
Real-Time Management of Complex
Resource Allocation Systems: Necessity,
Achievements and Further Challenges ?,??

Spyros Reveliotis ∗

∗ School of Industrial & Systems Engineering, Georgia Institute of
Technology, Atlanta, GA, 30332, USA (e-mail:

spyros@isye.gatech.edu).

Abstract: Many contemporary applications, ranging from flexibly automated production
systems, to automated material handling and intelligent transportation systems, to internet-
based workflow management systems, and more recently, to the massively parallelized software
systems that emerge in the context of the novel multi-core computing architectures, can be
perceived as a set of finite resources that support a number of concurrently running processes;
these processes execute in a staged manner and vie for the allocation of various subsets of
the system resources. To effectively support and manage the extensive levels of concurrency and
operational flexibility that are contemplated for these environments, and the ensuing complexity,
there is a substantial need for formal models and tools that will enable the modeling, analysis and
eventually the control of the aforementioned resource allocation function so that the resulting
dynamics are, both, behaviorally correct and operationally efficient. This write-up overviews
a research program that seeks to address the aforementioned need by using the unifying
abstraction of the resource allocation system (RAS) and supporting modeling frameworks, like
automata, Petri nets, and Markov reward and decision processes, borrowed from the area of
Discrete Event Systems (DES) theory. The presented results take advantage of the special
structure that exists in the considered RAS classes, and are further characterized by, both,
their analytical rigor and computational tractability. The write-up also highlights the further
challenges that must be addressed for the successful completion and promotion of the pursued
framework.

Keywords: Resource Allocation Systems, Discrete Event Systems, Supervisory Control,
Deadlock Avoidance, (Stochastic) Scheduling

1. INTRODUCTION

The efficient and expedient allocation of a finite set of
resources to a number of contesting processes is a ubiq-
uitous problem, arising in various operational settings of
our contemporary technological civilization. Indeed, cost-
effectiveness and responsiveness are predominant concepts
in modern corporate strategy and typical requirements
for many everyday functions. In the context of the re-
source allocation functions considered in this work, cost-
effectiveness is based on the ability to “make the most” –
i.e., maintain a high utilization – of the engaged resources.
On the other hand, the posed requirement for high re-
sponsiveness traditionally has implied the ability to fill an
arising demand or to support an emerging service need in
a timely manner. But in the current competitive markets,
responsiveness also implies the ability to provide a broad
range of diversified products and services, each of them
appealing to a different market segment. And this trend

? This work has been partially supported by NSF grant ECCS-
1405156.
??For its most part, this write-up constitutes an extended abstract of
the material that is presented in Reveliotis (2015). We refer to that
work for a more systematic and extensive coverage of the presented
material, and for the corresponding bibliography.

for extensive diversification has more lately evolved to
the mass-customization practices that have been adopted
by certain industries, like the automotive and computer
manufacturers, and are contemplated by many more. The
effective support of all the aforestated requirements neces-
sitates the further deployment, at the operational level, of
high levels of concurrency and flexibility; i.e., a need to
support the simultaneous execution, on the same set of re-
sources, of a broad set of diversified workflows, while each
of these workflows takes place at a low or moderate rate,
and evolves continually into new operational patterns.

A concrete manifestation of the aforementioned trend is
provided by the proverbial concept of the “flexible manu-
facturing system” (FMS), that has been extensively dis-
cussed in the context of various industrial settings for
many years. The prototypical FMS consists of a set of
numerically controlled workstations interconnected by an
automated material handling system, and with the work-
flow taking place in the entire facility being integrated and
coordinated by a computerized controller. More recently,
this trend has been extended to the service sector through
the concept of the “workflow management system”, i.e.,
a computerized tool that supports the definition, the en-
actment and the coordination of the execution of business

workflows, by monitoring their progress and assigning the
necessary resources to them; these resources can range
from data files, to supporting processing software, to print-
ing and communication means, and even the humans that
might be necessary for the support and the authorization
of certain steps. It is currently believed that various rou-
tine transactions in the banking sector, in the supply chain
management and logistics services, in insurance claim pro-
cessing, and even in the broader health-care sector, can
be rendered more responsive and efficient through their
mechanization by the successful deployment of a workflow
management system.

In the transportation sector, the aforementioned resource
allocation paradigm manifests itself in any set-up where
a set of concurrently traveling vehicles have to negotiate
the necessary traveling space in the context of some “zon-
ing scheme” that ensures collision-free operation. Trains
being successively allocated a sequence of segments of the
underlying railway network is a typical example of such
a “zone”-based operation. Also, in the industrial sector,
similar zoning schemes have been implemented in the
operation of unit-load automated guided vehicle (AGV)
and monorail-based material-handling systems, and in the
operation of the hoist and the crane systems that sup-
port the material-handling operations at many ports and
freight terminals.

Finally, another domain where the aforementioned re-
source allocation functions (and problems) are very promi-
nent, is in the software and the computational platforms
that control the aforementioned operations as well as any
other operation that is supported by our modern techno-
logical civilization. Indeed, since its early days, our modern
computing technology has employed extensive levels of
(actual or virtual) concurrency, where a number of soft-
ware threads run in parallel, each of them tasked with a
particular role and function. These threads need to share
the limited resources of the underlying computer platform
(CPUs, registers, I/O devices, files, etc.) in a way that
provides to each of these processes exclusive access and
engagement of these resources; the corresponding coordi-
nation is attained through the use of a set of tokens, that
are typically known as “mutually exclusive (mutex) locks”
or “semaphores”, and constitute essentially a “pass” for
accessing the corresponding resource.

