
1070-9932/15©2015IEEE JUNE 2015 IEEE ROBOTICS & AUTOMATION MAGAZINE 77

The integrating role that is sought by automation in
many contemporary applications frequently can be
abstracted to the need for pertinent supervision of a
function that allocates a finite set of reusable
resources to a set of concurrently executing pro-

cesses. This article formalizes the corresponding supervisory
control problem, surveys the major results that are currently
available for it, and highlights the remaining open challenges for
the corresponding research community. In the process, it also
reveals the analytical and computational advantages that can be

attained from the reference of the considered problem to some
appropriate control-theoretic frameworks and the additional
potential that is defined for such an analytic approach by the
identification and exploitation of some essential problem fea-
tures and the special structure that is defined by them.

Automation as a Resource-Allocation Function:
A Set of Motivating Applications
When it comes to automation and its contemporary appli-
cations, one of the major challenges facing the modern en-
gineering community is the effective integration of a set of
autonomous devices, which are frequently characterized by
distinct, heterogeneous behaviors, into a well-behaved and

Digital Object Identifier 10.1109/MRA.2015.2401295
Date of publication: 15 May 2015

By Spyros Reveliotis

Sequential Resource Allocation
Systems for Automation

©
 IS

TO
C

K
P

H
O

TO
.C

O
M

/T
H

A
R

R
IS

O
N

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

IEEE ROBOTICS & AUTOMATION MAGAZINE JUNE 201578

properly controlled system. In the context of the research
program presented in this article, the aforementioned inte-
grating task can be perceived as the design and deployment
of a set of control policies that will coordinate the allocation
of a finite set of reusable resources to a set of concurrently
executing processes. These processes evolve in a staged
manner according to some sequential logic that may be
predefined, but they can also be impacted by factors that
are determined in real time during the progression of the
considered application. The execution of any single stage of
the considered processes requires the exclusive allocation to
them of a certain subset of the system resources. Probably
the best-known manifestation of such an operational envi-
ronment is the popular concept of the flexibly automated
production system, where a set of numerically controlled
machines is (supposed to be) integrated seamlessly with a
set of buffers and material-handling devices to support the
simultaneous production of a set of part types, each pro-
duced according to its own process plan (or even a set of
process plans in the particular case where the considered
production system allows for some routing flexibility) [20].
In such an environment, every processed part is an instance
of a process type that is defined by the corresponding pro-
cess plan (or set of process plans), and the resources re-
quested by each stage of this process plan include some
buffer space to physically accommodate the part, the
processor(s) or the material-handling equipment that will
act upon the part at that stage, and possibly additional
equipment such as fixtures and auxiliary tools.

Even when focusing on the domain of material-handling
systems (MHSs) itself, the effective operation of an automated
unit load, guide path-based MHS [51], such as an automated
guided vehicle (AGV) system or an overhead monorail sys-
tem, can be perceived as the control of a resource-allocation
function of the type described in the previous paragraph. All
of these MHSs consist of 1) a guide path network that inter-
connects a set of workstations and additional supporting ser-
vice facilities, such as a docking and recharging station, and 2)
a fleet of autonomous vehicles that transfer parts among the
system workstations by using the guide path net and eventu-
ally retiring to the docking station. Physical collisions among
the vehicles are avoided by splitting the guide path links into a
number of smaller segments called zones and requesting that
each zone be allocated exclusively to a single vehicle. Access to
a certain zone by a traveling vehicle must be negotiated with
the system controller. Hence, under the considered operation-
al regime, the execution of a vehicle trip from an origin loca-
tion to some destination location is essentially a staged
process where each stage corresponds to the traversal of a cer-
tain zone in the followed path, while the zone itself constitutes
the resource allocated to the vehicle-abstracting process at
that particular stage. A nominal vehicle-abstracting process
under the aforementioned operational regime is defined by a
sequence of zones taking the corresponding vehicle first from
the docking station to the work station originating the corre-
sponding transport request, to the destination workstation,

and finally back to the docking station; however, the general
model also allows for alternative routes and the reassignment
of a retiring vehicle to a new transport task while on its trip
back to the docking station.

More recently, the resource-allocation paradigm for
guide path-based MHSs, which was outlined in the previ-
ous paragraph, has been extended to traffic systems involv-
ing a fleet of free-ranging mobile agents over a certain
planar area [45]. In this case, each agent is represented by
some canonical geometrical footprint—typically a disk of a
certain radius—and the entire area is tesselated into a num-
ber of cells. An agent with its footprint overlapping a given
cell is considered to occupy this cell. Cells possess a nomi-
nal capacity that limits the maximal number of agents that
can simultaneously occupy the cell in a safe manner. Obser-
vance of the cell capacity is enforced by the system control-
ler, which provides the traveling agents the necessary
permission to access a requested cell. In a simple imple-
mentation of the considered control scheme, cells possess
unit capacity, naturally ensuring the physical separation of
the traveling agents. However, the literature also avails of
more complex control schemes where a cell can have a
nominal capacity larger than one, allowing two or more
agents to traverse it simultaneously [50]; in such a case, it is
further assumed that the cell-sharing agents have sensing,
communication, and control capabilities that allow them to
negotiate their local motion in a safe manner. In [45], these
ideas are further extended to apply to the traffic of mobile
agents that takes place in three-dimensional spaces and
with the agents being in perpetual motion from their origin
to their destination; hence, the considered control scheme
can apply to the traffic coordination of airplanes, drones,
and all other flying gadgets that are currently contemplated
as future transport devices. Similarly, one can easily envi-
sion the potential extension of guide path-based MHSs to
driverless monorail and railway systems serving urban or
regional transportation needs over complex networks.

The resource-allocation paradigm outlined in the previ-
ous paragraphs for flexibly automated production and
MHSs, mobile agents, and even the public transportation do-
main extends to other service sectors through the notion of
an automated workflow management system (WMS) [30],
[54]. WMSs have been promoted as a structured solution to
the automation of routine yet complex operations that take
place in business sectors, such as insurance claiming, bank-
ing, and the backend operations of modern logistics systems.
According to the WMS paradigm, the aforementioned oper-
ations are abstracted into a set of process types that execute
in a staged manner and utilize critical resources such as data
files, various sorts of processors and communicating devices,
and even the company personnel in various supporting roles.
The enactment of these process types is facilitated by a work-
flow management engine that monitors the progress of the
different running processes and coordinates their overall
flow and the allocation of the resources requested by them in
an expedient and orderly manner.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

JUNE 2015 IEEE ROBOTICS & AUTOMATION MAGAZINE 79

In fact, it can be safely argued that some of the very first
fully automated WMSs developed by our modern technologi-
cal civilization were the operating systems of all of the past
computational platforms that have supported multithreaded
software. All of these operating systems coordinate the alloca-
tion of various system resources, such as memory registers,
(access to) data files, and input/output (I/O) devices, to the
concurrently running threads through the representation of
these limited resources by some sort of tokens, typically
known as locks or semaphores, that are carefully granted to the
contesting processes [10]. Currently, the interest of the com-
puting world in this resource-allocation function has been re-
vitalized thanks to the advent of multicore computer
architectures that have turned parallel programming into a
commodity [57].

Finally, a further application of the considered resource-
allocation paradigm in the world of modern computing
comes from the area of quantum computing [38]. In this do-
main, the primitive elements of information, known as quan-
tum bits (qubits), are stored in the form of ionized atoms, and
various elementary operations are performed on these qubits
through their physical transport to certain locations, called
ion traps, where they interact in a controlled manner. The
physical transport of qubits from their initial storage loca-
tions to ion traps takes place through a network of tunnels
that must be exclusively allocated to each traveling qubit to
avoid collisions that would destroy their information content.
Hence, the physical realization of an algorithmic logic unit
(ALU) for a quantum computer bears very strong similarities
with the operation of the guide path-based transport systems
discussed in the previous paragraphs, and it must address a
similar set of resource-allocation problems.

A New Set of Control Challenges and the
Emerging Control Paradigm of Sequential
Resource-Allocation Systems
In all of the examples that were presented in the “Automa-
tion as a Resource-Allocation Function: A Set of Motivating
Applications” section, the penultimate objective for the
management of the corresponding resource-allocation func-
tion is the optimization of some notion of performance for
the underlying system. Frequently, this performance is de-
fined and measured by the production rate—or through-
put—of the considered system, while additional
considerations might involve the control of the congestion
experienced by the system processes; the latter is defined in
terms of the delays that are experienced by the various pro-
cesses or the process concentrations that are observed at the
various processing stages. The resulting performance analy-
sis and control problems have been studied in the past
through operational models and theories pursued by the
fields of operations research (OR), industrial engineering
(IE), and operations management (OM). However, the need
to support the considered performance objectives in the au-
tomated setting that is implied by all of the previously pro-
vided examples gives rise to additional operational problems

that have not been modeled and/or studied by the afore-
mentioned disciplines.

Among these new problems, one of the most pernicious is
defined by the need to establish deadlock-free—or nonblock-
ing—operation for the underlying resource-allocation func-
tion. The notion of deadlock is exemplified in Figure 1, where
the two depicted process instances are permanently stuck
since each of them is requesting for its further advancement
the buffer space that is currently held by the other process. (A
more formal definition of the notion of deadlock is provided
in the “The RAS Modeling Abstraction” section.) Unless there
is external interference, no further progress can be achieved
by the depicted processes, while the effective utilization of the
resources allocated to them will be equal to zero. Hence, the
formation of deadlocks is utterly disruptive to the operation
and performance of the automated applications that we are
considering in this article.

In the considered operational settings, circular waiting pat-
terns among the running processes, such as those depicted in
Figure 1, arise due to 1) the exclusive nature of the allocation of
the finite system resources to the various process instances, 2)
the ability of the running process instances to hold upon their
currently allocated resources while waiting for some further
resources needed for the execution of their next processing
stage, and 3) the arbitrariness of the resource-allocation re-
quests that can be posed by the different processing stages. Ob-
viously, these conditions are also present in the operation of
the more conventional, nonautomated versions of the afore-
mentioned applications, such as the production, material han-
dling, and service operations that are studied by the OR, IE,
and OM disciplines. However, in those cases, the presence of
the human element in an operating or supervising role enables

R1 R2

J1:R1"R2"R3 J2:R3"R2"R1

R3

Figure 1. A flexibly automated production cell consisting of three
workstations, , ,R R1 2 and ,R3 and a single AGV that transports
parts among these three workstations and the I/O port of the
cell. Each workstation avails of a worktable that can hold only
one workpiece at a time. The cell is used for the concurrent
production of the two process types J1 and J2 with the
corresponding process plans that are annotated in the figure.
It should be evident from the description of the cell operations
and the provided routing information for the two process types
that, in the depicted situation, none of the currently loaded parts
is able to advance to its next requested workstation, since the
corresponding worktable is occupied by the other part. This is
a typical situation of deadlock that can be encountered in such
flexibly automated production systems.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

IEEE ROBOTICS & AUTOMATION MAGAZINE JUNE 201580

the resolution of any emergent deadlock through some real-
time improvisation. Hence, in nonautomated settings, there is
no (strongly) felt need to address the deadlocking problem at a
formal level. On the other hand, the ubiquitous and highly dis-
ruptive nature of this problem was strongly manifested in the
1990s, where some attempts of that era to materialize the no-
tions of the flexibly automated manufacturing cell and of the
lights-out factory, based on ad-hoc integrating schemes, result-
ed in major fiascos for the companies involved. Furthermore,
because of those past negative experiences, almost all current
attempts to employ large-scale automation in the production
and service sectors have sought to address the behavioral
problem of deadlock formation at the design level by adopting
very simple structural designs and by complementing these
structural designs with some very conservative operational
policies that seek to negate the third of the aforementioned
conditions for deadlock formation. Figure 2 exemplifies these
designs and policies by presenting a typical topology—or lay-
out—for the MHS guide path network employed by the cur-
rent semiconductor manufacturing industry. Similar
simplifying approaches to the deadlock problem have been
pursued even in presumably more sophisticated fields such as
the field of multithreaded software and parallel programming.
However, as shown in Figure 2, while being robust with re-
spect to the resolution of the deadlock problem itself, the cur-
rently pursued approaches also substantially limit the
concurrency and flexibility of the underlying system, and, in
the end, they compromise the operational efficiencies and the

enhanced performance potential that are typically sought from
flexible automation.

