
1

Designing optimal deadlock avoidance policies for sequential

resource allocation systems through classification theory:

existence results and customized algorithms

Roberto Cordone, Ahmed Nazeem, Luigi Piroddi and Spyros Reveliotis

Abstract

A recent line of work has sought the implementation of the maximally permissive deadlock avoidance

policy (DAP) for a broad class of complex resource allocation systems (RAS) as a classifier that gives

effective and parsimonious representation to the dichotomy of the underlying behavioral space into

the admissible and inadmissible subspaces defined by that policy. The work presented in this paper

complements the past developments in this area by providing (i) succinct conditions regarding the

possibility of expressing the aforementioned classifier as a set of linear inequalities in the RAS state

variables, and (ii) an efficient customized algorithm for the synthesis of pertinent non-linear classifiers

that implement the target DAP with minimum run-time computational overhead, in the case that a linear-

classifier-based representation of this policy is not possible.

I. INTRODUCTION

The work presented in this paper is part of an ongoing research endeavor to deploy effective and

computationally efficient realizations of the maximally permissive deadlock avoidance policy (DAP) for

various classes of resource allocation systems (RAS) [1], like those arising in the context of flexible

manufacturing systems [2], [3], some traffic systems [4], [5], [6], and the multi-threaded computer

programming that is currently promoted in the context of the multi-core computer architectures [7],

[8]. Indicative examples of this research line can be found in [9], [10], [11], [12], [13] and [14]. From

a methodological standpoint, it is known that the computation of the maximally permissive DAP can

be an NP-Hard task in the context of the aforementioned RAS classes [15], [16].1 Yet, the ongoing

R. Cordone is with the Dipartimento di Informatica, Università degli Studi di Milano, Milano, Italy.

roberto.cordone@unimi.it

A. Nazeem is with United Airlines, USA. ahmed.nazeem@united.com

L. Piroddi is with the Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy.

piroddi@elet.polimi.it

S. Reveliotis is with the School of Industrial & Systems Engineering, Georgia Institute of Technology, USA.

spyros@isye.gatech.edu

A. Nazeem and S. Reveliotis were partially supported by the NSF grant CMMI-0928231.

1The notion of the maximally permissive DAP and all the other technical concepts that are involved in the development of

the results presented in this paper are systematically introduced in the subsequent sections.

May 11, 2013 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: May 10, 2013 23:51:11 PST

2

research efforts in the directions that are discussed in this paper are motivated by the following two

remarks: (i) The aforementioned NP-Hardness is a “worst-case” result, and in the context of many

practical applications, the “empirical” complexity of the computation of these target policies might be

(much) more benign than what is suggested by the aforementioned result. (ii) Furthermore, it is pertinent

to distinguish the computation that is involved in the deployment of the aforementioned policies into an

“off-line” part, that concerns all the preliminary steps that are necessary for the policy specification, and

the “on-line” part that involves the computation that takes place during the real-time implementation of

the policy. The considered approaches seek to isolate the high computational complexity in the off-line

part of the performed computation, and streamline the on-line part of the policy implementation through

a pertinent representation of the policy-defining logic. This last step has been attained by perceiving

the considered policies as “classifiers” of the underlying behavioral spaces into their admissible and

inadmissible subspaces, and seeking “classifier architectures” that can encode this state-space dichotomy

in an effective and parsimonious manner. Additional results, that pertain to some “monotonicity” properties

of the state-admissibility logic defining the target policies, have also established the tractability of the

computation of the sought DAP representations, by enabling the focusing of this computation upon the

classification information that is contained in a very small subset of the underlying state space.

In the context of the developments that are outlined in the previous paragraph, the policy representation

that has drawn the most extensive attention is that of the “linear classifier”, i.e., the representation where

the relevant classification logic is expressed as a set of linear inequalities on the system state. Besides its

conceptual and analytical simplicity, this type of control logic is also compatible with the Petri net (PN)

modeling framework [17], one of the most extensively used modeling frameworks for the considered

problem. In particular, it is well known that any behavioral constraint imposed upon a given PN that

is expressible as a linear inequality in the net marking, can be enforced on the net dynamics by the

addition of a “control” – or “monitor” – place to the original net structure [18], [19]. Furthermore, the

work of [20] has investigated the synthesis of a set of monitor places that can enforce deadlock-freedom

and, under stronger conditions, the liveness of any given PN. The method presented in [20] is based

on siphon analysis of the underlying PN, seeking to prevent the formation of empty siphons. It is also

iterative, since the addition of the monitor places can lead to the formation of new siphons that must

be analyzed for potential emptiness and controlled appropriately. However, [20] acknowledges that the

proposed iteration is not necessarily finite, i.e., the method can be entrapped in an infinite loop failing

to return a pertinent control policy. At the same time, [20] does not provide succinct conditions under

which the proposed method is expected to terminate successfully.

The aforementioned inability of the method of [20] to identify a set of monitors representing the

maximally permissive policy that enforces deadlock freedom and / or liveness, even in cases where

this policy is known to be well-defined and to have a finite representation in the net reachability

space, is due to the fact that the policy-admissible and inadmissible subspaces might not be linearly

May 11, 2013 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: May 10, 2013 23:51:11 PST

3

separable; the reader is referred to [21] for a pertinent example. Nevertheless, as remarked in the previous

paragraph, monitor-based liveness enforcing supervision has been pursued extensively in the context of

RAS-modeling PNs, partly due to its representational convenience and partly due to the “history” of

the PN modeling framework as a prevalent modeling framework for the considered problem. Hence, the

works of [22] and [23] have tried to adapt the aforementioned method of [20] to the particular class

of RAS-modeling PNs, while utilizing an additional set covering [24] formulation in order to minimize

the number of siphons requiring explicit control. Other similar endeavors can be traced in [25], [26],

[27], [28], and [29]. In all these works, the potential inability of the monitor-based representation to

express the maximally permissive DAP is addressed by compromising for a more restrictive DAP that

admits, however, a linear – and therefore, monitor-based – representation. A more recent implementation

of the iterative monitor-based synthesis of the maximally permissive DAP that is provably convergent and

computationally efficient is presented in [30], [31]; this stronger set of results is obtained by restricting

the underlying plant nets to a particular PN sub-class that is appropriate for the modeling of the allocation

of mutex locks in multi-threaded software.

An alternative approach that has sought the establishment of deadlock freedom and liveness for RAS-

modeling PNs through the imposition of monitor places, and therefore, a linear representation of the

target DAP, has been based on the theory of regions [32]. Characteristic examples of this line of work

are the results presented in [33] and [34], where the target DAP is first characterized through reachability

analysis of the underlying plant PN – i.e., by an automaton-based representation – and the derived results

are subsequently rehashed into the PN-modeling framework through the computation of the monitor

places that will confine the net behavior in the policy-admissible subspace. Clearly, this approach is also

compromised by the inability of PN monitors to represent the target policy in all cases. Furthermore, it

has been found that a straightforward implementation of the method will end up in a very large number

of monitors, even for relatively small plant nets [35].

The problem of developing parsimonious monitor-based representations for the maximally permissive

DAP of RAS-modeling PNs that can potentially admit such a representation, has been tackled successfully

in the recent years through techniques that are based on mixed integer programming (MIP) [36]. More

specifically, the work of [9] addressed the problem of synthesizing a linear classifier that represents the

maximally permissive DAP while employing the minimum possible number of linear inequalities, for the

RAS class that models the allocation of mutex locks in multithreaded programs. It was shown that, in

the considered RAS class, the maximally permissive DAP will always admit a representation as a linear

classifier, due to the binary nature of an appropriately defined state that traces the RAS dynamics, and the

problem of the construction of a minimal linear classifier was formulated and solved as a MIP formulation

on the resulting state space. That work also recognized the affinity of the considered problem to the

classical set covering problem [24] that is studied in Operations Research (OR) and Computer Science

(CS) literature, and exploited this relationship in order to develop an efficient heuristic for the cases that

May 11, 2013 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: May 10, 2013 23:51:11 PST

4

the aforementioned MIP formulation might become intractable. Another line of work that has addressed

the synthesis of minimal linear classifiers through MIP, while capitalizing upon and expanding from

some original developments in the theory of regions that was discussed above, is that presented in [12],

[13] and [37]. On the other hand, the work of [10], [11] has developed a more streamlined customized

algorithm for the same problem, based on techniques borrowed from combinatorial optimization and

taking advantage of the aforementioned affinity of this problem to the set covering problem. Finally, in

order to address problem instances not admitting a maximally permissive DAP in the form of a linear

classifier, the recent works of [38] and [14] have identified non-linear classification architectures that can

effectively support the representation of the maximally permissive DAP for the considered RAS classes,

and developed a computational methodology for the synthesis of minimal realizations of the maximally

permissive DAP, by means of the selected architecture, for any instantiation of the considered RAS.

The work presented in this paper complements the aforementioned developments by (i) investigating

the conditions that imply the existence of linear classifiers for the representation of the maximally

permissive DAP, and (ii) extending the results of [10], [11] so that they can address the minimal-classifier-

design problem in the context of some of the non-linear architectures that have been introduced in [38].

Collectively, the presented results define a complete and computationally efficient algorithm that identifies

the simplest possible architecture, among the linear and the considered non-linear candidates, that can

support an effective representation of the target DAP, and returns a classifier from the selected class

that minimizes the run-time computational overhead for the deployed supervisor. A complementary set

of results that provide a formal characterization of the relationship between the linear-classifier-design

problem and the classical set covering problem, and leverage this characterization in order to develop

further analytical results and insights regarding the problem feasibility and optimality, can be found in

[39]. Finally, a more leisurely and less formal description of the supervisory control problem considered

in this work, and of some of the proposed methods for it that were outlined in the previous paragraphs,

can be found in [40].

The rest of the paper is organized as follows: Section II provides a formal characterization of the

resource allocation systems and the corresponding problem of (maximally permissive) deadlock avoidance

that is addressed in this work. Section III introduces the classifier architectures that are considered in

this work, and establishes the necessary and sufficient conditions that must be satisfied by the state

dichotomy that is effected by the maximally permissive DAP in order to be expressible by the considered

classifier architectures. Section IV presents an algorithmic procedure that selects a pertinent architecture

for any given RAS instance, and overviews the algorithm of [10], [11] for the efficient synthesis of a

minimal linear classifier realizing the maximally permissive DAP. Section V addresses the more complex

problem of the efficient synthesis of a minimal non-linear classifier that effects the sought dichotomy of

the RAS state space. Section VI presents an illustrative example and a set of computational experiments

that establish the efficacy and the strengths of the proposed approaches compared to relevant existing

May 11, 2013 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: May 10, 2013 23:51:11 PST

5

results. Finally, Section VII concludes the paper and discusses directions for future work. Closing this

introductory section, we also notice, for completeness, that a preliminary version of the results of this

manuscript can be found in [41].

II. THE CONSIDERED RAS CLASS AND THE OPTIMAL DEADLOCK AVOIDANCE POLICY

This section provides a characterization of the notion of resource allocation system (RAS) and of

the supervisory control problem of deadlock avoidance that arises in it. For the sake of simplicity and

specificity, we present the main results of this paper in the context of the Disjunctive / Conjunctive (D/C)

class of the RAS taxonomy presented in [1]. We notice, however, that the presented ideas and results are

extensible to more complex classes of that taxonomy.

