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The integrating role that is sought by automation in 
many contemporary applications frequently can be 
abstracted to the need for pertinent supervision of a 
function that allocates a finite set of reusable 
resources to a set of concurrently executing pro-

cesses. This article formalizes the corresponding supervisory 
control problem, surveys the major results that are currently 
available for it, and highlights the remaining open challenges for 
the corresponding research community. In the process, it also 
reveals the analytical and computational advantages that can be 

attained from the reference of the considered problem to some 
appropriate control-theoretic frameworks and the additional 
potential that is defined for such an analytic approach by the 
identification and exploitation of some essential problem fea-
tures and the special structure that is defined by them. 

Automation as a Resource-Allocation Function: 
A Set of Motivating Applications 
When it comes to automation and its contemporary appli-
cations, one of the major challenges facing the modern en-
gineering community is the effective integration of a set of 
autonomous devices, which are frequently characterized by 
distinct, heterogeneous behaviors, into a well-behaved and 
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properly controlled system. In the context of the research 
program presented in this article, the aforementioned inte-
grating task can be perceived as the design and deployment 
of a set of control policies that will coordinate the allocation 
of a finite set of reusable resources to a set of concurrently 
executing processes. These processes evolve in a staged 
manner according to some sequential logic that may be 
predefined, but they can also be impacted by factors that 
are determined in real time during the progression of the 
considered application. The execution of any single stage of 
the considered processes requires the exclusive allocation to 
them of a certain subset of the system resources. Probably 
the best-known manifestation of such an operational envi-
ronment is the popular concept of the flexibly automated 
production system, where a set of numerically controlled 
machines is (supposed to be) integrated seamlessly with a 
set of buffers and material-handling devices to support the 
simultaneous production of a set of part types, each pro-
duced according to its own process plan (or even a set of 
process plans in the particular case where the considered 
production system allows for some routing flexibility) [20]. 
In such an environment, every processed part is an instance 
of a process type that is defined by the corresponding pro-
cess plan (or set of process plans), and the resources re-
quested by each stage of this process plan include some 
buffer space to physically accommodate the part, the 
processor(s) or the material-handling equipment that will 
act upon the part at that stage, and possibly additional 
equipment such as fixtures and auxiliary tools. 

Even when focusing on the domain of material-handling 
systems (MHSs) itself, the effective operation of an automated 
unit load, guide path-based MHS [51], such as an automated 
guided vehicle (AGV) system or an overhead monorail sys-
tem, can be perceived as the control of a resource-allocation 
function of the type described in the previous paragraph. All 
of these MHSs consist of 1) a guide path network that inter-
connects a set of workstations and additional supporting ser-
vice facilities, such as a docking and recharging station, and 2) 
a fleet of autonomous vehicles that transfer parts among the 
system workstations by using the guide path net and eventu-
ally retiring to the docking station. Physical collisions among 
the vehicles are avoided by splitting the guide path links into a 
number of smaller segments called zones and requesting that 
each zone be allocated exclusively to a single vehicle. Access to 
a certain zone by a traveling vehicle must be negotiated with 
the system controller. Hence, under the considered operation-
al regime, the execution of a vehicle trip from an origin loca-
tion to some destination location is essentially a staged 
process where each stage corresponds to the traversal of a cer-
tain zone in the followed path, while the zone itself constitutes 
the resource allocated to the vehicle-abstracting process at 
that particular stage. A nominal vehicle-abstracting process 
under the aforementioned operational regime is defined by a 
sequence of zones taking the corresponding vehicle first from 
the docking station to the work station originating the corre-
sponding transport request, to the destination workstation, 

and finally back to the docking station; however, the general 
model also allows for alternative routes and the reassignment 
of a retiring vehicle to a new transport task while on its trip 
back to the docking station.

More recently, the resource-allocation paradigm for 
guide path-based MHSs, which was outlined in the previ-
ous paragraph, has been extended to traffic systems involv-
ing a fleet of free-ranging mobile agents over a certain 
planar area [45]. In this case, each agent is represented by 
some canonical geometrical footprint—typically a disk of a 
certain radius—and the entire area is tesselated into a num-
ber of cells. An agent with its footprint overlapping a given 
cell is considered to occupy this cell. Cells possess a nomi-
nal capacity that limits the maximal number of agents that 
can simultaneously occupy the cell in a safe manner. Obser-
vance of the cell capacity is enforced by the system control-
ler, which provides the traveling agents the necessary 
permission to access a requested cell. In a simple imple-
mentation of the considered control scheme, cells possess 
unit capacity, naturally ensuring the physical separation of 
the traveling agents. However, the literature also avails of 
more complex control schemes where a cell can have a 
nominal capacity larger than one, allowing two or more 
agents to traverse it simultaneously [50]; in such a case, it is 
further assumed that the cell-sharing agents have sensing, 
communication, and control capabilities that allow them to 
negotiate their local motion in a safe manner. In [45], these 
ideas are further extended to apply to the traffic of mobile 
agents that takes place in three-dimensional spaces and 
with the agents being in perpetual motion from their origin 
to their destination; hence, the considered control scheme 
can apply to the traffic coordination of airplanes, drones, 
and all other flying gadgets that are currently contemplated 
as future transport devices. Similarly, one can easily envi-
sion the potential extension of guide path-based MHSs to 
driverless monorail and railway systems serving urban or 
regional transportation needs over complex networks.

The resource-allocation paradigm outlined in the previ-
ous paragraphs for flexibly automated production and 
MHSs, mobile agents, and even the public transportation do-
main extends to other service sectors through the notion of 
an automated workflow management system (WMS) [30], 
[54]. WMSs have been promoted as a structured solution to 
the automation of routine yet complex operations that take 
place in business sectors, such as insurance claiming, bank-
ing, and the backend operations of modern logistics systems. 
According to the WMS paradigm, the aforementioned oper-
ations are abstracted into a set of process types that execute 
in a staged manner and utilize critical resources such as data 
files, various sorts of processors and communicating devices, 
and even the company personnel in various supporting roles. 
The enactment of these process types is facilitated by a work-
flow management engine that monitors the progress of the 
different running processes and coordinates their overall 
flow and the allocation of the resources requested by them in 
an expedient and orderly manner.
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In fact, it can be safely argued that some of the very first 
fully automated WMSs developed by our modern technologi-
cal civilization were the operating systems of all of the past 
computational platforms that have supported multithreaded 
software. All of these operating systems coordinate the alloca-
tion of various system resources, such as memory registers, 
(access to) data files, and input/output (I/O) devices, to the 
concurrently running threads through the representation of 
these limited resources by some sort of tokens, typically 
known as locks or semaphores, that are carefully granted to the 
contesting processes [10]. Currently, the interest of the com-
puting world in this resource-allocation function has been re-
vitalized thanks to the advent of multicore computer 
architectures that have turned parallel programming into a 
commodity [57].

Finally, a further application of the considered resource-
allocation paradigm in the world of modern computing 
comes from the area of quantum computing [38]. In this do-
main, the primitive elements of information, known as quan-
tum bits (qubits), are stored in the form of ionized atoms, and 
various elementary operations are performed on these qubits 
through their physical transport to certain locations, called 
ion traps, where they interact in a controlled manner. The 
physical transport of qubits from their initial storage loca-
tions to ion traps takes place through a network of tunnels 
that must be exclusively allocated to each traveling qubit to 
avoid collisions that would destroy their information content. 
Hence, the physical realization of an algorithmic logic unit 
(ALU) for a quantum computer bears very strong similarities 
with the operation of the guide path-based transport systems 
discussed in the previous paragraphs, and it must address a 
similar set of resource-allocation problems.

A New Set of Control Challenges and the 
Emerging Control Paradigm of Sequential 
Resource-Allocation Systems
In all of the examples that were presented in the “Automa-
tion as a Resource-Allocation Function: A Set of Motivating 
Applications” section, the penultimate objective for the 
management of the corresponding resource-allocation func-
tion is the optimization of some notion of performance for 
the underlying system. Frequently, this performance is de-
fined and measured by the production rate—or through-
put—of the considered system, while additional 
considerations might involve the control of the congestion 
experienced by the system processes; the latter is defined in 
terms of the delays that are experienced by the various pro-
cesses or the process concentrations that are observed at the 
various processing stages. The resulting performance analy-
sis and control problems have been studied in the past 
through operational models and theories pursued by the 
fields of operations research (OR), industrial engineering 
(IE), and operations management (OM). However, the need 
to support the considered performance objectives in the au-
tomated setting that is implied by all of the previously pro-
vided examples gives rise to additional operational problems 

that have not been modeled and/or studied by the afore-
mentioned disciplines.

Among these new problems, one of the most pernicious is 
defined by the need to establish deadlock-free—or nonblock-
ing—operation for the underlying resource-allocation func-
tion. The notion of deadlock is exemplified in Figure 1, where 
the two depicted process instances are permanently stuck 
since each of them is requesting for its further advancement 
the buffer space that is currently held by the other process. (A 
more formal definition of the notion of deadlock is provided 
in the “The RAS Modeling Abstraction” section.) Unless there 
is external interference, no further progress can be achieved 
by the depicted processes, while the effective utilization of the 
resources allocated to them will be equal to zero. Hence, the 
formation of deadlocks is utterly disruptive to the operation 
and performance of the automated applications that we are 
considering in this article.