It is evident from the previous discussion that the deploy-
ment of automated solutions for the aforementioned applica-
tions in a way that provides a robust and efficient operation
of the underlying system can be effectively supported only
through the development of a rigorous control paradigm that
will enable the formal modeling of the underlying system be-
havior and the imposed specifications and will facilitate the
thorough analysis and design of the necessary control poli-
cies. At the same time, to be practically effective, such a con-
trol paradigm must explicitly address the representational
and computational complexities of the problems investigated
and eventually effect a systematic tradeoff between the com-
putational tractability of the developed methodology and the
operational efficiency of the obtained solutions.

The rest of this article outlines such a control paradigm that
is built on the formal abstraction of a (sequential) resource-allo-
cation system (RAS) [47]. We provide a formal characterization
and a taxonomy of the RAS concept, outline a control para-
digm that can be defined by it while leveraging and extending
existing results from various areas of modern control theory,
and, subsequently, focus on the particular problem of deadlock
avoidance—or nonblocking supervision—for the considered
RAS. For this last problem, we provide a formal characteriza-
tion by means of the supervisory control theory (SCT) of dis-
crete-event systems (DESs) [7] and establish a notion of
optimality for the derived solutions in the form of maximal
permissiveness. On the other hand, a formal complexity analy-
sis reveals that the computation of the maximally permissive
nonblocking supervisor is an NP-hard task for most RAS in-
stantiations. Hence, a considerable part of the article is dedicat-
ed to the endeavors of our group and the broader research
community to cope with this negative result. The article con-
cludes with some discussion of the remaining open challenges
with respect to the RAS supervisory control problem and of all
the additional issues that must be effectively addressed for the
complete development of the presented RAS theory, its migra-
tion to the engineering practice, and its effective integration
into the relevant engineering curricula. Collectively, the pre-
sented developments epitomize the corresponding endeavors
by the author, his collaborators, and a broader group within
the relevant research community over a time span of more
than 20 years. They also reveal how some important challeng-
es faced in the area of automation can benefit from, but also
extend and promote, foundational disciplines such as those of
control engineering, operations research, and theoretical com-
puter science.

The RAS Modeling Abstraction, the Corresponding
Control Paradigm, and an RAS Taxonomy

The RAS Modeling Abstraction
As stated previously, the primary modeling abstraction that
enables a unifying treatment of the real-time operations taking
place in all of the applications described in the “Automation as

Interbay

OHT/OHS

Intrabay

Stocker

Tool Under Intrabay

Figure 2. The material-handling layout [53]—usually known as the
spine layout [58]—that is used in contemporary semiconductor
fabs. This MHS is an overhead monorail system with its guide path
network decomposed into a set of unidirectional loops: one loop
interconnecting the processing tools of each bay of the fab (i.e., the
blue intrabay loops depicted in the figure) and a central loop that
acts as the spine of the facility and supports wafer transfers among
the fab bays (i.e., the brown interbay loop in the figure). Intrabay
loops are interfaced to the interbay loop through buffering facilities
known as stockers. By maintaining a unidirectional vehicle motion
on each loop, the considered layout eliminates the potential for
deadlock formation among the traveling vehicles. But, at the same
time, vehicles tend to travel much longer distances for any single
requested transfer, they tend to file up behind the slowest vehicle,
and the interbay traffic might involve considerable double-handling
of the transported wafer cassettes at the intermediate stockers.
OHT: overhead transporter; OHS: overhead shuttle.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

JUNE 2015 IEEE ROBOTICS & AUTOMATION MAGAZINE 81

a Resource-Allocation Function: A Set of Motivating Applica-
tions” section, is the sequential RAS. Following [47], a sequen-
tial RAS can be formally defined by a quintuple

,, , , ,R C P A DU= where
1) , ,R RR m1 f= " , is the set of the system resource types.
2) :C -ZR " + the set of strictly positive integers—is the

system capacity function characterizing the number of
identical units from each resource type available in the
system. Resources are assumed to be reusable, i.e., each al-
location cycle does not affect their functional status or
subsequent availability, and therefore, ()C R Ci i/ consti-
tutes a system invariant for each .i

3) , ,P n1 fP P= " , denotes the set of the system process
types supported by the considered system configuration.
Each process type jP is a composite element itself, in par-
ticular, , ,Gj j jTP = where: (a) , , ,j j j l1 jfT N N= " , de-
notes the set of processing stages involved in the definition
of process type jP and (b) G j is an additional data struc-
ture that encodes the sequential logic that integrates the
set of the processing stages jT into a set of potential pro-
cess flows.

4) : , ,C0A i
m

i1" fT P = " , is the resource-allocation function
associating every processing stage jkN with the resource-allo-
cation vector () 0A jk !N required for its execution.

5) D is a function mapping each processing stage jkN in
j
n

j1,T T/ = to a distribution with positive support that
characterizes the processing time of the corresponding pro-
cessing stage.

6) We also set ,T/p and for the purpose of complexity
considerations, we define the size U of RAS U by

.CR i
m

i1/ pU R+ + =

At any point in time, the system contains a certain
number of (possibly zero) instances of each process type
that execute one of the corresponding processing stages;
this distribution of the active process instances across the
various processing stages defines a notion of the state for
the considered RAS. Obviously, this RAS state must re-
spect the resource capacities; i.e., no resource type R Ri !
can be overallocated with respect to its capacity Ci at any
point in time. Furthermore, to model the hold-while-
waiting effect discussed in the previous section, the ad-
opted resource-allocation protocol stipulates that a
process instance ,J j executing a nonterminal stage jkN
and seeking to advance to some next stage ,jkN l must first
be allocated the resource differential (())()A A ikik NN - +

l

and only then will it release the resource units
(() ())A Ajk jkN N- -

l that are not needed anymore. This
assumption is not restrictive since the release of resources
that do not adhere to this protocol can be modeled by the
insertion of additional processing stages in the underlying
process plan. Finally, in the resulting operational context,
the RAS deadlock can be formally defined as an RAS state
containing a set of active process instances DJ such that
every instance ,J DJj ! to advance to any of its next pro-
cessing stages, requests some resources currently held by
some other process instance .J DJk !

Real-Time Control Framework
for the Considered RAS
As remarked in the “A New Set of Control Challenges and
the Emerging Control Paradigm of Sequential Resource Al-
location Systems” section, an effective real-time controller
for the considered RAS must ensure the attainment of some
set of performance objectives, typically defined with respect
to the timed RAS behavior, while keeping the RAS away
from problematic behavioral patterns like the aforemen-
tioned deadlock states. This last control requirement is fre-
quently known as the RAS behavioral or logical control
problem because the corresponding problematic behavior
can be effectively avoided by controlling only the sequenc-
ing of the relevant resource-allocation events and not their
exact timing. Furthermore, it is generally accepted by the
relevant research community that, due to the stochasticity
that is present in the timed dynamics of the considered
RAS, any robust solution to the RAS behavioral and perfor-
mance control problems should rely on some feedback con-
trol scheme and not on the open-loop execution of some
precomputed plan.

Such a feedback-based controller is presented in Fig-
ure 3. The depicted control paradigm is an event-driven ap-
proach where the applied control function monitors the
events taking place in the underlying RAS and commands a
certain action sequence in response to these events. More
specifically, the proposed controller maintains a representa-
tion of the RAS state, which enables it to monitor the sys-
tem status and identify the entire set of feasible actions that
can be executed by the system at any given time. Hence,
this information is instrumental for enabling the controller

RAS Domain

Feasible
Actions

Admissible
Actions

Configuration Data

S
ys

te
m

 S
ta

te
 M

od
el

Commanded
ActionEvent

Lo
gi

ca
l C

on
tr

ol

P
er

fo
rm

an
ce

 C
on

tro
l

Figure 3. An event-driven control scheme for the real-time
management of the considered RAS. The controller responds to
the various events taking place in the controlled RAS by updating
a state model that defines the feasible behavior generated
by this system. This behavior is filtered through the logical
controller to obtain the admissible behavior, i.e., the behavior
that is consistent with certain specifications imposed on the RAS
operation. Finally, the admissible behavior is processed through
the performance-oriented controller to select the particular
action(s) among the admissible behavior that eventually will be
commanded upon the RAS.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

IEEE ROBOTICS & AUTOMATION MAGAZINE JUNE 201582

to determine the scope of its possible responses to a certain
event. However, the controller must eliminate (filter out) all
of those actions that can result in problematic behavior.

Such problematic behavior includes the formation of a
deadlock, but, in the more general case, this part of the
depicted control scheme will address additional specifica-
tions that might be defined, for instance, by quality concerns
or some policy considerations such as those arising from a
notion of fairness to the contesting processes. All of the
aforementioned concerns boil down to the systematic exclu-
sion of certain resource-allocation patterns from the RAS
behavior, and, as already mentioned, the resulting problem
is generally known as the logical or behavioral control prob-
lem to be addressed by the controller. The set of actions
eventually accepted by the logical controller defines the
space of the admissible behavior for the considered RAS.
Then, the second stage of the proposed control logic must
shape/bias this admissible behavior in a way that aligns best
with the system performance objectives; this biasing is effec-
tively achieved through the selection of the particular
admissible action to be commanded upon the system at
each decision stage. The corresponding problem is known
as the RAS performance-oriented control or scheduling.