The above discussion regarding the increased levels of
efficiency / cost-effectiveness, responsiveness, concurrency
and flexibility that are requested for many contemporary
operations, and the accompanying examples, also render
pretty clear that these requirements lead to operations
that are characterized by a high level of operational com-
plexity. And this complexity translates to some challeng-
ing scheduling problems for the underlying resource al-
location functions. In many cases, including all of the
aforementioned examples, things are further complicated
by the extensive levels of automation and autonomy that
is requested by the considered operations. The need for
automation can arise from technological and/or feasibility
considerations (as in the case of the multithreaded software
mentioned above, and in the operations taking place in
the modern semiconductor fabs that must be isolated
from the polluting effect of the human element), or from
considerations concerning the operational and financial

efficiency of the underlying operation (as in the aforemen-
tioned workflow management systems and the driverless
transportation systems). In either case, the removal of
the human element from the underlying processes implies
that the deployed controllers, and especially the resource
allocation functions involved, must be not only efficient
but also correct and robust to logical problems and errors
that, in more traditional settings, have been addressed
by human intervention and improvisation. A typical such
logical problem in the context of the considered resource
allocation functions is the formation of (partial) deadlock,
i.e., situations where a set of the concurrently executing
processes are entangled in a circular waiting pattern, each
of them waiting for some of the other processes to release
resources that are necessary for its advancement. Hence,
any such deadlock is a pernicious situation that stalls the
further advancement of the processes involved and drives
to zero the utilization of all the resources that have been
allocated to these processes. At the same time, it should
be obvious that deadlock is a natural consequence of the
concurrency and the flexibility, and, finally, the arbitrary
structure of the corresponding resource allocation function
that is implied by the first two requirements; therefore,
it constitutes a ubiquitous problem for the operational
environments discussed in the previous paragraphs.

The bottom line of all the above discussion is that, in the
context of the considered automated operations, the un-
derlying resource allocation functions must be controlled
for operational efficiency, cost effectiveness and responsive-
ness, and also for correctness and robustness to certain
problems of a more qualitative or “logical” nature, like
the formation of partial deadlock. In the rest of this write-
up we present the results of a research program that has
sought to provide a systematic and rigorous solution to
this challenging resource allocation problem by employing
and extending results from modern control theory.

2. RESOURCE ALLOCATION SYSTEMS AND THE
PROPOSED CONTROL FRAMEWORK

The presented research program has sought to address
the control problem that was outlined in the introductory
section, in a systematic and rigorous manner, by (i) ab-
stracting the considered operations through the notion of
a (sequential) Resource Allocation System (RAS), and (ii)
employing and extending results coming from the controls
area of Discrete Event Systems (DES). In this section,
first we introduce the formal notion of the sequential
RAS, and subsequently we outline the DES-based control
framework that has been proposed for these RAS. We also
present a RAS taxonomy that has been instrumental in
the investigation of the relevant control problems. These
problems, themselves, and the currently available results
for them, as well as the remaining open challenges, will be
addressed in subsequent sections.

Sequential Resource Allocation Systems. A sequential RAS
is formally defined by a quintuple Φ = 〈R, C,P,A,D〉,
where: (i) R = {R1, . . . , Rm} is the set of the system
resource types. (ii) C : R → Z+ – the set of strictly
positive integers – is the system capacity function, charac-
terizing the number of identical units from each resource
type available in the system. Resources are assumed to be

reusable, i.e., each allocation cycle does not affect their
functional status or subsequent availability, and therefore,
C(Ri) ≡ Ci constitutes a system invariant for each i. (iii)
P = {Π1, . . . ,Πn} denotes the set of the system process
types supported by the considered system configuration.
Each process type Πj is a composite element itself, in par-
ticular, Πj =< ∆j ,Gj >, where: (a) ∆j = {Ξj1, . . . ,Ξj,lj}
denotes the set of processing stages involved in the defini-
tion of process type Πj , and (b) Gj is an additional data
structure that encodes the sequential logic that integrates
the set of the processing stages ∆j into a set of potential
process flows. (iv) A : ∆ →

∏m
i=1{0, . . . , Ci} is the

resource allocation function associating every processing
stage Ξjk with the resource allocation vector A(Ξjk) 6= 0
required for its execution. (v) D is a function mapping each
processing stage Ξjk in ∆ ≡

⋃n
j=1 ∆j to a distribution with

positive support that characterizes the “processing time”
of the corresponding processing stage. Finally, we also set
ξ ≡ |∆|, and for purposes of complexity considerations, we
define the size |Φ| of RAS Φ by |Φ| ≡ |R|+ ξ +

∑m
i=1 Ci.

