schedule that will coordinate the agent advancement on their corresponding routes, such that the
total time, w, that will take for each each agent a to reach its destination da, is minimized.7

2.2 Formulation of the considered problem as an Integer Program

Next, we proceed to express the scheduling problem that was defined in Section 2.1 as a MIP formu-
lation. We provide this formulation by detailing, in separate subsections, the problem data and the
involved parameters, the decision variables, the constraints, and the objective of the formulation.

2.2.1 Notation

— V = {v1, v2, ..., vm}: Guidepath-graph vertices

— E = {e1, e2, ..., en}, with el = (vi, vj) ∀l ∈ {1, ..., n}: Guidepath-graph edges (or “zones”)

— T (n × n): A binary matrix expressing the agent transitional dynamics on the guidepath
graph; Ti,j = 1 iff a direct transition from ei to ej is allowed. We set Ti,i = 1 ∀i s.t. ei ∈ E

— ē = (vj , vi): Complementary edge of edge e = (vi, vj)

— •el = {eq ∈ E : Tq,l = 1 ∧ q 6= l}: The set of input edges for el, ∀el ∈ E

— e•l = {eq ∈ E : Tl,q = 1 ∧ q 6= l}: The set of output edges for el, ∀el ∈ E

— A = {a1, a2, ..., aK}: The set of traveling agents

5In the QMP operational setting, this assumption is naturally justified by the basic physics that govern the ion
transport through the ion traps that define the guidepath network. In the case of the AGV systems, vehicle speeds
sometimes can be dependent on the carrying loads, but given the (typically) small length of the guidepath edges, the
effects of these speed variations can be considered as negligible.

6In the QMP setting, the corresponding edges are essentially “(logical) gates” that implement specific elementary
operations in the underlying computation.

7We also emphasize, for completeness, that here we consider only the specification and formulation of the basic
subproblem that will be addressed in the context of the broader MPC framework that was indicated in Section 1.
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— da: Destination edge for agent a ∈ A

— ED = {ej ∈ E : ∃a ∈ A s.t. da = ej}: The set of the current / immediate destinations for all
agents

— sa: Starting edge for agent a ∈ A; this edge also specifies initial orientation for the agent
motion

— T : An upper bound on the required completion time (and therefore a bound on the optimal
value of the objective function)

— t ∈ T = {0, 1, ..., T}: Time index

2.2.2 Decision Variables

— ∀a ∈ A, ∀e ∈ E, ∀t ∈ T , xa,e,t ∈ {0, 1} indicates whether, in the derived schedule, agent
a is located on the directed edge e at timestep t; these decision variables constitute the
primary decision variables of the scheduling problem. Also, for notational convenience, in the
following, we shall denote by x the vector that collects all the variables xa,e,t.

— w: An auxiliary variable that will represent the total time to completion – i.e., the “makespan”
– of the optimal schedule.

2.2.3 Constraints

1. Agents must occupy exactly one and only one position at any time period.

∀a ∈ A, ∀t ∈ T ,
∑
e∈E

xa,e,t = 1

2. Every agent a ∈ A has some initial position, designated by sa.
∀a ∈ A, xa,sa,0 = 1
∀a ∈ A, ∀e ∈ E with e 6= sa, xa,e,0 = 0

3. Every agent must reach its desitnation edge, da, within the provided time horizon.
∀a ∈ A, xa,da,T = 1

4. Agents cannot leave their destination nodes after reaching them.
∀a ∈ A, ∀t ∈ T \ {T}, xa,da,t+1 ≥ xa,da,t

5. Agents can only transition to adjacent, directionally compatible edges.

∀a ∈ A, ∀e ∈ E, ∀t ∈ T \ {T}, xa,e,t ≤ xa,e,t+1 +
∑
e′∈e•

xa,e′,t+1

6. No two agents may cohabitate on an edge that is not a destination edge.

∀e = (vi, vj) ∈ E \ ED s.t. i < j, ∀t ∈ T ,
∑
a∈A

(xa,e,t + xa,ē,t) ≤ 1

7. An agent can only access an edge if that edge was empty during the previous cycle, unless this
edge is its destination; an edge of the guidepath network cannot have one agent transitioning
into it and another agent transitioning out at the same instant.
∀a ∈ A, ∀e ∈ E \ da, ∀e′ ∈ e• \ {da}, ∀t ∈ T \ {T},

xa,e,t + xa,e′,t+1 ≤ 2−
∑

a′∈A,a′ 6=a
(xa′,ē′,t + xa′,e′,t)
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8. This constraint is linking the auxiliary variable w to the primary decision variables of the
problem, xa,e,t; when coupled with the objective of this formulation, this constraint ensures
that w expresses the makespan of any optimal solution that is returned by the considered
formulation.

∀a ∈ A, w ≥
T∑
t=0

(1− xa,da,t) = T + 1−
T∑
t=0

xa,da,t

9. All decision variables, apart from w, are binary.
∀a ∈ A, ∀e ∈ E, ∀t ∈ T , xa,e,t ∈ {0, 1}

2.2.4 Objective Function

minw

We seek to minimize the makespan w of the derived schedule, under the constraints of Section 2.2.3.
That is, we will try to minimize the necessary time for the considered set of agents to reach their
very next destinations, given their current positions.

3 A Lagrangian relaxation of the considered IP formulation and
the corresponding dual problem

The problem described in Section 2.1 has considerable conceptual affinity with the classical “job
shop” scheduling problem [15] that is known to be NP-hard. In particular, in the considered
operational setting, the role of the “machines” is played by the edges of the guidepath network, while
the traveling agents correspond to the “jobs” running through these “machines”. Furthermore,
our scheduling problem is characterized by (possibly extensive levels of) routing flexibility for
each agent, and also by implicit precedence constraints that are induced by the fact that certain
destination edges da might constitute necessary “stepping stones” for some other agents a′( 6= a)
in their trips to their destinations. Based on these remarks, it is expected that finding a strictly
optimal solution for the considered scheduling problem will be computationally intractable for any
instances of significant size.8 This realization motivates the development of some heuristic method
able to provide good-quality schedules for this problem but not necessarily optimal. In such an
endeavor, it is desirable (i) to exploit the “structure” of the original problem formulation as a
“guide” in the search for promising solutions, and (ii) to have a means for assessing the quality of
the derived solutions w.r.t. the (generally unknown) optimal schedule. As pointed out in Section 1,
MP Duality theory can assist along both of these lines by (a) providing lower bounds to the optimal
value of the original MIP formulation, and possibly by (b) providing additional information, by
means of the generated dual optimal solutions, that can be useful for the synthesis of the heuristic
solutions that were suggested above. Hence, in this section we shift attention to a dual formulation
of the MIP formulation of Section 2 that is obtained by relaxing some of the harder constraints of
that MIP formulation.

8The intractability of the considered scheduling problem can be argued more formally on the basis of a result that
is presented in [16] and essentially implies that testing the feasibility of the considered scheduling problem is NP-
complete. Therefore, the scheduling problem itself must be NP-hard (since, otherwise, feasibility could be assessed
by solving the scheduling problem itself).
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3.1 The proposed Lagrangian relaxation and the corresponding dual problem

We start the corresponding developments by noticing that, in the constraint set of Section 2.2.3,
Constraints (1) through (5), together with Constraint (9) that enforces the binary nature of the
primary decision variables, seek to shape up the behavior of each agent a ∈ A in isolation. Charac-
teristically, it is not hard to see that if the MIP formulation of Section 2.2 involved only the afore-
mentioned constraints, the optimal route for any agent a ∈ A w.r.t. the objective of Section 2.2.4
would be any “shortest path” from the current location of the agent, sa, to its destination loca-
tion, da, with the relevant distances measured in terms of the uniform length of the zones in the
guidepath graph. Hence, if the MIP formulation of Section 2.2 involved only the aforementioned
constraints, it would be solvable through a decomposition of the original problem to the aforemen-
tioned “shortest path” problems [2], one for each agent a ∈ A, which are known to be of polynomial
complexity w.r.t. to the “size” of the guidepath graph.9 But, in reality, things are complicated by
the presence of the additional Constraints (6) through (8). These constraints express the additional
limitations that are imposed on the agents’ schedules due to their interaction through the limited
buffering capacity of the edges of the guidepath graph, and, for that reason, they are characterized
as the “coupling” constraints of the formulation. Furthermore, it should be evident from the above
discussion that these coupling constraints are the primary reason for the very high complexity of
the considered scheduling problem.

In the relaxed formulation that is pursued in this section, the complexity that is incurred by
Constraints (6)–(8) is mitigated by expressing the logic communicated by these constraints in
the MIP formulation of Section 2.2, in a “softened” (or, more “relaxed” ) manner, in particular,
as additional cost to the problem objective that arises from the violation of these constraints.
Furthermore, the way that any violation of these relaxed constraints impacts the original objective
function is moderated through the association of a “weight” with each of these constraints, that acts
as a “(unit) price” for the corresponding violation. The new objective function that results from
such a modification of the original objective function is known as the corresponding “Lagrangian”
function, and the aforementioned “weights” that are associated with the relaxed constraints are
the “Lagrange multipliers” for these constraints [5].