The effective deployment of the RAS control scheme
described in the previous paragraph necessitates a pertinent
formal characterization of the RAS state and the reference of
the RAS logical and performance-oriented control problems
to appropriate formal modeling frameworks that will enable
a rigorous analysis of the corresponding RAS dynamics and
the effective synthesis of the necessary policies. At a basic
level, these capabilities have been conveniently provided to
the developing RAS theory by the areas of qualitative and
quantitative analysis of DESs [7]. Generally speaking, DES
theory is a field of modern control theory investigating the
behavior of dynamical systems that evolve their state discon-
tinuously over time in response to the occurrence of certain
critical, instantaneous events. In this general setting, qualita-
tive DES theory uses formal linguistic frameworks borrowed
from theoretical computer science, and augmented with con-
trol-theoretic concepts and techniques, to analyze and con-
trol the event sequences that are generated and observed by
the underlying DES dynamics. On the other hand, quantita-

tive DES theory analyzes and controls the timed DES
dynamics using models and tools that are borrowed from
(stochastic) OR and simulation theory. However, as further
revealed in the “Modeling an RAS as a Finite State Automa-
tion: The Optimal Nonblocking Supervisor and Its Com-
plexity” section, while enabling a formal positioning of the
RAS behavioral and scheduling problems, the practical com-
putational capabilities of the corresponding DES frameworks
are severely limited by a very high representational and com-
putational complexity. In the subsequent parts of this article,
we shall demonstrate how the relevant research community
has leveraged the representational and analytical capabilities
provided by DES theory to develop effective practical solu-
tions to the RAS behavioral control problem. Furthermore,
in the “Going Forward” section, we also outline some ongo-
ing endeavors toward the development of similar practical
solutions for the RAS scheduling problem. All of this discus-
sion will also reveal that the considered developments have
substantially enriched and extended the capabilities of the
corresponding DES theory itself.

An RAS Taxonomy
We close the discussion on the basic RAS model and the in-
duced control problem by presenting an RAS taxonomy that
has been instrumental for the systematic investigation of the
RAS behavioral control problem of deadlock avoidance. The
main RAS classes recognized by this taxonomy are defined
by 1) the structure that is supported for the process sequen-
tial logic and 2) the structure of the resource-allocation re-
quests that are posed by the various processing stages; the
most prominent RAS classes with respect to these two classi-
fication attributes are presented in Table 1. Furthermore,
more recent developments have revealed the significance of
some additional RAS attributes when it comes to the analyti-
cal characterization of the qualitative RAS dynamics and
their control for deadlock avoidance. These new attributes
include 1) the absence of resources with nonunit capacities,
2) the presence of cycling in the sequential logic of the RAS
process types, and 3) the presence of RAS dynamics of an
uncontrollable nature; this last feature can be further differ-
entiated into a) uncontrollability with respect to the exact
timing of a certain resource allocation and b) uncontrollabili-
ty of the branching decisions of some underlying processes
that possess alternate routings. We shall make extensive use
of this taxonomy as we further detail the current theory on
the RAS deadlock avoidance problem.

Modeling an RAS as a Finite State Automation:
The Optimal Nonblocking Supervisor
and Its Complexity

Modeling the RAS Dynamics
as a Finite State Automaton
The most straightforward way to formally model the behav-
ioral dynamics of a given RAS U for the purpose of deadlock
avoidance is by means of a (deterministic) finite state

Table 1. An RAS Taxonomy [47].

Based on the Structure of the
Process Sequential Logic

Based on the Structure of
the Requirement Vectors

Linear: Each process is
defined by a linear sequence
of stages.
Disjunctive: A number of alter-
native process plans encoded
by an acyclic digraph.
Merge–Split: Each process is a
fork-join network.
Complex: A combination of the
above behaviors.

Single Unit: Each stage
requires a single unit from
a single resource.
Single Type: Each stage
requires an arbitrary num-
ber of units, but all from a
single resource.
Conjunctive: Stages require
different resources at
arbitrary levels.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

JUNE 2015 IEEE ROBOTICS & AUTOMATION MAGAZINE 83

automaton (FSA) [7], to be denoted by ()G U [47], [56]. The
state space S of this automaton consists of all of the p-di-
mensional nonnegative integer vectors s representing the
RAS states that are feasible with respect to the available re-
source capacities; that is, each component []s l of s corre-
sponds to a processing stage kj l/N N of U and reports the
number of process instances executing this processing stage,
while s satisfies the following constraints:

, , , [] () [] .s li m i C1 A
l

l i
1

$6 f #N=
p

=

/ (1)

The notation A lN^ h should be interpreted as the resource-al-
location vector associated with the processing stage that cor-
responds to the thl component of the state vector .s We also
notice, for completeness, that the finiteness of the state set s
can be deduced from (1) and the nonzero nature of each re-
source-allocation vector .A lN^ h

The event set E of the FSA ()G U consists of the events
corresponding to: 1) the initiation (or loading) of a new process
instance, 2) the advancement of these process instances among
their different stages in a manner that is consistent with the
sequential logic that defines these processes, and 3) the eventual
termination (or unloading) of a process instance by its
retirement from the system and the release of all the currently
held resources. The transition function f of the FSA ()G U
formalizes the RAS dynamics that are generated by the
aforementioned events. Furthermore, f is a partial function
since the occurrence of a certain event e E! at a given state
s S! will be feasible only if 1) the considered state s avails of
active process instances that can execute the contemplated event
e and 2) the state sl that will result from the execution of e in s
satisfies the constraints of (1); the satisfaction of the first of these
two conditions is characterized as process enablement of event e
in state s , while the satisfaction of the second condition is
characterized as resource enablement of e in .s The initial state
s0 of the FSA ()G U is the state ,s 0= i.e., the state where U is
empty of any process instances; the same state also defines the
unique marked state of (),G U a fact that expresses the
requirement for complete process runs. Finally, in the sequel, we
shall also use the notation ft to denote the natural extension of
the state transition function f to ,S E#) where E) denotes the
set of all the finite strings of ,E including the empty string .f
More specifically, for any state s S! and the empty event
string ,f (,) ,s sf f =t while for any ,s S Ev! !) and

, (,) ((,),) .s se E f f f ee v! v =t t (In the last formula, it is
implicitly assumed that (,)s ef vt is undefined if any of the one-
step transitions that are involved in the right-hand-side
recursion are undefined.)

In the context of the modeling framework that is defined
by the FSA (),G U the feasible behavior of the RAS U is mod-
eled by the language ()L G generated by (),G U i.e., by all
strings Ev !) such that (,)sf 0 vt is defined. On the other
hand, the desired—or, more formally, the admissible—behav-
ior of U is modeled by the marked language ()L Gm of the
FSA ();G U since the set of marked states of ()G U is the sin-
gleton containing the initial state ,s0 the marked language

()L Gm consists of exactly those strings ()L Gv ! that lead
back to the empty state .s0 To facilitate the subsequent discus-
sion, we also define the reachable subspace Sr of ()G U by

: () s.t. (,)s s sS fS L G 0r 7 v/ ! !v =t" , (2)

and its coreachable subspace Ss by

: s.t. (,) .s s sESS f 0s 7v v/ ! ! =) t" , (3)

Furthermore, we shall denote the respective complements of Sr

and Ss with respect to S by Srr and ,Ssr and we shall also use the
notation , , ,, ,S x r r y s sxy ! !r r" ", , to denote the intersection of
the corresponding sets Sx and .Sy In the context of the RAS-re-
lated literature, state coreachability has been historically charac-
terized as the property of state safety; hence, in the sequel, we
shall tend to refer to the state set SS as the set of safe RAS states
and, correspondingly, to the state set SSr as the set of unsafe states.

Figure 4 provides the state transition diagram (STD) of the
reachable subspace of the FSA ()G U corresponding to the
RAS U that abstracts the qualitative dynamics of the buffer
allocation taking place in Figure 1. Furthermore, the figure
also depicts the separation of the reachable space Sr into its
safe and unsafe subspaces, Srs and .Srsr

The Optimal Nonblocking Supervisor
and Its Complexity
It is easy to see from all of the definitions provided in the
previous paragraphs and the example of Figure 4 that the ad-
missible behavior for the RAS ,U characterized by the
marked language),(L Gm confines the FSA ()G U exactly in
its subspace defined by .Srs In the relevant terminology of
DES theory, the subautomaton of ()G U that is induced by
the state subset Srs is known as the trim of (),G U and it can
be computed by the standard algorithms provided by qualita-
tive DES theory. Hence, a natural way to ensure the dead-
lock-free operation of a given RAS U is by first computing
the trimmed subautomaton ()G Uu of the corresponding FSA

()G U and subsequently implementing a logical controller
that allows for the occurrence of any process and resource-
enabled transition in ()G U only if this transition also ap-
pears in ().G Uu In fact, such an implementation of the
necessary supervision for ensuring the deadlock-free opera-
tion of the RAS U is in line with the classical theory for the
qualitative control of DES known as Ramadge and Wonham
(R&W) SCT [42]. This implementation is also associated
with a notion of optimality since it establishes deadlock free-
dom while enforcing the minimal possible restriction to the
feasible behavior of the underlying RAS. From the more ho-
listic viewpoint of the control framework of Figure 3, the
minimal restrictiveness—or, equivalently, maximal permis-
siveness—of the applied logical control policy should be in-
terpreted as increased behavioral latitude for the controlled
system that can potentially lead to an enhanced perfor-
mance. Furthermore, the corresponding DES theory pro-
vides additional results that characterize the minimally

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

IEEE ROBOTICS & AUTOMATION MAGAZINE JUNE 201584

restrictive deadlock avoidance policy (DAP) and support its
effective computation in the form of a subautomaton of the
FSA (),G U even in the case where the underlying RAS U
exhibits uncontrollable behavior [7], [42]. Finally, all of the
necessary algorithms for the computation of the policy-en-
coding subautomaton ()G Uu from the original FSA ()G U are
of polynomial complexity with respect to the size of (),G U
where the latter is determined by the number of the states
and the transitions of this automaton.

However, the effective deployment of the control scheme
outlined in the previous paragraph is severely challenged by
the fact that, for most practical RAS instantiations, the size of
the FSA ()G U grows superpolynomially (actually, very) fast
with respect to the size of .U [Characteristically, we mention
that, for a single-unit RAS ,U where { }maxC Ci i/ and D
denotes the maximum number of stages supported by any

single resource , , , ,R i m1i f= the state space cardinality of
the corresponding FSA ()G U is

.O C
C D m+`` j j

The quantity

C
C D+` j

in this expression characterizes all of the possible ways to
partition the C units of capacity of any single resource type
to the D 1+ options that are defined by its D supporting
stages and the pool of its idle units. On the other hand, the
complete expression

C
C D m+` j

J11

q13

q11

J12 J13

J11

q18

J12 J21

J11

q9

J13

J11

q15

J21

q4

J22

q16

J12 J21

J11

q19

J22 J21

J11

q17

J22

J11

q5

J12 J22

q8

J21

q3

J12

q1

q0

J11

q2

J21

q6

J13

q7

J23

J23

q10

J21

J23

q14

J22 J21

J23

q12

J22J12 J13

Figure 4. The STD for the reachable state space of the FSA ()G U that models the buffer allocation taking place in the manufacturing cell
of Figure 1. The various RAS states are depicted graphically, with the three internal rectangles at each node representing the three work
tables corresponding to resources , ,R R1 2 and R3 and with the annotation J jk of these rectangles indicating the processing stage executed
by the process instance that is currently loaded in the corresponding worktable. On the other hand, the considered RAS model ignores the
buffering capacity of the AGV depicted in Figure 1 since this vehicle has only a facilitating role in the part transfers taking place among the
system workstations. The blue arrow pointing at the empty RAS state q0 defines this state as the initial state for the RAS operation, while
the thick borderline of the same state indicates its marked role in the RAS dynamics modeled by ().G U The states depicted in red indicate
the unsafe region S srr of the considered FSA. The maximally permissive nonblocking supervisor for this FSA must confine the operation
of the underlying RAS within the remaining set of (white and green) states by recognizing and preventing the transitions that cross the
boundary between the safe and unsafe subspaces; these transitions are marked by red crossings in the figure.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

JUNE 2015 IEEE ROBOTICS & AUTOMATION MAGAZINE 85

results from the fact that, in the considered RAS class, the
entire RAS state space can be obtained by taking the cross-
product of the sets that characterize the potential alloca-
tions of each single resource type.]

