
Symbolic Computation and Representation of
Deadlock Avoidance Policies for Complex Resource Allocation Systems

with Application to Multithreaded Software

Zhennan Fei, Knut Åkesson and Spyros Reveliotis

Abstract— In our recent work, we proposed a series of binary
decision diagram (BDD-) based approaches for developing
the maximally permissive deadlock avoidance policy (DAP)
for a class of complex resource allocation systems (RAS). In
this paper, (i) we extend these approaches by introducing a
procedure that generates a set of comprehensible “guard”
predicates to represent the resulting DAP, and (ii) we customize
them to the problem of deadlock avoidance in shared-memory
multithreaded software, that has been previously addressed by
the Gadara project. In the context of this last application,
the generated guards can be instrumented directly into the
source code of the underlying software threads, providing,
thus, a very efficient and natural representation of the target
policy. At the same time, by integrating the representational
and computational strengths of symbolic computation, the pre-
sented approach can support the computation of the maximally
permissive DAP for RAS corresponding to problem instances
of even larger scale and complexity than those addressed in the
current literature.

I. INTRODUCTION

In the Discrete Event Systems (DES) literature, deadlock
avoidance for sequential, complex resource allocation sys-
tems (RAS) is a well-established problem that arises from
many contemporary technological applications [1], [2]. In
its basic positioning, this problem concerns the coordinated
allocation of the system resources to concurrently executing
processes so that every process can eventually proceed to
its completion. In particular, by utilizing the information
about the current allocation of the system resources and
the available knowledge about the structure of the executing
processes, the applied control policy avoids the visitation of
RAS states from which deadlock is inevitable.

The work presented in this paper is an extension and an
application of the symbolic framework that has recently been
proposed in [3], [4] for the effective and computationally
efficient development of the maximally permissive deadlock
avoidance policy (DAP) for various RAS classes. More
specifically, by modeling any given RAS instance in the
modeling framework of the extended finite automata (EFA),
the approaches of [3], [4] employ several binary decision
diagram [5] (BDD) based algorithms for symbolically com-
puting the target DAP. Besides the employment of symbolic
computation, additional efficiencies for the aforementioned
algorithms are obtained from the fact that they avoid the
complete exploration of the underlying RAS state-space.

Z. Fei and K. Åkesson are with the Automation Research Group,
Department of Signals and Systems, Chalmers University of Technology,
SE-412 96, Gothenburg, {zhennan, knut}@chalmers.se.

S. Reveliotis is with the School of Industrial & Systems Engineer-
ing, Georgia Institute of Technology, Atlanta, GA-30332, United States,
spyros@isye.gatech.edu.

This capability is established upon the crucial fact that,
in the considered RAS dynamics, unsafety is defined by
inevitable or uncontrollable adsorption into the system dead-
locks. Therefore, the target unsafe states can be retrieved
by a computation that starts from the RAS deadlocks and
“backtraces” the RAS state-space until it hits the boundary
between the safe and unsafe subspaces. The unsafe states that
are directly accessible from the safe subspace are known as
the “boundary” unsafe states of the state-space. Furthermore,
the entire set of boundary unsafe states can be effectively
represented by its minimal elements since the notion of
unsafety presents a monotonicity property that endows this
set with properties similar to those of a right-closed set [6].

The availability of the set of minimal boundary unsafe
states that is computed from [3], [4] enables an expedi-
ent one-step-lookahead scheme preventing the RAS from
reaching outside its safe region. In particular, any tenta-
tive transitions taking the underlying RAS to a state that
dominates, component-wise, some minimal boundary unsafe
state will be disabled by the target DAP. The BDD-based
symbolic representation of the set of minimal (boundary)
unsafe states offers a compact and operationally efficient
way to deploy the target DAP. However, such a symbolic
representation of the forbidden states is of very limited
comprehensibility. Furthermore, the resultant control policy
is of very centralized nature, a feature that can be deemed as
limiting/undesirable in the context of certain applications.1 In
this work, we seek to address these concerns by expressing
the target DAP as a set of comprehensible logic formulas
that will further “guard” the underlying resource allocation
function.

More specifically, inspired by the work in [7], this pa-
per extends the aforementioned BDD-based approaches by
introducing a procedure that generates a set of compre-
hensible “guard” predicates to represent the resulting DAP.
In particular, by attaching these predicates to the original
model, we guard against transitions to RAS states that
dominate elements of the set of minimal boundary unsafe
states. Furthermore, we customize the developed approaches
to the problem of deadlock avoidance in shared-memory
multithreaded software, which has been previously addressed
by the Gadara project [8], [9], [10]. From a more executional
standpoint, this customization evolves in the following three
stages:
• We re-cast the Gadara nets that model the primitive

lock acquisition and release operations of multithreaded
programs into equivalent EFA models (Section II).

1including the particular application considered in this paper

mailto:spyros@isye.gatech.edu

• We demonstrate how the symbolic algorithms presented
in [3] can be adapted and used to compute the set of
minimal boundary unsafe states from the EFA model
(Section III).

• We present the aforementioned BDD-based guard gen-
eration procedure for computing the necessary guard
predicates for the RAS-modeling EFA from the BDD
representing the set of minimal boundary unsafe states,
and we further streamline this procedure by taking
advantage of certain RAS properties that are implied
by the considered application (Section IV).

The generated guards can be instrumented into the source
code of the underlying software threads, providing, thus,
a very efficient and natural representation of the target
policy. At the same time, by effectively integrating the
representational and computational strengths of symbolic
computation, the new approach outlined above can support
the computation of the maximally permissive DAP for RAS
corresponding to problem instances of even larger scale and
complexity than those addressed in the current literature.