A. The Disjunctive / Conjunctive Resource Allocation System

A Disjunctive / Conjunctive Resource Allocation System (D/C-RAS) is formally defined by a 4-tuple

Φ = 〈R, C,P,A〉,2 where: (i) R = {R1, . . . , Rm} is the set of the system resource types. (ii) C :

R → Z+ – the set of strictly positive integers – is the system capacity function, characterizing the

number of identical units from each resource type available in the system. Resources are assumed to be

reusable, i.e., each allocation cycle does not affect their functional status or subsequent availability, and

therefore, C(Ri) ≡ Ci constitutes a system invariant for each i. (iii) P = {Π1, . . . ,Πn} denotes the set

of the system process types supported by the considered system configuration. Each process type Πj is

a composite element itself, in particular, Πj =< ∆j ,Gj >, where: (a) ∆j = {Ξj1, . . . ,Ξj,lj} denotes the

set of processing stages involved in the definition of process type Πj , and (b) Gj is an acyclic digraph

with its node set, Qj , being bijectively related to the set ∆j . Let Qր
j (resp., Qց

j) denote the set of source

(resp., sink) nodes of Gj . Then, any path from some node qs ∈ Qր
j to some node qf ∈ Qց

j defines

a process plan for process type Πj . Also, in the following, we shall let ∆ ≡
⋃n

j=1∆j and ξ ≡ |∆|.

(iv) A : ∆ →
∏m

i=1{0, . . . , Ci} is the resource allocation function associating every processing stage

Ξjk with the resource allocation vector A(Ξij) required for its execution; it is further assumed that

A(Ξij) 6= 0, ∀i, j. The considered resource allocation protocol requires that a process instance executing

a non-terminal stage Ξij ∈ Qi\Q
ց
i , must first be allocated the resource differential (A(Ξi,j+1)−A(Ξij))

+

in order to advance to (some of) its next stage(s) Ξi,j+1, and only then will it release the resource units

|(A(Ξi,j+1)−A(Ξij))
−|, that are not needed anymore. Furthermore, no resource type Ri ∈ R should be

over-allocated with respect to its capacity Ci at any point in time. Finally, for purposes of complexity

analysis, we define the size |Φ| of RAS Φ by |Φ| ≡ |R|+ ξ +
∑m

i=1Ci.

2The complete definition of a RAS, according to [1], involves an additional component that characterizes the time-based –

or quantitative – dynamics of the RAS, but this component is not relevant in the modeling and analysis to be pursued in the

following developments, and therefore, it is omitted.

May 11, 2013 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: May 10, 2013 23:51:11 PST

6

The dynamics of the D/C-RAS Φ = 〈R, C, P,A〉, described in the previous paragraph, can be further

formalized by a Deterministic Finite State Automaton (DFSA) [42], G(Φ) = 〈S,E, f, s0, SM 〉, that is

defined as follows:

1) The state set S consists of ξ-dimensional vectors s, with their components s[l], l = 1, . . . , ξ, being

in one-to-one correspondence with the RAS processing stages, and indicating the number of process

instances executing the corresponding stage. Hence, S consists of all the vectors s ∈ (Z+
0)

ξ that further

satisfy

∀i = 1, . . . ,m,

ξ
∑

l=1

s[l] · A(Ξl)[i] ≤ Ci (1)

where, according to the adopted notation, A(Ξl)[i] denotes the allocation request for resource Ri that is

posed by stage Ξl.

2) The event set E is the union of the disjoint event sets Eր, Ē and Eց, which respectively collect

the events corresponding to the initiation of a new process, the advancement of an initiated process by

one stage, and the completion of some initiated process. More formally: Eր = {erp : r = 0, Ξp ∈
⋃n

j=1Q
ր
j }; Ē = {erp : ∃j ∈ 1, . . . , n s.t. Ξp is a successor of Ξr in graph Gj}; and Eց = {erp : Ξr ∈

⋃n
j=1Q

ց
j , p = 0}.

3) The state transition function f : S × E → S is defined by s′ = f(s, erp), where the components

s′[l] of the resulting state s′ are given by:

s′[l] =

s[l]− 1 if l = r

s[l] + 1 if l = p

s[l] otherwise

Furthermore, f(s, erp) is a partial function defined only if the resulting state s′ ∈ S.

4) Finally, the initial state s0 = 0, which corresponds to the situation where the system is empty of any

process instances, while the set of marked states SM is the singleton {s0}, a specification that expresses

the requirement for complete process runs.

In the following, the set of states Sr ⊆ S that is accessible from state s0 through a sequence of feasible

transitions will be referred to as the reachable subspace of Φ. We shall also denote by Ss ⊆ S the set

of states that are co-accessible to s0, i.e., Ss contains those states from which s0 is reachable through a

sequence of feasible transitions. In addition, we define Su ≡ S \Ss and Srx ≡ Sr∩Sx, x = s, u. Finally,

we notice that, in the deadlock avoidance literature, the sets Srs and Sru are respectively characterized

as the (reachable) safe and unsafe subspaces, and this is the terminology that we shall also adopt in the

following.

In the D/C-RAS context, the state sets Srs and Sru possess the following “monotonicity” properties

[9], where the relations “ ≤ ” and “ ≥ ”, when applied to vectors, should be interpreted component-wise,

i.e., as inequalities simultaneously holding for all components:

May 11, 2013 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: May 10, 2013 23:51:11 PST

7

Property 1: Let x ∈ Sr be such that x ≤ s for some s ∈ Srs. Then x ∈ Srs.

Property 2: Let x ∈ Sr be such that x ≥ u for some u ∈ Sru. Then x ∈ Sru.

For reasons that will be revealed in the following, the above properties also motivate the next definition.

Definition 1: [9] Given a RAS Φ = 〈R, C,P,A〉,

1) a safe state s ∈ Srs is maximal if ∄ s′ ∈ Srs\{s} such that s′ ≥ s;

2) an unsafe state u ∈ Sru is minimal if ∄ u′ ∈ Sru\{u} such that u′ ≤ u.

B. Deadlock avoidance as a classification problem

A maximally permissive deadlock avoidance policy (DAP) for RAS Φ is a supervisory control policy

that restricts the system operation exactly onto the subspace Srs, guaranteeing, thus, that every initiated

process can complete successfully. This definition further implies that the maximally permissive DAP

is unique, in terms of the allowed and forbidden states and transitions, and can be implemented by a

one-step-lookahead mechanism that can recognize and prevent transitions to unsafe states.

As remarked in the introductory section, the maximally permissive DAP for sequential RAS can be

effectively implemented by means of a state classifier that separates Srs from Sru. Different types of

classifiers may be used for this purpose depending on the representational complexity of the underlying

state separation problem. This work focuses primarily on a subclass of the classifiers introduced in [38]

and proposes an efficient customized algorithm for the computation of a structurally minimal classifier

from this subclass that represents the maximally permissive DAP of any given D/C-RAS Φ.

III. LINEAR AND NONLINEAR CLASSIFIERS FOR DEADLOCK AVOIDANCE

We first overview some results concerning the existence of linear and nonlinear classifiers separating

two generic disjoint sets of points in a vector space, and then we specialize these results to the D/C-RAS

case.

A. The linear classifier

In order to facilitate the subsequent developments, let S,U denote two finite sets of (R+
0)

ξ such that

S ∩ U = ∅.3 The following definitions provide the notion of a linear classifier separating U from S .

Definition 2: [38] Let PA,b =
{

x ∈ Rξ : Ax ≤ b
}

be a polyhedron generated by a system of linear

inequalities, where A is a k × ξ real-valued matrix and b is a vector in Rk. The inclusion indicator

γA,b(x) is a binary function that equals 1 if x ∈ PA,b, i.e. Ax ≤ b, and 0 otherwise.

Definition 3: [38] A linear classifier separating U from S is a pair (A,b), such that γA,b(s) = 1,

∀s ∈ S , and γA,b(u) = 0, ∀u ∈ U . If at least one such classifier exists, S and U are said to be L-

separable. We denote as sepL(S,U) the set of linear classifiers that separate the two sets. The elements

of sepL(S,U) whose matrix A has a minimal number of rows k are said to be minimal.

3In fact, the developments of subsections III-A and III-B hold true even if the considered sets S,U are subsets of Rξ. On the

other hand, the developments of subsections III-C and III-D necessitate the restriction of these sets into (R+

0)
ξ.

May 11, 2013 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: May 10, 2013 23:51:11 PST

8

The reader should notice that the above definition of the concept of the linear classifier implies an

“asymmetry” for the role of the separated sets S and U . This asymmetry is motivated and explained by the

fact that in the eventual specialization of the results that are derived in this and the next two sections to the

particular classification problem that is considered in this work, sets S and U will respectively correspond

to the (sub-)sets of safe and unsafe states to be classified. Then, in more practical terms, the specification

of the linear classification logic according to Definition 3 enables the eventual representation of the derived

classifier through monitor places, under a PN-based representation of the resource allocation function.

From a more analytical standpoint, the aforementioned asymmetry can be captured by considering the

set pair (S,U) as ordered. Finally, for the reasons explained above, in the subsequent discussion we shall

also refer to sets S and U as the sets of safe and unsafe states.

As stated in the introductory section, a useful alternative interpretation of the linear classifier can be

obtained by perceiving the corresponding separation problem as a variation of the set covering problem

[24]. The following notion of 1-separability is instrumental for this alternative interpretation.

Definition 4: Sets S and U are said to be 1-separable if the following system of linear inequalities in

a, b, with a ∈ Rξ and b ∈ R, is feasible:

aTx ≤ b x ∈ S (2a)

aTx ≥ b+ 1 x ∈ U (2b)

In the following, the set of feasible solutions (aT , b) of problem (2) will be denoted as sep1(S,U).

Property 3: Sets S and U are L-separable iff there exists a partition ∪c
j=1Uj = U such that sep1(S,Uj) 6=

∅, for all j = 1, . . . , c.

Proof: The “only if” part of the proof results immediately from the definitions of the linear classifier

and the 1-separable sets. As for the “if” part, let (aTj , bj) ∈ sep1(S,Uj), for j = 1, . . . , c. By Definition 4,

it holds that γaT
j ,bj

(s) = 1, ∀s ∈ S , and γaT
j ,bj

(u) = 0, ∀u ∈ Uj , for j = 1, . . . , c. Then the linear classifier

(A,b), defined as A(j, ·) = aTj and b(j) = bj , for j = 1, . . . , c, is such that γA,b(s) = 1, ∀s ∈ S , and

γA,b(u) = 0, ∀u ∈ ∪c
j=1Uj . In other words, (A,b) defines a linear classifier separating S from U .

It is trivial to see that if sep1(S,U) 6= ∅, then also sepL(S,U) 6= ∅. Also, we remind the reader that

the convex hull of the elements of set S defines a bounded polyhedron (i.e., a polytope) PS ≡ Conv(S),

which can be expressed as the set of all convex combinations of the elements of S , i.e., PS = {x ∈ Rξ :

x =
∑|S|

i=1 αisi with
∑|S|

i=1 αi = 1, αi ≥ 0 for i = 1, . . . , |S|}. Definition 3 implies that for any linear

classifier (A,b) ∈ sepL(S,U) it holds that PS ⊆ PA,b.

Definition 5: An unsafe state u ∈ U is called embedded if u ∈ PS . The set of embedded unsafe states

is denoted by ES = U ∩ PS .

Theorem 1: For the considered sets S and U ,

sepL(S,U) 6= ∅ ⇐⇒ ES = ∅ (3)

May 11, 2013 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: May 10, 2013 23:51:11 PST

9

Proof: If there is no unsafe state u ∈ U embedded in the polyhedron PS , the facets of this polyhedron

provide a (generally non-minimal) linear classifier for S and U . Conversely, if there is an unsafe state

u =
∑|S|

i=1 αisi, with
∑|S|

i=1 αi = 1, αi ≥ 0 for i = 1, . . . , |S|, then any linear inequality
(

aT , b
)

satisfied

by all elements of S is also satisfied by u. Indeed, if aT si ≤ b for all si ∈ S , then aTu = aT
∑|S|

i=1 αisi =
∑|S|

i=1 αi(a
T si) ≤

∑|S|
i=1 αib = b. Therefore, u is not L-separable from S .