At any point in time, the system contains a certain number
of (possibly zero) instances of each process type that
execute one of the corresponding processing stages; this
distribution of the active process instances across the
various processing stages defines a notion of “state” for the
considered RAS. Obviously, this RAS state must respect
the resource capacities; i.e., no resource type Ri ∈ R
can be over-allocated w.r.t. its capacity Ci at any point
in time. Furthermore, in order to model the “hold-while-
waiting” effect that is exhibited in the resource allocation
dynamics of the considered processes, the adopted resource
allocation protocol stipulates that a process instance Jj
executing a non-terminal stage Ξjk and seeking to advance
to a next stage Ξjk′ , must first be allocated the resource
differential (A(Ξik′) − A(Ξik))+ and only then will it
release the resource units |(A(Ξjk′)−A(Ξjk))−|, that are
not needed anymore. 1 Then, in the resulting operational
context, the RAS deadlock can be formally defined as a
RAS state containing a set of active process instances, DJ ,
such that every instance Jj ∈ DJ , in order to advance to
any of its next processing stages, requests some resources
currently held by some other process instance Jk ∈ DJ .

A real-time control framework for the considered RAS. As
remarked in the introductory section, an effective real-
time controller for the considered RAS must ensure the
attainment of some set of performance objectives typically
defined w.r.t. the timed RAS behavior, while keeping the
RAS away from problematic behavioral patterns like the
aforementioned deadlock states. This last control require-
ment is frequently known as the RAS behavioral or logical
control problem, because the corresponding problematic
behavior can be effectively avoided by controlling only
the sequencing of the relevant resource allocation events
and not their exact timing. Furthermore, it is generally
accepted by the relevant research community that, due
to the stochasticity that is generally present in the timed
dynamics of the considered RAS, any robust solution to
the RAS behavioral and performance control problems

1 This assumption is not restrictive since the release of resources
that do not adhere to this protocol can be modeled by the insertion
of additional processing stages in the underlying process plan.

RAS Domain

Lo
gi

ca
l

C
on

tro
l

S
ys

te
m

 S
ta

te
 M

od
el

P
er

fo
rm

an
ce

 C
on

tro
l

Configuration Data

Feasible
Actions

Admissible
Actions

Event Commanded
Action

Fig. 1. An event-driven control scheme for the real-time manage-
ment of the considered RAS.

should rely on some feedback control scheme and not on
the open-loop execution of some precomputed plan.

Such a feedback-based controller is presented in Fig. 1. The
depicted control paradigm is an event-driven approach,
where the applied control function monitors the events
taking place in the underlying RAS and commands a
certain action sequence in response to these events. More
specifically, the proposed controller maintains a represen-
tation of the RAS state, which enables it to monitor the
system status and to identify the entire set of feasible
actions that can be executed by the system at any given
time. Hence, this information is instrumental for enabling
the controller to determine the scope of its possible re-
sponses to a certain event. However, the controller must
eliminate (“filter out”) all those actions that can result in
problematic behavior. Such problematic behavior includes
the formation of deadlock, but in the more general case,
this part of the depicted control scheme will address addi-
tional specifications that might be defined, for instance,
by quality concerns or some policy considerations, like
those arising from a notion of “fairness” to the contest-
ing processes. All the aforementioned concerns boil down
to the systematic exclusion of certain resource allocation
patterns from the RAS behavior, and, as already men-
tioned, the resulting problem is generally known as the
logical or behavioral control problem to be addressed by
the controller. The set of actions eventually accepted by
the logical controller defines the space of the “admissi-
ble” behavior for the considered RAS. Then, the second
stage of the proposed control logic must shape / bias this
admissible behavior in a way that aligns best with the
system performance objectives; this biasing is effectively
achieved through the selection of the particular admissible
action to be commanded upon the system, at each decision
stage. The corresponding problem is known as the RAS
performance-oriented control or scheduling .

The effective deployment of the RAS control scheme that
is described in the previous paragraph necessitates a per-
tinent formal characterization of the RAS state, and the
reference of the RAS logical and performance-oriented con-
trol problems to appropriate formal modeling frameworks

Table 1. A RAS taxonomy

Based on the Process Based on the
Sequential Logic Requirement Vectors

Linear: Each process is defined Single-Unit: Each stage
by a linear sequence of stages requires a single unit
Disjunctive: A number of from a single resource
alternative process plans Single-Type: Each stage
encoded by an acyclic digraph requires an arbitrary
Merge-Split: Each process is number of units, but all
a fork-join network from a single resource
Complex: A combination of Conjunctive: Stages re-
the above behaviors quire different resources

at arbitrary levels

that will enable a rigorous analysis of the corresponding
RAS dynamics and the effective synthesis of the necessary
policies. At a basic level, these capabilities have been
conveniently provided to the developing RAS theory by the
areas of qualitative and quantitative analysis of Discrete
Event Systems (DES). Generally speaking, DES theory is
a field of modern control theory investigating the behavior
of dynamical systems that evolve their state discontin-
uously over time, in response to the occurrence of cer-
tain critical, instantaneous events. In this general setting,
qualitative DES theory uses formal linguistic frameworks
borrowed from theoretical computer science, augmented
with control-theoretic concepts and techniques, in order
to analyze and control the event sequences that are gen-
erated and observed by the underlying DES dynamics.
On the other hand, quantitative DES theory analyzes and
controls the timed DES dynamics, using models and tools
that are borrowed from (stochastic) OR and simulation
theory. However, as it will be further revealed in the
following, while enabling a formal positioning of the RAS
behavioral and scheduling problems, the practical compu-
tational capabilities of the corresponding DES frameworks
are severely limited by a very high representational and
computational complexity. But in the subsequent parts of
this write-up we shall demonstrate how the relevant re-
search community has leveraged the representational and
analytical capabilities that are provided by DES theory
in order to develop effective practical solutions to the two
aforementioned control problems that arise in the RAS
operational context. These solutions result from the perti-
nent exploitation of the special structure that exists in the
considered problems, and the corresponding developments
have substantially enriched and extended the capabilities
of the supporting DES theory itself.