In the considered operational settings, circular waiting pat-
terns among the running processes, such as those depicted in 
Figure 1, arise due to 1) the exclusive nature of the allocation of 
the finite system resources to the various process instances, 2) 
the ability of the running process instances to hold upon their 
currently allocated resources while waiting for some further 
resources needed for the execution of their next processing 
stage, and 3) the arbitrariness of the resource-allocation re-
quests that can be posed by the different processing stages. Ob-
viously, these conditions are also present in the operation of 
the more conventional, nonautomated versions of the afore-
mentioned applications, such as the production, material han-
dling, and service operations that are studied by the OR, IE, 
and OM disciplines. However, in those cases, the presence of 
the human element in an operating or supervising role enables 

R1 R2

J1:R1"R2"R3 J2:R3"R2"R1

R3

Figure 1. A flexibly automated production cell consisting of three 
workstations, , ,R R1 2  and ,R3  and a single AGV that transports 
parts among these three workstations and the I/O port of the 
cell. Each workstation avails of a worktable that can hold only 
one workpiece at a time. The cell is used for the concurrent 
production of the two process types J1  and J2  with the 
corresponding process plans that are annotated in the figure. 
It should be evident from the description of the cell operations 
and the provided routing information for the two process types 
that, in the depicted situation, none of the currently loaded parts 
is able to advance to its next requested workstation, since the 
corresponding worktable is occupied by the other part. This is 
a typical situation of deadlock that can be encountered in such 
flexibly automated production systems.
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the resolution of any emergent deadlock through some real-
time improvisation. Hence, in nonautomated settings, there is 
no (strongly) felt need to address the deadlocking problem at a 
formal level. On the other hand, the ubiquitous and highly dis-
ruptive nature of this problem was strongly manifested in the 
1990s, where some attempts of that era to materialize the no-
tions of the flexibly automated manufacturing cell and of the 
lights-out factory, based on ad-hoc integrating schemes, result-
ed in major fiascos for the companies involved. Furthermore, 
because of those past negative experiences, almost all current 
attempts to employ large-scale automation in the production 
and service sectors have sought to address the behavioral 
problem of deadlock formation at the design level by adopting 
very simple structural designs and by complementing these 
structural designs with some very conservative operational 
policies that seek to negate the third of the aforementioned 
conditions for deadlock formation. Figure 2 exemplifies these 
designs and policies by presenting a typical topology—or lay-
out—for the MHS guide path network employed by the cur-
rent semiconductor manufacturing industry. Similar 
simplifying approaches to the deadlock problem have been 
pursued even in presumably more sophisticated fields such as 
the field of multithreaded software and parallel programming. 
However, as shown in Figure 2, while being robust with re-
spect to the resolution of the deadlock problem itself, the cur-
rently pursued approaches also substantially limit the 
concurrency and flexibility of the underlying system, and, in 
the end, they compromise the operational efficiencies and the 

enhanced performance potential that are typically sought from 
flexible automation.

It is evident from the previous discussion that the deploy-
ment of automated solutions for the aforementioned applica-
tions in a way that provides a robust and efficient operation 
of the underlying system can be effectively supported only 
through the development of a rigorous control paradigm that 
will enable the formal modeling of the underlying system be-
havior and the imposed specifications and will facilitate the 
thorough analysis and design of the necessary control poli-
cies. At the same time, to be practically effective, such a con-
trol paradigm must explicitly address the representational 
and computational complexities of the problems investigated 
and eventually effect a systematic tradeoff between the com-
putational tractability of the developed methodology and the 
operational efficiency of the obtained solutions.

The rest of this article outlines such a control paradigm that 
is built on the formal abstraction of a (sequential) resource-allo-
cation system (RAS) [47]. We provide a formal characterization 
and a taxonomy of the RAS concept, outline a control para-
digm that can be defined by it while leveraging and extending 
existing results from various areas of modern control theory, 
and, subsequently, focus on the particular problem of deadlock 
avoidance—or nonblocking supervision—for the considered 
RAS. For this last problem, we provide a formal characteriza-
tion by means of the supervisory control theory (SCT) of dis-
crete-event systems (DESs) [7] and establish a notion of 
optimality for the derived solutions in the form of maximal 
permissiveness. On the other hand, a formal complexity analy-
sis reveals that the computation of the maximally permissive 
nonblocking supervisor is an NP-hard task for most RAS in-
stantiations. Hence, a considerable part of the article is dedicat-
ed to the endeavors of our group and the broader research 
community to cope with this negative result. The article con-
cludes with some discussion of the remaining open challenges 
with respect to the RAS supervisory control problem and of all 
the additional issues that must be effectively addressed for the 
complete development of the presented RAS theory, its migra-
tion to the engineering practice, and its effective integration 
into the relevant engineering curricula. Collectively, the pre-
sented developments epitomize the corresponding endeavors 
by the author, his collaborators, and a broader group within 
the relevant research community over a time span of more 
than 20 years. They also reveal how some important challeng-
es faced in the area of automation can benefit from, but also 
extend and promote, foundational disciplines such as those of 
control engineering, operations research, and theoretical com-
puter science.

The RAS Modeling Abstraction, the Corresponding 
Control Paradigm, and an RAS Taxonomy

The RAS Modeling Abstraction
As stated previously, the primary modeling abstraction that 
enables a unifying treatment of the real-time operations taking 
place in all of the applications described in the “Automation as 

Interbay

OHT/OHS

Intrabay

Stocker

Tool Under Intrabay

Figure 2. The material-handling layout [53]—usually known as the 
spine layout [58]—that is used in contemporary semiconductor 
fabs. This MHS is an overhead monorail system with its guide path 
network decomposed into a set of unidirectional loops: one loop 
interconnecting the processing tools of each bay of the fab (i.e., the 
blue intrabay loops depicted in the figure) and a central loop that 
acts as the spine of the facility and supports wafer transfers among 
the fab bays (i.e., the brown interbay loop in the figure). Intrabay 
loops are interfaced to the interbay loop through buffering facilities 
known as stockers. By maintaining a unidirectional vehicle motion 
on each loop, the considered layout eliminates the potential for 
deadlock formation among the traveling vehicles. But, at the same 
time, vehicles tend to travel much longer distances for any single 
requested transfer, they tend to file up behind the slowest vehicle, 
and the interbay traffic might involve considerable double-handling 
of the transported wafer cassettes at the intermediate stockers. 
OHT: overhead transporter; OHS: overhead shuttle. 
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a Resource-Allocation Function: A Set of Motivating Applica-
tions” section, is the sequential RAS. Following [47], a sequen-
tial RAS can be formally defined by a quintuple 

,, , , ,R C P A DU=  where 
1) , ,R RR m1 f= " , is the set of the system resource types.
2) :C -ZR " + the set of strictly positive integers—is the 

system capacity function characterizing the number of 
identical units from each resource type available in the 
system. Resources are assumed to be reusable, i.e., each al-
location cycle does not affect their functional status or 
subsequent availability, and therefore, ( )C R Ci i/  consti-
tutes a system invariant for each .i

3) , ,P n1 fP P= " , denotes the set of the system process 
types supported by the considered system configuration. 
Each process type jP  is a composite element itself, in par-
ticular, , ,Gj j jTP =  where: (a) , , ,j j j l1 jfT N N= " , de-
notes the set of processing stages involved in the definition 
of process type jP  and (b) G j  is an additional data struc-
ture that encodes the sequential logic that integrates the 
set of the processing stages jT  into a set of potential pro-
cess flows.

4) : , ,C0A i
m

i1" fT P = " , is the resource-allocation function 
associating every processing stage jkN  with the resource-allo-
cation vector ( ) 0A jk !N  required for its execution.

5) D  is a function mapping each processing stage jkN  in 
j
n

j1,T T/ =  to a distribution with positive support that 
characterizes the processing time of the corresponding pro-
cessing stage. 

6) We also set ,T/p  and for the purpose of complexity 
considerations, we define the size U  of RAS U  by 

.CR i
m

i1/ pU R+ + =

At any point in time, the system contains a certain 
number of (possibly zero) instances of each process type 
that execute one of the corresponding processing stages; 
this distribution of the active process instances across the 
various processing stages defines a notion of the state for 
the considered RAS. Obviously, this RAS state must re-
spect the resource capacities; i.e., no resource type R Ri !
can be overallocated with respect to its capacity Ci  at any 
point in time. Furthermore, to model the hold-while-
waiting effect discussed in the previous section, the ad-
opted resource-allocation protocol stipulates that a 
process instance ,J j  executing a nonterminal stage jkN
and seeking to advance to some next stage ,jkN l  must first 
be allocated the resource differential ( ( ))( )A A ikik NN - +

l

and only then will it release the resource units 
( ( ) ( ))A Ajk jkN N- -

l  that are not needed anymore. This 
assumption is not restrictive since the release of resources 
that do not adhere to this protocol can be modeled by the 
insertion of additional processing stages in the underlying 
process plan. Finally, in the resulting operational context, 
the RAS deadlock can be formally defined as an RAS state 
containing a set of active process instances DJ  such that 
every instance ,J DJj !  to advance to any of its next pro-
cessing stages, requests some resources currently held by 
some other process instance .J DJk !