II. MODELING GADARA NETS AS EFA

In this section we use a simple multithreaded program
in order to demonstrate how the Gadara net modeling the
lock acquisition and release operations in a given program
can be re-cast into an equivalent EFA model. We start by
reviewing the concept of the Gadara net itself, assuming,
however, that the reader is already familiar with the basic
Petri net (PN) modeling framework, its major concepts, and
the related terminology. An introduction to the PN modeling
framework and the relevant theory can be found in [11].

A. Gadara Nets

A Gadara net [9], NG , is a special class of Petri nets
that is used to systematically model the dynamics of the
lock acquisition and release operations that take place in
multithreaded programs. From a structural standpoint, these
nets can be perceived as a set of strongly connected state ma-
chines, modeling the critical regions of the various program
threads, which interact through a set of common places that
model the allocation status of the various program locks.

The state set Pi of each state machine Ni is partitioned
to a singleton {p0i} and the set PSi ≡ Pi \ {p0i}. Place
p0i is known as the idle place of the subnet Ni, and it
models the environment of the corresponding critical region;
i.e., tokens in place p0i model thread instances waiting to
enter this critical region, or tokens exiting the region. On
the other hand, places in PSi are characterized as the set
of operation places for the subnet Ni, and they model
the various process stages that take place in the critical
region. Furthermore, the connectivity of the subnet of Ni
that is obtained from the removal of the idle place p0i and
its incident arcs, essentially expresses the sequential logic
that defines the evolution of a thread instance while in the
corresponding critical region. In a similar spirit, the state
machine structure of Ni expresses the atomic nature of any
thread instance executing in a critical region. In the sequel,
following standard RAS terminology, we shall also refer to
the Gadara subnets Ni as the model “process” subnets.

On the other hand, the set of the interconnecting places of
the process subnets that model the lock allocation, will be
denoted by PR, and its elements will be referred to as the
“resource” places of the Gadara net. From a more theoretical
standpoint, the connectivity of a resource place r ∈ PR
to the net transitions establishes a place invariant for the
overall Gadara net that expresses the mutually exclusive and
reusable allocation of the corresponding lock. Furthermore,
the Gadara model assumes that the lock allocation function
does (should) not interfere with the branching logic of the
executing processes, and therefore, it forbids any arcs leading
from a resource place to a transition that is not the unique
option for its input operation place in the corresponding
process subnet. In fact, it is also requested that such a
decoupling of the control function from the basic sequential
logic that drives the process execution within a critical region
should also be observed by the sought DAP. From a more
technical standpoint, this last requirement is enforced by
treating transitions that model branching decisions for the
underlying critical region as uncontrollable by the sought
policy.

Based on the above description of the semantics of the
Gadara net, the initial marking M(p) for an operation place
p of any subnet Ni is naturally set equal to zero. On the other
hand, the initial marking M(p0i) for the idle place of any
subnet Ni is typically set to some sufficiently large positive
(integer) value so that this value does not restrict artificially
the concurrency in the net dynamics that is naturally enabled
by the (uncontrolled) lock allocation function. Finally, in the
basic Gadara model, locks correspond to mutexes, and they
are distinct entities; therefore, the initial marking M(r) of
each resource place r is set equal to one.

An example Gadara net NG is depicted in Fig. 1. This
Gadara net consists of two process subnets, N1 and N2. The
set of the operation places and the relevant sequential logic
for each process subnet are defined by the corresponding
paths depicted in black in the figure. On the other hand, the
corresponding idle places and their connection to the rest of
the process subnet are depicted in purple. The three resource
places of the considered net and their connectivity to the rest
of the net are respectively shown in blue, red, and green. The
reader should notice that the branching transitions t13 and
t16, shown as the hollow bars in Fig. 1, are modeled as the
uncontrollable transitions and their only input place is the
operation place p12. On the other hand, the internal subnet
N1` ofN1 corresponds to a “loop” structure in the considered
thread that requires lock r3 for each iteration of its execution.
Finally, notice that the depicted initial marking of the Gadara
net of Fig. 1 obeys the requirements regarding the marking
of the operation and the resource places that were discussed
in the previous paragraph. Also, in the considered example,
we have picked M(p0i) = 2, i = 1, 2, which is the maximal
number of process instances that can execute concurrently in
N1 or N2.

B. Extended Finite Automata
An extended finite automaton (EFA) is an augmentation

of the ordinary finite state automaton (FSA) with integer
variables that are employed in a set of guards and maintained
by a set of actions. A transition in an EFA is enabled if and

t11

p11

t12

p12

t13

p13

t14

p14

t15

p01

N1

t16p15

t17

p16 t18

N1`

t21

p21

t22

p22

t23

p23

t24

p24

t25

p02

N2

r1

r2

r3

Fig. 1: A Gadara net model of two threads sharing three
locks.

only if its corresponding guard is true. Once a transition is
taken, updating actions on the set of variables may follow.
By utilizing these two mechanisms, an EFA can represent
the modeled behavior in a conciser manner than the ordinary
FSA model.

More formally, an EFA over a set of integer variables v =
(v1, . . . , vn) is a 5-tuple E = (Q,Σ,→, s0, Q

m), where (i)
Q : L×D is the extended finite set of states. L is the finite
set of the model locations and D = D1 × . . . × Dn is the
finite domain of the model variables v = (v1, . . . , vn). (ii)
Σ is a nonempty finite set of events (a.k.a. the alphabet of
the model). (iii) → ⊆ L× Σ×G×A× L is the transition
relation, describing a set of transitions that take place among
the model locations upon the occurrence of certain events.
However, these transitions are further qualified by G, which
is a set of guard predicates defined on D, and by A, which
is a collection of actions that update the model variables as a
consequence of an occurring transition. Each action a ∈ A is
an n-tuple of functions (a1, . . . , an), with each function ai
updating the corresponding variable vi. (iv) s0 = (`0, v0) ∈
L × D is the initial state, where `0 is the initial location,
while v0 denotes the vector of the initial values for the model
variables. (v) Qm ⊆ Lm × Dm ⊆ Q is the set of marked
states. Lm ⊆ L is the set of the marked locations and Dm ⊆
D denotes the set of the vectors of marked values for the
model variables. For the sake of brevity, in the following,
we shall use the notation `

σ→g/a `
′ as an abbreviation for

(`, σ, g, a, `′) ∈→.