Next, we proceed with a detailed characterization of the Lagrangian function for the MIP
formulation of Section 2.2 that results from the relaxation that was suggested in the previous
paragraph. We start by defining the three vectors of the Lagrange multipliers that correspond to
the three primary subsets of the coupling constraints:

— λ: vector of Lagrange multipliers for constraint set (6)

— µ: vector of Lagrange multipliers for constraint set (7)

— ν: vector of Lagrange multipliers for constraint set (8)

The reader should notice that the constraint sets (6)–(8) are defined by ranging a certain subset
of the problem indices over a particular subset of their possible values; for example, the constraints
in constraint set (6) are obtained by ranging the edge index e over the edge set {(vi, vj) ∈ E \ED :
i < j} and the time index t over the corresponding index set T . In the following, we shall refer
to the elements of the vectors λ, µ and ν by indexing these elements by the index values that
generate the corresponding constraint; hence, the elements of vector λ will be represented by
λe,t, e ∈ {(vi, vj) ∈ E \ ED : i < j}, t ∈ T . Under this notational convention, the corresponding

9For the needs of this discussion, the “size” of a graph can be defined by the numbers of the nodes and the edges
in the graph.
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Lagrangian function can be written as follows:

L(x, w;λ,µ,ν) ≡ w +
∑

{e∈E:vi<vj}

∑
t∈T

λe,t

[∑
a∈A

(xa,e,t + xa,ē,t)− 1

]
+

+
∑
a∈A

∑
e∈E\ED

∑
e′∈e•\{da}

∑
t∈T \{T}

µa,e,e′,t

[
xa,e,t + xa,e′,(t+1) +

∑
{a′∈A:a′ 6=a}

(xa′,e′,t + xa′,ē′,t)− 2

]
+

+
∑
a∈A

νa

[
T + 1− w −

∑
t∈T

xa,da,t

]
(1)

It is evident that in order to have the last three terms in equation 1 acting as “penalties” for
the violation of the corresponding constraints, we need to have

λ ≥ 0; µ ≥ 0; ν ≥ 0 (2)

Then, for any arbitrary pricing of the Lagrange multipliers λ, µ and ν, the “relaxed” version
of the MIP formulation of Section 2.2 can be expressed as follows:

θ(λ,µ,ν) ≡ min
x,w

{
w +

∑
{e∈E:vi<vj}

∑
t∈T

λe,t

[∑
a∈A

(xa,e,t + xa,ē,t)− 1

]
+

+
∑
a∈A

∑
e∈E\ED

∑
e′∈e•\{da}

∑
t∈T \{T}

µa,e,e′,t

[
xa,e,t + xa,e′,(t+1) +

∑
{a′∈A:a′ 6=a}

(xa′,e′,t + xa′,ē′,t)− 2

]
+

+
∑
a∈A

νa

[
T + 1− w −

∑
t∈T

xa,da,t

]}
(3)

s.t. the constraint sets (1), (2), (3), (4), (5) and (9).
Function θ(λ,µ,ν) is known as the “dual” function for the original MIP formulation of Sec-

tion 2.2 (under the particular selection of the relaxed constraints) [5]. Furthermore, since the
minimization problem in the right-hand-side (rhs) of Eq. 3, that defines this function, is a relax-
ation of the original MIP formulation, it follows that function θ(λ,µ,ν) provides a lower bound to
the optimal value for the MIP formulation of Section 2.2, for any values of its variables λ, µ and
ν. Naturally, we are interested in obtaining the tightest possible lower bound that can be provided
by θ(λ,µ,ν), by solving the following optimization problem:

max
λ,µ,ν

θ(λ,µ,ν) (4)

s.t. Eq. (2).
The above MP formulation is known as the “dual” problem in the corresponding Duality theory,

while the original problem and the corresponding MIP formulation of Section 2.2 are characterized
as the “primal” [5]. Let (λ∗,µ∗,ν∗) denote an optimal solution for the dual problem. Then, besides
providing the tightest possible lower bound for the original MIP formulation of Section 2.2 that
can be obtained from the dual function, in some cases, the availability of the vector (λ∗,µ∗,ν∗)
can convey useful information for obtaining a (near-)optimal solution for the primal problem. This
information is conveyed in vector (λ∗,µ∗,ν∗) itself, and also in the vectors x̂ that constitute
optimal solutions for the corresponding minimization problem in the rhs of Eq. 3, that defines the
optimal value θ(λ∗,µ∗,ν∗) for the dual problem.
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Next, we proceed to reveal additional structure in the Lagrangian function of Eq. 1 that will
prove particularly useful for the efficient evaluation of the dual function θ(λ,µ,ν), for any given
vector (λ,µ,ν), and for the solution of the corresponding dual problem.

3.2 The separability of the dual function and its implications

3.2.1 A revised characterization of the dual function

The Lagrangian function L(x, w;λ,µ,ν), defined in Eq. 1, is an affine linear function of the primary
decision variables x, w. To reveal more clearly this structure, next we rewrite function L by
collecting its various terms so that no primary decision variable is shown in the resulting expression
more than once:

L(x, w;λ,µ,ν) =∑
a∈A

νa(T + 1)−

[( ∑
{e∈E:vi<vj}

∑
t∈T

λe,t

)
+

(∑
a∈A

∑
e∈E\ED

∑
e′∈e•\{da}

∑
t∈T \T

2µa,e,e′,t

)]
+

+w(1−
∑
a∈A

νa) +
∑
a∈A

{ ∑
e∈E\ED

∑
t∈T \{0,T}

[
λe,t +

∑
e′∈e•\{da}

µa,e,e′,t +
∑

e′∈•e\ED

µa,e′,e,t−1+

+
∑

{a′∈A:a′ 6=a}

∑
e′∈•e\ED

(µa′,e′,e,t + µa′,e′,ē,t)

]
xa,e,t +

∑
e∈E\ED

[
λe,0 +

∑
e′∈e•\{da}

µa,e,e′,0+

∑
{a′∈A:a′ 6=a}

∑
e′∈•e\ED

(µa′,e′,e,0 + µa′,e′,ē,0)

]
xa,e,0 +

∑
e∈E\ED

λe,Txa,e,T −
∑
t∈T

νaxa,da,t

}
(5)

Then, setting

∆λ,µ,ν ≡ −

[( ∑
{e∈E:vi<vj}

∑
t∈T

λe,t

)
+ 2

(∑
a∈A

∑
e∈E\ED

∑
e′∈e•\{da}

∑
t∈T \T

µa,e,e′,t

)]
; (6)

Cλ,µ,νa,e,t ≡ λe,t +
∑

e′∈e•\{da}

µa,e,e′,t +
∑

e′∈•e\ED

µa,e′,e,t−1 +
∑

{a′∈A:a′ 6=a}

∑
e′∈•e\ED

(µa′,e′,e,t + µa′,e′,ē,t),

∀a ∈ A, ∀e ∈ E \ ED, ∀t ∈ T \ {0, T}; (7)

Cλ,µ,νa,e,0 ≡ λe,0 +
∑

e′∈e•\{da}

µa,e,e′,0 +
∑

{a′∈A:a′ 6=a}

∑
e′∈•e\ED

(µa′,e′,e,0 + µa′,e′,ē,0),

∀a ∈ A, ∀e ∈ E \ ED; (8)

Cλ,µ,νa,e,T ≡ λe,T , ∀a ∈ A, ∀e ∈ E \ ED; (9)

Cλ,µ,νa,da,t
≡ −νa, ∀a ∈ A, ∀t ∈ T , (10)

we obtain the following expression for the Lagrangian function:
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L(x, w;λ,µ,ν) =∑
a∈A

νa(T + 1) + ∆λ,µ,ν + w(1−
∑
a∈A

νa) +
∑
a∈A

{ ∑
e∈E\ED

∑
t∈T \{0,T}

Cλ,µ,νa,e,t xa,e,t+

+
∑

e∈E\ED

Cλ,µ,νa,e,0 xa,e,0 +
∑

e∈E\ED

Cλ,µ,νa,e,T xa,e,T +
∑
t∈T

Cλ,µ,νa,da,t
xa,da,t

}
=

=
∑
a∈A

νa(T + 1) + ∆λ,µ,ν + w(1−
∑
a∈A

νa) +
∑
a∈A

∑
e∈E

∑
t∈T

Cλ,µ,νa,e,t xa,e,t (11)

Also, from Eq. (11), we get the following representation of the dual function:

θ(λ,µ,ν) ≡ (T + 1)
∑
a∈A

νa + ∆λ,µ,ν +

+ min
x,w

{
w(1−

∑
a∈A

νa) +
∑
a∈A

∑
e∈E

∑
t∈T

Cλ,µ,νa,e,t xa,e,t

}
s.t. Primal Constraints (1)-(5) and (9) (12)

In the above definition of the dual function, a complication arises from the fact that the (primal)
variable w is a free variable in the MIP formulation of Section 2.2. This implies that for those cases
where (1 −

∑
a∈A νa) 6= 0, the minimization problem that appears in the second line of Eq. 12

is ill-defined, since we can always drive the optimal objective value to −∞ by setting w to an
arbitrarily large or small value depending on the sign of the difference (1−

∑
a∈A νa). To avoid this

complication, we restrict the formulation of the dual problem by adding the constraint∑
a∈A

νa = 1 (13)

Under this condition, the dual function θ(λ,µ,ν) can be written as

θ(λ,µ,ν) ≡ (T + 1) + ∆λ,µ,ν +∑
a∈A

[
min
xa

{∑
e∈E

∑
t∈T

Cλ,µ,νa,e,t xa,e,t

}
s.t. Primal Constraints (1)-(5) and (9)

]
(14)

where the vector xa collects all the primary variables xa,e,t with fixed index a. Furthermore, the
corresponding dual problem reduces to:

max
λ,µ,ν

θ̃(λ,µ,ν) ≡ θ(λ,µ,ν) − (T + 1), s.t. λ ≥ 0, µ ≥ 0, ν ≥ 0,
∑
a∈A

νa = 1 (15)

3.2.2 An efficient evaluation of the dual function

We shall address the solution of the dual problem of Eq. (15) in a following section. In this section
we address the problem of evaluating the dual function θ(λ,µ,ν) at any given point (λ,µ,ν),
based on the definition of this function that is provided in Eq. (14). A nice feature of this definition
is that the minimization problem involved in the evaluation of function (λ,µ,ν) decomposes to
a number of subproblems, with each subproblem concerning the routing of a single agent a ∈ A
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and involving only the corresponding primary variables xa,e,t.
10 More specifically, each of these

subproblems can be expressed by the following integer program:

min
xa,e,t

{∑
e∈E

∑
t∈T

Cλ,µ,νa,e,t xa,e,t

}
, s.t. the Primal Constraints (1)–(5) and (9) (16)

In order to understand the nature of feasibility and optimality for the above MIP formulation,
the following remarks are in order: First of all, Constraint (3) in this formulation implies that
any feasible solution for it must have agent a eventually placed at its destination edge da. At the
same time, the remaining (primal) constraint sets (1), (2), (4), (5) and (9) ensure that any feasible
solution can be interpreted as a “route” from the starting edge sa to the destination edge da that
is realizable in the underlying guidepath graph.