Real-Time Control Framework 
for the Considered RAS
As remarked in the “A New Set of Control Challenges and 
the Emerging Control Paradigm of Sequential Resource Al-
location Systems” section, an effective real-time controller 
for the considered RAS must ensure the attainment of some 
set of performance objectives, typically defined with respect 
to the timed RAS behavior, while keeping the RAS away 
from problematic behavioral patterns like the aforemen-
tioned deadlock states. This last control requirement is fre-
quently known as the RAS behavioral or logical control 
problem because the corresponding problematic behavior 
can be effectively avoided by controlling only the sequenc-
ing of the relevant resource-allocation events and not their 
exact timing. Furthermore, it is generally accepted by the 
relevant research community that, due to the stochasticity 
that is present in the timed dynamics of the considered 
RAS, any robust solution to the RAS behavioral and perfor-
mance control problems should rely on some feedback con-
trol scheme and not on the open-loop execution of some 
precomputed plan.

Such a feedback-based controller is presented in Fig-
ure 3. The depicted control paradigm is an event-driven ap-
proach where the applied control function monitors the 
events taking place in the underlying RAS and commands a 
certain action sequence in response to these events. More 
specifically, the proposed controller maintains a representa-
tion of the RAS state, which enables it to monitor the sys-
tem status and identify the entire set of feasible actions that 
can be executed by the system at any given time. Hence, 
this information is instrumental for enabling the controller 
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Figure 3. An event-driven control scheme for the real-time 
management of the considered RAS. The controller responds to 
the various events taking place in the controlled RAS by updating 
a state model that defines the feasible behavior generated 
by this system. This behavior is filtered through the logical 
controller to obtain the admissible behavior, i.e., the behavior 
that is consistent with certain specifications imposed on the RAS 
operation. Finally, the admissible behavior is processed through 
the performance-oriented controller to select the particular 
action(s) among the admissible behavior that eventually will be 
commanded upon the RAS.
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to determine the scope of its possible responses to a certain 
event. However, the controller must eliminate (filter out) all 
of those actions that can result in problematic behavior.

Such problematic behavior includes the formation of a 
deadlock, but, in the more general case, this part of the 
depicted control scheme will address additional specifica-
tions that might be defined, for instance, by quality concerns 
or some policy considerations such as those arising from a 
notion of fairness to the contesting processes. All of the 
aforementioned concerns boil down to the systematic exclu-
sion of certain resource-allocation patterns from the RAS 
behavior, and, as already mentioned, the resulting problem 
is generally known as the logical or behavioral control prob-
lem to be addressed by the controller. The set of actions 
eventually accepted by the logical controller defines the 
space of the admissible behavior for the considered RAS. 
Then, the second stage of the proposed control logic must 
shape/bias this admissible behavior in a way that aligns best 
with the system performance objectives; this biasing is effec-
tively achieved through the selection of the particular 
admissible action to be commanded upon the system at 
each decision stage. The corresponding problem is known 
as the RAS performance-oriented control or scheduling.

The effective deployment of the RAS control scheme 
described in the previous paragraph necessitates a pertinent 
formal characterization of the RAS state and the reference of 
the RAS logical and performance-oriented control problems 
to appropriate formal modeling frameworks that will enable 
a rigorous analysis of the corresponding RAS dynamics and 
the effective synthesis of the necessary policies. At a basic 
level, these capabilities have been conveniently provided to 
the developing RAS theory by the areas of qualitative and 
quantitative analysis of DESs [7]. Generally speaking, DES 
theory is a field of modern control theory investigating the 
behavior of dynamical systems that evolve their state discon-
tinuously over time in response to the occurrence of certain 
critical, instantaneous events. In this general setting, qualita-
tive DES theory uses formal linguistic frameworks borrowed 
from theoretical computer science, and augmented with con-
trol-theoretic concepts and techniques, to analyze and con-
trol the event sequences that are generated and observed by 
the underlying DES dynamics. On the other hand, quantita-

tive DES theory analyzes and controls the timed DES 
dynamics using models and tools that are borrowed from 
(stochastic) OR and simulation theory. However, as further 
revealed in the “Modeling an RAS as a Finite State Automa-
tion: The Optimal Nonblocking Supervisor and Its Com-
plexity” section, while enabling a formal positioning of the 
RAS behavioral and scheduling problems, the practical com-
putational capabilities of the corresponding DES frameworks 
are severely limited by a very high representational and com-
putational complexity. In the subsequent parts of this article, 
we shall demonstrate how the relevant research community 
has leveraged the representational and analytical capabilities 
provided by DES theory to develop effective practical solu-
tions to the RAS behavioral control problem. Furthermore, 
in the “Going Forward” section, we also outline some ongo-
ing endeavors toward the development of similar practical 
solutions for the RAS scheduling problem. All of this discus-
sion will also reveal that the considered developments have 
substantially enriched and extended the capabilities of the 
corresponding DES theory itself.

An RAS Taxonomy
We close the discussion on the basic RAS model and the in-
duced control problem by presenting an RAS taxonomy that 
has been instrumental for the systematic investigation of the 
RAS behavioral control problem of deadlock avoidance. The 
main RAS classes recognized by this taxonomy are defined 
by 1) the structure that is supported for the process sequen-
tial logic and 2) the structure of the resource-allocation re-
quests that are posed by the various processing stages; the 
most prominent RAS classes with respect to these two classi-
fication attributes are presented in Table 1. Furthermore, 
more recent developments have revealed the significance of 
some additional RAS attributes when it comes to the analyti-
cal characterization of the qualitative RAS dynamics and 
their control for deadlock avoidance. These new attributes 
include 1) the absence of resources with nonunit capacities, 
2) the presence of cycling in the sequential logic of the RAS 
process types, and 3) the presence of RAS dynamics of an 
uncontrollable nature; this last feature can be further differ-
entiated into a) uncontrollability with respect to the exact 
timing of a certain resource allocation and b) uncontrollabili-
ty of the branching decisions of some underlying processes 
that possess alternate routings. We shall make extensive use 
of this taxonomy as we further detail the current theory on 
the RAS deadlock avoidance problem.

Modeling an RAS as a Finite State Automation: 
The Optimal Nonblocking Supervisor 
and Its Complexity

Modeling the RAS Dynamics 
as a Finite State Automaton
The most straightforward way to formally model the behav-
ioral dynamics of a given RAS U for the purpose of deadlock 
avoidance is by means of a (deterministic) finite state 

Table 1. An RAS Taxonomy [47].

Based on the Structure of the 
Process Sequential Logic

Based on the Structure of 
the Requirement Vectors

Linear: Each process is 
defined by a linear sequence 
of stages.
Disjunctive: A number of alter-
native process plans encoded 
by an acyclic digraph.
Merge–Split: Each process is a 
fork-join network.
Complex: A combination of the 
above behaviors.

Single Unit: Each stage 
requires a single unit from 
a single resource.
Single Type: Each stage 
requires an arbitrary num-
ber of units, but all from a 
single resource.
Conjunctive: Stages require 
different resources at 
arbitrary levels.
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automaton (FSA) [7], to be denoted by ( )G U  [47], [56]. The 
state space S  of this automaton consists of all of the p-di-
mensional nonnegative integer vectors s  representing the 
RAS states that are feasible with respect to the available re-
source capacities; that is, each component [ ]s l  of s  corre-
sponds to a processing stage kj l/N N  of U and reports the 
number of process instances executing this processing stage, 
while s satisfies the following constraints: 

, , , [ ] ( ) [ ] .s li m i C1 A
l

l i
1

$6 f #N=
p

=

/ (1)

The notation A lN^ h should be interpreted as the resource-al-
location vector associated with the processing stage that cor-
responds to the thl  component of the state vector .s  We also 
notice, for completeness, that the finiteness of the state set s
can be deduced from (1) and the nonzero nature of each re-
source-allocation vector .A lN^ h

The event set E  of the FSA ( )G U  consists of the events 
corresponding to: 1) the initiation (or loading) of a new process 
instance, 2) the advancement of these process instances among 
their different stages in a manner that is consistent with the 
sequential logic that defines these processes, and 3) the eventual 
termination (or unloading) of a process instance by its 
retirement from the system and the release of all the currently 
held resources. The transition function f  of the FSA ( )G U
formalizes the RAS dynamics that are generated by the 
aforementioned events. Furthermore, f  is a partial function 
since the occurrence of a certain event e E!  at a given state 
s S!  will be feasible only if 1) the considered state s avails of 
active process instances that can execute the contemplated event 
e and 2) the state sl that will result from the execution of e in s
satisfies the constraints of (1); the satisfaction of the first of these 
two conditions is characterized as process enablement of event e
in state s , while the satisfaction of the second condition is 
characterized as resource enablement of e in .s  The initial state 
s0 of the FSA ( )G U  is the state ,s 0=  i.e., the state where U is 
empty of any process instances; the same state also defines the 
unique marked state of ( ),G U  a fact that expresses the 
requirement for complete process runs. Finally, in the sequel, we 
shall also use the notation ft  to denote the natural extension of 
the state transition function f  to ,S E# )  where E)  denotes the 
set of all the finite strings of ,E  including the empty string .f
More specifically, for any state s S!  and the empty event 
string ,f ( , ) ,s sf f =t  while for any ,s S Ev! ! )  and 

, ( , ) ( ( , ), ) .s se E f f f ee v! v =t t  (In the last formula, it is 
implicitly assumed that ( , )s ef vt  is undefined if any of the one-
step transitions that are involved in the right-hand-side 
recursion are undefined.)