A RAS taxonomy. We close the discussion on the basic
RAS model and the induced control problems, by present-
ing a RAS taxonomy that has been instrumental for the
systematic investigation of these problems, especially the
RAS behavioral control problem of deadlock avoidance.
The main RAS classes recognized by this taxonomy are
defined by (i) the structure that is supported for the
process sequential logic, and (ii) the structure of the re-
source allocation requests that are posed by the various
processing stages; the most prominent RAS classes w.r.t.
these two classification attributes are presented in Table 1.
Furthermore, more recent developments have revealed the
significance of some additional RAS attributes when it
comes to the analytical characterization of the qualitative
RAS dynamics and their control for deadlock avoidance.

These new attributes include (iii) the absence of resources
with non-unit capacities, (iv) the presence of cycling in
the sequential logic of the RAS process types, and (v) the
presence of RAS dynamics of an uncontrollable nature;
this last feature can be further differentiated into (a) un-
controllability w.r.t. the exact timing of a certain resource
allocation and (b) uncontrollability of the branching deci-
sions of some underlying process that possesses alternate
routings. We shall use this taxonomy in the next sections,
especially when we discuss the existing theory on the RAS
deadlock avoidance problem.

3. THE RAS LOGICAL CONTROL PROBLEM

The most straightforward way to represent formally the
behavior of a given RAS Φ, and the corresponding log-
ical control problem of deadlock avoidance and liveness-
enforcing supervision, is by means of a finite state automa-
ton (FSA), G(Φ). The state s of this FSA is a vector of di-
mensionality ξ – i.e., the number of the distinct processing
stages of the underlying RAS Φ – where each component
indicates the number of active process instances that exe-
cute the corresponding processing stage. The state space S
consists of all those vectors that define a feasible resource
allocation w.r.t. the RAS resource allocation function A
and the resource capacities Ci. The events that evolve
the RAS state comprise (i) the “loading” events that
initiate new process instances, setting them to their first
processing stage, (ii) the “advancing” events, that advance
an active process instance from its current processing stage
to a successor processing stage, and (iii) the “unloading”
events that terminate those process instances that have
completed their last processing stage and remove them
from the system. The initial state of this automaton cor-
responds to the state 0 where the system is idle and empty
of any jobs. State 0 is also the only marked state of G, a
fact that expresses the desire for complete process runs.
Then, the states of the FSA G that define the feasible
behavior of the underlying RAS is the entire set of states,
Sr, that are reachable from state 0. On the other hand,
the admissible behavior is characterized by the set of
states Ss that are co-reachable to state 0; in the relevant
terminology, these states are also characterized as “safe”,
while their complement w.r.t. the state set S is the set
of the “unsafe” states Su. The state set Su contains the
set of the “deadlock” states, Sd, i.e., states that exhibit
a (partial) deadlock, according to the definition of this
concept in the previous section, but it can also contain
states that do not exhibit such a partial deadlock but lead
unavoidably to a deadlock state; this last set of states are
characterized as “deadlock-free unsafe” states.

Given the above classification of the RAS state space S,
the sought supervisor should restrict the RAS behavior in
the subspace Sr ∩ Ss ≡ Srs, i.e., the set of reachable and
safe states. This restriction ensures the ability of every
activated process instance to terminate, and at the same
time, it is the minimal required restriction of the uncon-
trolled RAS behavior for establishing deadlock-free opera-
tion; hence, in the relevant terminology, the corresponding
supervisor is characterized as the “maximally permissive
deadlock avoidance policy” (DAP). A natural implementa-
tion of this policy would be an one-step-lookahead scheme
that would permit a transition in automaton G on the ba-

sis of the “safety” (i.e., the co-reachability) of the resulting
state. But it has been shown that assessing the safety of
any given RAS state is an NP-complete problem even for
the simplest class of the Linear-Single-Unit-RAS. Hence,
the deployment of the maximally permissive DAP is an
NP-Hard proposition. In the rest of this section we discuss
how the relevant research community has coped with this
negative result, developing a rich methodology that has
enabled the implementation of the optimal or near-optimal
DAPs for RAS instances of very large size and behavioral
complexity.