Furthermore, the reader should notice that the non-negativity of the Lagrange multipliers that
is enforced by Eq. (15), together with the definition of the various cost coefficients in Eqs (6)–
(10), imply that all the immediate cost accrued during the execution of any of the aforementioned
feasible routes will be nonnegative, except for the immediate cost corresponding to a state where the
agent has reached its destination edge da; indeed, the coefficients that correspond to this particular
state are all equal to −νa and, therefore, they constitute an immediate “gain” that is collected
by the considered agent at any time point that it is located in its destination edge. Hence, the
optimal routes in a feasible formulation of Eq. (16) establish a trade-off between the agent’s desire
to reach the destination edge da as soon as possible and start collecting its gain, and the need to
avoid any routes that might get the agent to its destination fast but also accrue a very high cost
(manifested by the values of the corresponding cost coefficients Cλ,µ,νa,e,t ). This realization suggests
the re-interpretation of the MIP formulation of Eq. (16) as a dynamic program (DP) [4] with the
following value function Va(e, t):

For t = T :

Va(e, t) =

{
−νa if e = da
∞ otherwise

(17)

For t ∈ {0, 1, 2, ..., T − 1}:

Va(e, t) =

{
−νa + Va(e, t+ 1) if e = da
Cλ,µ,νa,e,t + min

e′∈e•∪{e}
{Va(e′, t+ 1)} if e ∈ E \ da (18)

According to standard DP theory, the value function Va(e, t) can be interpreted as the total cost
(including any collected gain) that will be accumulated by the traveling agent a if it starts from
edge e at time t and tries to reach its destination edge da by the specified time T while following
an optimal routing policy. In particular, the presence of the ‘∞’ value in Eq. (17), that provides
the definition of Va(e, T ), ensures that any optimal solution to the considered DP will never fail to
place the agent in its destination edge, if there exists such a route that is realizable within time T .
If this is not the case, the DP solver will return an infinite optimal cost for the considered problem,
and this result implies that either T must be extended, or there is some condition that prohibits
the agent from reaching its destination (i.e., the connectivity of the guidepath graph renders some
subset of its edges inaccessible to the considered agent).

For feasible problem instances, the value Va(sa, 0) will be finite, and an optimal route can be
obtained by the, so called, “greedy” policy. This policy, at time t, routes agent a in a way that

10The careful perusal of the previous developments will reveal that the separability that is present in the definition
of the dual function of Eq. (14) is the result of (i) the selection of the constraints to be relaxed and (ii) the linearity
of these constraints in terms of the primary decision variables xa,e,t.
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minimizes the restriction Va(·, t + 1) of the corresponding value function. Generally, it is possible
that there are more than one optimal routes, all sharing the same optimal cost Va(sa, 0). In such a
case, it is also possible to obtain a compact representation of all the optimal routes in the form of
an acyclic digraph Ga consisting of edges labeled by pairs (e, t) for some subset of E × T . Digraph
Ga can be constructed very efficiently by a “forward reaching” algorithm that starts from edge
(sa, 0) and, for every visited edge (e, t), it processes that edge by appending to its end (and to
the constructed graph) all the edges (e′, t+ 1) that are the minimizers in the evaluation of Va(e, t)
through the second branch in the rhs of Eq. (18). The algorithm will terminate its exploration in
any of the, thus, constructed paths, once the destination edge da has been reached; at that point,
the corresponding path will be completed with the appendage of the subpath consisting of the
labeled edges (da, t) where t spans from the current time to the end of the considered time horizon
T .

Having developed a complete methodology for the evaluation of the dual function and for the
solution of the corresponding minimization problem, next we turn to the solution of the dual
problem that is defined in Eq. (15).

4 Solving the dual problem

4.1 An efficient representation of the dual problem and its implications for the
problem structure and its solution

In this section we shall develop an algorithm for the solution of the dual problem of Eq. (15). In
order to address this issue, we start by taking a closer look at the structure of the maximized
function θ̃(λ,µ,ν). From Eqs (3), (13) and (15), this function can be written as follows:

θ̃(λ,µ,ν) ≡ min
x

{ ∑
{e∈E:vi<vj}

∑
t∈T

λe,t

[∑
a∈A

(xa,e,t + xa,ē,t)− 1

]
+

+
∑
a∈A

∑
e∈E\ED

∑
e′∈e•\{da}

∑
t∈T \{T}

µa,e,e′,t

[
xa,e,t + xa,e′,(t+1) +

∑
{a′∈A:a′ 6=a}

(xa′,e′,t + xa′,ē′,t)− 2

]
+

−
∑
a∈A

νa
∑
t∈T

xa,da,t

}
(19)

s.t. the constraint sets (1), (2), (3), (4), (5) and (9).
From the discussion of the previous sections, we know that, for every vector (λ,µ,ν) ≥ 0 and

a sufficiently large time length T , the minimization problem that appears in the rhs of Eq. (19) is
well-defined, having a finite optimal value and a finite set of optimal solutions. More specifically,
these optimal solutions are defined by any selection among the optimal routes that constitute the
optimal solutions for the MIP formulations of Eq. (16) that are defined for each agent a ∈ A.
Let {xa, a ∈ A} denote such a selection of optimal routes for the various agents, and x denote
the vector that results from the concatenation of the vectors xa. Also, for the economy of the
subsequent discussion, let us set π ≡ (λ,µ,ν), and denote by m the dimensionality of this vector.
Furthermore, for any i ∈ {1, . . . ,m}, we shall denote by gi(x) the quantity that multiplies the
Lagrange multiplier π[i] in the rhs of Eq. (19), and we shall also use the notation g(x) for the
vector that collects all the gi(x) for i = 1, . . . ,m.

From the above definitions it is evident that, for any given vector π, the set of the optimal vectors
x for the minimization problem of Eq. (19) is a finite set; let us consider an arbitrary enumeration
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of its elements, say x1, . . . ,xk. This induces the enumeration gj , j = 1, . . . , k, with gj ≡ g(xj).
Let us also denote by X the entire set of vectors x that satisfy the constraint sets (1), (2), (3), (4),
(5) and (9), i.e., the set of vectors that constitute feasible solutions to the MP formulation that
defines function θ̃(λ,µ,ν). Then, under the previously introduced notation, function θ̃(λ,µ,ν)
can be expressed as follows:

θ̃(π) = min
x∈X
{πT · g(x)} (20)

Since the elements of the set X are binary vectors, this set is finite. And the fact that θ̃(π)
is defined as the minimum of a finite set of linear functions in π implies that it is a concave
polyhedral function.11 This last remark, when combined with the structure of the constraints in
Eq. (15), imply that the dual problem of Eq. (15) concerns the maximization of a concave function
over a convex set. Hence, our problem falls in a class of rather easy problems in optimization theory
[5], but its solution is complicated by the fact that the objective function θ̃(π) is not differentiable
at every point of the feasible region; in particular, it is not differentiable at the points where the
minimization problem in the rhs of Eq. (20) will have many optimal solutions. At these points, one
must work with the local “subgradients” of the function in order to identify an improving direction
– or a “direction of ascent” – for any optimizing algorithm.

4.2 A brief introduction to subgradients and subdifferentials for concave func-
tions and their role in the characterization of the maximal points of these
functions

In this section we review some key results pertaining to the notion of “subgradient” and its role
in convex optimization; the presented discussion is based on the corresponding material in [5]. We
start by reminding the reader that, for any concave function f : Rm → R, a vector d ∈ Rm is a
subgradient of f at a point x ∈ Rm if

∀z ∈ Rm, f(z) ≤ f(x) + (z − x)T · d (21)

The above definition of the subgradients of f further implies that a vector d is a subgradient for
a concave function f : Rm → R at some point x ∈ Rm if and only if (iff) for every directional
derivative f ′(x;y) of f at x along some direction y, it holds that

f ′(x;y) ≤ yT · d (22)

The set of all the subgradients for the concave function f at x ∈ Rm is called the subdifferential
of f at x and it is denoted by ∂(x). The subdifferential ∂(x) is a nonempty, convex and compact
set, and for any directional derivative f ′(x;y) it holds that

f ′(x;y) = min
d∈∂f(x)

yT · d (23)

In particular, f is differentiable at x with gradient ∇f(x) iff it has ∇f(x) as the unique
subgradient at x. Then, it follows from Eqs (22) and (23) that, for every direction y,

f ′(x;y) = yT · ∇f(x) (24)

Finally, point x maximizes f over a convex set X ⊂ Rm iff there exists a subgradient d ∈ ∂f(x)
such that

∀z ∈ X, dT · (z − x) ≤ 0 (25)

11In fact, concavity is a more general property of dual functions [5].
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4.3 Characterizing the subgradients and the subdifferential of θ̃(π)

Returning to the concave function θ̃(π) that is defined by Eq. (20), consider any vector π̃ satisfying
the constraints of Eq. (15) and let the vector x̃ be one of the minimizers of the rhs of Eq. (20).
Then, it holds that for all π ∈ Rm,

θ̃(π) = min
x∈X
{πT · g(x)}

≤ πT · g(x̃)

= π̃T · g(x̃) + (π − π̃)T · g(x̃)

= θ̃(π̃) + (π − π̃)T · g(x̃) (26)

Eq. (26) together with Eq. (21) imply that the vector g(x̃) is a subgradient of function θ̃(π) at
π̃. In fact, it can be shown that the subdifferential of θ̃(π) at π̃ is given by