An alternative implementation of the maximally permis-
sive DAP could employ a one-step-look-ahead control
scheme that determines the admissibility of any tentative
transition by assessing the safety of the resulting RAS state.
Such a control scheme avoids the explicit storage of the
trimmed FSA (),G Uu substituting the information contained
in this FSA with the information provided by the online as-
sessment of the state safety. However, a straightforward im-
plementation of this approach is also practically intractable
since it has been established in the relevant RAS literature
that assessing the state safety of any given RAS state s is an
NP-complete problem for all RAS classes of the taxonomy of
Table 1. The first set of these complexity results appeared in
the late 1970s, and they primarily addressed RASs with con-
junctive allocation [1], [19]. More recently, the works of [29]
and [44] have also established that the problem of state safety
remains NP-complete even in the case of linear, single-unit
RASs with unit resource capacities. Also, the results of [44]
establish that state safety is an NP-complete problem in the
RAS abstracting the traffic of the guide path-based MHS and
the free-ranging mobile agents discussed in the “Automation
as a Resource Allocation Function: A Set of Motivating Ap-
plications” section; in these two cases, the relevant complexi-
ty analysis must take into consideration the further
constraints for the valid sequences of the resource-allocation
requests posed by any single process instance, which are im-
plied by the structure of the underlying guide path network
and/or the employed tesselation.

Next we consider how the relevant research community
has sought to circumvent the negative results regarding the
superpolynomial complexity of the optimal DAP with re-
spect to the size of the underlying RAS. The presented de-
velopments will reveal that, in spite of these results, we are
currently able to provide very tractable implementations of
the maximally permissive nonblocking supervisor for
many RASs of practical size and interest. Furthermore, the
development of the presented results has also substantially
extended and strengthened the corresponding DES theory.

Dealing with the Computational Challenges
of the Optimal Nonblocking Supervisor

Polynomial-Kernal Suboptimal
Nonblocking Supervisors
As is the case with any other problem shown to be of an NP-
complete or NP-hard nature, one of the first reactions of the re-
search community dealing with the RAS deadlock avoidance
problem was to seek suboptimal (i.e., nonmaximally permis-
sive) supervisors with more manageable computational re-
quirements during their design and operational phases. A
systematic way to formally characterize this endeavor is
through the concept of the polynomial-kernel (PK) nonblock-

ing supervisor. This is essentially a one-step-look-ahead control
scheme such as the one described in the previous section for
the implementation of the maximally permissive DAP, where
the test for safety has been substituted by the test for another
state property P of polynomial complexity with respect to the
underlying RAS size | |.U Furthermore, to lead to a correct DAP,
1) the selected property P must be satisfied by the initial RAS
state s0 and 2) the subspace induced by the RAS reachable
states satisfying P must be a strongly connected component of
the reachable state space. The second requirement is important
to avoid policy-induced deadlocks or livelocks, i.e., situations
where the considered policy takes the system to a state, or a set
of states, from which there is no policy-admissible path back to
the empty state .s0 The structure of the admissible subspace of
a correct PK-DAP for the RAS corresponding to the manufac-
turing cell of Figure 1 is depicted in Figure 4 by the subgraph
induced by the green nodes in the figure. More specifically, the
depicted STD corresponds to an implementation for the con-
sidered RAS of the resource upstream neighborhood policy in-
troduced in [25] and [26]. The safe states ,q5 , ,q q8 13 and q14

do not satisfy the defining property P of the considered policy
and, therefore, they are not admissible by it.

As a more complete example of a PK-DAP, we briefly dis-
cuss a policy that has come to be known as Banker’s algorithm
in the relevant literature. The defining ideas for Banker’s algo-
rithm can be traced back to Dijkstra’s work [12]. Here we dis-
cuss an implementation of this policy for the RAS class of
conjunctive/disjunctive RAS in the taxonomy of Table 1 [14],
[27]. The aforementioned property P that defines Banker’s al-
gorithm for this class of RAS is that of an ordered state. A state
s is ordered if there exists an ordering for its active process in-
stances such that the thi process instance according to this or-
dering can advance all the way to completion utilizing only its
currently allocated resources, the pool of the free resources in
state s, and the resources allocated to the first i 1– process in-
stances in state s (which will have been released upon the ear-
lier completion of these processes). Furthermore, assessing the
admissibility of a given state s by Banker’s algorithm boils
down to the identification of an ordering for the active process
instances in s that satisfies the aforementioned property. Such
an ordering, if it exists, can be identified by a greedy search
that seeks to drive to completion each of the active processes,
one at a time, while releasing the resources allocated to these
processes in state s back to the pool of free resources. Since
every such process completion increases monotonically the
pool of the free resources, there is no need for backtracking in
the aforementioned search. But then, the entire search process
can be performed with a computational cost that is polynomi-
al with respect to the size of the underlying RAS. Obviously,
not every safe state is ordered, but practical experience with
the implementation of Banker’s algorithm in many application
contexts has revealed that the algorithm can admit a pretty
large part of the subspace .Srs (For example, for the RAS de-
fined by Figures 1 and 4, the presented version of Banker’s al-
gorithm will admit the entire reachable and safe subspace ,Srs

i.e., the subspace admitted by the maximally permissive DAP.)

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

IEEE ROBOTICS & AUTOMATION MAGAZINE JUNE 201586

The PK-DAPs that are currently available can address arbi-
trary resource allocation (i.e., conjunctive RAS in the taxonomy
of Table 1), but, in terms of the process-defining logic, they pri-
marily support process types that evolve as atomic entities
throughout their execution. Besides Banker’s algorithm, some
of the best-known policies of this type can be found in [2], [13],
[25], [26], [28], and [40]. In general, it can be argued that the
identification of a pertinent property P that can lead to a cor-
rect PK-DAP is more of an art. On the other hand, in the case
of RASs with no cyclic behavior in their process types, formal
correctness proofs for PK-DAPs, defined by a certain property

,P can be structured as an inductive argument that establishes:
1) the satisfaction of property P by the initial state s0 and 2) the
existence of policy-admissible transitions for every RAS state s
that satisfies property .P Furthermore, in the “Coping with the
RAS Deadlock in the Petri Net Modeling Framework” section,
we discuss a methodology that automates the correctness eval-
uation of tentative PK-DAPs for RASs with no cyclic behavior
in their process types by means of certain tests that take the
form of a mathematical programming formulation.

Closing this discussion on PK-DAPs for the considered
RAS, we also notice that the disjunction of a set of properties

, ...,P Pl1 defining correct PK-DAPs for a given RAS ,U is
another correct PK-DAP for U as long as the number of the
employed properties, ,l is polynomially related to the RAS
size | |.U The subspace of Srs that is admitted by this new dis-
junctive policy is the union of the subspaces of Srs that are
admitted by the constituent policies. Hence, by utilizing a set
of PK-DAPs for a given RAS, one can obtain a tighter
(under) approximation of the maximally permissive DAP.
The significance of this remark is further increased by the
fact that some available PK-DAPs are defined through the
imposition of some arbitrary ordering on the underlying re-
source set, with different resource orders leading to the ad-
missibility of different parts of the underlying state space. For
a comprehensive discussion on the existing set of PK-DAPs
and the systematic exploitation of all of the aforementioned
possibilities, the reader is directed to [47, Chs. 4 and 5].

RAS Admitting Optimal Nonblocking
Supervision of Polynomial Complexity
A second typical reaction to an NP-completeness or NP-hard-
ness result is the quest for a special structure of practical interest
that can lead to polynomial-complexity solutions for the prob-
lem at hand. In fact, the seminal works in [1] and [19], which
established the first NP-completeness results for the problem of
the RAS state safety, also discussed certain conditions on the se-
quences of the resource-allocation requests posed by the RAS
process types that would lead to a safety assessment of polyno-
mial complexity with respect to the size of the underlying RAS.
Generally speaking, these conditions imply the existence of eas-
ily identifiable transition sequences leading to a monotonic in-
crease of the pool of free resources in the RAS behavioral space

(),G U which, as in the case of the ordered RAS states, further
enables a greedy search for a transition sequence that will ter-
minate all of the active process instances.

A more recent line of results leading to polynomial-
complexity implementations of the maximally permissive
DAP for certain RAS classes of the taxonomy of Table 1 is
based on the essential differentiation between the notions of
an unsafe state and a deadlock. We remind the reader that, in
the considered RAS context, a deadlock has been defined as
an RAS state containing a subset of active process instances
that block each other in a circular manner since each of them
holds resources requested by some other processes in the set
to advance to their next processing stages. On the other hand,
the set of unsafe states of a given RAS contains all of its dead-
lock states but might also contain a subset of states that do not
contain any deadlocked processes; such an unsafe state is ex-
emplified by state q15 in the STD of Figure 4. Unsafe states
containing no deadlocked processes are characterized as
deadlock-free unsafe states. The realization of the existence of
deadlock-free unsafe states becomes essential for the com-
plexity analysis of the considered RAS when noticing that, for
most of the RAS classes of the taxonomy of Table 1, the detec-
tion of a deadlock state is a task of polynomial complexity
with respect to the underlying RAS size; this result is especial-
ly true for the class of disjunctive/conjunctive RAS, and a rele-
vant deadlock detection algorithm is presented in [47].
Hence, it can be inferred that, for the aforementioned RAS
class, the NP-completeness of state safety is due to the pres-
ence of deadlock-free unsafe states. On the other hand, if it
could be established that, for certain subclasses of this RAS
class, there are no deadlock-free unsafe states, then the test for
state safety could be effectively substituted by the correspond-
ing test for deadlock, and assessing the state safety would be-
come a task of polynomial complexity with respect to the
corresponding RAS size. Indeed, such results are available for
certain subclasses of the disjunctive/single-unit RAS that are
defined by easily testable conditions on the RAS structure. A
more concrete example, and one of the first results of this type
appearing in the literature, is stated in [49] and establishes the
absence of deadlock-free unsafe states for any disjunctive/sin-
gle-unit RAS where every resource has at least two units of ca-
pacity and the RAS process types exhibit no internal cycling.
From a more practical standpoint, this result implies that the
problem of establishing deadlock-free buffer allocation in
flexibly automated production cells, exemplified in Figure 1,
is an easy problem as long as every workstation has a buffer
with at least two slots. Also, the more recent work in [50] has
exploited the aforementioned result to develop an asynchro-
nous, distributed coordination protocol able to ensure colli-
sion-free and nonblocking traffic for the systems of the
free-ranging mobile agents that were described in the “Auto-
mation as a Resource Allocation Function: A Set of Motivat-
ing Applications” section. Furthermore, the works in [15] and
[16] have further established that the aforementioned require-
ment for nonunit resource capacities must be satisfied only by
a critical subset of the resource types of the considered dis-
junctive/single-unit RASs, while additional extensions of all of
these results are developed in [29]. A comprehensive treat-
ment of the topic of RASs admitting maximally permissive

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

JUNE 2015 IEEE ROBOTICS & AUTOMATION MAGAZINE 87

nonblocking supervision of polynomial complexity with re-
spect to the underlying RAS size is provided in [47, Ch. 3].