As it has been the case with many other optimization prob-
lems that exhibit super-polynomial complexity, the first
reaction of the research community on the deadlock avoid-
ance problem was to identify surrogate conditions to safety
that are testable with a polynomial complexity w.r.t. the
underlying RAS size, |Φ|, and lead to a significant coverage
of the target state space Srs. Such policies are known as
“Polynomial Kernel” (PK-) DAPs in the relevant litera-
ture. A characteristic example of such a policy is Dijkstra’s
Banker’s algorithm, that restricts the RAS behavior to a
subspace of Srs for which the existence of paths to the
target state 0 is polynomially verifiable; such states are
known as “ordered” states in the relevant literature. Some
other classes of PK-DAPs for the considered RAS take the
form of a polynomial set of linear inequalities on the RAS
state s; specific examples of such policies are the Resource
Upstream Neighborhood (RUN) Policy and the Resource
Ordering (RO) policy that were originally developed for
Linear-Single-Unit RAS, but have been extended to the
case of Disjunctive-Conjunctive RAS as well. Furthermore,
as we will discuss in more detail in the sequel, currently we
also avail of a methodology that can assess automatically
the ability of any given set of inequalities to define a correct
DAP for a given RAS Φ. Finally, it should also be pointed
out that the disjunction of a set of PK-DAPs for a given
RAS Φ – i.e., the policy that admits a state s of Φ if it
is admitted by any of the constituent policies – is another
correct DAP with admissible state space equal to the union
of the state spaces that are admitted by the constituent
policies. Hence, such a DAP disjunction can be perceived
as an attempt to reconstruct (an approximation of) the
notion of RAS state safety by “patching” together a set of
surrogate concepts, each contributing a particular facet of
the target concept.

A second typical reaction to an NP-Hardness result, is the
effort to identify “special structures” of practical interest
– i.e., certain subclasses of the considered problem –
that admit solutions of polynomial complexity. In the
case of the deployment of the maximally permissive DAP
for the considered RAS classes, such special structure
has been defined effectively by two lines of analysis.
The first line has sought to identify RAS structure that
renders the search for a path to the marked state 0
a task of polynomial complexity w.r.t. the underlying
RAS size |Φ|. Generally speaking, this RAS structure
enables the “easy” identification of process advancement
steps that lead to a monotonic increase of the resource
slackness, and therefore, can be effected by a “greedoid”
type of algorithm (i.e., a search algorithm without the
need for backtracking). The second line of analysis that
has enabled the identification of RAS special structure

admitting polynomially deployable maximally permissive
DAP is based on the realization that while the assessment
of RAS state safety is NP-complete, the detection of a
deadlock in a RAS state is a task of polynomial complexity
in many RAS classes of the taxonomy of Table 1, including
the broad class of Disjunctive-Conjunctive RAS. This
realization implies, in turn, that in any RAS classes with
no deadlock-free unsafe states (i.e., RAS where Su =
Sd), unsafety is polynomially recognizable by substituting,
in the aforementioned one-step-lookahead scheme that
implements the maximally permissive DAP, the original
tests for (un-)safety with the polynomial test for deadlock.
There is a number of such RAS subclasses identified in the
literature, but currently all of them are sub-classes of the
Disjunctive-Single-Unit-RAS.

Substantial advances in the deployment of the maximally
permissive DAP for the considered RAS have been ob-
tained more recently through the realization that the NP-
Hardness of this policy is essentially a “worst-case” result,
while practical, efficient implementations of this policy can
still be obtained by (i) isolating the hardest part of its
computation to an off-line phase, and (ii) employing a
pertinent, parsimonious representation of the final result
of that first computational step that will enable the on-
line / real-time instantiation of the policy with a man-
ageable computational cost. In a basic implementation of
the above idea, the off-line phase can be supported by the
enumerative, set-theoretic techniques that are employed
by the DES Supervisory Control (SC) theory. On the other
hand, the development of a parsimonious representation of
the obtained maximally permissive supervisor is based on
the realization that such a supervisor essentially dissects
the vector set S (or Sr) into two subsets containing,
respectively, the admissible and the inadmissible states.
Hence, at the end, the maximally permissive DAP acts
as a “classifier” of the elements of this set. But then,
the sought parsimonious representations of the maximally
permissive DAP can be provided by more general results
of classification theory adapted to the considered problem
context. More specifically, it can be shown that a finite
vector set can be dichotomized to two subsets by a dis-
junction of classifiers where each of these classifiers is im-
plemented by a set of linear inequalities. In the considered
problem context of the maximally permissive DAP, these
inequalities present additional structure that results from
the relative topology of the underlying safe and unsafe
subspaces, and enables the effective design of the sought
classifier while considering only the maximal safe and the
minimal unsafe states under the partial ordering of these
vectors that is based on a component-wise comparison.
Furthermore, there are additional interesting and practical
cases where the sought classifier can be expressed as a
single set of linear inequalities; such a classifier has been
characterized as “linear” in the relevant literature. Finally,
a complementary line of research has sought to express
the target DAP in a “non-parametric” manner, by simply
identifying and storing the set of unsafe states that are on
the “boundary” between the safe and the unsafe subspaces;
i.e., those unsafe states that can be reached from the safe
subspace in one transition. In this case, the aforementioned
relative topology of the safe and unsafe subspaces renders
the target set of the boundary unsafe states a “right-
closed” set, and therefore, it can be represented compactly

by storing only its minimal elements. Finally, the relevant
literature also avails of very efficient algorithms that can
detect the minimal boundary unsafe states through only
a partial exploration of the underlying state space, that
starts from a pertinent reconstruction of the minimal dead-
locks and backtraces “intelligently” from them. Some of
these exploration algorithms are also employing the power
of the symbolic computation that has been developed in
the recent years for the efficient representation and pro-
cessing of Boolean functions with a very large number of
variables, as well as the representation and processing of
more general very large finite sets stored under a binary
representation. As a result, currently we are in a position
to develop very compact representations of the maximally
permissive DAP for RAS with very large sizes |Φ|, and
with billions of states in the corresponding state spaces.