C. Modeling Gadara Nets as EFA

To apply the symbolic approaches of [3], [4] for the
computation of the maximally permissive DAP of a Gadara
net, we need to re-cast this net into an equivalent EFA model.
Next, we demonstrate this conversion through the Gadara net
that is depicted in Fig. 1.

Declaration of the resource variables. We start with the
declaration of a set of variables that represent the resource
places in NG. For each place ri ∈ PR, where i = 1, 2, 3, we

EN1

t11
(v01 ≥ 1)

v01 := v01 − 1;
v11 := v11 + 1

t12
(v11 ≥ 1)

v11 := v11 − 1;
v12 := v12 + 1

!t13
(v12 ≥ 1)

v12 := v12 − 1;
v13 := v13 + 1

!t16
(v12 ≥ 1)

v12 := v12 − 1;
v15 := v15 + 1

t17
(v15 ≥ 1)

v15 := v15 − 1;
v16 := v16 + 1

t18
(v16 ≥ 1)

v16 := v16 − 1;
v12 := v12 + 1

t14
(v13 ≥ 1)

v13 := v13 − 1;
v14 := v14 + 1

t15
(v14 ≥ 1)

v14 := v14 − 1;
v01 := v01 + 1

Fig. 2: The EFA modeling the process subnet N1.

introduce a resource variable vri to trace the availability of
the mutex lock that is represented by ri. The domain of vri
is {0, 1}. Furthermore, we define value 1 as the initial and
the marked value of each variable vri, since, under proper
execution, the initial and the marked state correspond to the
marking M0 of NG.

Representation of a process subnet by a single-location
EFA. Next, we proceed to build the EFA that captures the
execution of the thread that is modeled by the process subnet
N1. At a first phase, we construct an EFA that concerns
only the representation of the routing possibilities among the
operation places of N1, and it does not address the relevant
mutex lock allocation function; this function will be modeled
in a subsequent phase.

As indicated in Fig. 2, the constructed EFA has only one
location, and its eight transitions correspond to the transitions
t11, . . . , t18 of the process subnetN1 in Fig. 1. Notice that we
prepend an exclamation mark (!) in the front of the transitions
t13, t16 to indicate that they are uncontrollable. Next, we
define the set of process variables v1j , j = 1, . . . , 6, that
count the number of tokens in the corresponding operation
places p1j of N1. Also, we define the idle variable v01

to count the number of tokens in the idle place p01, with
the initial and marked value set equal to 2. By making
use of these instance-counting variables, we can construct
the necessary guards and actions for the EFA transitions.
As depicted in Fig. 2, these guards determine whether a
transition can take place, on the basis of the token availability
at the originating places. Upon the occurrence of such a
transition, the corresponding actions update accordingly the
number of the tokens at the various places.

Representation of the mutex lock allocation and its
induced dynamics. Finally, we extend the EFA depicted in
Fig. 1 with the resource variables vri to model the complete
behavior of the process subnet N1. While doing this, we
also perform several reductions on the resulting EFA to
obtain a simpler, yet equally expressive model w.r.t. the task
of deadlock avoidance. Regarding these reductions, first it
can be observed from Fig. 1 that the transitions t14 and
t15 of N1 do not pose any resource requests. Hence, if

EN1

t11
(vr1 = 1 ∧ v01 ≥ 1)

vr1 := 0; v01 := v01 − 1; v11 := v11 + 1

t12
(v11 ≥ 1 ∧ vr2 = 1)

vr2 := 0;
v11 := v11 − 1;
v12 := v12 + 1

!t13
(v12 ≥ 1)
vr2 = 1;
vr1 = 1;

v12 := v12 − 1;
v01 := v01 + 1

!t16
(v12 ≥ 1)

v12 := v12 − 1;
v15 := v15 + 1

t17
(v15 ≥ 1 ∧ vr3 = 1)
v15 := v15 − 1;
v12 := v12 + 1

Fig. 3: The resource-augmented EFA for N1.

EN2

t21
(vr3 = 1 ∧ v02 ≥ 1)

vr3 := 0; v02 := v02 − 1; v21 := v21 + 1

t23
(v22 ≥ 1 ∧ vr1 = 1)

vr3 := 1;
vr2 := 1;

v22 := v22 − 1;
v02 := v02 + 1

t22
(v21 ≥ 1 ∧ vr2 = 1)

vr2 := 0;
v21 := v21 − 1;
v22 := v22 + 1

Fig. 4: The resource-augmented EFA for N2.

a token is present in place p13, transitions t14 and t15 of
N1 will be eventually executed without causing deadlocks.
Therefore, we could conveniently forgo transition t15 of the
EFA and append all its actions to those of transition t14.
After merging t14 with t15, the variable v14 is insignificant,
and, thus, its associated guards and actions can be omitted.
A similar reasoning can lead to the merging of transition t13

with the merged transition t14 and even to the merging of
transition t18 with transition t17 in the internal subset N1`;
and, of course, the insignificant variables v13 and v16 and
their associated actions and guards are accordingly omitted.
As a result of all this transition merging, the final resource-
augmented EFA for process subnet N1 has five transitions
t11, t12, t13, t16 and t17 with the transitions t11, t12, t17 corre-
sponding to the allocation of one lock and transitions t13 and
t16 corresponding to the branching decisions at the operation
place p12; this EFA will be denoted by EN1 , and it is depicted
in Fig. 3. The reader should also notice that the transition
t17 in Fig. 3 has no action associated with the lock vr3,
since both the allocation and release operations of vr3 are
executed at the (merged) transition t17. Finally, the EFA EN2

,
that models the complete behavior of the process subnet N2,
can be constructed in a similar manner; this EFA is depicted
in Fig. 4.