The Optimal DAP as a Classifier of the RAS States
While the two research lines discussed in the previous sec-
tion were driven by rather typical reactions to the estab-
lished NP-hardness of the maximally permissive DAP,
tremendous progress with respect to the practical imple-
mentation of this policy to RAS instances of a very large size
and practical significance has been attained in recent years
by a more aggressive approach that treats this complexity re-
sult as a worst-case result and has tried to pursue the de-
ployment of the maximally permissive DAP nevertheless,
hoping for a more benign empirical complexity. A more de-
tailed positioning of the rationale that underlies this new ap-
proach and drives its major developments is as follows: The
maximally permissive DAP, and, in fact, any other supervi-
sor developed by R&W SCT, is essentially a classifier that di-
chotomizes the state set S of the underlying FSA ()G U into
its admissible and inadmissible subsets. While computing
this dichotomy for any given RAS U is a computationally
difficult task, in general, it might still be possible to contain
the difficult part of this computation in an off-line stage and
eventually rehash/encode the obtained results in a classifica-
tion mechanism that will enable a tractable online assess-
ment of the admissibility of any given RAS state. Some
important issues that must be addressed for a complete real-
ization of this idea are 1) the specification of classification
mechanisms (also known as the architectures of the sought
classifiers) able to provide an effective representation of the
corresponding state space dichotomy for any instance of the
considered RAS classes and 2) the design of effective and
computationally efficient algorithms for the computation of
parsimonious implementations of the sought classifiers for
any given instance from the considered RAS class.

As in the case of the research lines described in the previ-
ous sections, this new research program has targeted primar-
ily or more explicitly the RAS class of conjunctive resource
allocation and atomic process instances. In this context, the
aforementioned tasks regarding the specification and the de-
ployment of the sought classifiers are primarily defined by
the vector structure of the underlying RAS state, introduced
in the “Modeling an RAS as a Finite State Algorithm: The
Optimal Nonblocking Supervisor and Its Complexity” sec-
tion, and they are further facilitated by the additional struc-
tural and behavioral properties of the considered RAS.
Furthermore, for a systematic exposition of the currently
available results, it is pertinent to differentiate the employed
classification schemes into parametric and nonparametric
classifiers, and this is the approach that we shall adopt in the
following discussion.

The specification of a parametric classifier able to repre-
sent the maximally permissive DAP for the aforementioned
RAS class is based on some rather classical results of classifi-
cation theory [39] asserting that any finite set of integer vec-
tors of finite dimensionality can be dichotomized by a

two-layered set of linear inequalities. In the considered appli-
cation context, the inequalities employed by the first layer are
imposed on the RAS state, while the inequalities employed by
the second layer are defined with respect to the indicator vari-
ables that characterize the satisfiability of the first-layer in-
equalities. Alternatively, the second layer of the classification
logic can be replaced by an appropriately defined Boolean
function of the same set of indicator variables.

The practical construction of parametric classifiers express-
ing the maximally permissive DAP for any given RAS instance
U is substantially facilitated by the following two facts:
1) A monotonicity property that is possessed by the state safe-

ty concept in disjunctive/conjunctive RAS and postulates
that if state s is no greater, componentwise, than state ,sl
and state sl is safe, then state s is also safe. This property
enables the restriction of the coefficients of the inequalities
employed by the sought classifier to nonnegative values,
and, more importantly, it also enables the computation of a
pertinent classifier that will provide effective representation
of the sought dichotomy of the admissible and inadmissi-
ble subspaces by considering explicitly in this computation
only the maximal safe and the minimal unsafe states.

2) An additional simplification in the design of the sought
classifiers stems from the realization that, in any given RAS

,U the process instances executing certain processing stag-
es that will never contribute to the formation of a deadlock
can be projected away during the assessment of state safety.
[As a more concrete example of such stages, the reader can
consider the terminal stage(s) of any given process type.]
The existing methodology for the computation of the con-
sidered classifiers identifies and removes these redundant
state components in an automated manner.
The literature also shows results that characterize the po-

tential existence and the computation of parametric classifiers
for the representation of the maximally permissive DAPs that
consist only of a single layer of linear inequalities on the un-
derlying RAS state; such classifiers are characterized as linear.
Obviously, linear classifiers are simpler to analyze and con-
struct than the generic two-layered classifiers described in the
previous paragraphs. But a key condition for the existence of
such a classifier for any given RAS U is that the convex hull of
the safe states of this RAS does not contain any unsafe states.
On the other hand, it can also be shown that this requirement
for linear separability of the safe and unsafe subspaces will al-
ways be satisfied by RASs with binary state spaces. RASs with
binary state spaces; such RASs arise whenever each process-
ing stage requests at least one resource type of unit capacity.

Finally, the computation of practical, parsimonious para-
metric classifiers for the considered classification task has
substantially benefited from the correspondence of this com-
putation to the minimal set covering problem [55]. In the case
of linear classification, the connection of the design of a struc-
turally minimal classifier to the minimal set covering problem
is easily established by corresponding each candidate inequal-
ity separating some subset of the (minimal) unsafe states from
the set of (maximal) safe states to the subset of the separated

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

IEEE ROBOTICS & AUTOMATION MAGAZINE JUNE 201588

(minimal) unsafe states. Then, a structurally minimal linear
classifier—i.e., a classifier that uses a minimal number of lin-
ear inequalities—for the representation of the target DAP is a
complete cover of the set of (minimal) unsafe states that uti-
lizes a minimum possible set of the partial covers as defined
previously. In the nonlinear case, the specification of the par-
tial covers of the (minimal) unsafe states by the employed
classification mechanism is a little more complicated, but the
primary notion of developing a complete cover for the set of
(minimal) unsafe states remains the same. The correspon-
dence of the considered classification problem to a minimal
set covering problem has provided efficient customized com-
binatorial optimization algorithms for computing structurally
minimal instantiations of the sought classifiers for any given
RAS instance as well as heuristics with guaranteed perfor-
mance bounds that can replace the aforementioned algo-
rithms in the case of larger problem instances that would
render these algorithms computationally intractable.

Nonparametric classifiers for the representation of the
maximally permissive DAP in the considered RAS classes op-
erate on the idea that the necessary guarding against transi-
tions from the safe to the unsafe RAS state space can be
effected, in principle, by storing the entire set of unsafe states
that could result from such transitions and employing a one-
step-look-ahead scheme that will block any transition leading
to one of these states. The corresponding set of states is known
as the set of boundary unsafe states in the relevant literature,
and it can be stored and searched efficiently through the em-
ployment of advanced data structures that are known as TRIEs
[5] and are conceptually similar to the binary decision dia-
grams [6] that have been used extensively in symbolic compu-
tation [9]. Furthermore, the aforementioned monotonicity of
state safety in the considered RAS classes implies that the en-
tire set of boundary unsafe states can be characterized only by
its minimal elements, a fact that dramatically reduces the in-
formation that must be explicitly stored in the aforementioned
data structures.

The literature also avails of very efficient algorithms
for the identification of the minimal unsafe states and the
construction of the TRIE data structures that must be em-
ployed during the online assessment of the state safety. The ef-
ficiency of these algorithms stems from the characterization
of the state unsafety in the underlying RAS classes as unavoid-
able absorption to some RAS deadlock; hence, these algo-
rithms manage to reconstruct the entire unsafe state space by
first enumerating programmatically all of the RAS deadlocks
and subsequently retrieving all of the deadlock-free unsafe
states, including all of the boundary states, through a perti-
nent backtracing from the (re)constructed deadlocks. The
tractability of such a computational scheme is further en-
hanced through an explicit focus upon minimal deadlocks
and deadlock-free unsafe states, (in more technical terms,
these are deadlocks or deadlock-free unsafe states such that
the removal of any single process instance from them will
turn them into safe states) and/or the employment of symbol-
ic techniques in the aforementioned computation.

Finally, the ability to represent the entire set of the bound-
ary unsafe states only through its minimal elements, when
combined with the aforementioned capability to retrieve
these minimal unsafe states through backtracing from the
minimal deadlocks, also enables the effective implementation
of the maximally permissive DAP even for RAS with infinite
state spaces. The finiteness of the target sets of the minimal
deadlocks and the minimal unsafe states for these RAS classes
is guaranteed by the so-called Dickson’s lemma [11]. Such a
particular class investigated in the literature is the class of RAS
modeling parallel programs with reader/writer locks, where
the number of process instances that could simultaneously ac-
cess a resource in the reading mode can be arbitrarily large. A
more expansive and systematic treatment of the representa-
tion of the maximally permissive DAP as a parsimonious
classifier of the underlying RAS state space, together with a
comprehensive bibliography of the corresponding results, can
be found in [17], [37], and [43].

Coping with the RAS Deadlock in the
Petri Net Modeling Framework
As we have seen in the “Modeling an RAS as a Finite State Al-
gorithm: The Optimal Nonblocking Supervisor and Its Com-
plexity” section, the FSA-based representation of the
behavioral RAS dynamics with respect to deadlock can pro-
vide a succinct and very intuitive characterization of the prob-
lem of deadlock avoidance and the corresponding optimal
policy, but the practical computational power of this represen-
tation is substantially limited by the very large size of the in-
volved FSAs. An additional limitation of the FSA-based
representation of the RAS behavior is that it fails to capture any
information on the mechanisms that generate the dynamics
that are represented by the considered FSA and its corre-
sponding STD. Hence, in an effort to develop a more profound
understanding of these mechanisms, the relevant research
community has employed additional representations that for-
malize the underlying system structure and enable a systemat-
ic analysis of the impact of this structure on the generated
behavior; this type of analysis of the RAS deadlock problem
has come to be known as structural analysis.