∂θ̃(π̃) =
{
g̃ : g̃ =

k∑
j=1

αj g̃j ; αj ≥ 0,

k∑
j=1

αj = 1
}

(27)

where, according to the previously introduced convention, the vectors g̃j are induced by the set of

the minimizers {x̃j , j = 1, . . . , k} of the expression minx∈X{π̃T · g(x)}.
Furthermore, in the considered case, the functions gi(x) that define the components of the

vector function g(x), for all i = 1, . . . ,m, are linear affine functions of x; i.e., each gi(x) can be
written as

gi(x) = pTi · x+ qi (28)

where the corresponding parameters (pi, qi) are determined from Eq. (19). Hence, the subdifferen-
tial of Eq. (27) can be rewritten as:

∂θ̃(π̃) =
{
g̃ : ∀i = 1, . . . ,m, g̃[i] =

k∑
j=1

αj(p
T
i · xj + qi); αj ≥ 0,

k∑
j=1

αj = 1
}

=
{
g̃ : ∀i = 1, . . . ,m, g̃[i] = pTi ·

k∑
j=1

(αjxj) + qi; αj ≥ 0,
k∑
j=1

αj = 1
}

(29)

Eq. (29) implies that, at any point π, the subgradients of the function θ̃(π) are defined by the
convex hull [5] of the minimizers xj , j = 1, . . . , k, of the expression minx∈X{πT · g(x)}, through
the mapping that is defined by the vector function g(x). In the following, we shall denote the
convex hull of a given set of points S by Conv(S). Hence, a more concise expression of Eq. (29) is
as follows:

∂θ̃(π) =
{
g(x̃) : x̃ ∈ Conv

(
arg min

x∈X
{πT · g(x)}

)}
(30)

One complication for the representations of the subdifferential ∂θ̃(π) that is provided by Eqs (27)
and (29) arises from the fact that the cardinality of the vector set {xj , j = 1, . . . , k} can be very
large. To demonstrate this effect, for any given vector π, let us denote the coresponding vector set
{xj , j = 1, . . . , k} more concisely by X(π) ⊆ X. From the previous discussion, we know that the
elements of the set X(π) can be perceived as a selection of an optimal route for each agent a ∈ A
for the corresponding subproblem of Eq. (16). These optimal routes for any given agent a can be
represented by an appropriate pricing of the binary vector xa that collects the components of the
vector x corresponding to agent a; let us denote by Xa(π) the set of vectors xa that correspond to
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optimal routes for agent a under π. Then X(π) =
∏
a∈AXa(π), and, therefore, the representational

complexity of the set X(π) is exponential w.r.t. |A|.
Fortunately, this complexity problem can be circumvented by providing a more distributed

representation for the sets Xa(π), a ∈ A, and for their product set X(π). This new representation
is obtained by capitalizing upon the graphical representation of the sets Xa(π) that was described
in the closing part of Section 3.2.2, that dealt with the computation of the corresponding routes. We
remind the reader that according to that representation, the set Xa(π) is represented by an acyclic
connected digraph Ga(π) with a single “source” edge labeled by (sa, 0) and a single “terminal” edge
labeled by (da, T ). Every other edge of the digraph Ga(π) is labeled by (e, t) for some e ∈ E and
some t with 0 < t < T , indicating that for some optimal route in Xa(π), agent a will occupy the
edge e of the guidepath graph at time t. Moreover, it is easy to see that the immediate successors
of an edge labeled by (e, t) in Ga(π) will be some edges labeled (e′, t+ 1) and with e′ ∈ e•∪{e}. As
already remarked in Section 3.2.2, any optimal route in Xa(π) is represented in Ga(π) as a path
leading from the source edge (sa, 0) to the terminal edge (da, T ). Even more interestingly for the
needs of the subsequent developments, every vector in Conv(Xa(π)) can be represented as a “flow”
[2] transferring a unit of fluid from the source edge of Ga(π) to its terminal edge. Similarly, the
convex hull of the set X(π) is represented by a set of flows, one for each graph Ga(π), a ∈ A, and
therefore, independent from each other.

A detailed representation of the aforementioned flows for any given digraph Ga(π), a ∈ A, can
be obtained as follows: Let Na(π) denote the “transshipment” nodes of the digraph Ga(π), a ∈ A,
i.e., all the nodes of this graph except for the “tail” node of the edge (sa, 0) and the “head” node of
the edge (da, T ). Also, for every node n ∈ Na(π), denote by IN(n) the set collecting its incoming
edges and by OUT (n) the set collecting its outgoing edges. Furthermore, associate the nonnegative
real variables qa(e, t) with the edges of the graph Ga(π). Then, the considered flows for agent a are
expressed by any pricing of the variables {qa(e, t)} that satisfy the following set of constraints:

qa(sa, 0) = 1.0 (31)

∀n ∈ Na(π),
∑

(e,t)∈OUT (n)

qa(e, t) −
∑

(e,t)∈IN(n)

qa(e, t) = 0.0 (32)

Indeed, it is easy to see that each constraint in Eq. (32) expresses a “flow balance” condition
for the corresponding node n ∈ Na(π). On the other hand, Eq. (31) expresses the fact that the
total amount of flow conveyed through the graph Ga(π) is equal to one unit.

For any solution of Eqs (31) and (32), we obtain an element x̃a(π) of the set X̃a(π) ≡
Conv(Xa(π)) by setting

x̃a,sa,0(π) = x̃a,da,T (π) = 1;

x̃a,e,t(π) = qa(e, t) for every intermediate edge (e, t) of the digraph Ga(π);

x̃a,e,t(π) = 0 otherwise. (33)

The representation of the set Conv(X(π)) ≡ X̃(π) involves the employment of a set of Eqs (31)
and (32) for each agent a ∈ A, with an independent set of variables for each such system of
equations, and the construction of the corresponding vectors x̃a(π) from these variables through
the logic expressed by Eq. (33); then, X̃(π) =

∏
a∈A X̃a(π).

Finally, Eqs (19), (29), (30) and (33) imply that, for every element x̃ ∈ X̃(π), the corresponding
element g(x̃) ∈ ∂θ̃(π) can be obtained as follows:

∀e ∈ E with vi < vj , ∀t ∈ T , g(e, t; x̃) :=
∑
a∈A

(x̃a,e,t + x̃a,ē,t)− 1 (34)
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∀a ∈ A, ∀e ∈ E \ ED, ∀e′ ∈ e• \ {da}, ∀t ∈ T \ {T},
g(a, e, e′, t; x̃) := x̃a,e,t + x̃a,e′,(t+1) +

∑
{a′∈A:a′ 6=a}

(x̃a′,e′,t + x̃a′,ē′,t)− 2 (35)

∀a ∈ A, g(a; x̃) :=
∑
t∈T

x̃a,da,t (36)

Next, we employ the above characterization of the subdifferential of the function θ̃(π) in order
to develop a subgradient-based method for the optimization of the MP of Eq. (15). The presented
method constitutes an “ascent” method for the considered optimization problem [5]. We break down
the presentation of the proposed algorithm into two parts: The first part concerns the provision of
an optimality test and a method for generating directions of improvement at any point π that is
visited by the algorithm. The second part provides a methodology that determines the size of the
steps to be taken by the algorithm in those improving directions so that the incurred improvements
are maximized.

4.4 The optimality test and the generator of improving directions employed by
the proposed algorithm

In the context of the dual problem that is defined by Eq. (15), Eq. (25) implies that, at any
optimal solution π̃ for this problem, the corresponding subdifferential ∂θ̃(π̃) contains either (i)
the 0 vector, or (ii) a subgradient g̃ 6= 0 that is perpendicular to the hyperplane defined by the
constraint

∑
a∈A νa = 1, or, finally, (iii) a subgradient g̃ 6= 0 that has non-zero projection on the

hyperplane
∑

a∈A νa = 1, but for any π that is feasible w.r.t. the constraints of Eq. (15), it holds
that g̃T · (π − π̃) ≤ 0. Next, we provide a linear program (LP) [11] that tests this optimality
condition at any feasible point π of the dual problem of Eq. (15).

More specifically, this LP is constructed in a way that its optimal value will be equal to zero if the
aforementioned optimality condition is satisfied at π, and strictly positive otherwise. The decision
variables and the constraints of this LP (i) will provide a characterization of the subdifferential
∂θ̃(π) by means of Eqs (31)–(36), and, together with the structure of the objective function, (ii)
will determine the optimal value of this function so that it reflects the testing logic that was defined
above. With these specifications in mind, a detailed description of the considered LP is as follows:

The column vector collecting the variables of the considered LP is the vector ψ ≡ [qTyTzT δ]T ,
where: The vector q collects all the nonnegative real variables qa(e, t) that appear in the flow
characterizations of Eqs (31)–(32), for all a ∈ A, and it will be employed in the representation
of the subdifferential ∂θ̃(π). On the other hand, the vectors y and z are nonnegative and of
dimensionality m; i.e., their dimensionality is equal to the number of the relaxed constraints of the
original MIP formulation of Section 2.2, and thus, equal to the dimensionality of the vectors π and
g. Finally, the variable δ is a free scalar. Collectively, y, z and δ provide a set of real variables
that will facilitate the expression of the test logic that is implemented by the considered LP.