Theorem 1 implies that the existence of a linear classifier for generic disjoint vector sets is not always

guaranteed, and motivates the study of more general types of classifiers; this issue is taken up in the next

subsection.

Closing the discussion of the linear classifiers, we also notice that the search for a classifier of minimal

size from this class is equivalent to solving to optimality a set covering problem [24], where set U is to

be covered with a minimal number of subsets that are individually separable from S by means of a single

linear inequality (see Property 3 and also Property 5 in Section III-C). This equivalence was introduced

in [9] where it was employed for the development of an efficient heuristic for the aforementioned problem,

and it was further exploited in the design of an ad hoc algorithm for the same problem that is presented

in [10], [11]. This last algorithm is also briefly summarized in Sec. IV-B, since it provides a basis for

the development of the particular procedures and algorithms that are the main theme of this work.

B. Disjunctions of linear classifiers

The following results suggest a way to tackle the issue of embedded unsafe states.

Theorem 2: Consider the sets S , U introduced in Section III-A, and let S ′ ⊂ S . Then, ES′ ⊆ ES .

Proof: This result follows immediately upon noticing that the condition S ′ ⊂ S implies that PS′ ⊆

PS .

Theorem 3: Consider the sets S , U introduced in Section III-A, and let u ∈ ES . Then, there always

exists an S ′ ⊂ S such that u /∈ ES′ .

Proof: Let s ∈ S , and define S ′ = {s}. By definition, PS′ = S ′, and since S ∩ U = ∅, ES′ =

U ∩ PS′ = ∅.

Theorem 2 guarantees that if a separation problem is defined with respect to S ′ ⊂ S and U , new

embedded unsafe states will not come into play. When considered together with Theorem 3, they suggest

that suitable subsets of S might be L-separable from U even if the entire set S is not. Starting from

S ′ = {s}, where s ∈ S , a maximal subset of this type can be obtained by iteratively adding safe states,

as long as U ∩ PS′ = ∅. These results pave the way for classifiers with an alternative structure, where

set S is partitioned as

S = S1 ∪ S2 ∪ . . . ∪ Sp

into disjoint subsets Si that are L-separable from U , i.e., such that PSi
∩ ES = ∅, for i = 1, . . . , p. With

some abuse of the language, we shall refer to the classification structure that is facilitated by this partition

as a “disjunctive linear classifier”, and we shall formally define it as follows:

May 11, 2013 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: May 10, 2013 23:51:11 PST

10

Definition 6: A disjunctive linear classifier for the sets S and U that were introduced in Section III-A

is defined as a set of polyhedra {(A(i),b(i)), i = 1, . . . , p}, such that:

(i) For each s ∈ S there exists i ∈ {1, . . . , p} such that γA(i),b(i)(s) = 1.

(ii) For each u ∈ U it holds that γA(i),b(i)(u) = 0 for all i = 1, . . . , p.

If at least one such classifier exists, S and U are said to be D-separable. We shall also denote by

sepD(S,U) the set of disjunctive linear classifiers that separate the two sets.

The classification requirements expressed by Definition 6 can be expressed more compactly by the

requirement for a set of polyhedra {(A(i),b(i)), i = 1, . . . , p}, such that the Boolean function δ(x) =

γA(1),b(1)(x) ∨ . . . ∨ γA(p),b(p)(x) is priced at δ(s) = 1, ∀s ∈ S , and δ(u) = 0, ∀u ∈ U . This alternative

characterization of the functionality of a disjunctive linear classifier will be useful in the sequel.

We also notice that the disjunctive linear classifier is a special case of the “generic” classifier of [38].

The “size” of a disjunctive linear classifier is determined by the total number of operations required to

classify a given vector [38], i.e., J = (2ξ + 1)
∑p

i=1 k
(i) + (p− 1), where k(i) is the row size of matrix

A(i). Also, in order to differentiate more clearly between linear and disjunctive linear classifiers, in the

following we might refer to the former as “simple” linear classifiers. Clearly, sepL(S,U) 6= ∅ implies

sepD(S,U) 6= ∅.

Property 4: The sets S , U that were introduced in Section III-A are D-separable iff there exists a

partition ∪p
i=1Si = S such that sepL(Si,U) 6= ∅, for all i = 1, . . . , p.

Proof: The “only if” part of the proof results immediately from the definitions of the disjunctive linear

classifier and the L-separable sets. As for the “if” part, let (A(i),b(i)) ∈ sepL(Si,U), for i = 1, . . . , p.

By Definition 3, it holds that γA(i),b(i)(s) = 1, ∀s ∈ Si and γA(i),b(i)(u) = 0, ∀u ∈ U , for all i = 1, . . . , p.

Then, by Definition 6, {(A(i),b(i)), i = 1, . . . , p} ∈ sepD(S,U).

Theorem 4: Let S , U be two finite vector sets of (R+
0)

ξ with S ∩ U = ∅. Then sepD(S,U) 6= ∅.

Proof: If ES = ∅, then Theorem 1 implies that sepL(S,U) 6= ∅, which implies the thesis. On the

other hand, if ES 6= ∅, there always exists a partition of S = ∪p
i=1Si, such that PSi

∩ ES = ∅, for

i = 1, . . . , p. For example, one such partition is given by Si = {si}, i = 1, . . . , |S|. Then, by Theorem 1,

there exists a simple linear classifier separating Si from U , for all i = 1, . . . , p, and the result is obtained

from Property 4.

Theorem 4 implies that any pair of finite disjoint sets can be separated by a disjunctive linear classifier,

and, in this way, it establishes the generality – or the “completeness” – of this type of classifiers for the

classification problem that is defined by the set pair (S,U).

C. Linear and disjunctive linear classifiers with non-negative coefficients

Significant reductions in the complexity of the separation problem that is considered in this work

can be obtained if the coefficients of the linear inequalities employed by the simple or disjunctive linear

classifiers are constrained to be non-negative (see the developments in the next subsection). It is therefore

May 11, 2013 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: May 10, 2013 23:51:11 PST

11

interesting to extend the previous definitions to encompass this case, and derive appropriate conditions

for the existence of simple or disjunctive linear classifiers with non-negative coefficients.

Definition 7: The sets S , U introduced in Section III-A are said to be 1+-separable if the following

system of linear inequalities in a, b is feasible:

aTx ≤ b x ∈ S (4a)

aTx ≥ b+ 1 x ∈ U (4b)

a, b ≥ 0 (4c)

In the following, we shall denote the set of feasible solutions (aT , b) of problem (4) by sep+1 (S,U).

Definition 8: The sets S , U introduced in Section III-A are said to be L+-separable if sepL(S,U) 6= ∅

and there exists (A,b) ∈ sepL(S,U) with A,b ≥ 0. The set of such non-negative simple linear classifiers

will be denoted by sep+L (S,U).

Definition 9: The sets S , U introduced in Section III-A are said to be D+-separable if sepD(S,U) 6= ∅

and there exists {(A(i),b(i)), i = 1, . . . , p} ∈ sepD(S,U) with A(i),b(i) ≥ 0, for all i = 1, . . . , p. The

set of such non-negative disjunctive linear classifiers will be denoted by sep+D(S,U).

Properties 3 and 4 can be trivially extended to the class of classifiers with non-negative coefficients;

more specifically, we have the following:

Property 5: Consider the sets S , U introduced in Section III-A. S and U are L+-separable iff there

exists a partition ∪c
j=1Uj = U such that sep+1 (S,Uj) 6= ∅, for all j = 1, . . . , c.

Property 6: Consider the sets S , U introduced in Section III-A. S and U are D+-separable iff there

exists a partition ∪p
i=1Si = S such that sep+L (Si,U) 6= ∅, for all i = 1, . . . , p.

Clearly, sep+L (S,U) ⊆ sepL(S,U) and sep+D(S,U) ⊆ sepD(S,U). Therefore, the conditions for the

existence of simple and disjunctive linear classifiers with non-negative coefficients are more restrictive.

Let P+
S ≡ {x ∈ Rξ : ∃y ∈ PS s.t. x ≤ y}. By the Minkowsky-Weyl theorem [36], P+

S is a polyhedron

because each of its points is the sum of the convex combination of a finite set of points (the elements

of S) plus the conical combination of a finite set of points (those defined by the negative unit vectors

−e(k), with k = 1, . . . , ξ). Let also E+
S ≡ U ∩ P+

S ; this set will be characterized as the “extended set of

embedded unsafe states”. By construction, PS ⊆ P+
S and ES ⊆ E+

S .

Theorem 5: For the considered sets S and U ,

sep+L (S,U) 6= ∅ ⇐⇒ E+
S = ∅ (5)

Proof: Notice that by the definition of P+
S , S ⊆ P+

S , and assume that U ∩ P+
S = ∅. Since P+

S

is a polyhedron, it admits an alternative representation as
{

x ∈ Rξ : Ax ≤ b
}

for suitable (A,b). The

latter provides a (generally non-minimal) simple linear classifier for S and U . It remains to prove that

A,b ≥ 0. By contradiction, let us assume that the j-th scalar constraint (aT , b) contains at least a

negative coefficient. Furthermore, notice that if b < 0, there necessarily exists at least one ak < 0, since

May 11, 2013 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: May 10, 2013 23:51:11 PST

12

s ≥ 0. This implies that at least one ak coefficient is negative. Now, let y ∈ PS and xδ = y− δe(k). By

definition, xδ ∈ P+
S for all δ ≥ 0. Therefore aTxδ ≤ b should hold for all values of δ, which implies

that aTy − akδ ≤ b; but this last inequality is false for sufficiently high values of δ.

Conversely, suppose that there exist u ∈ U ∩ P+
S and (aT , b) ∈ sep+1 (S, {u}), so that aT si ≤ b for

all si ∈ S and aTu ≥ b + 1. Now, since u ∈ P+
S , there exist y, αi ≥ 0, i = 1, . . . , |S|, such that

y =
∑|S|

i=1 αisi with
∑|S|

i=1 αi = 1, and u ≤ y. Then, since a, b ≥ 0, one would obtain b + 1 ≤ aTu ≤

aTy = aT
∑|S|

i=1 αisi =
∑|S|

i=1 αi(a
T si) ≤

∑|S|
i=1 αib = b, which is impossible.

Notice that a necessary condition for L+-separability is that ∄(s,u) ∈ S×U , s.t. u ≤ s. This condition

turns out to be sufficient for the existence of a disjunctive linear classifier with non-negative coefficients.

Theorem 6: For the considered sets S and U ,

sep+D(S,U) 6= ∅ ⇐⇒ ∄(s,u) ∈ S × U s.t. u ≤ s (6)

Proof: If the assumption holds, a valid disjunctive linear classifier is obtained by setting p =

|S|, A(i) = Iξ, b(i) = si. Conversely, assume that there exists (s,u) ∈ S × U , s.t. u ≤ s. Then

sep+1 ({s}, {u}) = ∅, since any linear inequality (aT , b), with a, b ≥ 0, satisfied by s is also satisfied by

u, given that aTu ≤ aT s ≤ b. In view of Properties 5 and 6, this also implies that sep+D(S,U) = ∅.