We close our discussion of the RAS logical control problem
by overviewing another line of research that has been very
active and very prominent in the relevant literature, and
with substantial theoretical and practical contributions
in our efforts to cope with this problem. This research
line is employing the formal modeling framework of Petri
nets (PNs) for representing the qualitative RAS dynamics.
Compared to the FSA modeling framework, that enumer-
ates explicitly the underlying state space S, PNs enjoy a
much more compact representation of the RAS dynam-
ics, and even more importantly, they express explicitly
the linkage of those dynamics to the underlying system
structure. Hence, this modeling framework is particularly
amenable for pursuing a “structural analysis” of the con-
sidered problem, i.e., a line of analysis that links particular
behavioral properties of the system to structural forma-
tions and properties. In the context of the deadlock avoid-
ance, a highly celebrated structural result concerns the
association of the RAS partial deadlock and non-liveness
to the structural objects of “empty”, or, more generally,
“deadly marked siphons”. More specifically, these results
attribute the RAS non-liveness to the formation of such
badly marked siphons in the net markings or, in certain
cases, the projection of these markings to appropriately
selected subspaces. A powerful feature of this theory is that
it has managed to express the aforementioned condition for
the RAS (non-)liveness in the form of some mixed Integer
programming (MIP) formulations that are obtained from,
and are polynomially related in terms of their variables
and constraints to, the structure of the underlying RAS.
The derived tests will either conclude the liveness for
the assessed RAS, or they will return a partial deadlock
in the form of the corresponding deadly marked siphon.
Furthermore, in the case of DAPs that can be expressed
as additional places superimposed on the structure of
the RAS-modeling PN (known as “monitor” or “control”
places), the aforementioned tests can also assess the ability
of these policies to establish correct deadlock avoidance
for the considered RAS, and therefore, they can support a
“DAP synthesis” process. Of particular interest are such
synthesis processes where the maximally permissive DAP
is obtained iteratively through the detection and control
of partial deadlocks existing in the original RAS behavior,
or maybe brought about by the policy logic that is in-
crementally defined through these iterations; this second
type of partial deadlocks are characterized as “policy-
induced” deadlocks. The literature avails of specific results

where such an incremental synthesis will converge to the
maximally permissive DAP. Obviously, a necessary condi-
tion for such a convergence is the ability to represent the
maximally permissive DAP by a set of “monitor” places,
a requirement that further translates to the possibility
of expressing by a linear classifier the dichotomy of the
state set S that is effected by the maximally permissive
DAP. For the corresponding RAS classes, the target policy
can be obtained while avoiding completely an explicit
(even partial) enumeration of the underlying RAS state
space. 2 Finally, we also mention, for completeness, that
there have been additional attempts that seek to design the
maximally permissive DAP for a given RAS through the
standard DES SC theory, and subsequently, rehash the ob-
tained policy in a PN representation, in order to exploit the
compactness of this modeling framework; these approaches
are collectively known as the “theory of regions”, but they
tend to suffer from a high representational complexity for
the final result and also they lack completeness (since,
as discussed above, the maximally permissive DAP must
admit a linear representation in order to be effectively
represented as a set of “monitor” places).

4. THE RAS PERFORMANCE CONTROL PROBLEM

As already mentioned in the previous sections, the RAS
performance control problem is essentially a scheduling
problem that must be formulated and solved on the admis-
sible subspace that is defined by the RAS logical control
policy. From a theoretical standpoint, these scheduling
problems belong to the broader class of problems that seek
to schedule stochastic networks with blocking, a particular
area in the scheduling theory that has not been extensively
researched up to this point. To a large extent, the current
lack of results for this class of problems is due to the
fact that blocking introduces strong “coupling” effects
among the underlying workstations, or more generally
the involved resources, that render the characterization
of the optimal scheduling policy a very challenging under-
taking. Furthermore, the permanent blocking – i.e., the
deadlocking – effects that can arise in these environments,
in addition to the transient blocking, have been another
important source of complexity and a very practical road-
block to the endeavors of the more traditional stochastics
community w.r.t. this set of scheduling problems. On the
other hand, the current availability of the results on the
RAS logical control problem that were described in the
previous section provides a systematic methodology to
deal with these blocking and deadlocking effects and opens
the corresponding set of scheduling problems to more
active and systematic research. In the rest of this section,
we shall briefly outline some ongoing endeavors w.r.t. this
set of problems. But as already mentioned above, it can be
safely argued that the research on the RAS performance
control has not reached the maturity and the richness of
the results that characterize its logical control counterpart.