In the context of the modeling framework that is defined 
by the FSA ( ),G U  the feasible behavior of the RAS U is mod-
eled by the language ( )L G  generated by ( ),G U  i.e., by all 
strings Ev ! )  such that ( , )sf 0 vt  is defined. On the other 
hand, the desired—or, more formally, the admissible—behav-
ior of U is modeled by the marked language ( )L Gm  of the 
FSA ( );G U  since the set of marked states of ( )G U  is the sin-
gleton containing the initial state ,s0  the marked language 

( )L Gm  consists of exactly those strings ( )L Gv !  that lead 
back to the empty state .s0  To facilitate the subsequent discus-
sion, we also define the reachable subspace Sr  of ( )G U  by

: ( ) s.t. ( , )s s sS fS L G 0r 7 v/ ! !v =t" , (2)

and its coreachable subspace Ss  by

: s.t. ( , ) .s s sESS f 0s 7v v/ ! ! =) t" , (3)

Furthermore, we shall denote the respective complements of Sr

and Ss with respect to S by Srr  and ,Ssr  and we shall also use the 
notation , , ,, ,S x r r y s sxy ! !r r" ", ,  to denote the intersection of 
the corresponding sets Sx  and .Sy  In the context of the RAS-re-
lated literature, state coreachability has been historically charac-
terized as the property of state safety; hence, in the sequel, we 
shall tend to refer to the state set SS as the set of safe RAS states 
and, correspondingly, to the state set SSr  as the set of unsafe states.

Figure 4 provides the state transition diagram (STD) of the 
reachable subspace of the FSA ( )G U  corresponding to the 
RAS U that abstracts the qualitative dynamics of the buffer 
allocation taking place in Figure 1. Furthermore, the figure 
also depicts the separation of the reachable space Sr  into its 
safe and unsafe subspaces, Srs  and .Srsr

The Optimal Nonblocking Supervisor 
and Its Complexity
It is easy to see from all of the definitions provided in the 
previous paragraphs and the example of Figure 4 that the ad-
missible behavior for the RAS ,U  characterized by the 
marked language ),(L Gm  confines the FSA ( )G U  exactly in 
its subspace defined by .Srs  In the relevant terminology of 
DES theory, the subautomaton of ( )G U  that is induced by 
the state subset Srs  is known as the trim of ( ),G U  and it can 
be computed by the standard algorithms provided by qualita-
tive DES theory. Hence, a natural way to ensure the dead-
lock-free operation of a given RAS U is by first computing 
the trimmed subautomaton ( )G Uu  of the corresponding FSA 

( )G U  and subsequently implementing a logical controller 
that allows for the occurrence of any process and resource-
enabled transition in ( )G U  only if this transition also ap-
pears in ( ).G Uu  In fact, such an implementation of the 
necessary supervision for ensuring the deadlock-free opera-
tion of the RAS U is in line with the classical theory for the 
qualitative control of DES  known as Ramadge and Wonham 
(R&W) SCT [42]. This implementation is also associated 
with a notion of optimality since it establishes deadlock free-
dom while enforcing the minimal possible restriction to the 
feasible behavior of the underlying RAS. From the more ho-
listic viewpoint of the control framework of Figure 3, the 
minimal restrictiveness—or, equivalently, maximal permis-
siveness—of the applied logical control policy should be in-
terpreted as increased behavioral latitude for the controlled 
system that can potentially lead to an enhanced perfor-
mance. Furthermore, the corresponding DES theory pro-
vides additional results that characterize the minimally 
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restrictive deadlock avoidance policy (DAP) and support its 
effective computation in the form of a subautomaton of the 
FSA ( ),G U  even in the case where the underlying RAS U
exhibits uncontrollable behavior [7], [42]. Finally, all of the 
necessary algorithms for the computation of the policy-en-
coding subautomaton ( )G Uu  from the original FSA ( )G U  are 
of polynomial complexity with respect to the size of ( ),G U
where the latter is determined by the number of the states 
and the transitions of this automaton.

However, the effective deployment of the control scheme 
outlined in the previous paragraph is severely challenged by 
the fact that, for most practical RAS instantiations, the size of 
the FSA ( )G U  grows superpolynomially (actually, very) fast 
with respect to the size of .U  [Characteristically, we mention 
that, for a single-unit RAS ,U  where { }maxC Ci i/  and D
denotes the maximum number of stages supported by any 

single resource , , , ,R i m1i f=  the state space cardinality of
the corresponding FSA ( )G U  is 

.O C
C D m+`` j j

The quantity 

C
C D+` j

in this expression characterizes all of the possible ways to 
partition the C  units of capacity of any single resource type 
to the D 1+  options that are defined by its D  supporting 
stages and the pool of its idle units. On the other hand, the 
complete expression 

C
C D m+` j
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Figure 4. The STD for the reachable state space of the FSA ( )G U  that models the buffer allocation taking place in the manufacturing cell 
of Figure 1. The various RAS states are depicted graphically, with the three internal rectangles at each node representing the three work 
tables corresponding to resources , ,R R1 2  and R3  and with the annotation J jk  of these rectangles indicating the processing stage executed 
by the process instance that is currently loaded in the corresponding worktable. On the other hand, the considered RAS model ignores the 
buffering capacity of the AGV depicted in Figure 1 since this vehicle has only a facilitating role in the part transfers taking place among the 
system workstations. The blue arrow pointing at the empty RAS state q0  defines this state as the initial state for the RAS operation, while 
the thick borderline of the same state indicates its marked role in the RAS dynamics modeled by ( ).G U  The states depicted in red indicate 
the unsafe region S srr  of the considered FSA. The maximally permissive nonblocking supervisor for this FSA must confine the operation 
of the underlying RAS within the remaining set of (white and green) states by recognizing and preventing the transitions that cross the 
boundary between the safe and unsafe subspaces; these transitions are marked by red crossings in the figure.
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results from the fact that, in the considered RAS class, the 
entire RAS state space can be obtained by taking the cross-
product of the sets that characterize the potential alloca-
tions of each single resource type.] 

An alternative implementation of the maximally permis-
sive DAP could employ a one-step-look-ahead control 
scheme that determines the admissibility of any tentative 
transition by assessing the safety of the resulting RAS state. 
Such a control scheme avoids the explicit storage of the 
trimmed FSA ( ),G Uu  substituting the information contained 
in this FSA with the information provided by the online as-
sessment of the state safety. However, a straightforward im-
plementation of this approach is also practically intractable 
since it has been established in the relevant RAS literature 
that assessing the state safety of any given RAS state s is an 
NP-complete problem for all RAS classes of the taxonomy of 
Table 1. The first set of these complexity results appeared in 
the late 1970s, and they primarily addressed RASs with con-
junctive allocation [1], [19]. More recently, the works of [29] 
and [44] have also established that the problem of state safety 
remains NP-complete even in the case of linear, single-unit 
RASs with unit resource capacities. Also, the results of [44] 
establish that state safety is an NP-complete problem in the 
RAS abstracting the traffic of the guide path-based MHS and 
the free-ranging mobile agents discussed in the “Automation 
as a Resource Allocation Function: A Set of Motivating Ap-
plications” section; in these two cases, the relevant complexi-
ty analysis must take into consideration the further 
constraints for the valid sequences of the resource-allocation 
requests posed by any single process instance, which are im-
plied by the structure of the underlying guide path network 
and/or the employed tesselation.

Next we consider how the relevant research community 
has sought to circumvent the negative results regarding the 
superpolynomial complexity of the optimal DAP with re-
spect to the size of the underlying RAS. The presented de-
velopments will reveal that, in spite of these results, we are 
currently able to provide very tractable implementations of 
the maximally permissive nonblocking supervisor for 
many RASs of practical size and interest. Furthermore, the 
development of the presented results has also substantially 
extended and strengthened the corresponding DES theory.

Dealing with the Computational Challenges 
of the Optimal Nonblocking Supervisor

Polynomial-Kernal Suboptimal 
Nonblocking Supervisors 
As is the case with any other problem shown to be of an NP-
complete or NP-hard nature, one of the first reactions of the re-
search community dealing with the RAS deadlock avoidance 
problem was to seek suboptimal (i.e., nonmaximally permis-
sive) supervisors with more manageable computational re-
quirements during their design and operational phases. A 
systematic way to formally characterize this endeavor is 
through the concept of the polynomial-kernel (PK) nonblock-

ing supervisor. This is essentially a one-step-look-ahead control 
scheme such as the one described in the previous section for 
the implementation of the maximally permissive DAP, where 
the test for safety has been substituted by the test for another 
state property P  of polynomial complexity with respect to the 
underlying RAS size | |.U  Furthermore, to lead to a correct DAP, 
1) the selected property P  must be satisfied by the initial RAS 
state s0  and 2) the subspace induced by the RAS reachable 
states satisfying P  must be a strongly connected component of 
the reachable state space. The second requirement is important 
to avoid policy-induced deadlocks or livelocks, i.e., situations 
where the considered policy takes the system to a state, or a set 
of states, from which there is no policy-admissible path back to 
the empty state .s0  The structure of the admissible subspace of 
a correct PK-DAP for the RAS corresponding to the manufac-
turing cell of Figure 1 is depicted in Figure 4 by the subgraph 
induced by the green nodes in the figure. More specifically, the 
depicted STD corresponds to an implementation for the con-
sidered RAS of the resource upstream neighborhood policy in-
troduced in [25] and [26]. The safe states ,q5 , ,q q8 13  and q14

do not satisfy the defining property P  of the considered policy 
and, therefore, they are not admissible by it.