D. Linear and disjunctive linear classifiers expressing the optimal DAP in D/C-RAS

As discussed in the previous sections, the maximally permissive DAP for the considered RAS can be

implemented by means of a state classifier that separates Srs from Sru. More precisely, we can restrict the

latter set to Sb
ru, which collects the “boundary” unsafe states, i.e., those unsafe states that can be reached

from Srs in a single transition (and are the critical unsafe states that must be effectively recognized in

order to prevent transitions leading outside the reachable and safe subspace Srs). Within this setting, a

problem of particular practical interest is that of finding a classifier of minimal size within the considered

classifier class; such a classifier will reduce to a minimum the computational overhead required for the

on-line resolution of the admissibility of any contemplated transition, according to the one-step-lookahead

scheme discussed in Section II. The aforementioned problem is a very difficult combinatorial problem,

and, in the past works, it has been effectively solved through its simplification to another separation

problem concerning two sets of (significantly) reduced cardinality and dimensionality, that are obtained

by a “thinning” process described in [9]. However, this simplification scheme will work only if the

sought classifiers are restricted to have non-negative coefficients. More specifically, denoting by S̄rs and

S̄b
ru the set of maximal reachable safe states and the set of minimal reachable boundary unsafe states,

respectively, it can be shown that any simple or disjunctive linear classifier with non-negative coefficients

separating S̄rs and S̄b
ru also separates Srs and Sb

ru [9], [38]. Furthermore, additional computational gains

can be achieved by eliminating from the vectors of S̄rs and S̄b
ru the coordinates in which the elements

of S̄b
ru are dominated uniformly by each of the elements of S̄rs [14]. Let Proj(S̄rs) and Proj(S̄b

ru)

May 11, 2013 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: May 10, 2013 23:51:11 PST

13

denote respectively the images of the sets S̄rs and S̄b
ru under the projection Proj that eliminates these

coordinates. Finally, the sets Proj(S̄rs) and Proj(S̄b
ru) can be further reduced to the sets Proj(S̄rs)

and Proj(S̄b
ru), that consist, respectively, of the maximal and the minimal elements of the corresponding

superset.

In view of Properties 1-2 and of the logic that defines the applied projection, it holds that ∄(s,u) ∈

Proj(S̄rs)×Proj(S̄b
ru), s.t. u ≤ s. But then, Theorem 6 guarantees that there always exists a disjunctive

linear classifier with non-negative coefficients that separates Proj(S̄rs) from Proj(S̄b
ru). If the more

restrictive condition of Theorem 5 is met as well, then the separation of the sets Proj(S̄rs) and Proj(S̄b
ru)

can also be effected by a simple linear classifier with non-negative coefficients. Finally, from the discussion

provided in the previous paragraph, the classifiers obtained for the smaller sets Proj(S̄rs) and Proj(S̄b
ru)

effect also the separation of the original sets S̄rs and S̄b
ru.

Next we show that for the classification problem defined by the aforementioned sets S̄rs and S̄b
ru

(and also for its simplified version that is defined by the reduced sets Proj(S̄rs) and Proj(S̄b
ru)), the

restriction of the sought classifiers to the subclass of classifiers with non-negative coefficients does not

compromise the existence of a simple linear classifier. In other words, if there exists a simple linear

classifier expressing the maximally permissive DAP for a given RAS configuration, then there will also

exist a simple linear classifier with non-negative coefficients. The next two lemmas constitute stepping

stones towards the aforementioned result.4

Lemma 1: Consider an instance Φ = 〈R, C,P,A〉 of the D/C-RAS class defined in Section II. Then,

the state set Srs contains all the integer vectors that are included between the origin 0 and the maximal

elements s ∈ S̄rs.

Proof: To prove Lemma 1, consider the partial order that is defined upon the set Srs by the ordering

relationship “ ≤ ”, where the inequality is applied component-wise. Next, we argue that all possible

“chains” of integer vectors between the origin 0 and the elements of S̄rs, that are defined w.r.t. the

aforementioned partial order, belong to Sr. Indeed, consider a state s belonging to an integer vector

chain from state 0(≡ s0) to an element s′ ∈ S̄rs. Since s′ ∈ S̄rs, it is a reachable state, and therefore,

there exists an event sequence σ′ such that s′ = f̂(s0, σ
′). Furthermore, from the specification of the

states s and s′, it also holds that s ≤ s′, and therefore, the set of process instances contained in s is a

subset of the process instances contained in s′. But since, as implied by the RAS definition, the various

process instances do not interact with each other except for the sharing of the system resources, it is

easy to see that the reachability of state s′ implies also the reachability of state s; a corresponding event

sequence σ can be obtained from the event sequence σ′ mentioned above by removing from it all the

4An alternative proof for this result can be found in [9]. In fact, the work of [9] establishes the stronger result that a minimal

linear classifier with non-negative coefficients will possess the same number of inequalities as a minimal linear classifier with

no sign restrictions for its defining coefficients, and therefore, the imposed sign restriction does not compromise the structural

minimality of the derived classifiers.

May 11, 2013 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: May 10, 2013 23:51:11 PST

14

events concerning process instances not belonging to s.5

The fact that the considered state s belongs also to Ss, and therefore, to Srs, results from Property 1

and the aforestated fact that ∃s′ ∈ S̄rs s.t. s ≤ s′.

Lemma 2: Let N denote the set of natural numbers, and consider a set X ⊆ Nξ such that

∀x ∈ X , ∀x′ ∈ Nξ,x′ ≤ x =⇒ x′ ∈ X (7)

Furthermore, let x1 ∈ Conv(X). Then, Conv(X) also contains any other vector x2 ∈ Rξ such that

0 ≤ x2 ≤ x1.

Proof: Assume that x2 = diag(t1, t2, . . . , tξ) · x1, where diag(·) implies a diagonal matrix with its

principal diagonal consisting of the quoted elements, and, without loss of generality, set

0 ≤ t1 ≤ t2 ≤ . . . ≤ tξ ≤ 1 (8)

Let y1, . . . ,yl be a set of vectors in X such that

x1 =

l
∑

i=1

λi · yi;

l
∑

i=1

λi = 1; λi > 0, ∀i = 1, . . . , l (9)

Define the vectors yij , i = 1, . . . , l, j = 1, . . . , ξ, such that:

yij [k] ≡

{

0 if 1 ≤ k ≤ j

yi[k] if j < k ≤ ξ
(10)

Equation (7) implies that all vectors yij belong to X . Also, note that yiξ = 0, ∀i. Furthermore, for

notational convenience, define t0 = 0, tξ+1 = 1, and yi0 = yi, ∀i. Then, we can see that:

ξ+1
∑

j=1

(tj − tj−1) · yi,j−1 = t1 · yi + (t2 − t1) · yi1 + (t3 − t2) · yi2 + . . .+ (1− tξ) · yiξ =

= t1 · (yi[1],yi[2], . . . ,yi[ξ])
T + (t2 − t1) · (0,yi[2], . . . ,yi[ξ])

T + . . .

+ (tξ − tξ−1) · (0, . . . , 0,yi[ξ])
T + (1− tξ) · (0, 0, . . . , 0)

T

= (t1 · yi[1], t2 · yi[2], . . . , tξ · yi[ξ])
T = diag(t1, t2, . . . , tξ) · yi

5A more formal, but maybe less intuitive argument for the reachability of s can be obtained by considering the “reversal”

of the DFSA modeling the dynamics of the considered RAS that is defined by reversing all the stage transitions in the RAS

process subnets while maintaining the same resource allocation vector for each processing stage. Then, it can be easily checked

that in this reversed automaton, state s
′ is co-reachable; an event sequence σ̂′ leading from s

′ to state 0 is readily obtained by

reversing σ′. Since s ≤ s
′, Property 1 implies that state s is co-reachable in the reversed DFSA, as well; i.e., in the reversed

DFSA there exists an event sequence σ̂ leading from s
′ to 0. But then, reversing the event sequence σ̂ we obtain an event

sequence σ that leads from state 0 to state s in the original DFSA.

May 11, 2013 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: May 10, 2013 23:51:11 PST

15

Furthermore,

l
∑

i=1

λi · (

ξ+1
∑

j=1

(tj − tj−1) · yi,j−1) =

=

l
∑

i=1

λi · (diag(t1, t2, . . . , tξ) · yi) = diag(t1, t2, . . . , tξ) ·
l

∑

i=1

λi · yi = x2 (11)

From the expansion of the telescopic series below, it can be seen that:

l
∑

i=1

λi ·

ξ+1
∑

j=1

(tj − tj−1) =

l
∑

i=1

λi · 1 = 1 (12)

Equations (8–9) also imply that:

λi · (tj − tj−1) ≥ 0, ∀i = 1, . . . , l, ∀j = 1, . . . , ξ + 1 (13)

But then, Equations (11–13) and the fact that yij ∈ X , ∀i = 1, . . . , l, ∀j = 0, . . . , ξ, imply that

x2 ∈ Conv(X).

Next, let PSrs
= Conv(Srs) and set P+

Srs
≡ {x ∈ Rξ | ∃y ∈ PSrs

s.t. x ≤ y}. Then, the following

proposition is an immediate implication of Lemmas 1 and 2.

Proposition 1: In the considered RAS class, P+
Srs

∩ (R+
0)

ξ = PSrs
.

When combined with the non-negativity of the RAS states, Proposition 1 further implies that, in

the context of the classification problem that is considered in this work, the existence conditions of

Theorems 1 and 5 are equivalent.

Having established the conditions for the existence of simple and disjunctive linear classifiers for the

problem at hand, the rest of this document focuses upon the computation of minimum-size classifiers

from the two considered classes. Furthermore, in order to alleviate the notation, in the sequel we shall

set S ≡ Proj(S̄rs) and U ≡ Proj(S̄b
ru); this substitution will also allow a more explicit connection of

the subsequent discussion to the concepts and the results that were developed in Section III.

IV. COMPUTING A LINEAR CLASSIFIER OF MINIMAL SIZE

In this section we provide a specific algorithm for the synthesis of minimal (simple) linear classifiers that

will represent effectively and parsimoniously the maximally permissive DAP for any D/C-RAS instance

Φ that admits such a classifier. We will restrict attention to classifiers with non-negative coefficients for

the reasons explained in the previous section; however, all the presented results can be easily extended

to the general case. Also, in the following discussion, the classified sets S and U can be respectively

interpreted either as the reachable safe and the reachable boundary unsafe subspaces of the considered

RAS, or as the images of these two subspaces that are obtained by the thinning process of [9], depending

on the applying occasion.

May 11, 2013 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: May 10, 2013 23:51:11 PST

16

A. Determining the appropriate structure for the sought classifier

The first step in the synthesis of the sought classifiers is the determination of the classifier structure

that is suitable for the classification problem at hand. According to Theorem 5, this issue can be resolved

by determining the existence of unsafe states embedded in P+
S . Indeed, it follows from Theorem 5

(applied to the individual elements of U) that the set E+
S contains exactly all the unsafe states that cannot

be individually separated from S by a linear inequality with non-negative coefficients. Testing whether

u ∈ E+
S , for any u ∈ U , is equivalent to checking if sep+1 (S, {u}) = ∅, i.e., checking the infeasibility of

the corresponding problem (4).

If no embedded unsafe state has been found after this test has been iterated over the entire set U , then the

algorithm described in Section IV-B can be applied to find an optimal simple linear classifier. Otherwise,

one may seek an optimal disjunctive linear classifier using the algorithm described in Section V.

B. A B&B algorithm for the computation of a linear classifier of minimal size

This section briefly overviews an algorithm for computing a structurally minimal linear classifier,

originally developed in [10], [11]. The presented material is provided for completeness, but it also defines

a basis for the development of the algorithm in Section V, that computes an optimal disjunctive linear

classifier and constitutes one of the main contributions of this work.

Following Definition 8, a simple linear classifier for sets S and U consists of a set of c linear inequalities,

each of which separates S from a subset Uj ⊆ U , for j = 1, . . . , c, while ∪c
j=1Uj = U . Hence, the problem

of finding a minimal simple linear classifier for S and U can be reformulated as that of finding a minimal

set cover of U by 1+-separable subsets of it. A Branch & Bound (B&B) scheme [36] can be applied to

efficiently explore all feasible coverings of set U and return the best one. The B&B mechanism reduces

the problem to a number of smaller sub-problems, such that the solution sets of the sub-problems form a

partition of the overall solution set. The branching process defines a tree structure with its nodes (known

as “branching nodes”) corresponding to the sub-problems.