A typical framework for tackling the scheduling problems
that are discussed in the previous paragraph is that of the
Markov Decision Processes (MDPs). Under an approxi-
mation of the “processing time” distributions of the var-
2 Essentially, the considered methods substitute the explicit search
of the RAS state space for partial deadlocks with an implicit search
that is effected by the aforementioned MIP formulations.

ious processing stages by pertinently selected phase-type
distributions, and assuming some additional stationarity
in the behavior of the involved process types, the MDP
modeling framework enables the structured modeling and
analysis of all the stochasticity that might characterize the
operations of the considered RAS. Furthermore, the co-
reachability of the admissible states w.r.t. the initial state
0 that is established by the applied logical control policy,
implies that the obtained MDP formulations belong to the
class of MDPs that, in principle, are solvable by effective
and fairly efficient algorithms. Things are complicated,
however, by the explosive size of the underlying state
space; in fact, this state space explosion implies that the
sought scheduling policies are not only hard to compute,
but they also have a very high (frequently prohibitive)
representational complexity.

Motivated by the above remarks, a recently initiated
research program has sought to confine the aforemen-
tioned scheduling problems in policy spaces that admit a
more parsimonious representation. Instrumental to this en-
deavor has been the expression of the underlying dynamics
in the modeling framework of the Generalized Stochastic
Petri Nets (GSPNs). The basic PN structure of this mod-
eling framework enables the effective representation of the
qualitative RAS dynamics and the corresponding logical
control (e.g., deadlock avoidance) policy. At the same
time, the partitioning of the net transitions to “timed”
and “untimed”, according to the standard GSPN seman-
tics, enables the explicit expression of the corresponding
scheduling problem by means of the externally provided
distributions that will regulate the conflicts of the en-
abled untimed transitions at the various net markings.
These distributions are known as “random switches” in
the GSPN terminology and, in the considered problem
context, essentially define randomized stationary policies
for the corresponding MDP formulation. An optimal set
of random switches can be computed, at least in princi-
ple, through a non-linear programming (NLP) formulation
that has as its primary variables the elements (i.e., the
probabilities) of these random switches, and as secondary
variables the stationary distributions of the corresponding
policies. Furthermore, this NLP formulation can be solved
by stochastic approximation algorithms and results drawn
from the theory of regenerative Markov reward processes,
that enable the estimation of the performance objective of
the formulation and its gradients through simulation and
avoid the enumeration of the underlying state spaces.

On the other hand, the association of a distinct random
switch to every GSPN marking with more than one en-
abled untimed transition suffers by a high representational
cost for the defined policies that is similar to that experi-
enced by the aforementioned MDP formulations. But the
explicit representation of the system structure and dynam-
ics by the underlying GSPN also enables the redefinition
of the employed random switches in a way that reduces
the representational complexity of the resulting scheduling
policies, and still renders these policies quite pertinent and
practical in the context of the considered operations. A
particular such redefinition that is currently explored by
the considered research program seeks the replacement of
the original set of random switches by a “static” version
of this set which assigns the same distribution to every

GSPN marking that activates the same set of untimed
transitions. This restriction reduces substantially the de-
cision variables that appear in the final NLP formulation.
At the same time, it can be easily seen that static random
switches can express the entire class of “static priority”
policies that are frequently used in many practical settings,
and therefore, this set of policies is very relevant to the
realities of the current industrial practice.

Furthermore, both classes of scheduling policies, based
either on dynamic or static random switches, can be fur-
ther refined, and their member policies can be rendered
more parsimonious, by a pertinent assessment of the actual
conflicts that might exist among the enabled untimed
transitions at any given marking, and the elimination
of any unnecessary effort to coordinate non-conflicting
transitions. The corresponding analysis can be performed
on the subgraphs of the underlying state transition dia-
gram (STD) that characterize the net transition between
two tangible markings, i.e., markings that enable only
timed transitions and therefore not involving any further
scheduling decisions. These subgraphs are rather “local”
structures in the underlying STD and therefore, the afore-
mentioned analysis for (non-)conflict can be effectively
integrated in the simulation logic that is used for the
solution of the corresponding NLP formulation. Practical
experience has shown that such a refinement usually re-
sults in very extensive reductions of the decision variables
employed by the final NLP formulation. We should also
notice that the aforementioned screening process develops
at the interface of the qualitative / behavioral and the
quantitative / performance-oriented dynamics of the un-
derlying RAS, and therefore, it relies substantially upon
the ability of the GSPN modeling framework to provide an
integrated representation of these two types of dynamics
of the considered RAS.

An additional important remark is that static random
switches essentially define an aggregation scheme on the
underlying RAS state space. Hence, it is plausible to at-
tempt the enhancement of the performance of a scheduling
policy that is optimal within the class of policies expressed
by the static random switches, through a “refinement”
process that seeks the partial disaggregation of the under-
lying state aggregates. Such a disaggregation scheme can
be driven by information that is conveyed in the struc-
ture of the current policy, and it constitutes an effective
mechanism for managing the underlying trade-off between
the operational efficiency of the obtained policies and their
representational and operational complexity.