As a more complete example of a PK-DAP, we briefly dis-
cuss a policy that has come to be known as Banker’s algorithm
in the relevant literature. The defining ideas for Banker’s algo-
rithm can be traced back to Dijkstra’s work [12]. Here we dis-
cuss an implementation of this policy for the RAS class of 
conjunctive/disjunctive RAS in the taxonomy of Table 1 [14], 
[27]. The aforementioned property P  that defines Banker’s al-
gorithm for this class of RAS is that of an ordered state. A state 
s is ordered if there exists an ordering for its active process in-
stances such that the thi  process instance according to this or-
dering can advance all the way to completion utilizing only its 
currently allocated resources, the pool of the free resources in 
state s, and the resources allocated to the first i 1–  process in-
stances in state s (which will have been released upon the ear-
lier completion of these processes). Furthermore, assessing the 
admissibility of a given state s  by Banker’s algorithm boils 
down to the identification of an ordering for the active process 
instances in s that satisfies the aforementioned property. Such 
an ordering, if it exists, can be identified by a greedy search 
that seeks to drive to completion each of the active processes, 
one at a time, while releasing the resources allocated to these 
processes in state s back to the pool of free resources. Since 
every such process completion increases monotonically the 
pool of the free resources, there is no need for backtracking in 
the aforementioned search. But then, the entire search process 
can be performed with a computational cost that is polynomi-
al with respect to the size of the underlying RAS. Obviously, 
not every safe state is ordered, but practical experience with 
the implementation of Banker’s algorithm in many application 
contexts has revealed that the algorithm can admit a pretty 
large part of the subspace .Srs  (For example, for the RAS de-
fined by Figures 1 and 4, the presented version of Banker’s al-
gorithm will admit the entire reachable and safe subspace ,Srs

i.e., the subspace admitted by the maximally permissive DAP.) 
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The PK-DAPs that are currently available can address arbi-
trary resource allocation (i.e., conjunctive RAS in the taxonomy 
of Table 1), but, in terms of the process-defining logic, they pri-
marily support process types that evolve as atomic entities 
throughout their execution. Besides Banker’s algorithm, some 
of the best-known policies of this type can be found in [2], [13], 
[25], [26], [28], and [40]. In general, it can be argued that the 
identification of a pertinent property P  that can lead to a cor-
rect PK-DAP is more of an art. On the other hand, in the case 
of RASs with no cyclic behavior in their process types, formal 
correctness proofs for PK-DAPs, defined by a certain property 

,P  can be structured as an inductive argument that establishes: 
1) the satisfaction of property P  by the initial state s0 and 2) the 
existence of policy-admissible transitions for every RAS state s
that satisfies property .P  Furthermore, in the “Coping with the 
RAS Deadlock in the Petri Net Modeling Framework” section, 
we discuss a methodology that automates the correctness eval-
uation of tentative PK-DAPs for RASs with no cyclic behavior 
in their process types by means of certain tests that take the 
form of a mathematical programming formulation.

Closing this discussion on PK-DAPs for the considered 
RAS, we also notice that the disjunction of a set of properties 

, ...,P Pl1  defining correct PK-DAPs for a given RAS ,U  is 
another correct PK-DAP for U as long as the number of the 
employed properties, ,l  is polynomially related to the RAS 
size | |.U  The subspace of Srs  that is admitted by this new dis-
junctive policy is the union of the subspaces of Srs  that are 
admitted by the constituent policies. Hence, by utilizing a set 
of PK-DAPs for a given RAS, one can obtain a tighter 
(under) approximation of the maximally permissive DAP. 
The significance of this remark is further increased by the 
fact that some available PK-DAPs are defined through the 
imposition of some arbitrary ordering on the underlying re-
source set, with different resource orders leading to the ad-
missibility of different parts of the underlying state space. For 
a comprehensive discussion on the existing set of PK-DAPs 
and the systematic exploitation of all of the aforementioned 
possibilities, the reader is directed to [47, Chs. 4 and 5].

RAS Admitting Optimal Nonblocking 
Supervision of Polynomial Complexity
A second typical reaction to an NP-completeness or NP-hard-
ness result is the quest for a special structure of practical interest 
that can lead to polynomial-complexity solutions for the prob-
lem at hand. In fact, the seminal works in [1] and [19], which 
established the first NP-completeness results for the problem of 
the RAS state safety, also discussed certain conditions on the se-
quences of the resource-allocation requests posed by the RAS 
process types that would lead to a safety assessment of polyno-
mial complexity with respect to the size of the underlying RAS. 
Generally speaking, these conditions imply the existence of eas-
ily identifiable transition sequences leading to a monotonic in-
crease of the pool of free resources in the RAS behavioral space 

( ),G U  which, as in the case of the ordered RAS states, further 
enables a greedy search for a transition sequence that will ter-
minate all of the active process instances.

A more recent line of results leading to polynomial-
complexity implementations of the maximally permissive 
DAP for certain RAS classes of the taxonomy of Table 1 is 
based on the essential differentiation between the notions of 
an unsafe state and a deadlock. We remind the reader that, in 
the considered RAS context, a deadlock has been defined as 
an RAS state containing a subset of active process instances 
that block each other in a circular manner since each of them 
holds resources requested by some other processes in the set 
to advance to their next processing stages. On the other hand, 
the set of unsafe states of a given RAS contains all of its dead-
lock states but might also contain a subset of states that do not 
contain any deadlocked processes; such an unsafe state is ex-
emplified by state q15  in the STD of Figure 4. Unsafe states 
containing no deadlocked processes are characterized as 
deadlock-free unsafe states. The realization of the existence of 
deadlock-free unsafe states becomes essential for the com-
plexity analysis of the considered RAS when noticing that, for 
most of the RAS classes of the taxonomy of Table 1, the detec-
tion of a deadlock state is a task of polynomial complexity 
with respect to the underlying RAS size; this result is especial-
ly true for the class of disjunctive/conjunctive RAS, and a rele-
vant deadlock detection algorithm is presented in [47]. 
Hence, it can be inferred that, for the aforementioned RAS 
class, the NP-completeness of state safety is due to the pres-
ence of deadlock-free unsafe states. On the other hand, if it 
could be established that, for certain subclasses of this RAS 
class, there are no deadlock-free unsafe states, then the test for 
state safety could be effectively substituted by the correspond-
ing test for deadlock, and assessing the state safety would be-
come a task of polynomial complexity with respect to the 
corresponding RAS size. Indeed, such results are available for 
certain subclasses of the disjunctive/single-unit RAS that are 
defined by easily testable conditions on the RAS structure. A 
more concrete example, and one of the first results of this type 
appearing in the literature, is stated in [49] and establishes the 
absence of deadlock-free unsafe states for any disjunctive/sin-
gle-unit RAS where every resource has at least two units of ca-
pacity and the RAS process types exhibit no internal cycling. 
From a more practical standpoint, this result implies that the 
problem of establishing deadlock-free buffer allocation in 
flexibly automated production cells, exemplified in Figure 1, 
is an easy problem as long as every workstation has a buffer 
with at least two slots. Also, the more recent work in [50] has 
exploited the aforementioned result to develop an asynchro-
nous, distributed coordination protocol able to ensure colli-
sion-free and nonblocking traffic for the systems of the 
free-ranging mobile agents that were described in the “Auto-
mation as a Resource Allocation Function: A Set of Motivat-
ing Applications” section. Furthermore, the works in [15] and 
[16] have further established that the aforementioned require-
ment for nonunit resource capacities must be satisfied only by 
a critical subset of the resource types of the considered dis-
junctive/single-unit RASs, while additional extensions of all of 
these results are developed in [29]. A comprehensive treat-
ment of the topic of RASs admitting maximally permissive 
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nonblocking supervision of polynomial complexity with re-
spect to the underlying RAS size is provided in [47, Ch. 3].

The Optimal DAP as a Classifier of the RAS States
While the two research lines discussed in the previous sec-
tion were driven by rather typical reactions to the estab-
lished NP-hardness of the maximally permissive DAP, 
tremendous progress with respect to the practical imple-
mentation of this policy to RAS instances of a very large size 
and practical significance has been attained in recent years 
by a more aggressive approach that treats this complexity re-
sult as a worst-case result and has tried to pursue the de-
ployment of the maximally permissive DAP nevertheless, 
hoping for a more benign empirical complexity. A more de-
tailed positioning of the rationale that underlies this new ap-
proach and drives its major developments is as follows: The 
maximally permissive DAP, and, in fact, any other supervi-
sor developed by R&W SCT, is essentially a classifier that di-
chotomizes the state set S  of the underlying FSA ( )G U  into 
its admissible and inadmissible subsets. While computing 
this dichotomy for any given RAS U  is a computationally 
difficult task, in general, it might still be possible to contain 
the difficult part of this computation in an off-line stage and 
eventually rehash/encode the obtained results in a classifica-
tion mechanism that will enable a tractable online assess-
ment of the admissibility of any given RAS state. Some 
important issues that must be addressed for a complete real-
ization of this idea are 1) the specification of classification 
mechanisms (also known as the architectures of the sought 
classifiers) able to provide an effective representation of the 
corresponding state space dichotomy for any instance of the 
considered RAS classes and 2) the design of effective and 
computationally efficient algorithms for the computation of 
parsimonious implementations of the sought classifiers for 
any given instance from the considered RAS class.