Historically, attempts to perform a structural analysis of
the RAS deadlock problem preceded the formal investigation
of this problem in the FSA modeling framework. These early
attempts tried to represent and trace the formation of the cir-
cular waiting patterns that correspond to an RAS deadlock
through various graphical structures that express the (evolv-
ing) dependencies among the system resources determined
by their (current) allocation to the running processes and the
pending requests of these processes. Similar graphical struc-
tures have been instrumental in the development of the re-
sults on the absence of deadlock-free unsafe states for certain
RAS classes that were covered in the “RAS Admitting Opti-
mal Nonblocking Supervision of Polynomial Complexity”
section. In the following discussion, we shall focus primarily
on the structural analysis of the RAS deadlock that relies on
the Petri net (PN) modeling framework [36] since this area

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

JUNE 2015 IEEE ROBOTICS & AUTOMATION MAGAZINE 89

has been especially active and influential in the relevant litera-
ture over the last three decades. More generally, together with
FSAs, PNs are the second major modeling framework used by
the qualitative DES theory, and they are particularly recog-
nized for the richness and clarity of their semantics. These se-
mantics enable a concise and lucid representation of the
behavioral dynamics of the modeled DES while avoiding an
explicit enumeration of the corresponding state space. In the
sequel, we shall assume that the reader is familiar with the
basic PN modeling framework; some excellent introductions
to this subject are provided in [7] and [36].

In the PN modeling framework, an RAS U is represented
by a process-resource net ,N consisting of a set of process
subnets modeling the various process types of the RAS and a
set of resource places that model the availability of the system
resources. The aforementioned process subnets are intercon-
nected through the resource places, and the corresponding
connectivity models the allocation of the system resources to
the running process instances. One of the first key results in
the theory of process-resource nets was the connection of the
concept of the RAS deadlock in disjunctive/single-unit RAS
to the concept of the empty siphon. This concept and its con-
nection to the RAS deadlock are exemplified in Figure 5,
which depicts the empty siphon characterizing the RAS dead-
lock of Figure 1. The seminal result in [13] established that a
disjunctive/single-unit RAS with no cycling in its process
types will possess no RAS deadlocks in its behavior (or that
the corresponding process-resource net will be live and re-
versible) if and only if there are no reachable empty siphons
for the corresponding process-resource net. But the presence
of an empty siphon in any given marking M of some PN N
can be easily tested by algorithms of polynomial complexity
with respect to the size of ,N where the latter is defined by
the size of the bipartite digraph that defines N [8]. Further-
more, the work in [8] showed that, in the case of bounded
PNs, these algorithms can be converted to a mixed-integer
programming (MIP) formulation employing a number of
variables and constraints that are polynomially related to the
size of PN ;N in the resulting test, the main outcome is com-
municated by the optimal value of the MIP formulation,
while, in the case that the tested marking M contains empty
siphons, the returned optimal solution also enables the identi-
fication of the maximal empty siphon in .M The MIP formu-
lation mentioned earlier becomes even more useful when the
tested marking M is converted into a variable that lives in the
reachability space of the corresponding net ;N in this way,
the resulting MIP formulation becomes an instrument for
testing the presence of an empty siphon over the entire reach-
ability space of .N (Since, however, the analytical character-
ization of the reachability space of a given PN N by a set of
linear inequalities is a challenging task, in general, one has to
resort to overapproximations of this set that are obtained by
means of the state equation of the net and/or its place invari-
ants. The employment of such an overapproximation raises
the possibility of detecting empty siphons that do not belong
to a reachable marking and turns the overall test into a

sufficiency test for the absence of empty siphons.) When
combined with the results in [13], the aforementioned MIP
formulation eventually becomes a verification tool for the ab-
sence of deadlock in any instance from the corresponding
subclass of disjunctive/single-unit RAS.

The extension of these results to broader RAS classes is
quite a nontrivial task since it must account for the nonuni-
formity of the posed resource requests with respect to any sin-
gle resource type. This nonuniformity can give rise to
deadlocking situations where the resources that are entangled
in the deadlock have a nonzero slack capacity, but yet this ca-
pacity is not adequate for satisfying the requests of the dead-
locked processes. Furthermore, in this more general case, the
blocking resources might not be part of a deadlock but of a
livelock, where the slack capacity of these resources can be
used repetitively to satisfy the requests of other running pro-
cesses that are not entangled in the deadlock. These complica-
tions can be effectively circumvented by: 1) extending the
notion of empty siphon to that of deadly marked siphon and
2) searching for deadly marked siphons that interpret any

P10

T10

T11

T12

T13

P11

P13

P12

T20

T21

T22

T23

P21

P23

P22

R1

R3

R2 P20

T10

T11

T12

T133333

P11

P13333333333

P12

T20

T21

T2222

T232

P21PP

P23

P22

R1

R3

R22

Figure 5. The process-resource net modeling the buffer allocation
that takes place in the example manufacturing cell of Figure 1.
The two process types corresponding to J1 and J2 are modeled
by the two circuits annotated by black lining in the depicted net.
In particular, the process places , , , , ,p i j1 2 1 2 3ij = = model the
corresponding processing stages of the underlying RAS, while
the idle places , ,p i 1 2i0 = model the external environment for
the two process types. The resource availability is traced by the
marking of the resource places , ,R R1 2 and .R3 The particular
marking depicted in this figure corresponds to the RAS deadlock
state depicted in Figure 1. In the transitional dynamics of the
depicted net, the occurring deadlock is manifested by the
presence of the set of empty places , , , ,S p p R R12 23 1 2= " , which is
annotated in yellow. Letting S: (respectively, S :) denote the set
of transitions that have an output (respectively, input) place in S,
it can be verified that, in the considered case, .S S: :3 This last
property renders S a siphon. Furthermore, since all places of S
are empty, S is an empty siphon. But then, all the transitions in
S : are disabled in the considered marking, since they require at
least one token from some place in .S Moreover, any transition
in S: that could bring new tokens in S is part of ,S : and
therefore, disabled. Hence, it can be concluded that the depicted
empty siphon S will remain empty throughout the entire
evolution of the dynamics of the considered process-resource
net, and the transitions in S : will be dead during this evolution.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

IEEE ROBOTICS & AUTOMATION MAGAZINE JUNE 201590

given RAS deadlock in a modified reachability space that is
obtained from the original reachability space through a perti-
nent projection. A complete treatment of these developments
can be found in [40], [46], and [47], while some additional re-
sults of a similar nature can be found in [24], [33], and [52].
All of these works also provide accompanying MIP formula-
tions that can function as verification tools for the deadlock
freedom of the corresponding RAS classes.

In certain cases, the structural characterizations of the RAS
deadlock and the corresponding MIP formulations can also be
used for the synthesis of correct DAPs for the considered RAS.

Such an approach is especially amenable in the case of DAPs
that can be expressed as a set of inequalities on the marking of
the underlying process-resource net since the seminal works in
[18] and [35] have established that these inequalities can be
enforced upon the underlying PN by the superposition to this
net of a set of additional places—known as monitor places—that
play a role very similar to that of the resource places in the pro-
cess-resource nets. Hence, if the PN that results from the super-
position to a process-resource net of a set of monitors represent-
ing a tentative DAP falls within a class of process-resource nets
whose liveness and reversibility are equivalent to the absence of

J11

q13

q11

J12 J13

J11

Minimal Deadlocks

(a)

The Corresponding Coverings

q18

J12 J21

J11

q9

J13

J11

q15

J21

q4

J22

q16

J12 J21

J11

q19

J22 J21

J11

q17

J22

J11

q5

J12 J22

q8

J21

q3

J12

q1

q0

J11

q2

J21

q6

J13

q7

J23

J23

q10

J21

J23

q14

J22 J21

J23

q12

J22J12 J13

Figure 6. (a) Computing the maximally permissive DAP for the RAS of Figure 1 through the incremental synthesis approach that is presented
in [34]. The approach starts with the solution of a MIP formulation that assesses the presence of minimal empty siphons in the dynamics of
the original process-resource net of Figure 5. The solution of this formulation could detect either of the two minimal deadlocks corresponding
to the RAS states q16 and .q17 Each of these two deadlocks can be eliminated from the dynamics of the process-resource net by enforcing
upon these dynamics the respective inequalities () ()M p M p 112 21 #+ and () () .M p M p 111 22 #+ It is also important to notice that each of
these inequalities does not eliminate only the corresponding deadlock state, but also any other state that includes the considered deadlock; in
this figure, the state subsets that are eliminated by each of these two inequalities, are respectively indicated by the blue and the green blobs
in the depicted STD. (b) The two inequalities provided in the caption of Figure 6(a) are enforced on the dynamics of the original process-
resource net through the corresponding blue and green monitor places that can be constructed using the theory in [35]. The augmented
net that is obtained from the addition of these monitor places remains an ordinary process-resource net, and therefore, its liveness and
reversibility can still be tested through the absence of empty siphons. The solution of the relevant MIP formulation reveals an empty siphon
that corresponds to the unsafe state q15 [see Figure (6a)], which in the dynamics of the augmented process-resource net has turned into a
policy-induced deadlock. This new empty siphon can be eliminated through the imposition of the marking inequality () () ,M p M p 111 21 #+
that is implemented by the red monitor place of the depicted net. The evaluation of this new process-resource net through the corresponding
MIP formulation reveals the absence of any further empty siphons, and establishes its liveness and reversibility. It is also important to notice
that the constructed monitors eliminate all the unsafe states of the net while retaining all of its safe states. Hence, the augmented net depicted
in the figure constitutes a PN-based representation of the maximally permissive DAP for the RAS of Figure 1. (continued)

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

JUNE 2015 IEEE ROBOTICS & AUTOMATION MAGAZINE 91

deadly marked siphons, then the assessment of the policy cor-
rectness can be performed automatically through the corre-
sponding MIP formulation. The literature also avails of endeav-
ors for an incremental synthesis of a correct DAP for a given
RAS, through: 1) the employment of the aforementioned MIPs
for the detection of deadly marked siphons in the relevant
reachability space (also known as potential deadlocks), 2) the
elimination of the identified potential deadlocks from the net
dynamics through a set of pertinent inequalities enforced on the
net marking by a set of monitor places, and 3) the (re)

assessment of the augmented net for absence of such badly
marked siphons. Clearly, if successful, such an approach can
provide a correct DAP for the considered RAS while avoiding
any explicit enumeration/exploration of the underlying state
space. In the case of disjunctive/conjunctive RAS with no
cycling in their process types and binary state spaces, such an
incremental synthesis has been shown to be capable of comput-
ing even the maximally permissive DAP [34]. In fact, the results
in [34] are applicable even in the case of disjunctive/conjunctive
RAS with binary state spaces and cyclic behavior for the RAS

P10

T10

T11

T12

T13

P11

P13

P12

T20

T21

T22

T23

P21

P23

P22

R1

R3

(b)

R2 P20

Figure 6. (continued) Computing the maximally permissive DAP for the RAS of Figure 1 through the incremental synthesis approach
that is presented in [34]. The approach starts with the solution of a MIP formulation that assesses the presence of minimal empty
siphons in the dynamics of the original process-resource net of Figure 5. The solution of this formulation could detect either of
the two minimal deadlocks corresponding to the RAS states q16 and .q17 Each of these two deadlocks can be eliminated from
the dynamics of the process-resource net by enforcing upon these dynamics the respective inequalities () ()M p M p 112 21 #+ and