Finally, another important feature of the scheduling
methodology that is outlined in the above paragraphs, is
the ability of this methodology to integrate additional op-
erational requirements by expressing them as “behavioral”
requirements for the underlying RAS. More specifically,
these requirements can be imposed on the considered RAS
by the applied logical control policy, and effectively en-
coded by the GSPN structure that models the admissible
RAS behavior. On the other hand, quite conveniently, such
an approach leaves unaltered the computational proce-
dures that will compute the final scheduling policies. As
a more concrete example of this capability we mention
the potential enforcement of throughput-ratio (or other
similar) constraints regulating the relevant throughputs

of the various process types in any given RAS; these
constraints essentially constitute “fairness” constraints for
the corresponding processes and they can be encoded by
superimposing additional structure on the RAS modeling
GSPN.

Concluding this discussion on the performance control of
the considered RAS, we want also to notice a set of further
developments that pertain to this problem, although not
necessarily presented by means of the corresponding ter-
minology. Such an example is provided by the ongoing en-
deavors to develop deadlock-free, cyclic / repetitive sched-
ules for the cluster tools that are used in the contemporary
semiconductor fabs. These cluster tools can be modeled
as Linear-Single-Unit RAS with deterministic processing
times, and the aforementioned endeavors to the schedul-
ing of these environments essentially constitute a special-
ization of the existing theory of max-plus algebra, that
has been developed for the PN class of timed (weighted)
marked graphs, to the particular structures that are en-
countered in the cluster tool configurations. Finally, there
have been some sporadic endeavors to address some RAS
scheduling problems with deterministic processing times
through the generic search-based methods that are used
in combinatorial optimization.

5. OPEN CHALLENGES

The previous sections have outlined the extensive progress
that has been made by the existing RAS theory in its effort
to support the efficient and expedient resource allocation
that is necessary in the contemporary technological ap-
plications. Yet, there are important remaining challenges
that must be addressed for the effective completion of
this theory and its migration to the relevant practice.
We conclude this write-up by highlighting some of these
challenges and the opportunities that they define for the
corresponding research communities.

It is evident from the previous discussion that a ma-
jor remaining challenge for the existing RAS theory is
the strengthening and the extension of the corresponding
scheduling theory. This strengthening can be pursued at
the modeling and the algorithmic level, by seeking the
definition, the effective computation and the deployment
of richer classes of parsimonious scheduling policies than
the set of classes that was outlined in Section 4. But even
more importantly, this set of scheduling problems requires
a more profound understanding of the corresponding no-
tions of “feasibility” and “optimality”, from a qualitative
/ analytical standpoint. Characteristically, it is important
to obtain a clearer understanding of the structure of the
“value functions” for the MDPs that model the considered
scheduling problems, and the particular factors that are
most influential in the determination of the “value” of any
given RAS state. The availability of such a perspective can
subsequently guide the endeavors towards the development
of pertinent and computationally efficient approximations
of the optimal scheduling policies in the context of the
burgeoning theory of the Approximate Dynamic Program-
ming (ADP).

On the RAS logical control side, one can consider the ex-
tension of the existing theory to RAS with even more com-
plex structure and behavior than that addressed by (most

of) the existing results. The taxonomy of Section 2 offers
a systematic base for organizing this extension. Perhaps,
an even more important extension of the current RAS SC
theory is in a direction that will enable it to address more
challenging operational environments, like those that offer
only partial observability of the underlying resource alloca-
tion function, or necessitate the distribution of the control
function to a number of coordinating controllers due to
scaling, communication or other operational constraints.
In a similar vein, one can consider the problem of reactive
or proactive accommodation of resource capacity losses, in
a way that minimizes the experienced disruption and/or
ensures a certain minimal functionality for the degraded
system. All these developments can be referred to results
borrowed from the existing DES theory, but it is also
expected that the special and rich structure of the RAS
concept will enable customized analyses and solutions for
this set of problems, as well.

Another possible extension of the existing RAS theory
is its enrichment in order to encompass additional oper-
ational constraints beyond the fundamental problem of
deadlock avoidance. Along these lines, we already saw the
potential need to observe certain “fairness” requirements
across the RAS process types. This notion of “fairness” can
be extended to more general “coordination” requirements
among the running processes. In all these cases, the new
operational requirements must be formally expressed in
the employed DES-modeling frameworks of FSA and PNs,
and the resulting formal models must be further analyzed
for their properties w.r.t. blocking; the existing deadlock
avoidance theory must be extended to this new class of
systems, as well.

Finally, as the presented RAS theory grows and strength-
ens its methodology along the lines indicated in the pre-
vious paragraphs, additional endeavor must be expended
towards the development of the human capital and of the
technological and computational base that will enable the
constructive migration of this theory to the future engi-
neering practice. This endeavor certainly involves the even-
tual undertaking of some “pilot” large-scale applications
that will highlight the technical strength of the theory and
the competitive advantage that can be supported by it.
But even more importantly, it must also seek the effective
integration of the existing and the emerging results into
the relevant engineering curricula, and the organization of
these results in a series of computational platforms that
will enable their robust and expedient utilization by the
field engineers. In fact, this last activity can be part of
a broader initiative concerning the further promotion of
DES theory and of the emerging formal methods in the
engineering curriculum and practice. It is expected that,
collectively, all these endeavors will define a spectrum
of fundamental developments and trends with profound
and transformative repercussions for the related fields of
control and automation engineering.

REFERENCES

Reveliotis, S. (2015). Coordinating autonomy: sequen-
tial resource allocation systems for automation. IEEE
Robotics & Automation Magazine, June.