As in the case of the research lines described in the previ-
ous sections, this new research program has targeted primar-
ily or more explicitly the RAS class of conjunctive resource 
allocation and atomic process instances. In this context, the 
aforementioned tasks regarding the specification and the de-
ployment of the sought classifiers are primarily defined by 
the vector structure of the underlying RAS state, introduced 
in the “Modeling an RAS as a Finite State Algorithm: The 
Optimal Nonblocking Supervisor and Its Complexity” sec-
tion, and they are further facilitated by the additional struc-
tural and behavioral properties of the considered RAS. 
Furthermore, for a systematic exposition of the currently 
available results, it is pertinent to differentiate the employed 
classification schemes into parametric and nonparametric 
classifiers, and this is the approach that we shall adopt in the 
following discussion.

The specification of a parametric classifier able to repre-
sent the maximally permissive DAP for the aforementioned 
RAS class is based on some rather classical results of classifi-
cation theory [39] asserting that any finite set of integer vec-
tors of finite dimensionality can be dichotomized by a 

two-layered set of linear inequalities. In the considered appli-
cation context, the inequalities employed by the first layer are 
imposed on the RAS state, while the inequalities employed by 
the second layer are defined with respect to the indicator vari-
ables that characterize the satisfiability of the first-layer in-
equalities. Alternatively, the second layer of the classification 
logic can be replaced by an appropriately defined Boolean 
function of the same set of indicator variables.

The practical construction of parametric classifiers express-
ing the maximally permissive DAP for any given RAS instance 
U is substantially facilitated by the following two facts: 
1) A monotonicity property that is possessed by the state safe-

ty concept in disjunctive/conjunctive RAS and postulates 
that if state s is no greater, componentwise, than state ,sl
and state sl is safe, then state s is also safe. This property 
enables the restriction of the coefficients of the inequalities 
employed by the sought classifier to nonnegative values, 
and, more importantly, it also enables the computation of a 
pertinent classifier that will provide effective representation 
of the sought dichotomy of the admissible and inadmissi-
ble subspaces by considering explicitly in this computation 
only the maximal safe and the minimal unsafe states. 

2) An additional simplification in the design of the sought 
classifiers stems from the realization that, in any given RAS 

,U  the process instances executing certain processing stag-
es that will never contribute to the formation of a deadlock 
can be projected away during the assessment of state safety. 
[As a more concrete example of such stages, the reader can 
consider the terminal stage(s) of any given process type.] 
The existing methodology for the computation of the con-
sidered classifiers identifies and removes these redundant 
state components in an automated manner.
The literature also shows results that characterize the po-

tential existence and the computation of parametric classifiers 
for the representation of the maximally permissive DAPs that 
consist only of a single layer of linear inequalities on the un-
derlying RAS state; such classifiers are characterized as linear. 
Obviously, linear classifiers are simpler to analyze and con-
struct than the generic two-layered classifiers described in the 
previous paragraphs. But a key condition for the existence of 
such a classifier for any given RAS U is that the convex hull of 
the safe states of this RAS does not contain any unsafe states. 
On the other hand, it can also be shown that this requirement 
for linear separability of the safe and unsafe subspaces will al-
ways be satisfied by RASs with binary state spaces. RASs with 
binary state spaces; such RASs arise whenever each process-
ing stage requests at least one resource type of unit capacity.

Finally, the computation of practical, parsimonious para-
metric classifiers for the considered classification task has 
substantially benefited from the correspondence of this com-
putation to the minimal set covering problem [55]. In the case 
of linear classification, the connection of the design of a struc-
turally minimal classifier to the minimal set covering problem 
is easily established by corresponding each candidate inequal-
ity separating some subset of the (minimal) unsafe states from 
the set of (maximal) safe states to the subset of the separated 
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(minimal) unsafe states. Then, a structurally minimal linear 
classifier—i.e., a classifier that uses a minimal number of lin-
ear inequalities—for the representation of the target DAP is a 
complete cover of the set of (minimal) unsafe states that uti-
lizes a minimum possible set of the partial covers as defined 
previously. In the nonlinear case, the specification of the par-
tial covers of the (minimal) unsafe states by the employed 
classification mechanism is a little more complicated, but the 
primary notion of developing a complete cover for the set of 
(minimal) unsafe states remains the same. The correspon-
dence of the considered classification problem to a minimal 
set covering problem has provided efficient customized com-
binatorial optimization algorithms for computing structurally 
minimal instantiations of the sought classifiers for any given 
RAS instance as well as heuristics with guaranteed perfor-
mance bounds that can replace the aforementioned algo-
rithms in the case of larger problem instances that would 
render these algorithms computationally intractable.

Nonparametric classifiers for the representation of the 
maximally permissive DAP in the considered RAS classes op-
erate on the idea that the necessary guarding against transi-
tions from the safe to the unsafe RAS state space can be 
effected, in principle, by storing the entire set of unsafe states 
that could result from such transitions and employing a one-
step-look-ahead scheme that will block any transition leading 
to one of these states. The corresponding set of states is known 
as the set of boundary unsafe states in the relevant literature, 
and it can be stored and searched efficiently through the em-
ployment of advanced data structures that are known as TRIEs
[5] and are conceptually similar to the binary decision dia-
grams [6] that have been used extensively in symbolic compu-
tation [9]. Furthermore, the aforementioned monotonicity of 
state safety in the considered RAS classes implies that the en-
tire set of boundary unsafe states can be characterized only by 
its minimal elements, a fact that dramatically reduces the in-
formation that must be explicitly stored in the aforementioned 
data structures.

The literature also avails of very efficient algorithms 
for the identification of the minimal unsafe states and the 
construction of the TRIE data structures that must be em-
ployed during the online assessment of the state safety. The ef-
ficiency of these algorithms stems from the characterization 
of the state unsafety in the underlying RAS classes as unavoid-
able absorption to some RAS deadlock; hence, these algo-
rithms manage to reconstruct the entire unsafe state space by 
first enumerating programmatically all of the RAS deadlocks 
and subsequently retrieving all of the deadlock-free unsafe 
states, including all of the boundary states, through a perti-
nent backtracing from the (re)constructed deadlocks. The 
tractability of such a computational scheme is further en-
hanced through an explicit focus upon minimal deadlocks 
and deadlock-free unsafe states, (in more technical terms, 
these are deadlocks or deadlock-free unsafe states such that 
the removal of any single process instance from them will 
turn them into safe states) and/or the employment of symbol-
ic techniques in the aforementioned computation.

Finally, the ability to represent the entire set of the bound-
ary unsafe states only through its minimal elements, when 
combined with the aforementioned capability to retrieve 
these minimal unsafe states through backtracing from the 
minimal deadlocks, also enables the effective implementation 
of the maximally permissive DAP even for RAS with infinite 
state spaces. The finiteness of the target sets of the minimal 
deadlocks and the minimal unsafe states for these RAS classes 
is guaranteed by the so-called Dickson’s lemma [11]. Such a 
particular class investigated in the literature is the class of RAS 
modeling parallel programs with reader/writer locks, where 
the number of process instances that could simultaneously ac-
cess a resource in the reading mode can be arbitrarily large. A 
more expansive and systematic treatment of the representa-
tion of the maximally permissive DAP as a parsimonious 
classifier of the underlying RAS state space, together with a 
comprehensive bibliography of the corresponding results, can 
be found in [17], [37], and [43].

Coping with the RAS Deadlock in the 
Petri Net Modeling Framework
As we have seen in the “Modeling an RAS as a Finite State Al-
gorithm: The Optimal Nonblocking Supervisor and Its Com-
plexity” section, the FSA-based representation of the 
behavioral RAS dynamics with respect to deadlock can pro-
vide a succinct and very intuitive characterization of the prob-
lem of deadlock avoidance and the corresponding optimal 
policy, but the practical computational power of this represen-
tation is substantially limited by the very large size of the in-
volved FSAs. An additional limitation of the FSA-based 
representation of the RAS behavior is that it fails to capture any 
information on the mechanisms that generate the dynamics 
that are represented by the considered FSA and its corre-
sponding STD. Hence, in an effort to develop a more profound 
understanding of these mechanisms, the relevant research 
community has employed additional representations that for-
malize the underlying system structure and enable a systemat-
ic analysis of the impact of this structure on the generated 
behavior; this type of analysis of the RAS deadlock problem 
has come to be known as structural analysis.

Historically, attempts to perform a structural analysis of 
the RAS deadlock problem preceded the formal investigation 
of this problem in the FSA modeling framework. These early 
attempts tried to represent and trace the formation of the cir-
cular waiting patterns that correspond to an RAS deadlock 
through various graphical structures that express the (evolv-
ing) dependencies among the system resources determined 
by their (current) allocation to the running processes and the 
pending requests of these processes. Similar graphical struc-
tures have been instrumental in the development of the re-
sults on the absence of deadlock-free unsafe states for certain 
RAS classes that were covered in the “RAS Admitting Opti-
mal Nonblocking Supervision of Polynomial Complexity” 
section. In the following discussion, we shall focus primarily 
on the structural analysis of the RAS deadlock that relies on 
the Petri net (PN) modeling framework [36] since this area 
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has been especially active and influential in the relevant litera-
ture over the last three decades. More generally, together with 
FSAs, PNs are the second major modeling framework used by 
the qualitative DES theory, and they are particularly recog-
nized for the richness and clarity of their semantics. These se-
mantics enable a concise and lucid representation of the 
behavioral dynamics of the modeled DES while avoiding an 
explicit enumeration of the corresponding state space. In the 
sequel, we shall assume that the reader is familiar with the 
basic PN modeling framework; some excellent introductions 
to this subject are provided in [7] and [36].