Each sub-problem is associated with a different ordered collection 〈U1,U2, . . . ,Uc〉 of disjoint subsets

of U . If sep+1 (S,Uj) = ∅ for some j = 1, . . . , c, the sub-problem is infeasible and the node is pruned.

If, on the contrary, sep+1 (S,Uj) 6= ∅ for all j = 1, . . . , c, a system of inequalities (A,b) such that

(A(j, ·), bj) ∈ sep+1 (S,Uj), for j = 1, . . . , c, defines a linear classifier separating S from ∪c
j=1Uj .

Now, let Σ = U \ ∪c
j=1Uj . If Σ = ∅ or γA,b(u) = 0, ∀u ∈ Σ, the linear classifier (A,b) separates

S from U , thus providing a feasible solution of the problem. On the other hand, if ∃u ∈ Σ such that

γA,b(u) = 1, the algorithm will attempt to accommodate it by branching the current node into c + 1

children nodes with the following assignments:

• 〈U1 ∪ {u} ,U2, . . . ,Uc〉

• . . .

• 〈U1,U2, . . . ,Uc ∪ {u}〉

May 11, 2013 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: May 10, 2013 23:51:11 PST

17

• 〈U1,U2, . . . ,Uc, {u}〉

The rationale of the above branching scheme is that in order to find a full solution, either one of the scalar

linear inequalities can be adjusted to exclude u (as well as the corresponding Uj) or a new inequality

must be introduced for this purpose. Notice that the first c children nodes have a collection of c subsets,

as the parent node, while the last one has one more.

The branching process starts with c = 1 and U1 containing a single unsafe state, and progressively

augments the number and contents of the Uj subsets to explore all possible partitions. As a result, the

set of feasible solutions can only be reduced going down the branching tree, and the nodal costs, that

are defined by the size of the corresponding solutions, are non-decreasing, since more inequalities are

employed by the (partially) constructed classifiers. Obviously, an infeasible node can be safely eliminated,

since none of its descendants can provide feasible solutions. Furthermore, adopting a node visit strategy

that considers the unprocessed nodes by non-decreasing values of c guarantees that the first complete

solution found is minimal (see also Theorem 1 in [11]).

The core problem at each node is to establish whether a given Uj subset is linearly separable from S with

a single linear inequality. This can be done by checking if sep+1 (S ∪U∗
j ,Uj) 6= ∅, where U∗

j =
⋃c

l=j+1 Ul

is introduced in order to avoid variable permutations corresponding to the same solution; for further

details, the reader is referred to [11].

As demonstrated in [11], the algorithm outlined above can be more efficient, in terms of the compu-

tational time that is required to obtain an optimal solution, than the alternative algorithms that are based

on a monolithic Mixed Integer Programming (MIP) formulation of the underlying separation problem

(like, e.g., those in [12], [9]).

V. COMPUTING A DISJUNCTIVE LINEAR CLASSIFIER OF MINIMAL SIZE

The B&B algorithm of Section IV-B can be adapted to the more complex problem of finding an

optimal disjunctive linear classifier for the separation of the state sets S and U , in the case that E+
S 6= ∅,

by exploiting Theorems 2-3. We remind the reader that these theorems establish that set S can be

partitioned into subsets that are individually separable from U using a different simple linear classifier

for each of them. The basic requirement for the partition of S is that E+
Si

= ∅ for i = 1, . . . , p. To

find an optimal partition of S , we can apply an incremental scheme similar to that described in the

previous section for both sets S and U , accounting for a greater number of states for the underlying

search process, as the levels of the B&B tree increase. As in the previous algorithm, we separate the

combinatorial problem of exploring the possible partitions of S and U from that of looking for the set

of constraints that achieve separation.

The resulting algorithm, to be referred to as (the) ExactClassifier, is described by the pseudo-code of

Figure 1, whose various procedures are explained in detail in the following subsections. In the sequel,

each node of the underlying search tree is associated to a sub-problem Π, defined as follows.

May 11, 2013 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: May 10, 2013 23:51:11 PST

18

Definition 10: Let S and U be the sets introduced in Section III-A. Let also Si, i = 1, . . . , p, be such

that
⋃p

i=1 Si ⊆ S , and Si∩Sj = ∅, ∀i 6= j. Finally, let Wi, i = 1, . . . , p, be such that Wi = 〈Ui,1, . . . ,Ui,ci〉

is an ordered collection of disjoint subsets of U , i.e., for i = 1, . . . , p,
⋃ci

j=1 Ui,j ⊆ U and Ui,j ∩Ui,k = ∅,

∀k 6= j. Then, the ordered collection Π = 〈(S1,W1), . . . , (Sp,Wp)〉 defines a sub-problem w.r.t. the

classification of S and U .

procedure EXACTCLASSIFIER(S , U)

(s,u) := PickInitialStatePair(S,U);
Π := 〈({s}, 〈{u}〉)〉;
CL := Solve(Π); LB := Size(CL);
C∗
U := GreedyClassifier(Π); UB∗ := Size(C∗

U);
List := {(Π, LB,UB∗)};

while List 6= ∅ do

(Π, LB,UB) := Extract(List);
if LB < UB∗ then

(x, k) := ChooseBranchingState(Π);
{Π1, . . . ,Πn} := Branch(Π,x, k);
for i := 1 to n do

CL := Solve(Πi); LB := Size(CL);
CU := GreedyClassifier(Πi); UB := Size(CU);
if UB < UB∗ then

C∗
U := CU ; UB∗ := UB;

end if

if LB < UB∗ then

List := List ∪ {(Πi, LB,UB)};

end if

end for

end if

end while

return C∗
U ;

end procedure

Figure 1. Pseudo-code of the algorithm ExactClassifier

A. Node processing

Each node is processed as follows. First of all, function Solve(Π) determines whether the assignments

in Π allow feasible solutions. This function returns NULL if Π is infeasible, or a disjunctive linear

classifier CL solving Π otherwise. In more detail, each pair (Si,Ui,j), for i = 1, . . . , p, j = 1, . . . , ci,

defines an elementary separation problem involving a single linear inequality, whose feasibility can be

easily checked with the test of Eq. (4). If there exists (i, j) such that sep+1 (Si ∪ U∗
i,j ,Ui,j) = ∅, where

U∗
i,j =

⋃ci
l=j+1 Ui,l, the sub-problem Π is infeasible. On the other hand, if sep+1 (Si∪U∗

i,j ,Ui,j) 6= ∅ for all

May 11, 2013 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: May 10, 2013 23:51:11 PST

19

i = 1, . . . , p, j = 1, . . . , ci, then a disjunctive linear classifier {(A(i),b(i)), i = 1, . . . , p} can be defined

for
⋃p

i=1 Si and
⋂p

i=1

(

⋃ci
j=1 Ui,j

)

, with A(i) = [a
(i)
1 . . .a

(i)
ci]

T , and b(i) = [b
(i)
1 . . . b

(i)
ci]

T , for i = 1, . . . , p,

where (a
(i)
j

T
, b

(i)
j) ∈ sep+1 (Si ∪ U∗

i,j ,Ui,j).

If Π is infeasible, the node is immediately pruned, since its descendants in the branching tree will

also be infeasible. Otherwise, the size J = (2ξ + 1)
∑p

i=1 ci + (p − 1) of CL (returned by function

Size) provides a lower bound (LB) to the size of any feasible solution belonging to sep+D(S,U) and

compatible with the node assignments described by Π. Such a solution can be obtained by extending the

assignments in Π to accommodate the currently unassigned states, possibly introducing additional linear

inequalities. This is precisely what the heuristic algorithm GreedyClassifier, described in Section V-C,

does. The solution CU provided by the heuristic algorithm determines an upper bound (UB) on the size

of the optimal classifier. The smallest encountered UB is stored into UB∗, and the corresponding solution

CU is stored in C∗
U . Notice that a node with LB greater than or equal to UB∗ can be pruned, because it

does not admit solutions better than C∗
U .

After its processing, the node is stored in an ordered list (List), which defines the node visit strategy.

Nodes are extracted by function Extract in order of increasing LB, then by increasing UB (when avail-

able), and finally by decreasing number of assigned states, calculated as
∑p

i=1

(

|Si|+
1
p

∑ci
j=1 |Ui,j |

)

.

This ordering guarantees that as soon as the currently processed node has an LB greater than or equal

to UB∗, the algorithm can be terminated and the solution stored in C∗
U is optimal.

B. The branching process

The branching process evolves as follows. The initial node is defined by {(S1,W1)} with W1 = 〈U1,1〉

and |S1| = |U1,1| = 1, and it corresponds to a separation problem that involves only one safe and

one unsafe state; these two states are picked out with function (s,u) = PickInitialStatePair(S,U),

described below. Notice that the feasibility of the initial sub-problem is ensured by Properties 1-2, which

imply that ∄(s,u) such that u ≤ s, as required by Theorem 6. The heuristic solution obtained for the

initial node is stored as the current best, and its size defines the initial UB∗. Also, the node itself is

inserted in the (initially empty) node list.

As long as the node list is not empty, the first node is extracted for branching. Branching consists

in picking out a – safe or unsafe – unassigned state and assigning it to the subsets of the current node

in all possible ways. More precisely, let X0 = S \
⋃p

i=1 Si be the set of the unassigned safe states and

Xi = U \
⋃ci

j=1 Ui,j be the set of the unassigned unsafe states with respect to Si, i = 1, . . . , p. Let x ∈ Xk,

for some k ∈ {0, 1, . . . , p}, be the selected branching state. Then, procedure Branch(Π,x, k) returns a

collection of children nodes generated according to the following scheme:

1) If a safe state s ∈ X0 is selected for branching, p+ 1 children nodes are generated, defined by

• 〈(S1 ∪ {s},W1), . . . , (Sp,Wp)〉

• . . .

May 11, 2013 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: May 10, 2013 23:51:11 PST

20

• 〈(S1,W1), . . . , (Sp ∪ {s},Wp)〉

• 〈(S1,W1), . . . , (Sp,Wp), ({s}, 〈{u}〉)〉

where the unsafe state u is picked out with function PickUnsafeState(s,U), described in the

sequel.

2) If an unsafe state u ∈ Xk is selected (k > 0), ck + 1 children nodes are generated that are identical

to the parent node except from Wk = 〈Uk,1, . . . ,Uk,ck〉 which is modified, respectively, into:

• 〈Uk,1 ∪ {u}, . . . ,Uk,ck〉

• . . .

• 〈Uk,1, . . . ,Uk,ck ∪ {u}〉

• 〈Uk,1, . . . ,Uk,ck , {u}〉

After branching, the parent node is eliminated, and each child node is processed.

Different rationales can be employed to select the branching state (function ChooseBranchingState).

Ideally, the branching state should be selected as the most critical state to accommodate within the current

node’s assignments. This should tend to drive the branching process to quickly identify the appropriate

number of the Si and Ui,j subsets needed to solve the overall problem. Along this line, the ideal branching

state would be one that forces an increase in the node cost (due to the generation of a new subset). To save

computational time, this policy is approximated by choosing the first state that triggers a cost increment

when executing the heuristic algorithm at the current node.

Function (s,u) = PickInitialStatePair(S,U) is applied at the root node, and aims at providing

the algorithm with the “most difficult” pair of safe-unsafe states to accommodate initially. Intuitively,

this pair of states should be such that the set sep+1 (s,u) of all separating hyperplanes is the smallest

possible. For this purpose, u is chosen in E+
S and s in S so that |s| ≥ |u| and the angle between s and

u is minimum. A similar idea is reapplied whenever branching is performed with respect to a safe state

s, and a child node is generated with Sp+1 = {s}. In this case, function u = PickUnsafeState(s,U)

picks out an embedded unsafe state among those with |u| ≤ |s| that has the smallest angle with s.