The first set of the “technological” constraints in the considered LP takes the form:

∀a ∈ A, Fa(π) · qa = β1
a(π) (37)

Eq. (37) is meant as a matrix-based representation of the content of Eqs (31)–(32), where the
information that is provided by Eq. (31) has been inserted, through substitution, in Eq. (32).
Hence, the variable vector qa collects the “flow” variables qa(e, t) corresponding to a single agent
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a ∈ A. The matrix Fa(π) has one row for every “transshipment” node n of the corresponding
digraph Ga(π), and this row acts as a “constituency” vector for the set of edges in Ga(π) that are
incident to node n. Furthermore, the sign of the non-zero (unit) elements of this row indicates
whether the corresponding edge is an incoming or an outgoing edge w.r.t. node n, with the positive
sign indicating an outgoing edge. However, edge (sa, 0) is excepted from this representation since,
as mentioned above, the flow of this edge is already priced to 1.0 and it does not constitute a free
variable. In a similar spirit, the rhs vector β1

a(π) in the above equation has all its components
equal to zero, except for the component that corresponds to the single transshipment node n that
is incident to the edge (sa, 0); this component is equal to 1.0. For the following developments, it is
also useful to collect all the constraints that are expressed by Eq. (37) in the single structure

F (π) · q = β1(π) (38)

where the matrix F (π) is block-diagonal with its diagonal blocks being the matrices Fa(π) of
Eq. (37), and the vectors q and β1(π) are obtained from the concatenation of the corresponding
sets of vectors {qa} and {β1

a(π)}, for a ∈ A.
The second set of the “technological” constraints employed by the considered LP involves the

representation of the elements g of the subdifferential ∂θ̃(π) that is based on the “flow” vector q
of Eq. (38) and the construction logic of Eq. (33)–(36). This construction logic will be expressed
in the considered LP by the elements of a matrix B and a rhs vector β2 that collect, respectively,
the coefficients that multiply the vector x̃ and the constants appearing in the rhs of Eqs (34)–(36).
Hence, matrix B is a dim(g)× dim(x̃) binary matrix, while β2 is a vector of dimensionality equal
to the dimensionality of vector g and it contains three strings of components with corresponding
values 1, 2 and 0. Furthermore, under this specification of B and β2,

g ∈ ∂θ̃(π) ⇐⇒ ∃ q ≥ 0 with F (π) · q = β1(π) such that B · q − β2 = g (39)

Next, we employ Eq. (39) and the remaining variables y, z and δ to formulate the required
optimality test; i.e., we shall use these variables to test whether the subdifferential ∂θ̃(π) contains
the vector 0, or a vector g 6= 0 that is perpendicular to the hyperplane

∑
a∈A νa = 1, or, finally,

a vector g 6= 0 that has non-zero projection on this hyperplane, but for any π that is located
in that hyperplane and is feasible w.r.t. the nonnegativity constraints of Eq. (15), it holds that
g̃T · (π − π̃) ≤ 0. We start the construction of this test with the following remark:

The simpler test of assessing whether 0 ∈ ∂θ̃(π) can be performed straightforwardly by the
following LP:

min
q,y,z

m∑
i=1

yi +

m∑
i=1

zi (40)

s.t.
F (π) · q = β1(π) (41)

B · q + y − z = β2 (42)

q ≥ 0; y ≥ 0; z ≥ 0 (43)

Indeed, if 0 ∈ ∂θ̃(π), then it follows from Eq. (39) that the constraint of Eq. (42) is satisfied
with y = z = 0, and given the nonnegativity of the variables y and z, the above LP has an optimal
value of zero. If, on the other hand, 0 6∈ ∂θ̃(π), then the satisfaction of the constraint of Eq. (42)
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will necessitate the usage of some of the “slack” and/or “surplus” variables y and z, and therefore,
the optimal value of the above LP will be strictly positive.

Testing whether there exists a subgrandient g ∈ ∂θ̃(π) that is perpendicular to the hyperplane∑
a∈A νa = 1 can still be performed by an LP similar to that of Eqs (40)–(43), but with the objective

function and the corresponding Constraint (42) modified as follows:

min
q,y,z,δ

m∑
i=1

yi +
m∑
i=1

zi (44)

B · q + y − z + δ1ν = β2 (45)

The vector 1ν that appears in Constraint (45) is a binary vector of dimensionality m and with
its unit elements corresponding to the ν-type of elements in the vector π (and g). Hence, if the
subdifferential ∂θ̃(π) contains an element g that is perpendicular to the hyperplane

∑
a∈A νa = 1,

and therefore, collinear to the vector 1ν , Constraint (45) can be satisfied through the usage of the
newly added terms while keeping the vectors y and z at 0. In other words, besides the original
condition of 0 ∈ ∂θ̃(π), the modified LP that is defined by Eqs (44), (41), (45) and (43) has an
optimal value of zero when the subdifferential ∂θ̃(π) contains a subgradient g that is perpendicular
to the hyperplane that is defined by the constraint

∑
a∈A νa = 1.

Next, we shall modify further the LP of Eqs (44), (41), (45) and (43) in order to develop a test
for the existence of a subgradient g 6= 0 in ∂θ̃(π) that has non-zero projection on the hyperplane∑

a∈A νa = 1, but for any π′ that is feasible w.r.t. the constraints of Eq. (15), it holds that
gT · (π′−π) ≤ 0. For this, first we notice that any such subgradient g will have a representation in
terms of the Constraints (41), (45) and (43) with ||y||+ ||z|| > 0, where the operator || · || returns
the l1 norm of its argument. More specifically, in the aforementioned representation,

g = B · q − β2 = (−y + z) + δ1ν (46)

and the vector (−y + z) is necessary for expressing the non-zero projection of g in the hyperplane∑
a∈A νa = 1 that contains the feasible vectors π. Also, it is easy to see that, under the objective

function of Eq. (44), (i) the vector (−y + z) will be exactly equal to the projection of g in the
hyperplane

∑
a∈A νa = 1 and (ii) y[i]z[i] = 0, ∀i = 1, . . . ,m (since the quantity

∑m
i=1 yi +

∑m
i=1 zi

would be unnecessarily increased, otherwise). Finally, if the vector π is in the interior of the feasible
region of the dual problem of Eq. (15), then, there will exist a point π′ ≥ 0 in the hyperplane∑

a∈A νa = 1 such that gT · (π′ − π) = (−y + z)T · (π′ − π) > 0; i.e., in this case, any vector
g with a non-zero projection in the hyperplane

∑
a∈A νa = 1 will fail to meet the corresponding

optimality condition.
The only way that the considered optimality condition can be satisfied by a subgradient g with a

nonzero projection (−y + z) in the hyperplane
∑

a∈A νa = 1, is by having (i) the vector π binding a
set of the non-negativity constraints for its elements, and (ii) gT ·(π′−π) = (−y + z)T ·(π′−π) ≤ 0
for every point π′ ≥ 0 in the hyperplane

∑
a∈A νa = 1. For a given vector π, let Ω(π) ≡ {i : π[i] >

0} and ΩC(π) ≡ {i : π[i] = 0}. Also, let 1i denote the unit vector in the i-th coordinate. Then,
condition (ii) above becomes:

∀i ∈ Ω(π), gT · 1i = (−y + z)T · 1i = 0 (47)

∀i ∈ ΩC(π), gT · 1i = (−y + z)T · 1i ≤ 0 (48)

In view of Eqs (44) and (43), Eqs (47) and (48) further imply that

∀i ∈ Ω(π), y[i] = 0 ∧ z[i] = 0 (49)

∀i ∈ ΩC(π), y[i] ≥ 0 ∧ z[i] = 0 (50)
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In plain terms, Eqs (49) and (50) imply that the sought subgradient g will satisfy the third
optimality condition discussed above iff its projection in the hyperplane

∑
a∈A νa = 1 can be

expressed in terms of the elements of the vector y corresponding to the binding coordinates of π.
But then, the existence of such a subgradient can be detected by a test similar to that defined by
the LP of Eqs (44), (41), (45) and (43), but with the objective function of that LP modified to:

min
q,y,z,δ

∑
i∈Ω(π)

yi +
m∑
i=1

zi (51)

The next proposition recapitulates all the above discussion.

Proposition 4.1. Consider the following LP that is defined according to the logic and the notation
that were introduced in the previous part of this section.

min
ψ

cT (π) ·ψ ≡
∑

i∈Ω(π)

yi +

m∑
i=1

zi (52)

s.t.

A(π) ·ψ ≡
[
F (π) 0 0 0
B Im×m −Im×m 1ν

]
q
y
z
δ

 =

[
β1(π)
β2

]
≡ b(π) (53)

q ≥ 0; y ≥ 0; z ≥ 0 (54)

Then, for any vector π satisfying the constraints of Eq (15), the above LP will have a nonnegative
finite optimal solution P(π). Furthermore, P(π) = 0 iff π is an optimal solution for the MP of
Eq. (15).

In the rest of this section, we consider the dual LP [11] for the LP of Eqs (52)–(54). From LP
Duality theory [11], it is well known that this new LP has the same optimal value as the primal, and
therefore, it can be used in the aforementioned optimality test in lieu of the primal LP. Furthermore,
as we shall show in the following, working with the dual LP for this test has an advantage over
working with the primal LP, because in the case of a negative outcome, the optimal solution of the
dual LP can be employed towards the construction of an improving direction for the underlying
dual problem.

We start these developments by providing the dual LP formulation: Hence, let η denote the
dual variables for the upper part of the constraints that are defined by the matrix A(π), and ρ
denote the dual variables for the constraints that are defined by the lower part of A(π). Then, the
considered LP formulation can be written as follows:

max
η,ρ

(β1(π))T · η + (β2)T · ρ (55)

s.t.
(F (π))T · η + BT · ρ ≤ 0 (56)

∀i = 1, . . . ,m, ρ[i] ≤
{

1 if i ∈ Ω(π)
0 if i ∈ ΩC(π)

(57)

∀i = 1, . . . ,m, −ρ[i] ≤ 1 ⇐⇒ ρ[i] ≥ −1 (58)
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1Tν · ρ = 0 (59)

In the above LP formulation, Eqs (57)–(58) essentially define the range of the feasible values
for the dual variables ρ[i], i = 1, . . . ,m. A more concise representation of these constraints is as
follows:

∀i = 1, . . . ,m,

{
−1 ≤ ρ[i] ≤ 1 if i ∈ Ω(π)
−1 ≤ ρ[i] ≤ 0 if i ∈ ΩC(π)

(60)

On the other hand, the elements of the vector η are free variables, and this vector is constrained
only by the constraint of Eq. (56).

The next proposition establishes the ability of the dual LP formulation of Eqs (55), (56), (59)
and (60) to provide ascending directions at points π that are feasible but not optimal solutions of
the dual problem.