State feasibility. In the representation of the EFA model,
the place invariants of the Gadara net that are enforced by its
three resource places, are expressed by the following three

constraints for the model variables:

v11 + v12 + v15 + vr1 = 1;

v12 + v22 + vr2 = 1;

v21 + v22 + vr3 = 1. (1)

On the other hand, the strongly-connected-state-machine
structure of each process subnet of the Gadara net of Fig. 1
implies an additional set of place invariants that are expressed
by the following two equations in the EFA model:

v11 + v12 + v15 + v01 = 2; v21 + v22 + v02 = 2. (2)

In the following, a state s of the (global) EFA consisting
of EN1

and EN2
, with a variable vector v satisfying the

constraints of (1,2), will be characterized as a feasible state.

III. COMPUTING THE MINIMAL BOUNDARY UNSAFE
STATES

In Section II, we have showed how the Gadara net
that models a multithreaded program can be re-cast to an
equivalent (set of) EFA, with each EFA in the derived
set modeling a resource-augmented process subnet. In this
section, we focus on the BDD-based symbolic computation
of the minimal boundary unsafe states in the considered EFA
model.

A. Binary Decision Diagrams
Binary decision diagrams (BDDs) [5] are a memory-

efficient data structure used to represent Boolean functions.
For any Boolean function f : {0, 1}n → {0, 1} in n Boolean
variables X = (x1, . . . , xn), a BDD-based representation of
f is a graphical representation of this function that is based
on the following identity:

∀xi ∈ X, f = (¬xi ∧ f |xi=0) ∨ (xi ∧ f |xi=1), (3)

where f |xi=0(resp. 1) denotes the Boolean function that is
induced from function f by fixing the value of variable xi to
0 (resp. 1). More specifically, (3) enables the representation
of f as a single-rooted acyclic digraph with two types of
nodes: decision nodes and terminal nodes. A terminal node
can be labeled either 0 or 1. Each decision node is labelled by
a Boolean variable and it has two outgoing edges, with each
edge corresponding to assigning the value of the labeling
variable to 0 or to 1. The value of function f is evaluated by
starting from the root of the BDD and at each visited node
following the edge that corresponds to the selected value for
the node-labeling variable; the value of f is the value of the
terminal node that is reached through this path.

The size of a BDD refers to the number of its decision
nodes. A carefully structured BDD can provide a more
compact representation for a Boolean function f than the
corresponding truth table and the decision tree; frequently,
the attained compression is by orders of magnitude.

From a computational standpoint, the efficiency of BDDs
is mainly due to the fact that the worst-case complexity of
performing some logical operation on two functions f and
f ′ is O(|f | · |f ′|), where |f | and |f ′| are the sizes of the
BDDs representing f and f ′.

EFA encoding through BDDs. For the encoding of the
state set of an EFA, Q : L × D, we employ two Boolean

variable sets, denoted by XL and XD = XD1 ∪ . . .∪XDn ,
to respectively encode the two sets L and D. Then, each
state q = (`, v) ∈ Q is associated with a unique satisfying
assignment of the variables in XL ∪XD. Given a subset Q̄
of Q, its characteristic function χQ̄ : Q→ {0, 1} assigns the
value of 1 to all states q ∈ Q̄ and the value of 0 to all states
q /∈ Q̄.2 The symbolic representation of the transition relation
→ relies on the same idea. A transition is essentially a tuple
〈`, v, σ, `′, v′〉 specifying a source state q = (`, v), an event
σ, and a target state q′ = (`′, v′). Formally, we employ the
variable sets XL and XD to encode the source state q, and a
copy of XL and XD, denoted by X́L and X́D, to encode the
target state q′. In addition, we employ the Boolean variable
set XΣ to encode the alphabet of E, and we associate the
event σ with a unique satisfying assignment of the variables
in XΣ. Then, we identify the transition relation→ of E with
the characteristic function

∆(〈q, σ, q′〉) =

{
1 if (`, σ, g, a, `′) ∈→, v |= g, v′ = a(v)
0 otherwise

That is, ∆ assigns value of 1 to 〈q, σ, q′〉 if there is a
transition from ` to `′ labelled by σ, the values of variables at
` satisfy the guard g, i.e., v |= g, and the values of variables
v′ at `′ are the result of performing action a on v.

Having the distinct EFA ENi
, i = 1, 2, that model the

process subnets N1 and N2 of the Gadara net NG of Fig. 1,
we shall denote by ∆i the corresponding symbolic repre-
sentations of ENi

. The global lock allocation and release
dynamics generated by the considered NG can be formally
expressed by the extended full synchronous composition,
introduced in [12], that composes the aforementioned EFA to
the “plant” EFA E = EN1

||EN2
. A symbolic representation

of E will be denoted by ∆E, and it can be systematically
obtained from ∆1,∆2 by using the approach introduced in
[13]; the discussion of this approach is beyond the scope of
this work, and, thus, we refer to [13] for the details.