C. Computation of the upper bound

This section describes the heuristic algorithm GreedyClassifier, which tries to complete the current

node’s assignments, by fitting in them the unassigned states with a greedy policy (the corresponding linear

inequalities are updated, if necessary). We remind the reader that, in the context of the considered algo-

rithm, the assignments instantiated by the current node are represented by Π = 〈(S1,W1), . . . , (Sp,Wp)〉

where Wi = 〈Ui,1, . . . ,Ui,ci〉. States that do not fit in any of the current assignments are placed into new

subsets. The heuristic always provides a complete, but generally sub-optimal solution, that can be used

to improve the UB. Figure 2 reports the pseudo-code of the heuristic.

Each step of the algorithm picks out an index k from {0, . . . , p} and a state x ∈ Xk according to a

suitable policy, defined by function (k,x) = PickStateAndSubset(Π). Then, it performs one of the

May 11, 2013 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: May 10, 2013 23:51:11 PST

21

procedure GREEDYCLASSIFIER(Π)

while
⋃p

i=0Xi 6= ∅ do

(k,x) := PickStateAndSubset(Π);
if k = 0 then

i := 1; FOUND := FALSE;

while NOT FOUND AND i ≤ p do

if sep+1 (Si ∪ {x},Ui,j) 6= ∅, ∀j = 1, . . . , ci then

FOUND := TRUE;

else

i := i+ 1;

end if

end while

if FOUND then

Si := Si ∪ {x};

else

p := p+ 1; Sp := {x};

u := PickUnsafeState(x,U);
Up,1 := {u};

end if

else

j := 1; FOUND := FALSE;

while NOT FOUND AND j ≤ ck do

if sep+1 (Sk,Uk,j ∪ {x}) 6= ∅ then

FOUND := TRUE;

else

j := j + 1;

end if

end while

if FOUND then

Uk,j := Uk,j ∪ {x};

else

ck := ck + 1; Uk,ck := {x};

if sep+1 (Sk,Uk,ck) = ∅ then

Exit(”Node infeasible”);

end if

end if

end if

end while

C := Solve(Π);
return C;

end procedure

Figure 2. Pseudo-code of the heuristic algorithm GreedyClassifier

May 11, 2013 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: May 10, 2013 23:51:11 PST

22

following assignments, depending on the type of state chosen (safe or unsafe) and on the value of k. If

k = 0 (unassigned safe state):

a) add x to the first subset Si (if one exists), such that sep+1 (Si ∪ {x},Ui,j) 6= ∅, ∀j = 1, . . . , ci;

b) otherwise, set p := p+1 and insert x into a newly created empty subset Sp; then, define Up,1 = {u},

where u = PickUnsafeState(x,U).

If k > 0 (unassigned unsafe state):

c) add x to the first subset Uk,j (if one exists), such that sep+1 (Sk,Uk,j ∪ {x}) 6= ∅;

d) otherwise, set ck := ck + 1 and insert x into a newly created empty subset Uk,ck .

The algorithm terminates when all states have been assigned, that is when Xi = ∅ for all i = 0, . . . , p.

The reader should notice that the starting assignment is always feasible, and that each additional

assignment of a further state must preserve feasibility. The latter can be rapidly evaluated with the

following sufficient condition, or, when this condition fails, by using the criterion given in Definition 7.

Property 7: Let S̄ and Ū be two 1+-separable state sets, and (aT , b) ∈ sep+1 (S̄, Ū). Also, let x ∈

(R+
0)

ξ. Then:

(i) aTx ≤ b =⇒ (aT , b) ∈ sep+1 (S̄ ∪ {x}, Ū)

(ii) aTx ≥ b+ 1 =⇒ (aT , b) ∈ sep+1 (S̄, Ū ∪ {x})

Proof: These results follow immediately from the separability test of Definition 7.

When p is incremented and a new set Sp is introduced to accommodate an unassigned safe state s that

does not fit into any of the previous Si subsets, then, whatever (embedded) unsafe state u is chosen by

function PickUnsafeState, it holds that sep+1 (s,u) 6= ∅. This follows immediately from the following

property.

Property 8: Let s ∈ (R+
0)

ξ and Ū be a vector set in (R+
0)

ξ such that ∄u ≤ s in Ū . Then, sep+L ({s}, Ū) 6=

∅.

Proof: This result follows from Theorem 5, upon noticing that P+
{s} = {x ∈ Rξ|x ≤ s}, which

further implies that P+
{s} ∩ Ū = ∅.

On the other hand, when ci is incremented and a new set Ui,ci is introduced to accommodate an

unassigned unsafe state u that does not fit into any of the previous Ui,j subsets, then it is not automatically

guaranteed that Si will be separable from Ui,ci . In particular, the separability condition of Theorem 5

will not hold if u ∈ E+
Si

. In that case, the algorithm terminates without generating a solution. However,

by adopting a suitable policy in the selection of the state to be assigned at each step, it is possible to

guarantee that this condition never occurs. This selection policy will enforce that an embedded unsafe

state is assigned to Ui,ci only if the corresponding Si has cardinality 1. To achieve this effect, all embedded

unsafe states must be accommodated with respect to Si before incrementing the cardinality of this set to

any value higher than 1.

In line with the state assignment policy that was described in the previous paragraph, the heuristic

algorithm GreedyClassifier proceeds as follows. Once a new subset Sp is created (with a single safe

May 11, 2013 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: May 10, 2013 23:51:11 PST

23

state), all embedded unsafe states are accommodated with respect to it, possibly generating more than

one Up,j subset. This is feasible in view of Property 8. Furthermore, from this point on, any further

addition of a safe state to Sp, or of an unsafe state to any of the corresponding Up,j subsets, will remain

feasible. This is formally proven in Proposition 2 below; however, in order to establish this proposition,

we need to introduce some further basic properties.

The next lemma implies that a linear classifier separating a set of safe states from a set of unsafe

states can always be extended to account for further unsafe states (possibly requiring the increase in the

number of necessary inequalities), provided that they are not embedded in the polyhedron of safe states.

Lemma 3: Let S̄ and Ū be two disjoint vector sets in (R+
0)

ξ such that sep+L (S̄, Ū) 6= ∅. Let also

u ∈ (R+
0)

ξ \ Ū . Then, if u /∈ P+
S̄

, it also holds that sep+L (S̄, Ū ∪ {u}) 6= ∅.

Proof: By Theorem 5, there is no state in Ū inside the polyhedron P+
S̄

. By assumption, u /∈ P+
S̄

also. Then, Theorem 5 holds also for sets S̄ and Ū ∪ {u}.

The next lemma ensures that a disjunctive linear classifier separating a set of safe states from a set of

unsafe states can always be extended to account for further safe states (possibly requiring the increase

in the number of necessary simple linear classifiers involved in the disjunction).

Lemma 4: Let S̄ and Ū be two disjoint vector sets in (R+
0)

ξ such that (A(1),b(1)) ∈ sep+L (S̄, Ū). Let

also s ∈ (R+
0)

ξ \ S̄ , such that ∄u ≤ s in Ū . Then, it also holds that sep+D(S̄ ∪ {s}, Ū) 6= ∅.

Proof: By Property 8, there exists a simple linear classifier (A(2),b(2)) with A(2),b(2) ≥ 0 separating

the (single) safe state s from Ū . Then the disjunctive linear classifier {(A(1),b(1)), (A(2),b(2))} achieves

the thesis.

Proposition 2: Let S and U be two disjoint vector sets in (R+
0)

ξ such that ∄(s,u) ∈ S×U with u ≤ s.

Then, the heuristic algorithm GreedyClassifier will always find a feasible solution CU ∈ sep+D(S,U) to

the corresponding separation problem.

Proof: The algorithm initially defines set S1 ⊆ S , such that |S1| = 1. Then, it finds a simple linear

classifier separating S1 from E+
S , whose existence is guaranteed by Property 8. Afterwards, it fits all

unassigned safe and unsafe states, one by one, in the existing Si and Ui,j subsets, or in newly created

ones, if necessary. Each extension is feasible thanks to Lemmas 3 and 4.

The incremental process implemented by the heuristic algorithm is guaranteed to terminate, since only

a finite number of safe state subsets are necessary (at most |S|, each containing a single safe state).

Finally, we note that the heuristic can be stopped prematurely to save computational time, once the

solution size UB reaches the current best UB∗; at that point it is clear that the heuristic will not produce

a better solution than the current best, and it is pointless to continue further. So, if such a case is

encountered, UB is set to +∞.

D. Function PickStateAndSubset

Function (k,x) = PickStateAndSubset(Π) establishes the policy according to which states are pro-

gressively included in the heuristic solution. Based on Proposition 2, the function enforces the following

May 11, 2013 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: May 10, 2013 23:51:11 PST

24

order of state inclusion, while operating on the remaining unassigned states:

1) embedded unsafe states,

2) safe states,

3) remaining unsafe states.

The state selection in each of these categories can be performed either on a purely sequential basis,

to reduce the computational load, or by looking first for states that are incompatible with the current

assignments, so as to force an increase in the solution size. This second policy is generally costlier, but

may provide a more appropriate state for branching purposes (recall that the branching state is selected

as the first that triggers a size increase with respect to the LB of the current node). As a consequence,

in the following experimental section, the first policy has been used to compute the upper bound, while

the selection of the branching state has been performed by re-executing GreedyClassifier with the second

policy, truncating the execution at the first increase of the solution size.

E. Heuristics for the estimation of sub-optimal solutions

The algorithm GreedyClassifier applied at the initial node rapidly provides a sub-optimal solution.

However, extensive computational experience shows two important facts:

• The initial solution is generally significantly improved after the processing of a few further nodes.

• The order of examination of the states in the application of the heuristic algorithm GreedyClassifier

at each node greatly influences the size of the solution found (yet, in the basic scheme, states are

examined in a fixed order, namely, the order suggested by the storage of these states in the relevant

data structure).

Building on these remarks, a modified scheme has been devised for an efficient estimation of a sub-optimal

solution. This scheme is characterized as Randomized Truncated B&B (RT-B&B) in the following, and

it is defined by a restart of the overall B&B algorithm several times, after the underlying search has

generated a prescribed small number of nodes. At each restart, the best UB∗ found so far is used as

initial information (the greedy heuristic applied at each node exploits this information by stopping when

UB∗ is reached), and the state sets S and U are reshuffled to modify randomly the order of examination.

F. A brief remark on the computational complexity of the method

The minimal classifier design problem is essentially a combinatorial optimization problem [43]. It is

expected that, from a worst-case point of view, the problem computational complexity will be super-

polynomial w.r.t. the sizes of the two classified sets S and U .6 The proposed algorithm is based on a

reduction of the considered problem to a variation of the Set Covering problem, and it constitutes an

6We want to clarify, however, that the super-polynomial complexity of the considered classifier design problem w.r.t. the

classified sets S and U is only a conjecture; currently we lack formal complexity results for this problem.

May 11, 2013 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: May 10, 2013 23:51:11 PST

25

implicit enumeration approach over the relevant solution space, that explores the space of partitions of

the sets S and U . In each of these partitions, first the safe set S is divided into subsets, and subsequently

a partition of the unsafe set U is associated to each of these safe subsets. Each elementary pair of a safe

and an unsafe subset defines a linear separation problem for which a single linear inequality is sought.