Proposition 4.2. Consider an optimal solution (η∗T ,ρ∗T )T of the dual LP of Eqs (55), (56), (59)
and (60) for some vector π that constitutes a feasible solution to the dual problem of Eq. 15, and let
D(π) (= P(π)) denote the corresponding optimal value. Furthermore, suppose that D(π) > 0, and
therefore, π is a suboptimal point for the dual problem of Eq. (15). Then, the vector −ρ∗ defines
a “feasible direction of ascent” at π for the MP formulation of Eq. (15); i.e., moving from point
π in the direction of −ρ∗ by a carefully selected step s can lead to an increase of the dual function
θ̃(π) without violating the constraints of Eq. (15).

Proof: The feasibility of such a movement is guaranteed by Constraints (59) and (60). More
specifically, Constraint (59) ensures that any movement in the direction of −ρ∗ will take place in
the hyperplane

∑
a∈A νa = 1. On the other hand, Constraint (60) guarantees that the coordinates

of the vector −ρ∗ that correspond to binding non-negativity constraints at π will be nonnegative,
and therefore, it is feasible to move in the direction of −ρ∗ while respecting the nonnegativity
constraints of Eq. (15).

To show that −ρ∗ is a direction of ascent for θ̃(π), it suffices to show that

∀g ∈ ∂θ̃(π), (−ρ∗)T · g > 0 (61)

since the above result, when combined with Eq. (23), will imply that the directional derivative of
θ̃(π) at π in the direction of −ρ∗ is strictly positive.

So, let us consider a subgradient g ∈ ∂θ̃(π), and notice that, according to Eq. (39), there exists
a nonnegative vector q such that

F (π) · q = β1(π) (62)

and
g = B · q − β2 (63)

Then, for the considered vector g,

(−ρ∗)T · g = (−ρ∗)T · (B · q − β2)

= (−ρ∗)T ·B · q + (ρ∗)T · β2

= −qT ·BT · ρ∗ + (β2)T · ρ∗ (64)

Since, by the working assumption, D(π) > 0, from Eq. (55) we also have

(β2)T · ρ∗ > −(β1(π))T · η∗

(from Eq. (62)) = −(F (π) · q)T · η∗

= −qT · (F (π))T · η∗ (65)
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Eqs (64) and (65) when combined with Eq. (56) and the non-negativity of the vector q further
imply that

(−ρ∗)T · g > −qT ·BT · ρ∗ − qT · (F (π))T · η∗

= −qT · (BT · ρ∗ + (F (π))T · η∗)
≥ 0 (66)

and establish the above claim regarding the ascending nature of the direction that is defined by
−ρ∗. �

Recapitulating the above discussion, at any feasible point π of the MP formulation of Eq. (15),
the solution of the dual LP formulation of Eqs (55), (56), (59) and (60) provides an optimality test
for π by means of the optimal value D(π), and for non-optimal vectors π, it also provides a feasible
direction of ascent for the dual function θ̃(π) by means of the optimal value of the dual variable ρ.
In the next section we provide a procedure that will return a step size ŝ for the identified improving
direction −ρ∗ that will maximize the incurred increase for the dual value function θ̃(π).

4.5 The step-size optimizer employed by the proposed algorithm

The problem addressed in this section can be stated as follows: Given a vector π that constitutes
a suboptimal feasible point for the dual problem of Eq. (15) and a feasible direction of ascent
defined by a vector ρ, determine a step ŝ > 0 in the direction of ρ that will incur the largest
possible improvement in the dual function and at the same time it will maintain the non-negativity
requirement for the components of the variable vector π. In more formal terms, we need to solve
the following optimization problem:

max
s≥0

θ̃(π + sρ) (67)

s.t.
π + sρ ≥ 0 (68)

Furthermore, in view of Eq. (20), the objective function of the above MP formulation can be
rewritten as:

u(s;π,ρ) ≡ min
x∈X
{(π + sρ)T · g(x)} (69)

Hence, similar to the case of the dual problem of Eq. 15, the MP formulation of Eqs (67)–
(68) involves the maximization of a piecewise linear, concave function in the single variable s; this
function is continuous but it is not differentiable at the points where the minimum in the rhs of
Eq. (69) is attained by more than one x ∈ X. Working as in Section 4.3, it can be shown that, at
any point s, the subdifferential ∂u(s;π,ρ) for this new function is defined by

∂u(s;π,ρ) =
{
ρT · g(x̃) : x̃ ∈ Conv

(
arg min

x∈X
{(π + sρ)T · g(x)}

)}
(70)

and given the scalar nature of the elements of ∂u(s;π,ρ), the above expression simplifies to

∂u(s;π,ρ) =
[

min
{
ρT · g(x̂) : x̂ ∈ arg min

x∈X
{(π + sρ)T · g(x)}

}
,

max
{
ρT · g(x̂) : x̂ ∈ arg min

x∈X
{(π + sρ)T · g(x)}

}]
(71)

Since ρ is an ascending direction for function θ̃(π) at π, the interval corresponding to the
subdifferential ∂u(0;π,ρ) is to the right of the origin of the real axis; we shall denote this fact
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by writing ∂u(0;π,ρ) > 0. Furthermore, Eq. (25) implies that, in the absence of Constraint (68),
an optimal solution for the MP formulation that is defined by Eq. (67) is any s for which the
subdifferential ∂u(s;π,ρ), defined by Eq. (71), contains the origin. On the other hand, to account
for the constraints of Eq. (68), s must be constrained to the smallest value s̄ that will lead to the
binding of some of these constraints. This value is straightforwardly obtained as

s̄ =

{
min

{
− π[i]
ρ[i] , ∀i ∈ {1, . . . ,m} with ρ[i] < 0

}
if ∃ i with ρ[i] < 0

∞ otherwise
(72)

Then, the considered algorithm will start by computing s̄ through Eq. (72) and, assuming that
Eq. 72 will return a finite s̄, the algorithm will check whether ∂u(s̄;π,ρ) ≥ 0. If this inequality is
satisfied, it can be concluded that, at s̄, the function u(s;π,ρ) has not reached its decreasing part
yet, and therefore, the algorithm returns ŝ = s̄.

If, on the other hand, s̄ =∞, or s̄ <∞ but ∂u(s̄;π,ρ) < 0 (i.e., the entire interval that defines
the subdifferential ∂u(s̄;π,ρ) is to the left of the origin of the real axis, and the point s̄ is in the
decreasing part of the function u(s;π,ρ)), the MP formulation of Eq. (67)–(68) reduces to the
unconstrained MP that is defined by Eq. (67) only.

Next we present an algorithm for identifying an unconstrained maximum for function u(s;π,ρ).
This algorithm will start with two points: point s1 = 0 and another point s2 selected such that
∂u(s2;π,ρ) < 0; practically, the last condition implies that s2 exceeds the set of the optimal step-
sizes and reaches the decreasing section of the function u(s;π,ρ). Hence, in the case that s̄ <∞,
we can set s2 = s̄; otherwise, such a point s2 can be identified by a “trial-&-error” procedure on
some increasing sequence of s.

At each of the two selected points, the algorithm picks an element ζk, k = 1, 2, from the
corresponding subdifferential, and defines the linear function u(sk;π,ρ)+ζk(s−sk). Since ζ1·ζ2 < 0,
these two straight lines cross at some point s3, computed by

s3 =
u(s1;π,ρ)− ζ1 · s1 − u(s2;π,ρ) + ζ2 · s2

ζ2 − ζ1
(73)

Next we show that s3 ∈ (s1, s2). Hence, consider the difference

s3 − s1 =
u(s1;π,ρ)− ζ1 · s1 − u(s2;π,ρ) + ζ2 · s2

ζ2 − ζ1
− s1

=
u(s2;π,ρ) + ζ2 · (s1 − s2)− u(s1;π,ρ)

ζ1 − ζ2
≥ 0 (74)

where the last inequality holds because, by the working assumption, ζ1 > 0 > ζ2 and ζ2 is a
subgradient for the concave function u at point s2. Furthermore, s3 6= s1 because, in the opposite
case, the entire line segment of the line u(s2;π,ρ) + ζ2 · (s− s2) between the points u(s1;π,ρ) and
u(s2;π,ρ) must be part of the function u(s,π,ρ), and this last result negates the assumption that
the vector ρ defines an ascending direction at θ̃(π) (since the subdifferential ∂u(s1 = 0;π,ρ) would
contain the negative element ζ2 in that case). The fact that s3 < s2 can be proved in a similar
manner.

With s3 ∈ (s1, s2), the considered algorithm for the unconstrained maximization of the function
u(s,π,ρ) proceeds to check whether 0 ∈ ∂u(s3;π,ρ). If this is true, then s3 is an optimal step-
size for the unconstrained problem and the algorithm returns ŝ = s3. If, on the other hand,
0 < ∂u(s3;π,ρ) (resp., 0 > ∂u(s3;π,ρ)), the algorithm sets s1 = s3 (resp., s2 = s3) and repeats
the previous computation with the updated pair of points (s1, s2). Since the number of slopes that
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Input: Data defining the considered traffic coordination problem as specified in Section 2.2.1;
π; ρ

Output: ŝ
1: Compute s̄ according to Eq. (72);
2: if s̄ 6=∞ ∧ ∂u(s̄;π,ρ) ≥ 0 then
3: ŝ := s̄;
4: else
5: s1 := 0;
6: if s̄ 6=∞ then
7: s2 := s̄;
8: else
9: s2 := any value with ∂u(s2;π,ρ) < 0;

10: end if
11: for k = 1, 2 do
12: Pick ζk from the subdifferential ∂u(sk;π,ρ);
13: end for
14: Compute s3 according to Eq. (73);
15: while 0 6∈ ∂u(s3;π,ρ) do
16: if ∂u(s3;π,ρ) > 0 then
17: s1 := s3;
18: else
19: s2 := s3;
20: end if
21: Compute s3 according to Eq. (73);
22: end while
23: ŝ := s3;
24: end if
25: return ŝ

Figure 1: The step-size selection algorithm

are involved in the definition of the piecewise linear function u(s,π,ρ) is finite, the algorithm will
terminate in finite time.