Fig. 5 depicts the dynamic behavior of the composed EFA
E using the BDD-related concepts that were discussed in the
previous paragraph. The depicted state transition diagram
(STD) includes only the feasible states that are reachable
from the (composed) initial state s0, and furthermore, it
considers only those states that are modeled explicitly in
this EFA through the values of the corresponding variables.
As it can be seen in Fig. 5, the resulting STD involves ten
(10) states, with each state si, i = 0, . . . , 9, being described
by ten components that correspond to the values of the idle
and process variables v01, v11, v12, v15, v02, v21, v22 and the
resource variables vr1, vr2, vr3.

B. Computation of the Minimal Boundary Unsafe States

The BDD-based approach of [3] employs a three-stage
computation for identifying the minimal boundary unsafe
states from the symbolically represented transition relation
of the composed EFA E, i.e., from ∆E. In the first stage, all
the deadlock states are identified and retrieved from ∆E. In
the second stage, the deadlock states are used as starting
points for a search procedure over ∆E that identifies all

2In the rest of the paper, we shall use interchangeably the original name
of a set Q and its characteristic function, χQ, in order to refer to this set.

2000 200 111

s0

1100 200 011

s1

1010 200 001

s2

1001 200 001

s4

1010 110 000

s3

1001 110 000

s5

2000 110 110

s6

2000 101 100

s8

1100 110 010

s7

1100 101 000

s9

t11

t12

!t16t21

!t13

t17

!t16
!t13t21

t21

t21

t12

t11

t22

t22

t11

t23

Fig. 5: The state transition diagram (STD) modeling the
dynamic behavior of the EFA E = EN1

||EN2
. In the

depicted STD, the dashed arcs correspond to the (thread-
instance) loading transitions to a critical region; the solid
arcs correspond to the (thread-instance) advancing transi-
tions within the corresponding critical regions, with the red
arcs further corresponding to the uncontrollable branching
transitions. In the approach presented in [3], this STD is
symbolically represented by a BDD that also includes other
unreachable and/or infeasible states.

the boundary unsafe states. In the third stage, the minimal
boundary unsafe states are extracted from the computed set
of the boundary unsafe states. In general, the computed state
sets may include some states that are not reachable from the
initial state s0, but this does not impede the implementation
of the maximally permissive DAP by means of these sets and
the one-step-lookahead logic that was outlined in the earlier
parts of this manuscript.

The rest of this section illustrates the aforementioned
computation on the STD in Fig. 5. For reasons that will
become clear in the following, it is pertinent to assume that
∆E is partitioned into two BDDs ∆L and ∆A that collect
respectively the transitions in ∆E corresponding to the
loading transitions t11 and t21, and the advancing transitions
t12, t13, t16, t17, t22 and t23.

Identification of the feasible deadlock states. In the
context of this work, a deadlock state is a state of the EFA
E that contains some activated threads (i.e., it is different
from the initial state) and it does not enable any thread-
advancing transitions. With ∆E available, this set of states
can be symbolically computed as follows: First, we collect all
the “target” states of the transitions in ∆E and we denote the
corresponding set as the set T . In the considered example,
T will contain all the states si, i = 0, . . . ,9, in the STD
of Fig. 5, but it also contains other infeasible states that
have resulted from the composition of the EFAs EN1

and
EN2 . Subsequently, we collect the set of all the “source”
states of the transitions in ∆A and we denote this set by E;
in the considered example, E = {s1, s2, s3, s4, s6, s7, s8}.
The reader should notice that state s0 /∈ E, since none of the

relevant transitions 〈s0, t11, s1〉, 〈s0, t21, s6〉 belongs to ∆A.
Finally, we (symbolically) compute the set of all the deadlock
states, D, with respect to the thread advancing transitions,
by removing from set T the initial state s0, and all the states
belonging to the state set E.

Since set D is computed from the entire set of transitions
that is contained in ∆E, it might contain deadlock states
that are infeasible (i.e., they violate the constraints of (1, 2)).
The presence of these infeasible states in D would increase
unnecessarily the computational cost of the second stage, that
is discussed next. Hence, as the last step of this first stage,
the symbolic representation of D, χD, is filtered through its
conjunction with the BDD χF that encodes the constraints
(1, 2), in order to obtain the set of feasible deadlock states;
this set is denoted by FD. FD = {s5, s9} for the STD
depicted in Fig. 5.

Identification of the feasible boundary unsafe states.
Having obtained the set FD of the feasible deadlock states,
the algorithm of [3] proceeds with the symbolic computation
of the feasible boundary unsafe state set, denoted by FB.
The algorithm employs the set U to collect all the identified
unsafe states. Also, at each iteration, the set Unew defines
the set of the unsafe states that are to be processed at that
iteration, through one-step-backtracking in ∆E, in an effort
to reach and explore new states. Both U and Unew are
initialized to FD. Moreover, we define the transition set
Ûpre = {(s, u) ∈ ∆A | u ∈ U and s /∈ U}; during the
entire search process, Ûpre contains the transitions of ∆A

where the target states belong to U while the source states
have also transitions to states that currently are not in U .
Initially, Ûpre is empty.