() () .M p M p 111 22 #+ It is also important to notice that each of these inequalities does not eliminate only the corresponding deadlock
state, but also any other state that includes the considered deadlock; in this figure, the state subsets that are eliminated by each
of these two inequalities, are respectively indicated by the blue and the green blobs in the depicted STD. The two aforementioned
inequalities are enforced on the dynamics of the original process-resource net through the corresponding blue and green monitor
places that can be constructed using the theory in [35]. The augmented net that is obtained from the addition of these monitor
places remains an ordinary process-resource net, and therefore, its liveness and reversibility can still be tested through the absence of
empty siphons. The solution of the relevant MIP formulation reveals an empty siphon that corresponds to the unsafe state ,q15 which
in the dynamics of the augmented process-resource net has turned into a policy-induced deadlock. This new empty siphon can be
eliminated through the imposition of the marking inequality () () ,M p M p 111 21 #+ that is implemented by the red monitor place of
the depicted net. The evaluation of this new process-resource net through the corresponding MIP formulation reveals the absence of
any further empty siphons, and establishes its liveness and reversibility. It is also important to notice that the constructed monitors
eliminate all the unsafe states of the net while retaining all of its safe states. Hence, the augmented net depicted in the figure
constitutes a PN-based representation of the maximally permissive DAP for the RAS of Figure 1.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

IEEE ROBOTICS & AUTOMATION MAGAZINE JUNE 201592

process types as long as the routing decisions of these process
types are independent of the underlying resource-allocation
function and the imposed DAP; this requirement can be
observed by treating the process routing as uncontrollable by
the designed policy. Furthermore, extensive computational
experimentation with a series of pretty sizable RASs has also
demonstrated the scalability and the computational tractability
of the method. Figure 6 demonstrates the application of this
incremental synthesis method for the development of a set of
linear inequalities—or a linear classifier—and the correspond-
ing monitor places implementing the maximally permissive
DAP for the example RAS of Figure 1. On the other hand, it is
also true that the application of this method to the computation
of the maximally permissive DAP for RASs with nonbinary
state spaces is practically limited by the previously discussed
potential inability to represent this DAP by a set of linear
inequalities on the RAS state.

We close our discussion on the existing results regarding the
structural characterizations of the RAS deadlock through the
concept of the PN siphon, and the implications of these charac-
terizations for the analysis and control of the relevant RAS be-
havior, by briefly mentioning an additional line of research that
has sought to employ these structural characterizations to pro-
vide some explanation for the observed possibility of ensuring
sufficient control of all the potential deadlocks of a given RAS
by controlling explicitly only a limited subset of them. The re-
sults of this line can be traced in [32] and [48], while the work
in [32] has also applied these results in a control-synthesis pro-
cess through the introduction of the concept of elementary si-
phons. (Obviously, a straightforward alternative explanation for
these observed dependencies among the RAS deadlocks is pro-
vided by the classification theory that is discussed in the “The
Optimal DAP as a Classifier of the RAS States” section, and, in
particular, the notion of covering the RAS unsafe states that is
effected by the classifying inequalities.)

Going Forward
It should be evident from the entire discussion of the previous
parts of this article that the RAS concept and its accompanying
theory constitute a well-established theme in the academic re-
search community. This discussion also reveals the method-
ological richness and the analytical and computational
strength that characterize the existing developments in this
area. The presented results offer rigorous and structured solu-
tions to some ubiquitous problems that must be addressed by
the engineering community as it tries to increase the automa-
tion levels for a broad spectrum of technological applications
with ever increasing operational scale and complexity. In par-
ticular, the “Modeling an RAS as a Finite State Algorithm: The
Optimal Nonblocking Supervisor and Its Complexity” and
“Dealing with the Computational Challenges of the Optimal
Nonblocking Supervisor” sections, on the past developments
regarding the RAS deadlock problem and its efficient resolu-
tion through the deployment of the maximally permissive
DAP or some good approximation to this policy, demonstrate
how automation-related research can benefit from the effective

utilization of the existing formal methods for behavioral verifi-
cation and synthesis. These two sections also show how the
RAS-related research has contributed to the broader DES theo-
ry by capitalizing upon the special structure and the more con-
crete insights that are offered by the target application domains.

The previous discussion also unveils a series of directions
in which the current RAS theory can be extended and
strengthened, and some important open challenges that must
be systematically addressed by the relevant research commu-
nity to eventually materialize the control paradigm that is epit-
omized by Figure 3. Hence, when it comes to the behavioral
RAS theory, one can consider the further development of the
existing theory to address more complex classes and behaviors
of the RAS taxonomy presented in the “The RAS Modeling
Abstraction, the Corresponding Control Paradigmn and an
RAS Taxonomy” section, than the usually studied class of dis-
junctive/conjunctive RAS. More specifically, while the cur-
rently existing results can provide liveness characterization and
assessment for these broader RAS classes, there is a remaining
need for methodology that will support the expedient synthe-
sis of the maximally permissive DAP for these RASs or some
pertinent approximations of this policy. One can also consider
the extension of the basic RAS behavioral control problem
addressed in this article by considering application environ-
ments that provide only partial observability of the underlying
RAS function or systems that, due to their scale and/or struc-
ture, might require more distributed supervision than the cen-
tralized control scheme of Figure 3. The reactive or proactive
accommodation of random capacity losses with respect to cer-
tain resources due to the occurrence of unexpected events is
another issue that has received only limited attention in the
current RAS literature. All these extensions can be formalized
through relevant results in the existing DES theory, but it is
also expected that, as in the case of the past developments, the
special and rich structure of the RAS concept will enable cus-
tomized analyses and solutions for this set of problems as well.

The RAS behavioral control problem can also be extend-
ed by extending the set of specifications that it addresses be-
yond the issue of deadlock avoidance and the establishment
of nonblocking behavior. As a more concrete example of
such an extension, one can consider the enforcement of a
production ratio constraint for the manufacturing cell of Fig-
ure 1, stipulating that the two supported product types must
be produced in lockstep or that the difference of the cumula-
tive productions for these two products should observe cer-
tain bounds at any point in time. Then, one can seek to
characterize and compute the maximally permissive policy
that ensures the liveness of the considered RAS while observ-
ing this additional constraint. The resulting supervisory con-
trol problem can be addressed using the notion of fairness in
the relevant DES theory, and a first set of results for this
problem is provided in [23]. Other behavioral constraints of
a similar flavor can arise, for instance, by the need to observe
certain formations or some patrolling procedures by a fleet of
mobile agents and by the enforcement of aging and other
priority schemes in the resource allocation taking place

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

JUNE 2015 IEEE ROBOTICS & AUTOMATION MAGAZINE 93

among the various threads of a multithreaded software. Re-
cently, the work in [22] and [21] sought to extend the basic
PN-based representation of the considered RAS to address
time-related constraints.

But the primary open challenge for the effective complemen-
tation of the RAS control framework that has been delineated in
this article is the effective and efficient resolution of the RAS
performance control problem. Any pertinent solution to this
new RAS control problem must integrate all of the existing re-
sults of the corresponding logical control theory and
remain computationally tractable. It must also account for all of
the stochasticities that are encountered in the underlying appli-
cation domains and remain robust to these stochasticities.
Chapter 6 of [47] shows how (some variations of) the resulting
scheduling problem can be formulated, in principle, using the
fundamental modeling frameworks of Markov decision pro-
cesses (MDP) and stochastic dynamic programming (DP) [3].
This analysis has also shown how the operating logic of the ap-
plied DAP can be effectively integrated in the problem formula-
tion, and the synergies that are developed by this integration,
since the resulting MDP problem belongs to an MDP subclass
with a rich theory and powerful solution algorithms. But it is
also true that the enumerative nature of the optimal MDP/
scheduling policy with respect to the underlying state space ren-
ders challenging (usually intractable) even the description of
such a policy, let alone its computation. A solution to these com-
putational challenges can be pursued in the context of the rather
fledgling area of approximate DP (ADP) [4], [41]. ADP has
shown significant potential for providing powerful and struc-
tured approximations to the optimal policy in many DP applica-
tions, but, at the same time, the effective customization of the
more generic ideas offered by this theory to a particular applica-
tion context require substantial methodological as well as con-
textual insights and extensive tuning through empirical
experimentation. Some very recent developments that seek to
customize a version of the current ADP theory to the aforemen-
tioned RAS scheduling problem, and seem to hold particular
promise regarding their ability to provide an effective balance
between the computational tractability and the operational effi-
ciency of the derived solutions, are presented in [31]. But defi-
nitely much more work is needed in this particular direction.

Finally, as the presented RAS theory grows and strengthens
its methodology along the lines indicated in the previous para-
graphs, additional efforts must be made toward the develop-
ment of the human capital and of the technological and
computational base that will enable the constructive migration
of this theory to the future engineering practice. This endeavor
certainly involves the eventual undertaking of some pilot large-
scale applications that will highlight the technical strength of
the theory and the competitive advantage that can be support-
ed by it. But even more importantly, it must also seek the effec-
tive integration of the existing and the emerging results into
the relevant engineering curricula, and the organization of
these results in a series of computational platforms that will
enable their robust and expedient utilization by the field engi-
neers. In fact, this last activity can be part of a broader initiative

concerning the further promotion of DES theory and of the
emerging formal methods in the engineering curriculum and
practice. It is expected that, collectively, all of these endeavors
will define a spectrum of fundamental developments and
trends with profound and transformative repercussions for the
related fields of control and automation engineering.

Acknowledgment
This article is based on a tutorial on RAS theory that I offered
while visiting the Automation group at the Chalmers Univer-
sity of Technology. I would like to thank the group for the
hospitality and constructive discussions that I enjoyed during
my visit.