The complete algorithm for the determination of the sought step size s is formally stated in
Figure 1. Furthermore, it must be pointed out that the tests regarding the “sign” of the subdiffer-
ential ∂u(s;π,ρ) at the different points s visited by the algorithm, can be performed systematically
and efficiently by means of the subgraphs Ga, a ∈ A, that were introduced in Section 3.2.2 and the
corresponding flows qa that were introduced in Section 4.3. In particular, Eq. (70) implies that
the subdifferential ∂u(s;π,ρ) can be expressed by means of the aforementioned entities through a
development similar to that presented in Section 4.4 for the representation of the subdifferential of
the dual function θ̃(π). Then, the minimal and the maximal elements of this subdifferential can be
obtained by solving, respectively, a minimization and a maximization problem over the aforemen-
tioned representation where the corresponding objective function is set similar to the inner product
that appears in Eq. 71 but with the vector x̂ replaced by a vector x̃ that is induced by the flow
vector q; this replacement simplifies the two optimization problems as it relaxes the corresponding
integrality requirement for vector x, and turns these two problems into LPs. Furthermore, it is
easy to see that these two LPs are separable to a number of simpler LPs that are defined for each
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agent a ∈ A.
The next section epitomizes all the developments in Section 4 up to this point, organizing them

in a complete algorithm for the solution of the MP formulation of Eq. (15).

4.6 The complete algorithm for the solution of the dual problem

Here we outline the complete “ascent” algorithm for the solution of the MP formulation of Eq. (15)
that is implied by the previous developments of Section 4. We also show that the algorithm will
converge in finite time to an optimal solution of this problem.

A description of the proposed algorithm is as follows:

1. Initialization:

(a) Initialize vector π to a set of feasible values w.r.t. the constraints of Eq. 15. A possible
such initialization will set λ = µ = 0 and it will distribute the unit value of ||ν|| equally
among the components of the vector ν that correspond to the agents a ∈ A that have
the longest shortest paths from their initial edge sa to their destination edge da.

12

(b) Use Eqs (6)–(10) to compute the corresponding coefficients of the Lagrangian function
L(x;π) for the vector π selected in Step (1a) above.

(c) For each agent a ∈ A, solve the subproblem of Eq. (16) through the DP algorithm
described in Section 3.2.2. Also, construct the corresponding digraphs Ga, a ∈ A, repre-
senting the set of the optimal routes for each agent a.

2. Main Iteration:

(a) Use the current set of digraphs Ga, a ∈ A, and Eqs (31)–(36) to set up the (“dual”) LP
of Eqs (55), (56), (59) and (60), and solve this LP.

(b) If the optimal solution of the “dual” LP in step (2a) is equal to zero, then terminate
the algorithm returning the current vector π and the current set of digraphs Ga, a ∈ A.
Also, compute and return the value of the function θ(π) at the returned vector π; this
computation can be based on Eq. (14) and the information that is provided in the
returned vector π and the digraphs Ga, a ∈ A.

(c) Else (i.e., if the optimal solution of the “dual” LP in step (2a) is greater than zero) do
the following:

i. Compute the direction of ascent −ρ∗ from the optimal solution of the “dual” LP.

ii. Compute the optimal step size ŝ in the direction −ρ∗ using the procedure that is
stated in Figure 1. Also, update the set of the digraphs Ga, a ∈ A, with those that
were obtained during the construction of the subdifferential ∂u(ŝ;π,−ρ∗) by the
aforementioned procedure.

iii. Update π to π − ŝρ∗.
iv. Go to Step (2a).

Next we show that the above algorithm converges finitely to an optimal solution of the dual
problem. To establish this result, first we need to prove the following technical lemma.

12It can be shown that the proposed selection of the ν vector is a maximizer of the dual function θ(π) among all
the feasible vectors π with λ = µ = 0.
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Lemma 4.3. Let ψ∗ = [q∗T ,y∗T , z∗T , δ∗]T and [η∗T ,ρ∗T ]T denote respective optimal solutions for
the primal LP formulation of Eqs (52)–(53) and its dual at some feasible point π of the dual problem
of Eq 15. Also, let g(q) denote the subgradient in ∂θ̃(π) that is defined through Eq. (39) by a flow
vector q among the set of flows that are defined by Eq. 38. Then, we have that

−ρ∗[i] =


1, if g(i; q∗) > 0
−1, if g(i; q∗) < 0 ∧ i ∈ Ω(π)

0, if g(i; q∗) < 0 ∧ i ∈ ΩC(π)
(75)

Also,
−ρ∗T · g(q∗) = P(π) (76)

and for every flow vector q that is a feasible solution to Eq. (38), it holds that

−ρ∗T · g(q∗) ≤ −ρ∗T · g(q) (77)

Proof: To prove Eq. (75), consider first the case where g(i; q∗) > 0. Then, from the definition
of ρ∗, it follows that ρ∗[i] expresses the sensitivity of the primal optimal value P(π) w.r.t. the rhs
parameter β2[i] in the primal LP. But from the structure of the constraint of Eq. (53) we can see
that any sufficiently small variation ∆β2[i] can be accommodated by a variation ∆z[i] = −∆β2[i],
resulting in a variation for the optimal objective value equal to ∆P(π) = −∆β2[i]. Hence, ρ∗[i] =
−1 and the result follows. Furthermore, the other two cases of Eq. (75) can be argued in a similar
manner.

To prove the second part of Lemma 4.3, first we notice that Eq. (76) is an immediate consequence
of the definition of P(π) through Eq. (52) and the result of Eq. (75).

For the result of Eq. (77), consider a flow vector q that is a feasible solution to Eq. (38). Then,
we have:

−ρ∗T · g(q) = −ρ∗T · (B · q − β2) from Eq. (39)

= −ρ∗T ·B · q + ρ∗T · β2

≥ η∗T · F (π) · q + ρ∗T · β2 from Eq. (56) and q ≥ 0

= η∗T · β1(π) + ρ∗T · β2 from Eq. (38)

= −ρ∗T · g(q∗) from Eqs (55), (76) and the LP strong duality (78)

�

Proposition 4.4. The algorithm presented in this section for the solution of the MP formulation
of Eq. (15) will terminate in a finite number of iterations returning an optimal solution of this
formulation.

Proof: Proposition 4.2 has established that the vector −ρ∗ employed by the algorithm at
any suboptimal point π of the dual solution space, is indeed a feasible ascending direction at π.
Furthermore, the result of Eq. (77) in Lemma 4.3 implies that the inner product −ρ∗T · g(q∗)
defines the directional derivative in the direction of −ρ∗. Hence, g(q∗) is the gradient of a facet
of the polyhedral function θ̃(·) that contains the considered point π and increases in the direction
of −ρ∗. On the other hand, Eq. (75) of Lemma 4.3 implies that the selected direction −ρ∗ moves
the initial point π along the coordinates of g(q∗) that define feasible improving dimensions, in an
isotropic manner.

In other words, at every visited suboptimal point π, the algorithm will select an improving
facet of the underlying polyhedral function passing through π, and it will move π isotropically
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Figure 2: The physical layout for the scheduling problem instance of the example of Section 5

along all its dimensions that constitute feasible directions of improvement, and with the direction
of the motion for each dimension being defined by the sign of the corresponding component in the
gradient of the selected facet. This movement will persist until either (i) the function θ̃(·) starts
decreasing in the direction of −ρ∗, or (ii) (at least) one of the components of π reaches its boundary
value of 0. At that point, a new ascending direction and a new facet will be determined in the
same manner. Furthermore, the concave polyhedral structure of θ̃(·) implies that once a facet is
abandoned by the process described above, it cannot be revisited. But since the number of facets
in the considered polyhedral function are finite, the algorithm will terminate returning an optimal
solution after a finite number of iterations. �

5 Example

In this section, we apply the theoretical developments of the earlier parts of this paper on the
instance of the QMP scheduling problem that is depicted in Figure 2. The circles depicted in
Figure 2 represent the ion traps that implement physically the corresponding guidepath network,
while the the guidepath graph G that is employed in the eventual formulation of the considered
scheduling problem is the digraph that is defined by the directed edges that are drawn in black
color in Figure 2. As discussed in Section 2.1, each pair of the depicted edges abstracts one of the
original ion traps. The considered routing problem involves three qubits, Q1, Q2 and Q3. These
three qubits are initially located on edges 28, 30 and 32, and they must be transported to edges
16, 14 and 12, respectively. Furthermore, in the considered operational setting, it is assumed that
qubits can reverse the direction of their motion on any given edge; for instance, a qubit located
on edge 5 in the depicted digraph can move at the next instant on edge 6. This feature can be
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easily accommodated in the mathematical formulation of Section 2.2 through the corresponding
adjustment of the sets e• for the various edges e ∈ E.

On the other hand, it is also interesting to notice that the routing problem that is defined in
Figure 2 has some quite interesting and challenging features, to the point that it has been used
as a “benchmark” problem among the researches who work on this class of problems in the QMP
operational context. In order to help the reader understand the conceptual and computational
intricacies that characterize this problem instance, we make the following remarks: First, it is easy
to see that in the considered guidepath structure, each qubit has a single shortest path taking it from
its current location to its destination edge. Furthermore, the shortest paths for the three qubits
present a nested structure, with the shortest path of qubit Q2 subsuming the shortest path of qubit
Q3, and the shortest path of qubit Q1 subsuming the shortest path of qubit Q2 (and, therefore, the
shortest path of qubit Q3, as well). Finally, in the final configuration for the three qubits that is
stipulated by the considered scheduling problem, the qubits must have reversed their order w.r.t.
their arrangement in the initial configuration. The above three remarks further imply the following:
(i) Qubit Q2 will not be able to reach its final destination until qubit Q1 has cleared through this
edge. And similarly, qubit Q3 will be able to reach its destination edge only after qubits Q1 and
Q2 have cleared through it. Hence, there is an (implicit) set of precedence constraints that must
be observed by any routing solution of the considered scheduling problem. (ii) Furthermore, these
precedence constraints, when combined with the topology of the underlying guidepath network,
also imply that qubits Q2 and Q3 will need to allow the qubits that are behind them in the initial
arrangement, to “overpass” them; and this effect can only be achieved by having these two qubits
move into one of the two “sidetracks” of the depicted digraph, that are defined, respectively, by
the edges 1–8 and 35–42. Hence, the construction of even a feasible solution for the considered
scheduling problem requires the demonstration of significant coordination and “intelligence” by the
participating agents.