We start with the extraction of all the states that can
be reached from Unew by backtracing some transitions
in ∆A. We shall denote by ∆Û the set of the relevant
transitions. With respect to the STD depicted in Fig. 5,
∆Û = {〈s3, t16, s5〉, 〈s7, t22, s9〉}. Among the transitions
in ∆Û , notice that the source state s3 of the transition
〈s3, t16, s5〉 reaches the unsafe state s5 uncontrollably due to
the uncontrollable event (transition) t16. Therefore, we can
determine that state s3 is unsafe immediately. The identified
unsafe state s3 is appended into the set Ucurr that denotes
the set of unsafe states identified at the current iteration. The
transition set ∆Û is then updated accordingly by removing
the transitions with the sources in Ucurr. We then collect
the source state s7 of the remaining transition 〈s7, t22, s9〉
in ∆Û and store it into the state set SÛ . Subsequently,
we perform a one-step forward search over ∆A starting
from the elements in the state set SÛ , and collect all the
transitions of ∆A that originate from some element in SÛ ;
these transitions are stored in the set ∆SA. In the considered
example, ∆SA = {〈s7, t12, s3〉, 〈s7, t22, s9〉}. By removing
from ∆SA all the transitions belonging to ∆Û and Ûpre, and
extracting the source states of the remaining transitions, we
can identify the states in SÛ that are not recognized as unsafe
states at the current iteration. Subtracting this last set of states
from SÛ , leaves a set of unsafe states that are appended to
Ucurr. In the context of the considered example, state s7

(which is the unique element of SÛ) cannot be classified as
an unsafe state by the aforementioned computations during

the current iteration. At the end of the iteration, all the unsafe
states in Ucurr that are already in U are removed from this
set. The remaining states in Ucurr are appended in U , and
they also re-initialize the set Unew. Hence, in the considered
example, Unew = {s3}. Also, the transition 〈s7, t22, s9〉 is
added to the set Ûpre.

Following the logic described in the previous paragraphs,
in the second iteration of the considered search process,
state s3 is used to backtrace over ∆A, and the tran-
sition 〈s7, t12, s3〉 is identified and stored into set ∆Û .
The source state s7 of the transition is then used to
perform the one-step reachability over ∆A, and ∆SA =
{〈s7, t12, s3〉, 〈s7, t22, s9〉}. Since both of these transitions
belong in ∆Û ∪ Ûpre, state s7 is identified as an un-
safe state in this iteration. Consequently, U is updated to
{s3, s5, s7, s9} and Unew is set to {s7}.

The backward search process terminates after the third
iteration, since no new unsafe state can be identified when
backtracing from state s7 over ∆A. At this point, the
symbolic approach proceeds to extract the boundary states
from the overall set of unsafe states, U . For that, the symbolic
computation extracts from ∆E all the transitions with their
target states belonging to the states in U ; the relevant
transition set is denoted by ∆B. Next, the algorithm retrieves
from ∆B the transition set ∆SB, where the source states of
the included transitions are safe states. Finally, the boundary
unsafe state set FB is obtained by extracting the target states
from ∆SB. In the context of the STD in Fig. 5, the execution
of the aforementioned operations results in FB = U ; i.e.,
all the unsafe states in the previously computed set U are
boundary unsafe states.

Identification of the minimal boundary unsafe states.
An important implication of the invariants of (1, 2) is that,
at any feasible state of the underlying EFA state-space, the
values of the resource variables and the idle variables can
be induced from the values of the process variables. In other
words, any feasible state s of the considered STD can be
uniquely determined only by the specification of its process
variables. Hence, one can obtain a more compact symbolic
representation of the set of feasible boundary unsafe states,
χFB , by eliminating from the elements of χFB the values
that correspond to the idle and resource variables. Letting
XR and XI respectively denote the Boolean variables rep-
resenting the values of the resource variables vri, i = 1, 2, 3,
and the idle variables v01 and v02, this elimination can be
performed through the following existential quantification:

χFB := ∃(XR ∪XI). χFB . (4)

For the considered example, the state set FB that is returned
by the operation of Eq. 4 can be represented as follows:
FB = {01010(s3), 00110(s5), 10010(s7), 10001(s9)} (i.e.,
the boundary unsafe states are described only by their process
variables).

Given any two feasible boundary unsafe states s, s′ repre-
sented according to the logic of (4), we consider the ordering
relation “≤” on them that is defined by the application of
this relation componentwise; i.e.,

s ≤ s′ ⇐⇒ (∀k = 1, . . . ,K, s[k] ≤ s′[k]), (5)

where s[k] and s′[k] are the values of the k-th process
variable for s and s′. Furthermore, we use the notation ‘<’
to denote that condition (5) holds as strict inequality for at
least one component vk ∈ {v1, . . . , vK}. It is shown in [6]
that if state s is unsafe and state s′ satisfies s ≤ s′, then the
state s′ is also unsafe. Hence, under the state representation
of (4), the set FB can be effectively defined by the subset
of its minimal elements. We shall denote this subset by FB,
i.e., FB ≡ {s ∈ FB | @s′ ∈ FB s.t. s′ < s}. A symbolic
algorithm for the computation of FB from FB is provided in
[3]. We also notice, for completeness, that in the considered
example, FB = FB.

IV. REPRESENTING THE TARGET DAP AS GUARDS

As remarked in the introductory section, the availability
of the set of boundary minimal unsafe states, FB, enables
the implementation of the maximally permissive DAP for
the considered RAS through the one-step-lookahead control
scheme that identifies and blocks transitions to states that
dominate some element of FB. In this section we develop a
predicate g on the process variables of the underlying EFA E
that will render this test more efficient. From an operational
standpoint, the derived predicate g can be employed as an
extra “guard” for those transitions t that can take the EFA
E from its safe to its unsafe region. We remind the reader
that this set of transitions is obtained as a “byproduct” of the
computation that was described in the previous section; more
specifically, these transitions are the transitions appearing in
the elements of the derived set ∆SB in that computation. In
the context of the considered example,

∆SB = {〈s6, t11, s7〉, 〈s8, t11, s9〉,
〈s1, t21, s7〉, 〈s2, t21, s3〉, 〈s4, t21, s5〉}.

Hence, the transitions that need further guarding are the
transitions t11 and t21.