In the PN modeling framework, an RAS U is represented 
by a process-resource net ,N  consisting of a set of process 
subnets modeling the various process types of the RAS and a 
set of resource places that model the availability of the system 
resources. The aforementioned process subnets are intercon-
nected through the resource places, and the corresponding 
connectivity models the allocation of the system resources to 
the running process instances. One of the first key results in 
the theory of process-resource nets was the connection of the 
concept of the RAS deadlock in disjunctive/single-unit RAS 
to the concept of the empty siphon. This concept and its con-
nection to the RAS deadlock are exemplified in Figure 5, 
which depicts the empty siphon characterizing the RAS dead-
lock of Figure 1. The seminal result in [13] established that a 
disjunctive/single-unit RAS with no cycling in its process 
types will possess no RAS deadlocks in its behavior (or that 
the corresponding process-resource net will be live and re-
versible) if and only if there are no reachable empty siphons 
for the corresponding process-resource net. But the presence 
of an empty siphon in any given marking M  of some PN N
can be easily tested by algorithms of polynomial complexity 
with respect to the size of ,N  where the latter is defined by 
the size of the bipartite digraph that defines N  [8]. Further-
more, the work in [8] showed that, in the case of bounded 
PNs, these algorithms can be converted to a mixed-integer 
programming (MIP) formulation employing a number of 
variables and constraints that are polynomially related to the 
size of PN ;N  in the resulting test, the main outcome is com-
municated by the optimal value of the MIP formulation, 
while, in the case that the tested marking M  contains empty 
siphons, the returned optimal solution also enables the identi-
fication of the maximal empty siphon in .M  The MIP formu-
lation mentioned earlier becomes even more useful when the 
tested marking M  is converted into a variable that lives in the 
reachability space of the corresponding net ;N  in this way, 
the resulting MIP formulation becomes an instrument for 
testing the presence of an empty siphon over the entire reach-
ability space of .N  (Since, however, the analytical character-
ization of the reachability space of a given PN N  by a set of 
linear inequalities is a challenging task, in general, one has to 
resort to overapproximations of this set that are obtained by 
means of the state equation of the net and/or its place invari-
ants. The employment of such an overapproximation raises 
the possibility of detecting empty siphons that do not belong 
to a reachable marking and turns the overall test into a 

sufficiency test for the absence of empty siphons.) When 
combined with the results in [13], the aforementioned MIP  
formulation eventually becomes a verification tool for the ab-
sence of deadlock in any instance from the corresponding 
subclass of disjunctive/single-unit RAS.

The extension of these results to broader RAS classes is 
quite a nontrivial task since it must account for the nonuni-
formity of the posed resource requests with respect to any sin-
gle resource type. This nonuniformity can give rise to 
deadlocking situations where the resources that are entangled 
in the deadlock have a nonzero slack capacity, but yet this ca-
pacity is not adequate for satisfying the requests of the dead-
locked processes. Furthermore, in this more general case, the 
blocking resources might not be part of a deadlock but of a 
livelock, where the slack capacity of these resources can be 
used repetitively to satisfy the requests of other running pro-
cesses that are not entangled in the deadlock. These complica-
tions can be effectively circumvented by: 1) extending the 
notion of empty siphon to that of deadly marked siphon and 
2) searching for deadly marked siphons that interpret any 
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Figure 5. The process-resource net modeling the buffer allocation 
that takes place in the example manufacturing cell of Figure 1. 
The two process types corresponding to J1  and J2  are modeled 
by the two circuits annotated by black lining in the depicted net. 
In particular, the process places , , , , ,p i j1 2 1 2 3ij = =  model the 
corresponding processing stages of the underlying RAS, while 
the idle places , ,p i 1 2i0 =  model the external environment for 
the two process types. The resource availability is traced by the 
marking of the resource places , ,R R1 2  and .R3  The particular 
marking depicted in this figure corresponds to the RAS deadlock 
state depicted in Figure 1. In the transitional dynamics of the 
depicted net, the occurring deadlock is manifested by the 
presence of the set of empty places , , , ,S p p R R12 23 1 2= " ,  which is 
annotated in yellow. Letting S:  (respectively, S :) denote the set 
of transitions that have an output (respectively, input) place in S, 
it can be verified that, in the considered case, .S S: :3  This last 
property renders S  a siphon. Furthermore, since all places of S
are empty, S  is an empty siphon. But then, all the transitions in 
S :  are disabled in the considered marking, since they require at 
least one token from some place in .S  Moreover, any transition 
in S:  that could bring new tokens in S  is part of ,S :  and 
therefore, disabled. Hence, it can be concluded that the depicted 
empty siphon S  will remain empty throughout the entire 
evolution of the dynamics of the considered process-resource 
net, and the transitions in S :  will be dead during this evolution.
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given RAS deadlock in a modified reachability space that is 
obtained from the original reachability space through a perti-
nent projection. A complete treatment of these developments 
can be found in [40], [46], and [47], while some additional re-
sults of a similar nature can be found in [24], [33], and [52]. 
All of these works also provide accompanying MIP formula-
tions that can function as verification tools for the deadlock 
freedom of the corresponding RAS classes.

In certain cases, the structural characterizations of the RAS 
deadlock and the corresponding MIP formulations can also be 
used for the synthesis of correct DAPs for the considered RAS. 

Such an approach is especially amenable in the case of DAPs 
that can be expressed as a set of inequalities on the marking of 
the underlying process-resource net since the seminal works in 
[18] and [35] have established that these inequalities can be 
enforced upon the underlying PN by the superposition to this 
net of a set of additional places—known as monitor places—that 
play a role very similar to that of the resource places in the pro-
cess-resource nets. Hence, if the PN that results from the super-
position to a process-resource net of a set of monitors represent-
ing a tentative DAP falls within a class of process-resource nets 
whose liveness and reversibility are equivalent to the absence of 
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Figure 6. (a) Computing the maximally permissive DAP for the RAS of Figure 1 through the incremental synthesis approach that is presented 
in [34]. The approach starts with the solution of a MIP formulation that assesses the presence of minimal empty siphons in the dynamics of 
the original process-resource net of Figure 5. The solution of this formulation could detect either of the two minimal deadlocks corresponding 
to the RAS states q16  and .q17  Each of these two deadlocks can be eliminated from the dynamics of the process-resource net by enforcing 
upon these dynamics the respective inequalities ( ) ( )M p M p 112 21 #+  and ( ) ( ) .M p M p 111 22 #+  It is also important to notice that each of 
these inequalities does not eliminate only the corresponding deadlock state, but also any other state that includes the considered deadlock; in 
this figure, the state subsets that are eliminated by each of these two inequalities, are respectively indicated by the blue and the green blobs 
in the depicted STD. (b) The two inequalities provided in the caption of Figure 6(a) are enforced on the dynamics of the original process-
resource net through the corresponding blue and green monitor places that can be constructed using the theory in [35]. The augmented 
net that is obtained from the addition of these monitor places remains an ordinary process-resource net, and therefore, its liveness and 
reversibility can still be tested through the absence of empty siphons. The solution of the relevant MIP formulation reveals an empty siphon 
that corresponds to the unsafe state q15  [see Figure (6a)], which in the dynamics of the augmented process-resource net has turned into a 
policy-induced deadlock. This new empty siphon can be eliminated through the imposition of the marking inequality ( ) ( ) ,M p M p 111 21 #+
that is implemented by the red monitor place of the depicted net. The evaluation of this new process-resource net through the corresponding 
MIP formulation reveals the absence of any further empty siphons, and establishes its liveness and reversibility. It is also important to notice 
that the constructed monitors eliminate all the unsafe states of the net while retaining all of its safe states. Hence, the augmented net depicted 
in the figure constitutes a PN-based representation of the maximally permissive DAP for the RAS of Figure 1. (continued)
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deadly marked siphons, then the assessment of the policy cor-
rectness can be performed automatically through the corre-
sponding MIP formulation. The literature also avails of endeav-
ors for an incremental synthesis of a correct DAP for a given 
RAS, through: 1) the employment of the aforementioned MIPs 
for the detection of deadly marked siphons in the relevant 
reachability space (also known as potential deadlocks), 2) the 
elimination of the identified potential deadlocks from the net 
dynamics through a set of pertinent inequalities enforced on the 
net marking by a set of monitor places, and 3) the (re)

assessment of the augmented net for absence of such badly 
marked siphons. Clearly, if successful, such an approach can 
provide a correct DAP for the considered RAS while avoiding 
any explicit enumeration/exploration of the underlying state 
space. In the case of disjunctive/conjunctive RAS with no 
cycling in their process types and binary state spaces, such an 
incremental synthesis has been shown to be capable of comput-
ing even the maximally permissive DAP [34]. In fact, the results 
in [34] are applicable even in the case of disjunctive/conjunctive 
RAS with binary state spaces and cyclic behavior for the RAS 
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Figure 6. (continued) Computing the maximally permissive DAP for the RAS of Figure 1 through the incremental synthesis approach 
that is presented in [34]. The approach starts with the solution of a MIP formulation that assesses the presence of minimal empty 
siphons in the dynamics of the original process-resource net of Figure 5. The solution of this formulation could detect either of 
the two minimal deadlocks corresponding to the RAS states q16  and .q17  Each of these two deadlocks can be eliminated from 
the dynamics of the process-resource net by enforcing upon these dynamics the respective inequalities ( ) ( )M p M p 112 21 #+  and 