With the above understandings, and assuming the traffic dynamics that were defined in Sec-
tion 2, it can be easily checked that any optimal routing schedule for this problem will have all three
qubits reaching their final destinations in 16 time units, where the time unit is the time required
by these qubits to go through a single ion trap.

On the other hand, the solution of the corresponding dual problem of Eq. (15) through the
algorithm of Section 4.6, with an initial dual solution of λ = 0, µ = 0, νa = 1/|A|, ∀a ∈ A,
and a time horizon parameter T set at the value of 30 time units, led to a maximal value for the
dual function θ of 11.9172.13 In view of the integrality of the optimal value of the primal MIP
formulation, w∗, this result defines a lower bound of 12 time units for w∗. Hence, the observed
duality gap for this problem instance is equal to 4 units.

Figure 3 depicts the evolution of the values θ(λ,µ,ν) that are generated by the considered
algorithm, throughout its entire execution. We can see that (i) these values constitute a monoton-
ically increasing sequence, and (ii) eventually the algorithm terminated with an optimal solution
(λ∗,µ∗,ν∗), after 68 iterations. It is also interesting to notice the presence of some “plateaus” in
the plot of Figure 3, indicating that the algorithm had to go through some regions of the underlying
solution space where the stepwise progress w.r.t. the dual function θ was very minuscule, but still
the algorithm managed to not get entrapped in these regions and reach a global optimum. Finally,
Figure 3 also reveals that, for the considered problem instance, the lower bound of 12 time units
for w∗ was obtained very early in the overall computation.

Figure 4 depicts the graph Ga3 that encodes the set of all optimal routes for Qubit Q3, for the

13We remind the reader that the dual function θ relates to the objective function θ̃ of the dual problem of Eq. (15),
through the equation θ(λ,µ,ν) = θ̃(λ,µ,ν) + T + 1.
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Figure 3: Evolution of the values θ(λ,µ,ν) that are generated during the iterations of the ascent
algorithm that is presented in Section 4.6.

“shortest path” formulation of Eq. (16) that is specified by the derived optimal solution (λ∗,µ∗,ν∗)
of the corresponding dual problem of Eq. (15).14 We remind the reader that these graphs Ga provide
a spatio-temporal representation of all the optimal routes of the corresponding “shortest path”
formulation of Eq (16), where the edge labels (e, t) specify the location of agent a in the guidepath
graph G at time t. It can be seen that all of the proposed routing schedules place the qubit Q3

at its destination edge in 12 time units, which is consistent with the bound that is specified by
the optimal dual value θ(λ∗,µ∗,ν∗). Furthermore, some of the routes that are specified by the
graph of Figure 4 for the considered qubit do make use of the lower right branch of the guidepath
graph G of Figure 2 (those including edges 35, 36 and 38) or of the upper left branch of G (those
including edges 5, 7 and 8). Hence, in the case of Qubit Q3, the set of routes that are generated
by (λ∗,µ∗,ν∗), convey some of the required “intelligence” for the construction of a feasible routing
schedule for the considered problem instance.

On the other hand, it is also true that the graph Ga2 , i.e., the counterpart of the graph of
Figure 4 for Qubit 2, fails to specify similar intelligent behavior for that qubit. Hence, for this
rather hard problem instance,15 any attempt to generate a feasible routing schedule by restricting
the agent routes to the routing sequences that are encoded in the three graphs Gai , i = 1, 2, 3,
that are specified by the dual optimal solution (λ∗,µ∗,ν∗), but possibly allowing for more general
timing patterns for the execution of these routes, would lead to an infeasible problem. Such a
construction of a feasible schedule from the graphs Ga that are specified by the dual optimal solution
(λ∗,µ∗,ν∗) can be possible for simpler (less constrained) problem instances. But the last finding
that is reported above motivates the need for the development of additional methodology that will
provide good heuristic (sub-optimal) solutions to the considered scheduling problem, along lines
similar to those pursued in [15, 12]. In such an endeavor, the results presented in this paper can
still play a significant role by providing lower bounds to the optimal makespan, and thus, assessing

14Similar graphs can be generated for the other two qubitsQ1 andQ2, but we omit them due to space considerations.
15for the reasons that were discussed at the introductory part of this example
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Figure 4: The set of all optimal routes for the “shortest path” formulation of Eq. (16) for Qubit
Q3, as specified by the derived optimal solution (λ∗,µ∗,ν∗) of the corresponding dual problem of
Eq. (15).

and characterizing the extent of the sub-optimality in those further methods.

6 Discussion

The analytical results of Section 4 have formally established that the algorithm introduced in this
paper for the solution of the dual problem of Eq. (15) has the attractive properties of (i) finite
convergence and (ii) monotone improvement of the quality of the derived solutions, where the
latter is defined by the value of the dual function θ̃. At the same time, the computational results
that are reported in Section 5 have demonstrated these algorithmic properties and highlighted their
significance in terms of generating lower bounds for the original scheduling formulation.

As discussed in [5], for polyhedral dual functions, one can obtain finitely convergent algorithms
for the solution of the corresponding dual problem through another class of algorithms that are
known as “cutting plane” algorithms. But the general implementations of these algorithms tend
to converge very slowly to the optimal solution, and they do not possess the property of the mono-
tonic improvement of the derived solutions that is possessed by our algorithm. On the contrary,
as remarked in [5], the performance of the cutting plane algorithms w.r.t. this last attribute can
be quite erratic, especially in the earlier stages of their computations. In fact, the development
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of strictly ascending algorithms for the class of the (dual) optimization problems that are defined
in the context of Lagrangian Duality theory, as is the case with the problem considered in this
work, is a very challenging task, and the corresponding results are very limited and computation-
ally cumbersome (c.f. [5], Section 6.3.4). Our ability to establish this ascending property for the
algorithm that is presented in this work stems from our ability (i) to provide an efficient represen-
tation of the subdifferential ∂θ̃(π), and (ii) to pertinently employ this representation in the results
of Propositions 4.1 and 4.2.

The presented algorithm is also quite efficient in terms of the involved computations, with the
most difficult task in these computations being the iterative formulation and solution of the LP of
Eqs (55), (56), (59) and (60) – please, c.f., Step (2a) in the algorithm description that is provided
in Section 4.6. These LPs can grow pretty large for larger problem instances, especially as the
problem parameter T gets significantly large values. But, at the same time, the defining elements
of these LP formulations possess extensive levels of sparsity that, when properly exploited, can
streamline substantially the involved computations.16

Finally, we notice, for completeness, that the idea of using a Lagrangian relaxation of the MIP
formulations of some scheduling problems for the generation of (i) lower bounds, and even (ii)
suboptimal solutions to the original scheduling formulations, has been considered in the past litera-
ture; some relevant results are reported, for instance, in [6, 18, 9]. Also, reference [7] is an excellent
tutorial survey on the methodological developments concerning the application of the Lagrangian
relaxation method on the MIP formulations of various important combinatorial optimization prob-
lems; this paper also provides some very keen insights on the major findings at the time of its
appearance, and on the “spirit” that drove the corresponding research endeavors. When it comes
to the particular area of combinatorial scheduling, almost all the corresponding past developments
concern some scheduling problems that constitute variations of the “job shop” scheduling problem
[15] and do not involve many of the resource allocation dynamics and constraints that are important
defining elements for the scheduling formulations addressed in this paper. Furthermore, while they
seek to take advantage of some underlying special structure in the evaluation of the dual function
θ(π) at any given point π (the, so called, “Lagrangian problem” in the terminology of [7]), most
of these past results employ some “vanilla” and/or heuristic methods for the solution of the dual
problem.17 Hence, when viewed from this standpoint, it is possible that the methodological and
the algorithmic developments that are presented in this work can also complement and strengthen
the developments of those past endeavors.

7 Conclusions

This paper has introduced a class of novel and hard scheduling problems that concern the routing
of a set of mobile agents over the edges of an underlying guidepath network, in a way that (i)
guarantees the safety / integrity and the liveness of the agent motion, and (ii) minimizes the
schedule makespan. In the context of these problems, our results have primarily addressed the

16It can also be argued that the large size of the considered LPs results actually from the representation for
the original scheduling problem that is adopted in the MIP formulation of Section 2.2, and therefore, it is not an
inherent handicap of the considered algorithm. On the other hand, at this point it is not clear whether the presented
algorithmic developments would be easily adaptable to some other (MIP) formulation of the original scheduling
problem.

17However, it is also true that the work presented in [6], one of the earliest works to use Lagrangian Duality on
a complex scheduling problem, has developed a customized algorithm for the solution of the dual problem that is
addressed in it, with properties similar to the properties of the corresponding algorithm that we present in this paper.
But the two scheduling formulations are quite different, and the established properties are based on different insights
and techniques in each case.
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effective and efficient solution of some Lagrangian relaxations of these problems through a novel,
customized algorithm. Some important attributes of this algorithm are (a) its finite convergence
to an optimal solution of the corresponding dual problem, and (b) its “ascending” nature, i.e., its
ability to improve monotonically the quality of the derived solutions w.r.t. the corresponding dual
function.

Our future work will seek to further assess and exploit the potential of the presented algorithm
to define pertinent “seeds” for the construction of efficient schedules for the original scheduling
formulation. We shall also seek to develop additional methodology for computing such efficient
solutions for the considered scheduling problems, by adapting and extending the “decomposition”
methods that are discussed in [15].18 Finally, a third future task is the integration of the results
obtained from the aforementioned other two tasks into an appropriate MPC framework that will
solve the broader scheduling problem concerning the multi-leg trips of the system agents.
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