Therefore, the computational cost of the sub-problem that is defined by each of the aforementioned

partitions is given by the number of the pairs of subsets involved times the complexity of the LP problem

that is defined by the separability test of Definition 7. Both of these factors are polynomial w.r.t. the

cardinalities of the sets S and U . Hence, the overall algorithm complexity is primarily determined by

the total number of sub-problems that will be solved by the proposed B&B scheme; in the worst case,

this number is exponential even for the B&B scheme that is used for the construction of minimal linear

classifiers, as discussed in detail in [11].7

Different implicit enumeration methods, that take place on different subproblem spaces, can be applied

to solve the classifier design problem that is considered in this work. The theoretical analysis of [11]

points out the intrinsic superiority of the approach based on Set Covering with respect to alternative

MIP-based approaches, due to the facts that the number of the (explicitly) explored sub-problems, while

potentially exponential, is typically smaller for this method, and the subproblems themselves present a

lower complexity. The computational results presented in Section VI-B confirm this advantage and reveal

that the proposed method is tractable for problem instances of practical size.

VI. COMPUTATIONAL DEVELOPMENTS

A. An illustrative example

We first consider a small illustrative example to demonstrate the flow of the computation and the

effectiveness of the proposed algorithm. Let S = {si, i = 1, . . . , 6} and U = {ui, i = 1, . . . , 3}, where

s1 = [3 3 0 0 0 3], s2 = [1 3 0 0 1 3], s3 = [0 3 1 2 0 0],

s4 = [0 3 0 3 0 3], s5 = [0 3 0 2 1 3], s6 = [0 2 1 2 0 3],

u1 = [0 3 1 0 0 1], u2 = [0 0 0 3 1 0], u3 = [1 0 0 1 0 0].

The extended set of embedded unsafe states is not empty: E+
S = {u3}. Indeed, it can be easily checked

that u3 <
1
3s1+

2
3s3. Hence, we are seeking a minimal-size disjunctive linear classifier for these two sets,

using the algorithm that was presented in Section V. Initially, a pair of safe and unsafe states is picked

out to generate the root node using function PickInitialStatePair. Not surprisingly, u3 is selected as

the unsafe state of the pair. The selected safe state is s1, since, among the elements of S with |s| ≥ |u3|,

s1 makes the smallest angle with u3. The algorithm generates 10 nodes as represented in Figure 3. The

figure caption also reports the sub-problem definition at each node.

The heuristic GreedyClassifier applied at the initial node produces a feasible solution S1 = {s1, s2},

U1,1 = U , S2 = {s3, s4, s5, s6}, U2,1 = {u1,u3}, and U2,2 = {u2}, costing UB = 40. The solution is

7The number of possible partitions of a set can be characterized using the Stirling number of the second kind.

May 11, 2013 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: May 10, 2013 23:51:11 PST

26

saved. Then, node 1 is branched over s3 (i.e., the first safe marking that could not fit into S1), producing

nodes 2 and 3. Node 2 is infeasible (any “≤” inequality with non-negative coefficients satisfied by s1 and

s3 is also satisfied by u3), and thus discarded. Node 3 is feasible, but the solution found by the heuristic

GreedyClassifier does not improve on the current best. Therefore, the solution is not saved and the node

is branched over u2 (for p = 2) producing nodes 4 and 5. At node 4, the heuristic GreedyClassifier

produces a feasible solution costing UB = 40, equal to the best one found so far. Therefore, again, the

solution is not saved and node 4 is branched over u1 (for p = 2) producing nodes 6 and 7. Node 5

is discarded since it has an LB equal to the best UB so far. For node 6 the heuristic GreedyClassifier

obtains a solution costing UB = 42 (not improving the current best). The node is branched over s5

producing nodes 8, 9, and 10. Node 7 is discarded since LB is equal to the current best. Nodes 8 and

9 are infeasible, and thus discarded. Finally, node 10 is discarded since LB is greater than the current

best. The heuristic solution found at node 1, and never improved later, is now certified to be optimal.

This solution corresponds to the disjunctive linear classifier:

A(1) =
[

0 0 1 1 0 0
]

, b(1) = 0, A(2) =

[

0 0 0 1 1 0

13 3 3 0 0 1

]

, b(2) =

[

3

12

]

.

Furthermore, since γA(1),b(1)(x) = 1, ∀x ∈ {s1, s2}, and γA(2),b(2)(x) = 1, ∀x ∈ {s3, s4, s5, s6}, and

both functions are equal to 0 in all other states, it is trivial to verify that δ(x) = γA(1),b(1)(x)∨γA(2),b(2)(x)

is such that δ(s) = 1, ∀s ∈ S, and δ(u) = 0, ∀u ∈ U . The size of the obtained classifier is equal to

(2 · 6+1) · 3+1 = 40; i.e., this classifier must perform 40 elementary operations in order to classify any

given vector.

B. Computational experiments

In this section we present some further results that demonstrate the efficiency of the proposed algorithm.

More specifically, in Tables I-IV, we report results concerning the performance of our B&B algorithm

on three groups of benchmark RAS instances of increasing size and complexity that were previously

considered in [38]. Both the B&B algorithm and the RT-B&B heuristic were tested on an Intel 3.4 GHz

processor with 16 GB of RAM, and the LP formulations addressed by each subproblem were solved

with CPLEX 11.1. In Tables I, II and IV, Columns 2− 7 describe the problem instance characteristics in

terms of the cardinalities of the original state sets Srs and Sru, and their trimmed versions S and U , the

dimension ξ of the trimmed state space, and the number of embedded unsafe states |E+
S |. Notice that, as

in [38], we have applied the trimming of the original state sets to identify classifiers with non-negative

coefficients, which is extremely powerful and provides a decisive step towards the practical solvability of

the classification problem. The performance of the tested algorithms is described in terms of the following

indices: c =
∑p

i=1 ci is the overall number of inequalities employed by the obtained solution, p is the

number of subsets of S that are employed by the obtained solution, and J is the size of the obtained

solution, i.e., a measure of the computational cost for any (on-line) state classification that is attempted

May 11, 2013 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: May 10, 2013 23:51:11 PST

27

1

2

[13, 40]

3

4 5

6 7

8 9 10

[27, 40]

[40, −] [27, 40]

[40, −]

[27, 42]

[41, −]

D

D

D

I

I I

s3

s5

u2

(p=2)

u1

(p=2)

Figure 3. The “branching tree” for the illustrative example of Section VI-A. Each node is labeled with [LB,UB]
(UB is omitted when LB exceeds the best solution so far). Labels I and D identify nodes discarded due to

infeasibility or dominance, respectively. Branched nodes are also labeled with the branching state. Using the notation

of Def. 10, the depicted nodes are defined by the following sub-problems: 1) 〈({s1}, {u3})〉, 2) 〈({s1, s3}, {u3})〉,
3) 〈({s1}, {u3}), ({s3}, {u3})〉, 4) 〈({s1}, {u3}), ({s3}, {u2, u3})〉, 5) 〈({s1}, {u3}), ({s3}, ({u2}, {u3}))〉, 6)

〈({s1}, {u3}), ({s3}, {u1, u2, u3})〉, 7) 〈({s1}, {u3}), ({s3}, ({u1}, {u2, u3}))〉, 8) 〈({s1, s5}, {u3}), ({s3}, {u1, u2, u3})〉,
9) 〈({s1}, {u3}), ({s3, s5}, {u1, u2, u3})〉, 10) 〈({s1}, {u3}), ({s3}, {u1, u2, u3}), ({s5}, {u3})〉.

by the derived classifier. In addition, the tables provide the number of branching nodes BN and the CPU

time, in seconds, that is required to solve the problem by each of the two methods proposed herein.

Table I compares the results of the exact method of [38], obtained by applying a MIP solver with

a time limit of 120 minutes, with those of the proposed B&B method. Exact solutions with respect to

J are reported in bold face. For the remaining cases, where the time limit was reached, the optimality

of the result is not guaranteed and the best available result is reported. Tables II and III compare the

heuristic algorithm of [38] with the proposed B&B method (with a 15 minute time limit) and with the

RT-B&B heuristic, respectively. The particular implementation of the latter algorithm employed 10 runs

of the B&B algorithm truncated after the first 10 branching nodes. Finally, the RT-B&B heuristic has

also been tested on some larger instances (Table IV).

All the smaller instances (Table I) could be solved to optimality in a few seconds by the B&B method,

confirming the exact results and improving the heuristic ones obtained in [38].

Regarding the medium-size instances, Table II indicates that an exact solution could be obtained in

two cases within the time limit. In the remaining cases, the combined action of the branching process

and the heuristic GreedyClassifier in the B&B algorithm allows strong improvements with respect to

May 11, 2013 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: May 10, 2013 23:51:11 PST

28

Table I

COMPUTATIONAL RESULTS ON THE SMALL-SIZE BENCHMARK INSTANCES

Problem characteristics Exact method of [38] Prop. B&B method

|Srs| |Sru| |S| |U| ξ |E+

S
| c p J c p J BN CPU

222 109 1 379 34 35 17 2 3 2 107 3 2 107 21 0.295
224 593 2 756 31 32 14 2 6 2 176 4 2 118 72 0.710
247 623 1 133 69 40 26 2 3 2 161 3 2 161 76 1.811
272 342 857 30 23 11 5 5 2 117 4 2 94 191 1.608
309 758 2 611 71 31 19 5 4 2 158 4 2 158 206 2.910
381 222 1 244 56 68 27 1 3 2 167 3 2 167 110 4.373

1010 196 021 11 451 46 15 8 1 7 2 121 3 2 53 86 0.739

the heuristic of [38] (occasionally, more than one order of magnitude). On the other hand, the RT-B&B

algorithm (Table III), thanks to the combined influence of randomization and branching, improves (or,

in the worst case, equals) the best results obtained by the B&B algorithm, in a much smaller time.

Interestingly enough, the set S is partitioned in 2 in most cases, and there is only one instance where a

high number of subsets is required in the heuristic solution. This suggests that the proposed approaches

are particularly effective in identifying and exploiting the underlying geometric structure of the problem.

Table II

COMPUTATIONAL RESULTS ON THE MEDIUM-SIZE BENCHMARK INSTANCES

Problem characteristics Heur. method of [38] Prop. B&B method

|Srs| |Sru| |S| |U| ξ |E+

S
| c p J c p J BN CPU

445 94 431 72 238 849 71 17 52 140 29 4 929 55 21 1 946 880 900.000
447 115 766 28 510 95 12 11 3 17 11 402 5 2 117 399 3.079
474 10 913 96 361 404 163 41 10 69 43 5 770 10 2 832 1 495 900.000
476 6 596 129 036 527 221 39 6 90 42 7 152 11 2 871 1 075 900.000
605 104 550 49 620 1 937 67 15 42 8 7 255 5 3 158 2 029 357.086
621 42 571 69 016 3 754 188 30 1 116 22 7 098 12 2 734 72 900.000

1026 757 699 700 781 2 120 89 21 13 170 19 7 329 13 2 561 640 900.000

Table III

RESULTS OF THE RT-B&B ALGORITHM ON THE MEDIUM-SIZE BENCHMARK INSTANCES

RT-B&B (BN = 10× 10)
c p J CPU

445 50 14 1 764 60.105
447 5 2 117 3.707
474 9 2 749 36.978
476 10 2 792 48.387
605 5 3 158 64.771
621 12 2 734 742.441

1026 11 2 475 214.415

Table IV illustrates the results obtained on the larger instances by the RT-B&B heuristic. The latter

proves able to tackle these instances in no more than a few hours, providing solutions that are not

May 11, 2013 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: May 10, 2013 23:51:11 PST

29

necessarily optimal, but which are quite compact, especially with respect to the employed number of

subsets p.