References
[1] T. Araki, Y. Sugiyama, and T. Kasami, “Complexity of the deadlock avoid-
ance problem,” in Proc. 2nd IBM Symp. Mathematical Foundations Computer
Science, 1977, pp. 229–257.
[2] Z. A. Banaszak and B. H. Krogh, “Deadlock avoidance in flexible manufac-
turing systems with concurrently competing process f lows,” IEEE Trans.
Robot. Automat., vol. 6, no. 6, pp. 724–734, 1990.
[3] D. P. Bertsekas, Dynamic Programming and Optimal Control, vol. 2. Bel-
mont, MA: Athena Scientific, 1995.
[4] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming. Belmont,
MA: Athena Scientific, 1996.
[5] P. Brass, Advanced Data Structures. Cambridge, U.K.: Cambridge Univ.Press, 2008.
[6] R. E. Bryant, “Symbolic boolean manipulation with ordered binary-deci-
sion diagrams,” ACM Comput. Surv., vol. 24, no. 3, pp. 293–318, 1992.
[7] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems,
2nd ed. New York: Springer, 2008.
[8] F. Chu and X.-L. Xie, “Deadlock analysis of Petri nets using siphons and mathemat-
ical programming,” IEEE Trans. Robot. Automat., vol. 13, no. 6, pp. 793–804, 1997.
[9] E. M. Clarke Jr., O. Grumberg, and D. A. Peled, Model Checking. Cam-
bridge, MA: The MIT Press, 1999.
[10] H. M. Deitel, Operating Systems. Reading, MA: Addison Wesley, 1990.
[11] L. E. Dickson, “Finiteness of the odd perfect and primitive abundant numbers
with n distinct prime factors,” Amer. J. Math., vol. 35, no. 4, pp. 413–422, 1913.
[12] E. W. Dijkstra, “Cooperating sequential processes,” Technological Univ.,
Eindhoven, The Netherlands, 1965.
[13] J. Ezpeleta, J. M. Colom, and J. Martinez, “A Petri net based deadlock pre-
vention policy for f lexible manufacturing systems,” IEEE Trans. Robot. Au-
tomat., vol. 11, no. 2, pp. 173–184, 1995.
[14] J. Ezpeleta, F. Tricas, F. Garcia-Valles, and J. M. Colom, “A Banker’s solu-
tion for deadlock avoidance in FMS with f lexible routing and multiresource
states,” IEEE Trans. Robot. Automat., vol. 18, no. 4, pp. 621–625, 2002.
[15] M. P. Fanti, B. Maione, S. Mascolo, and B. Turchiano, “Event-based feed-
back control for deadlock avoidance in f lexible production systems,” IEEE
Trans. Robot. Automat., vol. 13, no. 3, pp. 347–363, 1997.
[16] M. P. Fanti, B. Maione, and B. Turchiano, “Event control for deadlock avoid-
ance in production systems with multiple capacity resources,” Stud. Inform. Con-
trol, vol. 7, pp. 343–364, 1998.
[17] Z. Fei, “Symbolic supervisory control of resource allocation systems,” Ph.D. the-
sis, Signals and Systems Dept., Chalmers Univ. Technol., Gothenburg, Sweden, 2014.
[18] A. Giua, F. DiCesare, and M. Silva, “Generalized mutual exclusion con-
straints on nets with uncontrollable transitions,” in Proc. Int. Conf. Systems,
Man Cybernetics, 1992, pp. 974–979.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

IEEE ROBOTICS & AUTOMATION MAGAZINE JUNE 201594

[19] E. M. Gold, “Deadlock prediction: Easy and difficult cases,” SIAM J. Com-
put., vol. 7, no. 3, pp. 320–336, 1978.
[20] M. P. Groover, Fundamentals of Modern Manufacturing: Materials, Pro-
cesses and Systems. Englewood Cliffs, NJ: Prentice Hall, 1996.
[21] H. Hu, M. Zhou, and Z. Li, “Algebraic synthesis of timed supervisor for au-
tomated manufacturing system using Petri nets,” IEEE Trans. Automat. Sci.
Eng., vol. 7, no. 3, pp. 549–557, 2010.
[22] H. Hu, M. Zhou, and Z. Li, “Low-cost and high-performance supervision in
ratio-enforced automated manufacturing systems using timed Petri nets,” IEEE
Trans. Automat. Sci. Eng., vol. 7, no. 4, pp. 933–944, 2010.
[23] H. Hu, M. Zhou, and Z. Li, “Liveness and ratio-enforcing supervision of
automated manufacturing systems using Petri nets,” IEEE Trans. Syst. Man,
Cybern. A, vol. 42, no. 2, pp. 392–403, 2012.
[24] M. Jeng, X. Xie, and M. Y. Peng, “Process nets with resources for manu-
facturing modeling and their analysis,” IEEE Trans. Robot. Automat., vol. 18,
no. 6, pp. 875–889, 2002.
[25] M. Lawley, S. Reveliotis, and P. Ferreira, “FMS structural control and the
neighborhood policy, Part 1: Correctness and scalability,” IIE Trans., vol. 29,
no. 10, pp. 877–887, 1997.
[26] M. Lawley, S. Reveliotis, and P. Ferreira, “FMS structural control and the
neighborhood policy, Part 2: Generalization, optimization and efficiency,” IIE
Trans., vol. 29, no. 10, pp. 889–899, 1997.
[27] M. Lawley, S. Reveliotis, and P. Ferreira, “The application and evaluation of
Banker’s algorithm for deadlock-free buffer space allocation in flexible manu-
facturing systems,” Int. J. Flexible Manuf. Syst., vol. 10, no. 1, pp. 73–100, 1998.
[28] M. Lawley, S. Reveliotis, and P. Ferreira, “A correct and scalable deadlock
avoidance policy for flexible manufacturing systems,” IEEE Trans. Robot. Au-
tomat., vol. 14, no. 5, pp. 796–809, 1998.
[29] M. A. Lawley and S. A. Reveliotis, “Deadlock avoidance for sequential re-
source allocation systems: Hard and easy cases,” Int. J. Flexible Manuf. Syst.,
vol. 13, no. 4, pp. 385–404, 2001.
[30] P. Lawrence, Workflow Handbook. New York: Wiley, 1997.
[31] R. Li and S. Reveliotis, “Performance optimization for a class of general-
ized stochastic Petri nets,” Discrete Event Dynamic Syst.: Theory Applicat., vol.
25, no. 3, pp. 387–417, 2015.
[32] Z. W. Li and M. C. Zhou, “Elementary siphons of Petri nets and their ap-
plication to deadlock prevention in f lexible manufacturing systems,” IEEE
Trans. Syst. Man, Cybern. A, vol. 34, no. 1, pp. 38–51, 2004.
[33] H. Liao, Y. Wang, H. K. Cho, J. Stanley, T. Kelly, S. Lafortune, S. Mahlke,
and S. Reveliotis, “Concurrency bugs in multithreaded software: Modeling
and analysis using Petri nets,” Discrete Event Dynamic Syst.: Theory Applicat.,
vol. 23, no. 2, pp. 157–195, 2013.
[34] H. Liao, Y. Wang, J. Stanley, S. Lafortune, S. Reveliotis, T. Kelly, and S.
Mahlke, “Eliminating concurrency bugs in multithreaded software: A new ap-
proach based on discrete-event control,” IEEE Trans. Control Syst. Technol.,
vol. 21, no. 6, pp. 2067–2082, 2013.
[35] J. O. Moody and P. J. Antsaklis, Supervisory Control of Discrete Event Sys-
tems Using Petri Nets. Boston, MA: Kluwer Academic Publishers, 1998.
[36] T. Murata, “Petri nets: Properties, analysis and applications,” Proc. IEEE,
vol. 77, no. 4, pp. 541–580, 1989.
[37] A. Nazeem, “Designing parsimonious representations of the maximally
permissive deadlock avoidance policy for complex resource allocation systems
through classification theory,” Ph.D. thesis, Georgia Technol., Atlanta, GA,
2012.
[38] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Infor-
mation: 10th Anniversary Edition. Cambridge, U.K.: Cambridge Univ. Press, 2010.

[39] N. J. Nilsson, The Mathematical Foundations of Learning Machines. San
Mateo, CA: Morgan Kaufmann, 1990.
[40] J. Park and S. A. Reveliotis, “Deadlock avoidance in sequential resource
allocation systems with multiple resource acquisitions and flexible routings,”
IEEE Trans. Autom. Contr., vol. 46, no. 10, pp. 1572–1583, 2001.
[41] W. B. Powell, Approximate Dynamic Programming: Solving the Curses of
Dimensionality. Hoboken, NJ: Wiley Interscience, 2007.
[42] P. J. G. Ramadge and W. M. Wonham, “The control of discrete event sys-
tems,” Proc. IEEE, vol. 77, no. 1, pp. 81–98, 1989.
[43] S. Reveliotis and A. Nazeem, “Deadlock avoidance policies for automated
manufacturing systems using finite state automata,” in Formal Methods in
Manufacturing, J. Campos, C. Seatzu, and X. Xie, Eds., Boca Raton, FL: CRC
Press/Taylor and Francis, 2014, pp. 169–195.
[44] S. Reveliotis and E. Roszkowska, “On the complexity of maximally per-
missive deadlock avoidance in multi-vehicle traffic systems,” IEEE Trans.
Autom. Contr., vol. 55, no. 7, pp. 1646–1651, 2010.
[45] S. Reveliotis and E. Roszkowska, “Conf lict resolution in free-ranging
multi-vehicle systems: A resource allocation paradigm,” IEEE Trans. Robot.,
vol. 27, no. 2, pp. 283–296, 2011.
[46] S. A. Reveliotis, “On the siphon-based characterization of liveness in se-
quential resource allocation systems,” in Applications and Theory of Perti Nets.
Berlin Heidelberg, Germany: Springer, 2003, pp. 241–255.
[47] S. A. Reveliotis, Real-Time Management of Resource Allocation Systems: A
Discrete Event Systems Approach. New York: Springer, 2005.
[48] S. A. Reveliotis, “Implicit siphon control and its role in the liveness en-
forcing supervision of sequential resource allocation systems,” IEEE Trans.
Syst. Man, Cybern. A, vol. 37, no. 3, pp. 319–328, 2007.
[49] S. A. Reveliotis, M. A. Lawley, and P. M. Ferreira, “Polynomial complexity
deadlock avoidance policies for sequential resource allocation systems,” IEEE
Trans. Autom. Contr., vol. 42, no. 10, pp. 1344–1357, 1997.
[50] E. Roszkowska and S. Reveliotis, “A distributed protocol for motion coordina-
tion in free-range vehicular systems,” Automatica, vol. 49, no. 6, pp. 1639–1653, 2013.
[51] J. A. Tompkins, J. A. White, Y. A. Bozer, and J. M. A. Tanchoco, Facilities
Planning, 4th ed. Hoboken, NJ: Wiley, 2010.
[52] F. Tricas, F. Garcia-Valles, J. M. Colom, and J. Ezpeleta, “A Petri net struc-
ture-based deadlock prevention solution for sequential resource allocation
systems,” in Proc. IEEE Int. Conf. Robotics Automation, 2005, pp. 271–277.
[53] J. Tung, T. Sheen, M. Kao, and C. H. Chen, “Optimization of AMHS de-
sign for a semiconductor foundry fab by using simulation modeling,” in Proc.
Winter Simulation Conf., 2013, pp. 3829–3839.
[54] W. van der Aalst and K. van Hee, Workflow Management: Models, Meth-
ods and Systems. Cambridge, MA: The MIT Press, 2002.
[55] V. Vazirani, Approximation Algorithms. New York: Springer, 2003.
[56] N. Viswanadham, Y. Narahari, and T. L. Johnson, “Deadlock avoidance in flexi-
ble manufacturing systems using Petri net models,” IEEE Trans. Robot. Automat.,
vol. 6, no. 6, pp. 713–722, 1990.
[57] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. Mahlke, “Gadara: Dy-
namic deadlock avoidance for multithreaded programs,” in Proc. 8th USENIX
Conf. Operating Systems Design Implementation, 2008, pp. 281–294.
[58] T. Yang and B. A. Peters, “A spine layout design method for semiconductor
fabrication facilities containing automated material-handling systems,” Int. J.
Oper. Product. Manage., vol. 17, pp. 490–501, 1997.

Spyros Reveliotis, Georgia Institute of Technology, Atlanta,
United States. E-mail: spyros@isye.gatech.edu.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
IEEE

M AGAZ INE

obotics
utomation

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND
