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Abstract— In some recent work, we proposed a binary deci-
sion diagram (BDD-) based approach for the development of
the maximally permissive deadlock avoidance policy (DAP) for
complex resource allocation systems (RAS), that is based on the
identification and the explicit storage of a set of critical states
in the underlying RAS state-space. The work presented in this
paper seeks to extend the applicability of the aforementioned
results by coupling them with a partitioning technique for
the more efficient storage and processing of the BDD that
encodes the underlying state space. The reported numerical
experimentation demonstrates the increased efficiency of the
new algorithm w.r.t. its space and time complexity, compared to
the previous method that uses a more monolithic representation
of the RAS state-space. The last part of the paper also discusses
some further potential advantages of the presented method,
including its amenability to a parallelized implementation and
its ability to cope effectively and efficiently with uncontrollable
behavior.

I. INTRODUCTION

The problem of deadlock avoidance in complex, sequential
resource allocation systems (RAS) is a well established
problem in the controls community [1], [2]. In its basic
definition, this problem concerns the (real-time) allocation
of a finite set of reusable resources to a set of concurrently
running processes that execute in a staged manner, so that no
subset of these processes is entangled in a circular waiting
pattern for resources currently held by some other process in
the set; a resource allocation state containing such a circular
waiting pattern among the running processes defines a notion
of deadlock in the relevant literature [1].

Ideally, one would like to prevent the formation of dead-
lock while imposing the minimum possible restriction to the
underlying resource allocation function and to the concurrent
process dynamics that are induced by this function. The
corresponding optimal control problem can be effectively
modeled in the context of the broader area of Supervisory
Control Theory (SCT) for Discrete Event Systems (DES) [1],
[3]. The maximally permissive supervisor – also known as
the maximally permissive deadlock avoidance policy (DAP)
– essentially acts as a classifier that recognizes and blocks
transitions to states that are reachable from the initial empty
state of the considered RAS but are not co-reachable to that
same state. States that are co-reachable to the target empty
state are characterized as “safe” in the relevant terminology,
while the remaining states are characterized as “unsafe”.
Among the unsafe states, particularly interesting to an ef-
fective implementation of the maximally permissive DAP
are those states that are accessible from a safe state by a
single transition, since the recognition and blockage of the

transitions leading into these states will render inaccessible
every other unsafe state; in the sequel, we shall refer to
this particular subclass of unsafe states as “boundary” unsafe
states.

Motivated by the above remarks, in [4], we have developed
a binary decision diagram (BDD-) based approach for an
efficient computation and storage of all the boundary unsafe
states. Extensive computational experimentation that is pre-
sented in [4] demonstrates the capability of that approach to
cope with RAS instances exhibiting very complex behavior
and possessing very large state spaces. In this work we
seek to extent further the boundary for the applicability of
the approach of [4] on the considered supervisory control
problem, by introducing a variation for one of the main
algorithms of [4] that employs a more efficient representation
of the RAS state space. More specifically, we propose to
store and process the information that is encoded in this
mathematical entity through a partitioning scheme that uses
a number of BDDs to store various parts of the involved
dynamics. Such a partitioned representation of the RAS
dynamics can better manage the state space explosion that is
a challenging problem for the monolithic representation of
the corresponding state spaces, and as it will be revealed in
the following, it leads to an algorithm with a substantially
smaller memory footprint than the corresponding algorithm
that is presented in [4]. Furthermore, some additional advan-
tages of the proposed method concern its amenability to a
parallelized implementation and its ability to cope effectively
and efficiently with uncontrollable behavior; we outline these
advantages in the closing part of the paper.

Closing this introductory discussion on the paper develop-
ments, we must also notice that the employment of pertinent
partitioning schemes in BDD-based symbolic computation,
in an effort to control the size of the employed BDDs and the
ensuing computational complexity, is a well recognized idea
that dates back to the seminal work of [5]. Some additional
works that have employed such partitioning techniques,
including some that develop in the context of SCT, are
those reported in [6], [7], [8]. The current work is primarily
influenced by relevant results that are presented in [9], and
it seeks to apply and customize the more generic theory of
[9] to the specific problem that is addressed herein.

II. PRELIMINARIES

We beginning the technical discussion of this paper by
providing the necessary background for the presentation of
the novel method that is proposed in this work; the method



itself is presented in Section III. Due to space limitations,
we keep the provided discussion at a minimal level; a more
expansive treatment of this material can be found in [4], [10].

A. Resource Allocation Systems and the corresponding prob-
lem of Deadlock Avoidance

For the purposes of this work, a resource allocation
system (RAS) is defined by a 4-tuple Φ = 〈R, C,P,A〉
where:1 (i) R = {R1, . . . , Rm} is the set of the system
resource types. (ii) C : R → Z+ – where Z+ is the
set of strictly positive integers – is the system capacity
function, characterizing the number of identical units from
each resource type available in the system. Resources are
assumed to be reusable, i.e., each allocation cycle does not
affect their functional status or subsequent availability, and
therefore, C(Ri) ≡ Ci constitutes a system invariant for
each Ri. (iii) P = {J1, . . . , Jn} denotes the set of the
system process types supported by the considered system
configuration. Each process type Jj , for j = 1, . . . , n, is a
composite element itself; in particular, Jj = 〈Sj ,Gj〉, where
Sj = {Ξj1, . . . ,Ξj,l(j)} denotes the set of processing stages
involved in the definition of process type Jj , and Gj is an
acyclic digraph that defines the sequential logic of process
type Jj . The node set of Gj is in one-to-one correspondence
with the processing-stage set Sj , and each directed path
from a source node to a terminal node of Gj corresponds
to a possible execution sequence (or “process plan”) for
process type Jj . (iv) A :

⋃n
j=1 Sj →

∏m
i=1{0, . . . , Ci}

is the resource allocation function, which associates every
processing stage Ξjk with the resource allocation request
A(j, k) ≡ Ajk. More specifically, each A(j, k) is an m-
dimensional vector, with its i-the component indicating the
number of resource units of resource type Ri necessary
to support the execution of stage Ξjk. Furthermore, it is
assumed thatAjk 6= 0, i.e., every processing stage requires at
least one resource unit for its execution. Finally, according to
the applying resource allocation protocol, a process instance
executing a processing stage Ξjk will be able to advance to
a successor processing stage Ξjk′ , only after it is allocated
the resource differential (Ajk′ −Ajk)+; and it is only upon
this advancement that the process will release the resource
units |(Ajk′ −Ajk)−|, that are not needed anymore.2

The “hold-while-waiting” protocol that is described above,
when combined with the arbitrary nature of the process
routes and the resource allocation requests that are supported
by the considered RAS model, can give rise to resource
allocation states where a set of processes are waiting upon
each other for the release of resources that are necessary
for their advancement to their next processing stage. As
remarked in the introductory section, such persisting cyclical-
waiting patterns are known as (partial) deadlocks in the
relevant literature, and to the extent that they disrupt the
smooth operation of the underlying system, they must be
recognized and eliminated from its behavior. The relevant

1The considered RAS class is known as the class of Disjunc-
tive/Conjunctive (D/C-) RAS in the literature, since it enables routing
flexibility for its process types and requests for arbitrary resource sets at
the various processing stages [1].

2We remind the reader that x+ = max{0, x} and x− = min{0, x}.
When these expressions are applied on vectors, as is the case in the
considered text, their application is meant to be componentwise.

control problem is known as deadlock avoidance, and, as
mentioned in the introductory section, a natural framework
for its investigation is that of DES Supervisory Control The-
ory (SCT) [3]. More specifically, in a finite state automaton
(FSA)-based representation of the RAS dynamics, the initial
and the target – or, more formally, the “marked” – system
state correspond to the state where the RAS is idle and empty
of any processes, and deadlock avoidance translates to the
development of the maximally permissive non-blocking su-
pervisor for this RAS-modeling FSA. The latter confines the
RAS behavior in the “trim” of this FSA, i.e., to the subspace
consisting of the states that are reachable and co-reachable
to the idle and empty state. Furthermore, in the relevant RAS
theory, states that are co-reachable to the RAS idle and empty
state are also characterized as safe, and, correspondingly,
states that are not co-reachable are characterized as unsafe.
Of particular interest in the implementation of the maximally
permissive non-blocking supervisor for the considered RAS
are those transitions leading from safe to unsafe states, since
their effective recognition and blockage can prevent entrance
into the unsafe region. The unsafe states that result from such
problematic transitions are known as the boundary unsafe
states in the relevant literature.

A state-of-the-art approach for the computation of all
the boundary unsafe states of any RAS instance in the
class of D/C-RAS is provided in [4]. More specifically, the
approach introduced in [4] first recasts the resource allocation
dynamics of the considered RAS instance into an extended
finite automaton (EFA) [11], which is further encoded in
a binary decision diagram (BDD) [12], [13]. The main
algorithm of [4] that is of interest in this work subsequently
employs this BDD, as well some structural characterizations
regarding the RAS state safety from [14], in order to compute
the underlying set of boundary unsafe states through a two-
stage computation. In the first stage, all the deadlock states
are identified and retrieved from the aforementioned BDD-
based representation of the RAS state-space. In the second
stage, the identified deadlock states are used as starting points
for a search procedure over the aforementioned BDD that
identifies all the boundary unsafe states. The work presented
in this paper seeks to provide a more efficient version of this
algorithm that is based on a more distributed representation
of the BDD that models the underlying RAS state space. But
in order to proceed with the formal statement and analysis
of this new algorithm, we need to provide some further
background on the EFA-based modeling of the considered
RAS and the BDD-based modeling of these EFA.

B. Modeling the Considered RAS as Extended Finite Au-
tomata

The Extended Finite Automaton (EFA) [11] is an aug-
mentation of the ordinary FSA model with integer variables
that are employed in a set of guards and are maintained by a
set of actions. More formally, an Extended Finite Automaton
(EFA) over a set of model variables v = (v1, . . . , vn) is a
5-tuple E = 〈Q,Σ,→, s0, Q

m〉 where (i) Q : L×D is the
extended finite set of states. L is the finite set of the model
locations and D = D1 × . . . × Dn is the finite domain of
the model variables v = (v1, . . . , vn). (ii) Σ is a nonempty
finite set of events. (iii) → ⊆ L × Σ × G × A × L is the



transition relation, describing a set of transitions that take
place among the model locations upon the occurrence of
certain events. However, these transitions are further qualified
by G, which is a set of guard predicates defined on D, and
by A, which is a collection of actions that update the model
variables as a consequence of an occurring transition. Each
action a ∈ A is an n-tuple of functions (a1, . . . , an), with
each function ai updating the corresponding variable vi. (iv)
s0 = (`0, v0) ∈ L × D is the initial state, where `0 is the
initial location, while v0 denotes the vector of the initial
values for the model variables. (v) Qm ⊆ Lm×Dm ⊆ Q is
the set of marked states. Lm ⊆ L is the set of the marked
locations and Dm ⊆ D denotes the set of the vectors of
marked values for the model variables.

EFA-based modeling of RAS dynamics The formal
construction of an EFA E(Φ) modeling the dynamics of any
given RAS instance Φ = 〈R, C,P,A〉 is presented in [4].
For the needs of this manuscript, this construction is briefly
illustrated in the following example.

Example II.1: The RAS instance Φ under consideration
is shown in Fig. 1. It comprises two process types J1

and J2, each of which is defined as a sequence of three
processing stages; the stages of process type Jj , j = 1, 2,
are denoted by Ξjk, k = 1, 2, 3. The system resource set is
R = {R1, R2, R3}, with capacity Ci = 1 for i = 1, 2, 3.
Each processing stage Ξjk requests only one unit from a
single resource type; the relevant resource allocation function
is depicted in Fig. 1.

J1 : Ξ11

R1

Ξ12

R2

Ξ13

R3

J2 : Ξ21

R3

Ξ22

R2

Ξ23

R1

Fig. 1: A simple RAS

Fig. 2 shows the EFA that
models the behavior of process
J1 in the RAS of Fig. 1. This
EFA has only one location, and
its three transitions correspond
to the loading and the process-
advancing events among its dif-
ferent stages. More specifically, in the EFA depicted in
Fig. 2, the evolution of a process instance through the
various processing stages is traced by the instance variables
v1k, k = 1, 2; each of these variables counts the number
of process instances that are executing the corresponding
processing stage. The model does not avail of a variable v13

since it is assumed that a process instance reaching stage Ξ13

is (eventually) unloaded from the system, without the need
for any further resource allocation action.3

The aforementioned EFA E(Φ) that model the process
types J1 and J2 are linked through the global resource
variables vRi, i = 1, 2, 3, where each variable vRi denotes
the number of free units of resource Ri. Hence, the domain
of variable vRi is {0, . . . , Ci}. Since, under proper RAS
operation, the initial and the target final state correspond to
the empty state, both the initial and the marked values of
each variable vRi are equal to Ci, and the corresponding

3 However, we should further clarify that the omission of the terminal
stage Ξ13 from the developed EFA model is justified on the assumption
that these EFA models of the RAS process types, and the corresponding
analysis that is pursued in this paper, focus only on the issue of deadlock
avoidance. Terminal processing stages cannot be involved in the formation
of deadlock, and therefore, they do not necessitate an explicit consideration.
It is implicitly assumed, though, that the system (controller) keeps track of
the physical presence of any active process instances in these terminal stages
and of any temporary blocking effects that are incurred by this presence.

J1

J1 load
g : vR1 ≥ 1

a : v11 := v11 + 1; vR1 := vR1 − 1

〈Ξ12, Ξ13〉
g : v12 ≥ 1 ∧ vR3 ≥ 1
a : v12 := v12 − 1;
vR2 := vR2 + 1

〈Ξ11, Ξ12〉
g : v11 ≥ 1 ∧ vR2 ≥ 1
a : v11 := v11 − 1;
v12 := v12 + 1;
vR2 := vR2 − 1;
vR1 := vR1 + 1

Fig. 2: The resource-augmented EFA for J1

values for all instance variables vjk are equal to zero.
Finally, as depicted in Fig. 2, the resource and the instance

variables are used to construct the necessary guards and
actions for the system transitions. The guards determine
whether a process-loading or advancing event can take place,
on the basis of the process and the resource availability.
Upon the occurrence of such an event, the corresponding
actions update accordingly the available resource units and
the process instances that are active at the various processing
stages.

State feasibility It is evident from the above descrip-
tion that every legitimate resource allocation state of the
considered RAS must adhere to the restrictions that are
imposed by the limited capacities of the system resources.
In the representation of the EFA E(Φ), these restrictions are
expressed by the constraints

∀i ∈ {1, . . . ,m}, vRi+
n∑
j=1

∑
k∈{1,...,l(j)}\T (j)

Ajk[i]∗vjk = Ci,

(1)
where T (j) denotes the set with all the terminal stages of
process type Jj . The constraints of (1) can be perceived as
a set of (resource-induced) invariants that must be observed
by the dynamics of the EFA E(Φ) in order to provide a
faithful representation of the traced RAS dynamics. In the
following, any state s of the EFA E(Φ) with a variable vector
v satisfying the constraints of (1) will be characterized as a
feasible state.

C. Encoding EFA Dynamics by Binary Decision Diagrams

The Binary Decision Diagram (BDD) [13] is a memory-
efficient data structure used to represent Boolean functions
as well as to perform set-based operations. For any Boolean
function f : {0, 1}n → {0, 1} in n Boolean variables X =
(x1, . . . , xn), we denote by f |xi=0(resp. 1) the Boolean func-
tion that is induced from function f by fixing the value of
variable xi to 0 (resp. 1). Then, a BDD-based representation
of f is a graphical representation of this function that is
based on the following identity:

∀xi ∈ X, f = (¬xi ∧ f |xi=0) ∨ (xi ∧ f |xi=1) (2)

More specifically, (2) enables the representation of the
Boolean function f as a single-rooted acyclic digraph with
two types of nodes: decision nodes and terminal nodes. A
terminal node can be labeled either 0 or 1. Each decision
node is labelled by a Boolean variable and it has two
outgoing edges, with each edge corresponding to assigning
the value of the labeling variable to 0 or to 1. The value



of function f , for any given pricing of the variable set X ,
is evaluated by starting from the root of the BDD and, at
each visited node, following the edge that corresponds to
the selected value for the node-labeling variable; the value
of f is the value of the terminal node that is reached through
the aforementioned path.

The size of a BDD refers to the number of its decision
nodes. A carefully structured BDD can provide a more
compact representation for a Boolean function f than the
corresponding truth table and the decision tree; frequently,
the attained compression is by orders of magnitude. From a
computational standpoint, the efficiency of BDDs is mainly
due to the fact that the worst-case complexity of perform-
ing some logical operation on two functions f and f ′ is
O(|f | · |f ′|), where |f | and |f ′| are the sizes of the BDDs
representing f and f ′. A particular operator that is used
extensively in the following is the existential quantification
of a function f over some of its Boolean variables. For
a variable x ∈ X , the existential quantification of f over
x is defined by ∃x.f ≡ f |x=0 ∨ f |x=1. Also, if X̄ =
(x̄1, . . . , x̄k) ⊆ X , then ∃X̄.f is a shorthand notation for
∃x̄1.∃x̄2. . . .∃x̄k.f .

EFA encoding through BDDs To represent an EFA E
by a Boolean function, different sets of Boolean variables
are employed to encode the locations, events and integer
variables. For the encoding of the state set Q : L × D,
we employ two Boolean variable sets, denoted by XL and
XD = XD1 ∪ . . .∪XDn , to respectively encode the two sets
L and D. Then, each state q = (`, v) ∈ Q is associated with
a unique satisfying assignment of the variables in XL∪XD.
Given a subset Q̄ of Q, its characteristic function χQ̄ : Q→
{0, 1} assigns the value of 1 to all states q ∈ Q̄ and the value
of 0 to all states q /∈ Q̄.4 The symbolic representation of the
transition relation → relies on the same idea. A transition is
essentially a tuple 〈`, v, σ, `′, v′〉 specifying a source state
q = (`, v), an event σ, and a target state q′ = (`′, v′).
Formally, we employ the variable sets XL and XD to encode
the source state q, and a copy of XL and XD, denoted by
X́L and X́D, to encode the target state q′. In addition, we
employ the Boolean variable set XΣ to encode the alphabet
of E, and we associate the event σ with a unique satisfying
assignment of the variables in XΣ. Then, we identify the
transition relation → of E with the characteristic function

∆(〈q, σ, q′〉) =

{
1 if (`, σ, g, a, `′) ∈→, v |= g, v′ = a(v)
0 otherwise

That is, ∆ assigns the value of 1 to 〈q, σ, q′〉 if there exists
a transition from ` to `′ labelled by σ, the values of the
variables at ` satisfy the guard g, i.e., v |= g, and the values
of the variables v′ at `′ are the result of performing action
a on v.

BDD-based modeling of the RAS behavior Given a
RAS instance Φ and the distinct EFA E1, . . . , En that model
the resource allocation dynamics of the RAS process types
J1, . . . , Jn, we shall denote by ∆1, . . . ,∆n the correspond-
ing symbolic representations of these EFA. The resource al-
location dynamics generated by Φ can be formally expressed

4In the rest of the paper, we shall use interchangeably the original name
of a set Q and its characteristic function, χQ, in order to refer to this set.

00 00 111

s0

10 00 011

s1

00 10 110
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10 10 010

s4

01 00 101

s3

00 01 101

s5

01 10 100

s7

10 01 001
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11 00 001

s6

00 11 100

s9

11 10 000

s10

10 11 000

s11

J1 load J2 load

〈Ξ11, Ξ12〉 J2 load J1 load 〈Ξ21, Ξ22〉

J1 load J2 load

〈Ξ12, Ξ13〉

〈Ξ11, Ξ12〉 〈Ξ21, Ξ22〉 J1 load J2 load

〈Ξ22, Ξ23〉

J2 load

〈Ξ12, Ξ13〉

J1 load J2 load J1 load

〈Ξ22, Ξ23〉

Fig. 3: The state transition diagram (STD) modeling the RAS
dynamics of the example depicted in Fig. 1.

by the extended full synchronous composition (EFSC) [11]
that composes the aforementioned EFA to the “plant” EFA
E = E1|| . . . ||En. In [4], the symbolic representation of the
transition relation of E, denoted by ∆E, is obtained from
∆1, . . . ,∆n through the approach of [15], that constructs a
single (or a “monolithic”) BDD to represent ∆E. In this
work, following the ideas of [9], we propose to employ
a more distributed representation of ∆E that is based on
the construction of a set of disjunctive partial transition
relations, denoted by {∆σ | σ ∈ ΣE}, which, collectively,
will represent ∆E, i.e., ∆E ,

∨
σ∈ΣE

∆σ.
The primary motivation for such a more distributed rep-

resentation of ∆E comes from the following facts: From
the previous discussion on BDDs and their corresponding
efficiencies, it follows that the expected computational com-
plexity for the execution of some logical operation between
BDD ∆E and some other BDD χB is O(|∆E| · |χB |), if the
monolithic representation of ∆E is used.5 On the other hand,
this complexity is given by

∑
σ∈ΣE

O(|∆σ| · |χB |), if the
proposed, more distributed representation of ∆E can be em-
ployed. Hence, if the BDDs representing each of the partial
transition relations ∆σ, σ ∈ ΣE, contain much fewer nodes
than the single BDD representing the monolithic transition
relation ∆E, the expected complexity of performing the
aforementioned operation on ∆E by means of its distributed
representation will be substantially lower. Such a complexity
reduction can be even more dramatic when comparing the
space complexities of the two approaches, since, for the
distributed case, the corresponding space complexity is given
by maxσ∈ΣE

{O(|∆σ| · |χB |)}.
Closing this discussion on the modeling of the RAS behav-

ior through BDDs, we also notice that, as in [4], the computa-
tions pursued in this work do not require the encoding of the
locations of the considered EFA, since these elements do not
convey any substantial information other than characterizing
the various process types as model entities with a distinct
behavior modeled by the corresponding EFA. The realization
of this fact enables the further compression of each of the
aforementioned BDDs ∆σ by executing on it the existential
quantification ∆σ := ∃(XL

1 ∪ . . . ∪XL
n ).∆σ.

Example II.2: Fig. 3 depicts the dynamic behavior of

5We remind the reader that for a BDD χB , |χB | denotes the number of
decision nodes of this BDD.



the RAS instance in Example II.1 using the BDD-related
concepts that were discussed in the previous paragraph. The
depicted state transition diagram (STD) includes only the
RAS feasible states that are reachable from the initial state of
the corresponding EFA E(Φ), and furthermore, it considers
only those states that are modeled explicitly in this EFA
through the pricing of the corresponding model variables.
As it can be seen in Fig. 3, the resulting STD involves
twelve (12) states, with each state si, i = 0, . . . , 11, being
described by seven components that correspond to the values
of the instance variables v11, v12, v21, v22 and the resource
variables vR1, vR2, vR3 of the EFA E(Φ). States depicted
with a thick border are unsafe. Also, as mentioned above, we
could construct a single monolithic BDD ∆E to symbolically
represent the set of all transitions in the considered STD.
Alternatively, we can construct six simpler BDDs that will
represent the BDD ∆E in a combined manner; each of
these six BDDs collects the transitions corresponding to a
particular event recognized by the EFA E(Φ), and it is
indicated by a specific line style in Fig. 3.

III. THE NEW ALGORITHM

In this section, we present our new symbolic algorithm for
retrieving the boundary unsafe states of the underlying RAS
state-space that is symbolically represented by the BDD set
{∆σ | σ ∈ ΣE}. In the proposed implementation, we further
differentiate these BDDs into two subsets {∆σ1

, . . . ,∆σµ}
and {∆σ′

1
, . . . ,∆σ′

k
}, with σi, 1 ≤ i ≤ µ, and σ′j , 1 ≤ j ≤ k,

being the process-advancing and loading events, respectively.
Since, for most RAS instances, the number of loading events
is rather small, we conveniently group the corresponding
BDDs together, by performing the disjunction operation on
them. We shall denote the resultant BDD by the characteristic
function ∆L, i.e., ∆L := ∆σ′

1
∨ . . . ∨ ∆σ′

k
. Moreover, as

it will be revealed in the sequel, the algorithm establishes
and maintains the feasibility of the various extracted states
by utilizing the characteristic function χF that expresses
the state-feasibility conditions of (1) in the BDD-based
representational context; this function can be systematically
constructed by first expressing collectively the invariants of
(1) through the Boolean function

m∧
i=1

(
vRi +

n∑
j=1

∑
k∈{1,...,l(j)}\T (j)

Ajk[i] ∗ vjk = Ci
)
, (3)

and subsequently setting χF equal to the BDD that collects
the binary representations of all the value sets for the
variables vRi and vjk that satisfy the Boolean function of
(3).

As in [4], the proposed symbolic algorithm for computing
the feasible boundary unsafe states is decomposed into two
stages. In the first stage, all the deadlock states w.r.t. the
process-advancing events are identified and computed. In
the second stage, the deadlock states are used as starting
points for a search procedure that identifies all the boundary
unsafe states. The entire computation is formally expressed
by Algorithm 1, that works with the BDDs representing
∆σ1

, . . . ,∆σµ , ∆L and χF , and returns the characteristic
functions χFD and χFB that constitute respective symbolic
representations of the sets of the feasible deadlock states and

Algorithm 1: SYMBOLIC COMPUTATION OF FB

Input: ∆σ1 , . . . ,∆σµ , ∆L and χF
Output: χFD, χFB
/* Compute the feasible deadlock states χFD */

1 χND := χ{s0}
2 for i ∈ {1, . . . , µ} do
3 χND := χND ∨ (∃X́D. ∆σi)
4 χD1 := 0
5 for i ∈ {1, . . . , µ} do
6 χσiT := (∃XD. ∆σi)[X́

D → XD]
7 χD1 := χD1 ∨ (χσiT ∧ ¬χND)

8 χD2 := ((∃XD. ∆L)[X́D → XD]) ∧ ¬χND
9 χD := (χD1 ∨ χD2)

10 χFD := χD ∧ χF
/* Compute the feasible boundary unsafe states from χFD */

11 χUnew := χFD, χU := χFD
12 χσiLU := 0, ∆σi

Upre
:= 0 ∀i ∈ {1, . . . , µ}

13 repeat
14 for i ∈ {1, . . . , µ} do
15 ∆σi

U := (χUnew [XD → X́D]) ∧∆σi

16 χσiSU := ∃X́D. ∆σi
U

17 χσiLU := χσiLU ∨ χ
σi
SU

18 χσiNU := (∃X́D. ∆σi) ∧ ¬χ
σi
LU

19 ∆σi
Upre

:= ∆σi
Upre

∨∆σi
U

20 χUnew := 0
21 for i ∈ {1, . . . , µ} do
22 χσitemp := χσiSU
23 for j ← 1 to µ s.t. i 6= j do
24 χσitemp := χσitemp ∧ ¬χ

σj
NU

25 χUnew := χUnew ∨ χ
σi
temp

26 for i ∈ {1, . . . , µ} do
27 ∆σi

Upre
:= ∆σi

Upre
∧ ¬χUnew

28 χU := χU ∨ χUnew
29 until χUnew = 0

30 ∆LU := (χU [XD → X́D]) ∧∆L

31 χFBL := (∃XD. (∆LU ∧ ¬χU ))[X́D → XD]
32 χFBA := 0
33 for i ∈ {1, . . . , µ} do
34 χFBA := χFBA ∨ ((∃XD. ∆σi

Upre
)[X́D → XD])

35 χFB := χFBL ∨ χFBA

the feasible boundary unsafe states. In general, the set χFB
obtained from the presented algorithm may include some
states that are not reachable from the initial and empty state
s0. However, the presence of these additional states does
not impede the implementation of the maximally permissive
DAP by means of this set and the one-step-lookahead logic
that was outlined in the earlier parts of this document.6

Identification of the feasible deadlock states The sym-
bolic operations for the computation of the characteristic
function χFD are depicted in Lines 1-10 of Algorithm 1,
and they can be described as follows:

(i) The first step, consisting of Lines 1-3, computes the
characteristic function χND for all the non-deadlock states
in ∆σ1

, . . . ,∆σµ ; these states are identified as states that can
enable some process-advancing event. (ii) Subsequently, by
utilizing the characteristic function χND, Lines 4-9 compute
the characteristic function χD of all deadlock states. These
are states that result from some loading or process-advancing

6The reader is referred to [4] for further discussion on the implementation
of the target DAP by means of the computed set χFB .



event and they do not belong in the set of non-deadlock
states χND. Each of these two deadlock subsets are collected
respectively in the sets χD1 and χD2 .7 Line 9 merges
symbolically the two identified deadlock sets χD1

and χD2

into the characteristic function χD, but the resulting state
set might contain deadlock states that are infeasible, i.e.,
they violate the resource-induced invariants of (1). Hence,
(iii) in the last step of the first stage of Algorithm 1, the
obtained state set χD is filtered through its conjunction with
the characteristic function χF in order to obtain the set
of feasible deadlock states; this set is represented by the
characteristic function χFD.

Identification of the feasible boundary unsafe states
Having obtained the set χFD of the feasible deadlock states,
the algorithm proceeds with the symbolic computation of the
feasible boundary unsafe state set χFB as follows: (i) At this
phase of the computation, Algorithm 1 employs the set U
to collect all the identified unsafe states. These unsafe states
are obtained through an iterative process, where the state
set Unew contains the new unsafe states that are obtained
at a certain iteration. These states subsequently become the
starting points for an one-step-backtracing process in the
STDs corresponding to each of the BDDs ∆σ1

, . . . ,∆σµ , in
an effort to reach and identify new unsafe states in the next
iteration. The corresponding symbolic representations for the
two aforementioned sets, denoted by χU and χUnew , are
initialized to χFD. Furthermore, for each event σi, we define
and maintain the sets LUσi ≡ {s | (s, u) ∈ ∆σi ∧ u ∈ U}
and Uσipre ≡ {(s, u) ∈ ∆σi | u ∈ U ∧ s /∈ U}, which
are symbolically represented by the respective characteristic
functions χσiLU and ∆σi

Upre
,∀i = 1, . . . , µ.

(ii) During the main iteration of the executed search
process, corresponding to Lines 14-27 in Algorithm 1, the
algorithm first performs the following operations w.r.t. each
∆σi (Lines 14-18): The algorithm first collects in χσiSU the
states that can be reached from the unsafe states in Unew
through backtracing on the transitions of ∆σi , and it also
adds this set of states in χσiLU . Since states in χσiLU are states
with emanating transitions in ∆σi that lead to unsafe states,
any state in this set could be perceived as “unsafe” if it
was evaluated for safety only against the particular transition
subset that is encoded by ∆σi . The algorithm also computes
the set of states χσiNU that have emanating transitions in ∆σi

and do not belong in χσiLU ; these are states that currently
cannot be pronounced as “unsafe” when assessed from the
viewpoint of the transition set encoded by ∆σi .

(iii) With the state sets χσiSU and χσiNU available for every
i = 1, . . . , µ, the algorithm proceeds to compute the new
unsafe states that are revealed in this iteration (Lines 20-25):
The defining logic for this computation is that a state in some
of the obtained sets χσiSU will be (really) unsafe, only if it
is perceived as “unsafe” w.r.t. every transition set ∆σi , i.e.,
only if it does not belong to any χσjNU , for j 6= i. States that
satisfy this criterion are collected in the set χUnew , which
is re-initialized to zero at the beginning of this phase of the
overall computation (Line 20) and it is eventually added to
the state set χU (Line 28).

7The operation [X́D → XD] denotes the replacement of all variables of
X́D by those of XD , so that the symbolic computation can proceed.

(iv) During the computational phases described in items
(ii) and (iii) above, the algorithm also maintains the transition
sets Uσipre, i = 1, . . . , µ, (Lines 19 and 27). At the end of
the described iterations, these sets contain the ”boundary”
transitions between the safe and the unsafe regions w.r.t. each
corresponding event σi.

(v) The iteration described in items (ii)-(iv) above termi-
nates when no new unsafe sates can be identified by the
algorithm. At this point, Algorithm 1 proceeds to extract
the boundary unsafe states, and the corresponding operations
can be described as follows: First, at Line 30, the algorithm
extracts in the characteristic function ∆LU all the loading
transitions with their target states in χU . Subsequently, Line
31 uses the outcome of Line 30 in order to compute the
boundary unsafe states that are reached from safe states
through loading events; the set of boundary unsafe states
identified at Line 31 is represented by the characteristic
function χFBL. Next, the algorithm continues to identify
the rest of the boundary unsafe states that are reached from
some safe states through process-advancing events (Lines 32-
34). This set of boundary unsafe states is represented by the
characteristic function χFBA and, as explained in item (iv)
above, it can be computed by collecting all the target states
of the transitions in ∆σi

Upre
,∀i = 1, . . . , µ. Finally, χFB is

obtained in Line 35 by taking the disjunction of χFBL and
χFBA.

Example III.1: As a concrete example, we apply Algo-
rithm 1 to the STD depicted in Fig. 3 to identify its boundary
unsafe states. The transitions of the STD are partitioned
and symbolically represented in the following five BDDs:
∆L represents the transitions of the considered STD that
are labelled by process loading events (i.e., J1 Load and
J2 Load); ∆〈Ξ11,Ξ12〉,∆〈Ξ12,Ξ13〉,∆〈Ξ21,Ξ22〉 and ∆〈Ξ22,Ξ23〉
represent the transitions that are labeled by the corresponding
process-advancing events.

The application of Lines 1-10 of Algorithm 1 to the afore-
mentioned BDDs will return the BDD of feasible deadlock
states, χFD, that includes the states s7, s8, s10, and s11.
Indeed, it can be easily checked in the depicted STD that
these states enable no process-advancing events.8

Next, starting from the aforementioned deadlock states,
the backward search through the RAS process-advancing
transitions, implemented in Lines 13-29 of Algorithm 1, will
identify all the deadlock-free unsafe states of the considered
STD. More specifically, at the first iteration of this search,
state s4 will be reached by backtracing from states s7 and
s8, with the respective backtracing taking place in BDDs
∆〈Ξ11,Ξ12〉 and ∆〈Ξ21,Ξ22〉. Hence, after the execution of Line
17, state sets χ〈Ξ11,Ξ12〉

LU and χ〈Ξ21,Ξ22〉
LU will contain state s4

while χ〈Ξ12,Ξ13〉
LU and χ

〈Ξ22,Ξ23〉
LU will remain empty. Subse-

quently, the computation at Line 18 collects, for each BDD
∆σ , σ ∈ {〈Ξ11,Ξ12〉, 〈Ξ21,Ξ22〉, 〈Ξ12,Ξ13〉, 〈Ξ22,Ξ23〉},
all the states in that ∆σ with their emanating transitions
leading to states that can not be identified as unsafe states
at the current iteration; in particular, χ〈Ξ11,Ξ12〉

NU = {s1},
χ
〈Ξ21,Ξ22〉
NU = {s2}, χ〈Ξ12,Ξ13〉

NU = {s3, s6} and χ
〈Ξ22,Ξ23〉
NU =

{s5, s9}. Since state s4 does not belong to any of these four

8But they might still enable some loading events, as is the case with states
s7 and s8.



state sets, it will be identified as an unsafe state through the
computations depicted in Lines 21-25. For this example, the
backward search terminates after the second iteration, since
the attempt to backtrace from state s4 through some process-
advancing transitions fails to reach any states at all. Finally,
Algorithm 1 proceeds to extract the boundary unsafe states.
Since, in this example, all the unsafe states s4, s7, s8, s10 and
s11 can be reached from the safe subspace through a single
transition, the resulting state set χFB contains all these states
in the set χU . �

A complete correctness analysis of Algorithm 1 that
establishes (i) its finite termination and (ii) the soundness
of the performed computation, can be found in [10].9 Next,
we proceed to discuss some experimental results that estab-
lish the efficacy of this algorithm w.r.t. the corresponding
algorithm of [4].

Experimental results The symbolic algorithms for com-
puting boundary unsafe states that was developed in this
work, has been implemented in the DES software tool
Supremica [17]. The program is written in Java and it uses
JavaBDD [18] with BuDDy as the BDD library. Table I re-
ports the experimental results of applying the proposed sym-
bolic algorithm to a set of representative RAS instances.10

These RAS instances are grouped into three categories: (i)
The first category involves RAS with linear process flows
and single-unit requests, from a single resource type, by
each processing stage. (ii) The second category retains the
linear structure of the process flows, but allows for arbi-
trary resource allocation requests by the various processing
stages, in terms of the requested resource types and their
quantities. (iii) The third category preserves the arbitrary
resource allocation requests of the second category, but it
also allows for routing flexibility. Columns 1-2 in Table I
report, respectively, the cardinalities of the set of reachable
states R and the set of feasible boundary unsafe states FB.
Columns 3-4 report the required computation time, to (in
secs), and the maximal number of BDD nodes, ζo, employed
during the execution of the symbolic algorithm introduced
in [4]. On the other hand, Columns 5-6 report the required
computation time, tn, and the maximal number of BDD
nodes, ζn, employed during the execution of the algorithm
presented in this work. Finally, Columns 7-8 report the
relative reduction to the computation time and the maximal
number of BDD nodes that is incurred by the new algorithm;
a negative value in any of these two columns should be
interpreted as an increase of the corresponding quantity.11

The perusal of the data shown in Table I reveals that, as
expected, (i) Algorithm 1 is more efficient in terms of its
memory requirements compared to the symbolic algorithm
of [4], for all RAS instances. (ii) The computation times of
Algorithm 1 are also improved for most of the RAS instances
in the first two categories, even though more operations are
needed in Lines 13-28 of Algorithm 1 compared to the
algorithm of [4]. (iii) For the RAS instances with routing

9To facilitate the review process for this manuscript, we also provide this
analysis in [16], which is accessible from the author websites.

10The experiments were carried out on a standard desktop, (2.66 GHz
Intel Core Quad CPU, 8GB RAM) running Windows 7.

11More specifically, the quanity ηt reported in Column 7 is computed by
ηt = (to−tn)/to and similarly, the quantity ηm of Column 8 is computed
by ηm = (ζo − ζn)/ζo.

flexibility, because of the scarcity of the unsafe states in the
corresponding state spaces, and the larger “depth” (i.e., the
maximal distance from a deadlock state to any boundary
unsafe state) of the unsafe state-space, the presented sym-
bolic algorithm requires longer computation time compared
to the algorithm of [4]. However, this gap is not large
for most of the presented cases, as depicted in Table I.12

Moreover, as discussed in the next section, the execution
time of the considered algorithm can be further controlled
through parallelization.

IV. EXTENSIONS

Parallelization Algorithm 1 can be easily parallelized on
shared multi-processor or multi-core systems by a series of
straightforward modifications. First, regarding the computa-
tion of χFD, we notice that the symbolic operation depicted
at Line 3 can be parallelized since the extraction of the
source states from the transitions of each ∆σi ,∀i = 1, . . . , µ,
can be performed independently on each set. Once χND is
obtained, it is also evident that the operations of Lines 6-
7 can be run in parallel on each ∆σi , while at the same
time the operation of Line 8 can be executed on ∆L.
Finally, Lines 9-10 will use the outcomes of these partial
computations in order to compute χFD. Similarly, the part
of Algorithm 1 for computing χFB can be parallelized w.r.t.
the operations carried out in Lines 14-27 and 33-34; in this
parallelizing scheme, the sets χσiLU and ∆σi

Upre
need to be

bundled together with ∆σi in the corresponding threads. On
the other hand, it should also be noticed that the execution of
the operations of Lines 22-25 in each of the aforementioned
threads necessitates the dissemination among them of the
sets χσiNU that are computed by each of them. Hence, there
is a need for information exchange among these threads. This
information exchange can take place asynchronously among
the running threads, and, in certain cases, it might be possible
to exploit the particular structure of the underlying RAS in
order to reduce further this communication coupling.

Uncontrollability Algorithm 1 can also be easily extended
to account for uncontrollable RAS dynamics, where uncon-
trollability is defined w.r.t. the timing and/or the routing
of some process-advancing events; i.e., these events may
occur spontaneously as long as the requested resources are
available or the further routing of certain processes might
be externally dictated by the need for special treatment or
rework. This uncontrollable behavior necessitates a redef-
inition of the notion of “state unsafety”: under this new
regime, a feasible state s is unsafe as soon as there exists
an uncontrollable event that is enabled at s and leads to
another unsafe state. Therefore, for all partial transition
relations ∆σu where σu is an uncontrollable event, unsafe
states can be directly identified by backtracing from the
currently identified unsafe states without the need to perform
the other symbolic operations in Lines 14-27 of Algorithm 1.
In fact, starting from an unsafe state, this backward search
on each ∆σu can be carried out repeatedly until a fixed-
point is reached; all the states reached by this process are
subsequently entered into set χUnew . On the other hand,

12Even in the cases where the reported relative increase might seem pretty
large, it can be checked in the provided data that the actual increase in the
computation time, in terms of the actual time values, is not very big.



TABLE I: A set of computational results demonstrating the efficiency of the presented algorithm.

|R| |FB| to ζo tn ζn ηt ηm

799, 071 283, 962 7s 283, 962 9s 118, 509 -28% 58%
1, 659, 342 800, 940 42s 796, 123 49s 369, 875 -16% 53%
1, 962, 454 761, 399 29s 450, 040 21s 92, 129 27% 79%
3, 436, 211 1, 564, 991 106s 1, 176, 110 84s 520, 275 20% 55%

14, 158, 338 3, 558, 362 152s 1, 561, 971 206s 473, 966 -35% 69%
14, 521, 572 5, 696, 085 642s 4, 999, 572 435s 948, 155 32% 81%
14, 963, 458 5, 989, 367 553s 4, 415, 000 431s 758, 113 22% 82%
22, 212, 582 8, 056, 766 964s 5, 546, 176 436s 1, 099, 411 54% 80%
29, 160, 898 7, 751, 451 237s 2, 685, 162 197s 480, 315 16% 82%
32, 380, 375 14, 320, 225 904s 5, 415, 820 517s 647, 567 42% 88%

1, 712, 672 445, 092 38s 646, 998 29s 77, 865 23% 87%
1, 962, 454 761, 399 25s 649, 984 21s 120, 082 16% 81%
2, 430, 581 741, 764 10s 226, 991 9s 83, 774 10% 63%
2, 939, 463 531, 238 97s 1, 043, 925 79s 144, 508 18% 86%
6, 051, 299 1, 781, 191 32s 575, 720 37s 118, 341 -15% 79%

22, 212, 582 8, 056, 766 815s 5, 182, 290 375s 1, 658, 094 53% 67%
24, 430, 444 6, 000, 747 125s 1, 534, 599 110s 163, 222 12% 89%
29, 160, 898 7, 751, 451 193s 2, 146, 384 240s 450, 029 -24% 79%

106, 509, 798 12, 529, 669 313s 2, 367, 893 358s 382, 689 -14% 83%
596, 212, 152 169, 402, 134 520s 6, 744, 437 515s 431, 616 0.9% 93%

1, 663, 534 262, 514 1s 129, 084 2s 32, 706 -100% 74%
2, 340, 408 603, 701 2s 230, 807 8s 40, 103 -300% 82%
7, 885, 856 594, 828 1s 262, 861 0s 41, 681 100% 84%

30, 397, 584 853, 537 3s 229, 892 3s 28, 648 0% 87%
81, 285, 120 4, 676, 480 0s 120, 387 0s 12, 343 0% 89%
96, 438, 720 6, 321, 838 106s 2, 526, 813 115s 140, 091 -8% 94%

399, 477, 600 122, 636, 544 59s 2, 939, 165 153s 494, 699 -169% 83%
1, 219, 947, 240 72, 055, 380 460s 7, 959, 586 886s 1, 647, 448 -92% 79%
3, 547, 065, 654 93, 980, 859 74s 3, 595, 817 69s 381, 583 6% 89%
3, 749, 923, 584 269, 219, 724 99s 2, 441, 987 145s 112, 904 -46% 95%

events σi corresponding to controllable behavior will have
their ∆σi processed according to the standard logic of
Algorithm 1. Due to space limitations, we leave the relevant
implementation details to the reader.

V. CONCLUSIONS

This paper has extended the recent results of [4], by
presenting a novel symbolic algorithm for computing the
boundary unsafe states for RAS instances coming from the
class of D/C-RAS. Instead of performing all the symbolic
computations on the monolithic transition relation represent-
ing the underlying RAS state-space, the proposed algorithm
identifies the boundary unsafe states iteratively on a set
of less complex partial transition relations, with each such
partial relation defined by a particular event in the RAS-
modeling EFA. A series of computational experiments has
manifested the superiority of this algorithm, especially in
terms of memory usage, over the corresponding algorithm in
[4]. Furthermore, the algorithm can be (i) easily extended to
account for the uncontrollable behavior and (ii) parallelized
to take advantage of the contemporary shared-memory multi-
core systems.
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[17] K. Åkesson, M. Fabian, H. Flordal, and R. Malik, “Supremica - An
integrated environment for verification, synthesis and simulation of
discrete event systems,” in the 8th International Workshop on Discrete
Event Systems, Ann Arbor, MI, USA, 2006, pp. 384–385.

[18] “JavaBDD.” [Online]. Available: javabdd.sourceforge.net

http://publications.lib.chalmers.se/records/fulltext/205470/local_205470.pdf
http://publications.lib.chalmers.se/records/fulltext/205470/local_205470.pdf
javabdd.sourceforge.net

	Introduction
	Preliminaries
	Resource Allocation Systems and the corresponding problem of Deadlock Avoidance
	Modeling the Considered RAS as Extended Finite Automata
	Encoding EFA Dynamics by Binary Decision Diagrams

	The New Algorithm
	Extensions
	Conclusions
	References