( ) ( ) .M p M p 111 22 #+  It is also important to notice that each of these inequalities does not eliminate only the corresponding deadlock 
state, but also any other state that includes the considered deadlock; in this figure, the state subsets that are eliminated by each 
of these two inequalities, are respectively indicated by the blue and the green blobs in the depicted STD. The two aforementioned 
inequalities are enforced on the dynamics of the original process-resource net through the corresponding blue and green monitor 
places that can be constructed using the theory in [35]. The augmented net that is obtained from the addition of these monitor 
places remains an ordinary process-resource net, and therefore, its liveness and reversibility can still be tested through the absence of 
empty siphons. The solution of the relevant MIP formulation reveals an empty siphon that corresponds to the unsafe state ,q15  which 
in the dynamics of the augmented process-resource net has turned into a policy-induced deadlock. This new empty siphon can be 
eliminated through the imposition of the marking inequality ( ) ( ) ,M p M p 111 21 #+  that is implemented by the red monitor place of 
the depicted net. The evaluation of this new process-resource net through the corresponding MIP formulation reveals the absence of 
any further empty siphons, and establishes its liveness and reversibility. It is also important to notice that the constructed monitors 
eliminate all the unsafe states of the net while retaining all of its safe states. Hence, the augmented net depicted in the figure 
constitutes a PN-based representation of the maximally permissive DAP for the RAS of Figure 1.
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process types as long as the routing decisions of these process 
types are independent of the underlying resource-allocation 
function and the imposed DAP; this requirement can be 
observed by treating the process routing as uncontrollable by 
the designed policy. Furthermore, extensive computational 
experimentation with a series of pretty sizable RASs has also 
demonstrated the scalability and the computational tractability 
of the method. Figure 6 demonstrates the application of this 
incremental synthesis method for the development of a set of 
linear inequalities—or a linear classifier—and the correspond-
ing monitor places implementing the maximally permissive 
DAP for the example RAS of Figure 1. On the other hand, it is 
also true that the application of this method to the computation 
of the maximally permissive DAP for RASs with nonbinary 
state spaces is practically limited by the previously discussed 
potential inability to represent this DAP by a set of linear 
inequalities on the RAS state.

We close our discussion on the existing results regarding the 
structural characterizations of the RAS deadlock through the 
concept of the PN siphon, and the implications of these charac-
terizations for the analysis and control of the relevant RAS be-
havior, by briefly mentioning an additional line of research that 
has sought to employ these structural characterizations to pro-
vide some explanation for the observed possibility of ensuring 
sufficient control of all the potential deadlocks of a given RAS 
by controlling explicitly only a limited subset of them. The re-
sults of this line can be traced in [32] and [48], while the work 
in [32] has also applied these results in a control-synthesis pro-
cess through the introduction of the concept of elementary si-
phons. (Obviously, a straightforward alternative explanation for 
these observed dependencies among the RAS deadlocks is pro-
vided by the classification theory that is discussed in the “The 
Optimal DAP as a Classifier of the RAS States” section, and, in 
particular, the notion of covering the RAS unsafe states that is 
effected by the classifying inequalities.)

Going Forward
It should be evident from the entire discussion of the previous 
parts of this article that the RAS concept and its accompanying 
theory constitute a well-established theme in the academic re-
search community. This discussion also reveals the method-
ological richness and the analytical and computational 
strength that characterize the existing developments in this 
area. The presented results offer rigorous and structured solu-
tions to some ubiquitous problems that must be addressed by 
the engineering community as it tries to increase the automa-
tion levels for a broad spectrum of technological applications 
with ever increasing operational scale and complexity. In par-
ticular, the “Modeling an RAS as a Finite State Algorithm: The 
Optimal Nonblocking Supervisor and Its Complexity” and 
“Dealing with the Computational Challenges of the Optimal 
Nonblocking Supervisor” sections, on the past developments 
regarding the RAS deadlock problem and its efficient resolu-
tion through the deployment of the maximally permissive 
DAP or some good approximation to this policy, demonstrate 
how automation-related research can benefit from the effective 

utilization of the existing formal methods for behavioral verifi-
cation and synthesis. These two sections also show how the 
RAS-related research has contributed to the broader DES theo-
ry by capitalizing upon the special structure and the more con-
crete insights that are offered by the target application domains.

The previous discussion also unveils a series of directions 
in which the current RAS theory can be extended and 
strengthened, and some important open challenges that must 
be systematically addressed by the relevant research commu-
nity to eventually materialize the control paradigm that is epit-
omized by Figure 3. Hence, when it comes to the behavioral 
RAS theory, one can consider the further development of the 
existing theory to address more complex classes and behaviors 
of the RAS taxonomy presented in the “The RAS Modeling 
Abstraction, the Corresponding Control Paradigmn and an 
RAS Taxonomy” section, than the usually studied class of dis-
junctive/conjunctive RAS. More specifically, while the cur-
rently existing results can provide liveness characterization and 
assessment for these broader RAS classes, there is a remaining 
need for methodology that will support the expedient synthe-
sis of the maximally permissive DAP for these RASs or some 
pertinent approximations of this policy. One can also consider 
the extension of the basic RAS behavioral control problem 
addressed in this article by considering application environ-
ments that provide only partial observability of the underlying 
RAS function or systems that, due to their scale and/or struc-
ture, might require more distributed supervision than the cen-
tralized control scheme of Figure 3. The reactive or proactive 
accommodation of random capacity losses with respect to cer-
tain resources due to the occurrence of unexpected events is 
another issue that has received only limited attention in the 
current RAS literature. All these extensions can be formalized 
through relevant results in the existing DES theory, but it is 
also expected that, as in the case of the past developments, the 
special and rich structure of the RAS concept will enable cus-
tomized analyses and solutions for this set of problems as well.

The RAS behavioral control problem can also be extend-
ed by extending the set of specifications that it addresses be-
yond the issue of deadlock avoidance and the establishment 
of nonblocking behavior. As a more concrete example of 
such an extension, one can consider the enforcement of a 
production ratio constraint for the manufacturing cell of Fig-
ure 1, stipulating that the two supported product types must 
be produced in lockstep or that the difference of the cumula-
tive productions for these two products should observe cer-
tain bounds at any point in time. Then, one can seek to 
characterize and compute the maximally permissive policy 
that ensures the liveness of the considered RAS while observ-
ing this additional constraint. The resulting supervisory con-
trol problem can be addressed using the notion of fairness in 
the relevant DES theory, and a first set of results for this 
problem is provided in [23]. Other behavioral constraints of 
a similar flavor can arise, for instance, by the need to observe 
certain formations or some patrolling procedures by a fleet of 
mobile agents and by the enforcement of aging and other 
priority schemes in the resource allocation taking place 
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among the various threads of a multithreaded software. Re-
cently, the work in [22] and [21] sought to extend the basic 
PN-based representation of the considered RAS to address 
time-related constraints.

But the primary open challenge for the effective complemen-
tation of the RAS control framework that has been delineated in 
this article is the effective and efficient resolution of the RAS 
performance control problem. Any pertinent solution to this 
new RAS control problem must integrate all of the existing re-
sults of the corresponding logical control theory and 
remain computationally tractable. It must also account for all of 
the stochasticities that are encountered in the underlying appli-
cation domains and remain robust to these stochasticities. 
Chapter 6 of [47] shows how (some variations of) the resulting 
scheduling problem can be formulated, in principle, using the 
fundamental modeling frameworks of Markov decision pro-
cesses (MDP) and stochastic dynamic programming (DP) [3]. 
This analysis has also shown how the operating logic of the ap-
plied DAP can be effectively integrated in the problem formula-
tion, and the synergies that are developed by this integration, 
since the resulting MDP problem belongs to an MDP subclass 
with a rich theory and powerful solution algorithms. But it is 
also true that the enumerative nature of the optimal MDP/
scheduling policy with respect to the underlying state space ren-
ders challenging (usually intractable) even the description of 
such a policy, let alone its computation. A solution to these com-
putational challenges can be pursued in the context of the rather 
fledgling area of approximate DP (ADP) [4], [41]. ADP has 
shown significant potential for providing powerful and struc-
tured approximations to the optimal policy in many DP applica-
tions, but, at the same time, the effective customization of the 
more generic ideas offered by this theory to a particular applica-
tion context require substantial methodological as well as con-
textual insights and extensive tuning through empirical 
experimentation. Some very recent developments that seek to 
customize a version of the current ADP theory to the aforemen-
tioned RAS scheduling problem, and seem to hold particular 
promise regarding their ability to provide an effective balance 
between the computational tractability and the operational effi-
ciency of the derived solutions, are presented in [31]. But defi-
nitely much more work is needed in this particular direction.

Finally, as the presented RAS theory grows and strengthens 
its methodology along the lines indicated in the previous para-
graphs, additional efforts must be made toward the develop-
ment of the human capital and of the technological and 
computational base that will enable the constructive migration 
of this theory to the future engineering practice. This endeavor 
certainly involves the eventual undertaking of some pilot large-
scale applications that will highlight the technical strength of 
the theory and the competitive advantage that can be support-
ed by it. But even more importantly, it must also seek the effec-
tive integration of the existing and the emerging results into 
the relevant engineering curricula, and the organization of 
these results in a series of computational platforms that will 
enable their robust and expedient utilization by the field engi-
neers. In fact, this last activity can be part of a broader initiative 

concerning the further promotion of DES theory and of the 
emerging formal methods in the engineering curriculum and 
practice. It is expected that, collectively, all of these endeavors 
will define a spectrum of fundamental developments and 
trends with profound and transformative repercussions for the 
related fields of control and automation engineering.
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