With the set ∆SB readily available, the symbolic computa-
tion of the sought predicate g proceeds in the following steps:
(i) First, we convert the content of the BDD representing the
state set FB into an integer decision diagram (IDD) [14].
(ii) Next, we use the IDD derived in Step (i) in order to
develop a predicate ϕ, defined on the process variables of
the EFA E, that recognizes all the states that are greater than
or equal (component-wise) to some element of FB, i.e., the
states that “dominate” some element in FB. (iii) Finally, the
sought predicate g is obtained by setting g := ¬ϕ. Next, we
elaborate further on the first two steps outlined above.

IDD generation for the state set FB. An IDD is a
generalization of the BDD concept where the number of
terminals can be arbitrary and the domain of the variables
that label each of the internal nodes in the diagram can
be an arbitrary set of integers. In this paper, we use IDDs
with only one terminal, the 1-terminal. A practical value
of IDDs is that they can provide an explicit, and yet very
compact, representation to any set of integer vectors by
taking advantage of the commonality that might exist in
various segments of these vectors.3 Furthermore, in the

3In this capacity, IDDs are very similar to the TRIE data structure [15] that
was used in [16] for the efficient storage of the RAS minimal unsafe states;
these states were extracted in [16] through more conventional representations
and techniques employed by Supervisory Control Theory [17].

following we shall show that IDDs can be re-hashed very
straightforwardly into predicates that provide an alternative
representation of their information (state vector) content. In
the context of the considered application of Gadara nets,
this conversion process is very efficient and the resulting
predicates are pretty compact.

An algorithm for converting a BDD containing a set of
EFA states to an IDD is provided in [7]. This algorithm
assumes that the BDD binary variables are ordered in a
way that observes the grouping and the sequencing of these
variables that are established by the binary representation
of the primary variables employed in the underlying EFA
model. Under this condition, the algorithm traverses itera-
tively the provided BDD in a top-down depth-first manner,
“segmenting” the traversed paths into sequences of integer
values corresponding to the various EFA model variables. At
the same time, these sequences are organized into the graph
structure that eventually defines the computed IDD. We refer
the reader to [7] for the computational details. The IDD that
is obtained by the application of the algorithm of [7] on the
BDD representing the state set FB is depicted in Fig. 6a.

Closing the discussion on the IDD development, we should
further notice that, since (i) under the state representation of
Eq. 4, the considered state sets are expressed only through
the process variables of the underlying EFA, and (ii) each
of these process variables is of binary nature (due to binary
nature of the locks that are employed by the corresponding
process stage in the Gadara net), the vectors that will be
contained in the constructed IDD are still of a binary nature.
This remark simplifies considerably the IDD construction
process that was outlined in the previous paragraph, and it
has additional significant implications for the predicate struc-
ture and the predicate generation process that are discussed
in the remaining part of this section.

Developing the predicate ϕ from the derived IDD.
The generation of the predicate ϕ that recognizes the states
dominating some element in FB, can be obtained from
the IDD constructed in the previous paragraphs through a
depth-first traversal of this graph that composes predicate
ϕ according to the following “labeling” scheme: (i) An
arc a = (n, n′) emanating from a node n that is labeled
by the process variable vij of the considered IDD, and
corresponding to some value k for this variable, is marked
with the logical condition ϕ(a) := vij ≥ k, if the node n′
of this arc is the terminal node of the IDD. If node n′ is
non-terminal, then ϕ(a) := (vij ≥ k) ∧ ϕ(n′), where ϕ(n′)
is the logical condition that marks node n′ (defined next).
(ii) An internal node n of the considered IDD is marked
with the logical condition ϕ(n) :=

∨
a∈A(n) ϕ(a), where

A(n) denotes the set of arcs a that emanate from node n.
At the end, ϕ := ϕ(n0), where n0 is the “source” node of
the considered IDD.

Furthermore, taking into consideration the binary nature
of the process variables vij in the context of the considered
application, any generated condition (vij ≥ 0) in the above
derivation can be treated as a tautology, while the condition
(vij ≥ 1) can be expressed more compactly by vij . The ap-
plication of the aforementioned logic to the IDD of Figure 6a
leads to the following predicate ϕ: (v12 + v15) · v21 + v11 ·
(v21 + v22).

v11

v12 v12

v15 v15 v15

v21 v21

v22 v22

1

0 1

1 0 0

0 1 0

1
1

0

1

0

(a) IDD for FB

v11

v12

v15

v21

v22 v22

1

1

0

0

1 0

0 1

(b) IDD for FBt11

v11

v12v12

v15 v15

v21

v22

1

01

010

10

1

0

(c) IDD for FBt12

Fig. 6: IDDs representing the state set FB and its two subsets
FBt11 and FBt21 , for the considered STD of Fig. 5.

Finally, as explained in the beginning of this section, the
negation of ϕ defines the “guard” predicate that must be
enforced upon every transition that appears in the transition
set ∆SB.

An alternative, more distributed implementation of
the target DAP. It is evident from the above discussion
that the derived predicate g that expresses the target DAP
logic is uniform across all the guarded transitions, i.e., the
transitions appearing in the set ∆SB. Next, we outline briefly
an alternative organization of the presented computation that
can lead to more customized, and therefore, more compact
predicates, gt, for the transitions t that appear in the set ∆SB.
The defining idea of this scheme is to employ the information
that is provided by the sets FB and ∆SB obtained from
the original computation of Section III, in order to compute
for each transition t in ∆SB, the set FBt of the boundary
unsafe states reached through that transition. Each of these
sets can be subsequently processed in the same way that was
used for the monolithic set FB; i.e., for each t appearing
in ∆SB, we can first extract the corresponding set FBt
containing the minimal elements of FBt, translate this set
to an IDD, and then use this IDD to obtain the predicate
ϕt that expresses the states dominating the elements of
FBt. Eventually, each transition t appearing in ∆SB will
be guarded by the additional predicate gt := ¬ϕt.