Table IV

COMPUTATIONAL RESULTS ON THE LARGE-SIZE BENCHMARK INSTANCES

Problem characteristics RT-B&B (BN = 10× 10)

|Srs| |Sru| |S| |U| ξ |E+

S
| c p J CPU

558 21 099 906 478 741 225 48 13 14 3 1 361 84.377
565 65 992 2 105 590 2 314 708 56 55 56 8 6 336 831.935
642 34 695 1 773 193 1 697 427 55 19 22 4 2 446 392.763
643 118 470 1 253 425 3 432 612 54 7 42 3 4 581 1 764.604
897 53 080 1 410 311 5 560 1 046 74 13 30 2 4 472 5 029.219

1034 1 622 861 2 600 349 15 783 257 37 15 17 4 1 279 7 554.122
1040 396 931 1 146 292 13 742 559 51 13 36 3 3 711 19 149.563

VII. CONCLUSIONS

The work presented in this paper has complemented some recent endeavors that seek the implementation

of the maximally permissive deadlock avoidance policy (DAP) for various complex resource allocation

systems as a classifier that encodes the policy-induced dichotomy of the underlying behavioral space

into admissible and inadmissible subspaces. The presented results have provided (i) succinct conditions

regarding the possibility of expressing the aforementioned classifier as a set of linear inequalities in

the state variables, and (ii) an efficient customized algorithm for the synthesis of pertinent non-linear

classifiers that implement the target DAP with minimum run-time computational overhead, in the case

that a linear classifier-based representation of this policy is not possible.

Our future work will seek the further enhancement of the presented algorithm, through a more profound

understanding of the geometry that impacts the performance of the algorithm and the structure of the

optimal solution, and the development of heuristics for the employed B&B method that take better

advantage of these qualitative results and insights. The development of improved algorithms to address

more efficiently the reachability analysis that precedes the classifier synthesis problem is also part of

our current investigations. Some results along this line can be found in [44], [45]. Finally, as remarked

in Section V-F, a remaining open issue is the formal characterization of the complexity of the classifier

design problem that was addressed in this work.

REFERENCES

[1] S. A. Reveliotis, Real-time Management of Resource Allocation Systems: A Discrete Event Systems Approach. NY, NY:

Springer, 2005.

[2] M. Fanti and M. Zhou, “Deadlock control methods in automated manufacturing systems,” IEEE Trans. Syst. Man Cybern.

Part A, Syst. Humans, vol. 34, no. 1, pp. 5–22, 2004.

[3] M. Zhou and M. P. Fanti (editors), Deadlock Resolution in Computer-Integrated Systems. Singapore: Marcel Dekker, Inc.,

2004.

[4] S. A. Reveliotis, “Conflict resolution in AGV systems,” IIE Trans., vol. 32(7), pp. 647–659, 2000.

May 11, 2013 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: May 10, 2013 23:51:11 PST

30

[5] N. Wu and M. Zhou, “Resource-oriented Petri nets in deadlock avoidance of AGV systems,” in Proceedings of the ICRA’01.

IEEE, 2001, pp. 64–69.

[6] E. Roszkowska and S. Reveliotis, “On the liveness of guidepath-based, zoned-controlled, dynamically routed, closed traffic

systems,” IEEE Trans. on Automatic Control, vol. 53, pp. 1689–1695, 2008.

[7] Y. Wang, H. Liao, S. Reveliotis, T. Kelly, S. Mahlke, and S. Lafortune, “Gadara nets: Modeling and analyzing lock

allocation for deadlock avoidance in multithreaded software,” in Proc. 48th IEEE Conference on Decision and Control,

Shanghai, China, 2009, pp. 4971–4976.

[8] T. Kelly, Y. Wang, S. Lafortune, and S. Mahlke, “Eliminating concurrency bugs with control engineering,” IEEE Computer,

vol. 42, no. 12, pp. 52–60, 2009.

[9] A. Nazeem, S. Reveliotis, Y. Wang, and S. Lafortune, “Designing compact and maximally permissive deadlock avoidance

policies for complex resource allocation systems through classification theory: The linear case,” IEEE Trans. Autom.

Control, vol. 56, no. 8, pp. 1818–1833, 2011.

[10] R. Cordone and L. Piroddi, “Monitor optimization in Petri net control,” in Proc. 7th IEEE Conf. on Automation Science

and Engineering, Trieste, Italy, 2011, pp. 413–418.

[11] ——, “Parsimonious monitor control of Petri net models of FMS,” IEEE Trans. Syst. Man Cybern: Systems, vol. 43, no. 1,

pp. 215–221, Jan. 2013.

[12] Y. Chen, Z. Li, M. Khalgui, and O. Mosbahi, “Design of a maximally permissive liveness-enforcing Petri net supervisor

for flexible manufacturing systems,” IEEE Trans. Autom. Sci. Eng., vol. 8, no. 2, pp. 374–393, 2011.

[13] Y. Chen and Z. Li, “Design of a maximally permissive liveness-enforcing supervisor with a compressed supervisory

structure for flexible manufacturing systems,” Automatica, vol. 47, pp. 1028–1034, 2011.

[14] A. Nazeem and S. Reveliotis, “Designing compact and maximally permissive deadlock avoidance policies for complex

resource allocation systems through classification theory: The nonlinear case,” IEEE Trans. Autom. Control, vol. 57, no. 7,

pp. 1670–1684, 2012.

[15] T. Araki, Y. Sugiyama, and T. Kasami, “Complexity of the deadlock avoidance problem,” in 2nd IBM Symp. on Mathematical

Foundations of Computer Science. IBM, 1977, pp. 229–257.

[16] S. Reveliotis and E. Roszkowska, “On the complexity of maximally permissive deadlock avoidance in multi-vehicle traffic

systems,” IEEE Trans. on Automatic Control, vol. 55, pp. 1646–1651, 2010.

[17] T. Murata, “Petri nets: properties, analysis and application,” Proc. IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[18] A. Giua, F. DiCesare, and M. Silva, “Generalized mutual exclusion constraints on nets with uncontrollable transitions,” in

Proceedings of the 1992 IEEE Intl. Conference on Systems, Man and Cybernetics. IEEE, 1992, pp. 974–979.

[19] K. Yamalidou, J. Moody, M. D. Lemmon, and P. J. Antsaklis, “Feedback control of Petri nets based on place invariants,”

Automatica, vol. 32, pp. 15–28, 1996.

[20] M. Iordache, J. Moody, and P. Antsaklis, “Synthesis of deadlock prevention supervisors using Petri nets,” IEEE Transactions

on Robotics and Automation, vol. 18, no. 1, pp. 59–68, 2002.

[21] S. Reveliotis, E. Roszkowska, and J. Y. Choi, “Generalized algebraic deadlock avoidance policies for sequential resource

allocation systems,” IEEE Trans. on Automatic Control, vol. 52, pp. 2345–2350, 2007.

[22] L. Piroddi, R. Cordone, and I. Fumagalli, “Selective siphon control for deadlock prevention in Petri nets,” IEEE Trans.

Syst. Man Cybern. Part A, Syst. Humans, vol. 38, no. 6, pp. 1337–1348, 2008.

[23] ——, “Combined siphon and marking generation for deadlock prevention in Petri nets,” IEEE Trans. Syst. Man Cybern.

Part A, Syst. Humans, vol. 39, no. 3, pp. 650–661, 2009.

[24] V. Vazirani, Approximation Algorithms. NY,NY: Springer, 2003.

[25] J. Ezpeleta, J. M. Colom, and J. Martinez, “A Petri net based deadlock prevention policy for flexible manufacturing

systems,” IEEE Trans. on R&A, vol. 11, pp. 173–184, 1995.

[26] J. Park and S. A. Reveliotis, “Deadlock avoidance in sequential resource allocation systems with multiple resource

acquisitions and flexible routings,” IEEE Trans. on Automatic Control, vol. 46, pp. 1572–1583, 2001.

May 11, 2013 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: May 10, 2013 23:51:11 PST

31

[27] Y. Huang, M. Jeng, X. Xie, and S. Chung, “Deadlock prevention policy based on Petri nets and siphons,” Intl. Journal of

Production Research, vol. 39, pp. 283–305, 2001.

[28] Z. Li and M. Zhou, “Elementary siphons of Petri nets and their application to deadlock prevention in flexible manufacturing

systems,” IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 34, no. 1, pp. 38–51,

2004.

[29] F. Tricas, F. Garcia-Valles, J. M. Colom, and J. Ezpeleta, “A Petri net structure-based deadlock prevention solution for

sequential resource allocation systems,” in Proceedings of the ICRA 2005. IEEE, 2005, pp. 271–277.

[30] H. Liao, S. Lafortune, S. Reveliotis, Y. Wang, and S. Mahlke, “Optimal liveness-enforcing control of a class of Petri nets

arising in multithreaded software,” IEEE Trans. Autom. Control, vol. 58, no. 5, pp. 1123–1138, 2013.

[31] H. Liao, Y. Wang, J. Stanley, S. Lafortune, S. Reveliotis, T. Kelly, and S. Mahlke, “Eliminating concurrency bugs in

multithreaded software: A new approach based on discrete-event control,” IEEE Trans. Control, Systems Technology (to

appear – DOI 10.1109/TCST.2012.2226034).

[32] E. Badouel, L. Bernardinello, and P. Darondeau, “Polynomial algorithms for the synthesis of bounded nets,” in Proceedings

of CAAP’95. Springer-Verlag LNCS 915, 1995, pp. 364–378.

[33] A. Ghaffari, N. Rezg, and X. Xie, “Design of a live and maximally permissive Petri net controller using the theory of

regions,” IEEE Trans. on Robotics & Automation, vol. 19, pp. 137–141, 2003.

[34] M. Uzam, “An optimal deadlock prevention policy for flexible manufacturing systems using Petri net models with resources

and the theory of regions,” Int. J. Adv. Manuf. Technol., vol. 19, pp. 192–208, 2002.

[35] Z. Li, M. Zhou, and N. Wu, “A survey and comparison of Petri net-based deadlock prevention policies for flexible

manufacturing systems,” IEEE Trans. Systems, Man and Cybernetics – Part C: Applications and Reviews, vol. 38, pp.

173–188, 2008.

[36] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization. New York: John Wiley and Sons, 1988.

[37] Y. Chen and Z. Li, “On structural minimality of optimal supervisors for flexible manufacturing systems,” Automatica,

vol. 48, no. 10, pp. 2647–2656, 2012.

[38] A. Nazeem and S. Reveliotis, “Designing maximally permissive deadlock avoidance policies for sequential resource

allocation systems through classification theory,” in Proc. 7th IEEE Conf. on Automation Science and Engineering, Trieste,

Italy, 2011, pp. 405–412.

[39] S. A. Reveliotis and A. Nazeem, “Optimal linear separation of the safe and unsafe subspaces of sequential RAS as a set-

covering problem: algorithmic procedures and geometric insights,” SIAM J. Control Optim., vol. 51, no. 2, pp. 1707–1726,

2013.

[40] S. Reveliotis and A. Nazeem, “Deadlock Avoidance Policies for Automated Manufacturing Systems using Finite State

Automata,” in Formal Methods in Manufacturing, J. Campos, C. Seatzu, and X. Xie, Eds. CRC Press / Taylor & Francis

(to appear).

[41] R. Cordone, A. Nazeem, L. Piroddi, and S. Reveliotis, “Maximally permissive deadlock avoidance for sequential resource

allocation systems using disjunctions of linear classifiers,” in Proc. 51st IEEE Conf. on Decision and Control, Maui (HI),

USA, 2013, pp. 7244–7251.

[42] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems (2nd ed.). NY,NY: Springer, 2008.

[43] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver, Combinatorial Optimization. New York (NY),

USA: Wiley Interscience, 1998.

[44] A. Nazeem and S. Reveliotis, “An efficient algorithm for the enumeration of the minimal unsafe states in complex resource

allocation systems,” in Proc. 48th IEEE Intl. Conference on Automation Science and Engineering, Seoul, Korea, 2012.

[45] ——, “Efficient enumeration of minimal unsafe states in complex resource allocation systems,” IEEE Trans. on Automation

Science and Engineering, vol. (to appear).

May 11, 2013 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: May 10, 2013 23:51:11 PST