Execution of this plan on the considered example has led
to the FBt sets, for the two transitions t11 and t21 appearing
in the set ∆SB, that are represented by the IDDs of Figs 6b
and 6c. The respective “guard” predicates are: gt11 = ¬(v11 ·
(v21 + v22)) and gt21 = ¬((v11 + v12 + v15) · v21).

V. CONCLUSION

This paper has revisited the symbolic framework that was
recently developed for the computation of the maximally
permissive DAP of complex RAS, and it has augmented
this framework with an additional capability that enables
the implementation of the derived policy through a set of
predicates on the (process) variables of the underlying EFA.
The presented results were also customized and applied,
through a highlighting example, to a problem of deadlock
avoidance in multithreaded software. In this application
context, the predicates derived by the proposed methodology
enable a straightforward implementation of the target policy
logic through the introduction and the proper updating of the

EFA process variables vij in the underlying source code. At
the same time, extensive experimentation reported in [3], [4]
reveals that the presented methodology can handle very com-
plex RAS structures with extremely large state spaces (in the
order of billions of states). Hence, the presented framework
holds a strong potential for providing robust, practical and
efficient solutions to the deadlock avoidance and liveness-
enforcing supervision problems that are experienced in the
considered application domain. Furthermore, the presented
results extend pretty naturally to many other application areas
that have been addressed by the relevant literature.

REFERENCES

[1] S. A. Reveliotis, Real-time Management of Resource Allocation Sys-
tems: A Discrete Event Systems Approach. NY, NY: Springer, 2005.

[2] M. Zhou and M. P. Fanti (editors), Deadlock Resolution in Computer-
Integrated Systems. Singapore: Marcel Dekker, Inc., 2004.

[3] Z. Fei, S. Reveliotis, S. Miremadi, and K. Åkesson, “A BDD-based
approach for designing maximally permissive deadlock avoidance poli-
cies for complex resource allocation systems,” Chalmers University,
Tech. Rep., 2013, http://publications.lib.chalmers.se/records/fulltext/
186774/local 186774.pdf.

[4] Z. Fei, S. Reveliotis, and K. Åkesson, “Symbolic computation of
boundary unsafe states in complex resource allocation systems using
partitioning techniques,” Chalmers University, Tech. Rep., 2014.

[5] R. E. Bryant, “Symbolic Boolean manipulation with ordered binary-
decision diagrams,” ACM Comput. Surv., vol. 24, no. 3, pp. 293–318,
1992.

[6] S. Reveliotis and A. Nazeem, “Deadlock avoidance policies for auto-
mated manufacturing systems using finite state automata,” in Formal
Methods in Manufacturing, J. Campos, C. Seatzu, and X. Xie, Eds.
CRC Press / Taylor and Francis, 2014, pp. 169–195.

[7] S. Miremadi, K. Åkesson, and B. Lennartson, “Symbolic computation
of reduced guards in supervisory control,” IEEE Transactions on
Automation Science and Engineering, vol. 8, no. 4, pp. 754–765, 2011.

[8] T. Kelly, Y. Wang, S. Lafortune, and S. Mahlke, “Eliminating concur-
rency bugs with control engineering,” Computer, vol. 42, no. 12, pp.
52–60, Dec 2009.

[9] Y. Wang, H. Liao, S. Reveliotis, T. Kelly, S. Mahlke, and S. Lafortune,
“Modeling and analysis of a special class of Petri nets arising in
multithreaded programs,” in CDC 2009, 2009.

[10] H. Liao, Y. Wang, H. K. Cho, J. Stanley, T. Kelly, S. Lafortune,
S. Mahlke, and S. Reveliotis, “Concurrency bugs in multithreaded
software: Modeling and analysis using Petri nets,” Discrete Event
Systems: Theory and Applications, vol. 23, pp. 157–195, 2013.

[11] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, pp. 541–580, 1989.

[12] M. Sköldstam, K. Åkesson, and M. Fabian, “Modeling of discrete
event systems using finite automata with variables,” Decision and
Control, 2007 46th IEEE Conference on, pp. 3387–3392, 2007.

[13] S. Miremadi, B. Lennartson, and K. Åkesson, “A BDD-based approach
for modeling plant and supervisor by extended finite automata,” IEEE
Transactions on Control Systems Technology, vol. 20, no. 6, pp. 1421–
1435, 2012.

[14] J. Gunnarsson, “Symbolic methods and tools for discrete event dy-
namic systems,” Ph.D. dissertation, Electrical Engineering, Linköping
University, Linköping, Sweden, 1997.

[15] P. Brass, Advanced Data Structures. NY,NY: Cambridge University
Press, 2008.

[16] A. Nazeem and S. Reveliotis, “A practical approach for maximally
permissive liveness-enforcing supervision of complex resource alloca-
tion systems,” IEEE Trans. on Automation Science and Engineering,
vol. 8, pp. 766–779, 2011.

[17] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems (2nd ed.). NY,NY: Springer, 2008.

http://publications.lib.chalmers.se/records/fulltext/186774/local_186774.pdf
http://publications.lib.chalmers.se/records/fulltext/186774/local_186774.pdf

	Introduction
	Modeling Gadara Nets as EFA
	Gadara Nets
	Extended Finite Automata
	Modeling Gadara Nets as EFA

	Computing the Minimal Boundary Unsafe States
	Binary Decision Diagrams
	Computation of the Minimal Boundary Unsafe States

	Representing the Target DAP as Guards
	Conclusion
	References

