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Abstract

Guidepath-based transport systems is a pertinent abstraction for the traffic that is generated in many contemporary applica-
tions, ranging from industrial material handling and robotics, to computer game animations and the qubit transport systems
employed in quantum computing. A particular problem that must be effectively addressed for the systematic operation of
these systems, is the preservation of their “liveness”, i.e., the preservation of the ability of the system agents to complete their
current assignments and engage successfully to similar assignments in the future operation of the system. This paper provides
a systematic and comprehensive characterization of the notion of “liveness” for the entire spectrum of the aforementioned
transport systems, and it further investigates the implications of this characterization for the deployment of maximally per-
missive liveness-enforcing supervision for the underlying traffic. It is shown that the computational complexity of the sought
supervisors is contingent upon certain structural and operational attributes of the considered transport systems, that define,
thus, a useful taxonomy for these environments. The paper proposes effective and efficient liveness-enforcing supervisors for
each member of this taxonomy. Furthermore, the concluding part of the paper indicates how the obtained results can be in-
tegrated in a broader control framework for the considered transport systems that will also address time-related performance
considerations for these environments, like the maximization of their throughput.
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1 Introduction

Guidepath-based transport systems and the
problem of their liveness enforcing supervision:
This paper concerns the traffic that is generated by a
set of agents circulating on a connected graph which is
known as the “(supporting) guidepath network”. The
“mission” trips of these agents on the guidepath network
are specified by edge sequences that must be visited by
the agents in the indicated order. Furthermore, during
their trips to these destinations, the agents must observe
certain regulations that are dictated by safety consider-
ations, and essentially stipulate that two agents cannot
cohabitate on the same edge of the guidepath network
at any point in time during their trips. This stipula-
tion is enforced by a traffic coordinator, and it turns
the agent traveling towards their various destinations
into a sequential resource allocation process (Reveliotis
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(2017)), with the negotiated resources being the edges
– also known as “zones” – of the guidepath network.
A complete characterization of the structure and the
traffic dynamics of the considered transport systems is
provided in Section 2.

From an application standpoint, the traffic problems
outlined in the previous paragraph arise naturally in the
real-time operations of various automated unit-load ma-
terial handling (MH) systems, like the AGV, the over-
head monorail and the complex crane and gantry sys-
tems that are used in many production and distribu-
tion facilities (Heragu (2008), Weiss (1996)). They also
arise in the physical medium that implements the vari-
ous elementary operations taking place in the context of
quantum computing (Daugherty et al. (2019), Daugh-
erty (2017)). In addition, similar guidepath-based traffic
models have drawn recently the attention of the robotics
community (e.g., Standley & Korf (2011), Sajid et al.
(2012), Yu & LaValle (2016), Ma et al. (2016)), while,
in the past, they have been studied even by the broader
Computer Science community in the context of some
classical games like the, so called, “15-puzzle” where
15 uniquely numbered “pebbles” located on a 4×4 grid
have to be re-arranged in the row-major order by “peb-

Preprint submitted to Automatica 7 December 2019



ble sliding” through the single unoccupied vertex of the
grid (Wilson (1974), Kornhauser et al. (1984)).

A primary concern for the zone allocation function that
takes place in the various instantiations of the aforemen-
tioned transport systems, is the establishment of a high
throughput for their operations, through the facilitation
of expedient traveling of the running agents to their var-
ious destinations. This objective is attained through (i)
a pertinent coordination of the agent traversal of the
various contested edges, and (ii) the effective utilization
of the routing flexibility that is defined by the topology
of the underlying guidepath network (Daugherty et al.
(2019), Reveliotis (2019)). But an additional important
concern for the traffic coordinator and the corresponding
resource allocation process, is to preserve the “liveness”
of the generated traffic, i.e., the ability of all the system
agents to complete their current assignments and engage
successfully to similar assignments in the future opera-
tion of the system. In the considered transport systems,
this ability can be compromised by a potential formation
of deadlocks and livelocks among the traveling agents.
Hence, the system controller must restrict the system
traffic so that no such formation ever takes place in it.
Furthermore, this restriction must be of a minimal na-
ture, so that it does not compromise unnecessarily the
time-based performance of the system.

A brief, critical review of the literature on the no-
tion of “liveness” of the considered transport sys-
tems and the corresponding supervisory control
problem: In fact, the issues of liveness and liveness-
enforcing supervision for various instantiations of the
considered transport systems have already drawn the
attention of the control-systems community. In partic-
ular, traffic coordination of AGV systems for deadlock
avoidance has been a “pet” application for researchers
that work on supervisory control (SC) of Discrete Event
Systems (DES); the works of Krogh & Holloway (1991),
Brandin (1996), Wonham (2006), Girault et al. (2016)
provide some indicative examples of this activity. Fur-
thermore, the same problem of deadlock avoidance in
AGV systems has a prominent position in the research
activity of a particular group of researchers within the
DES community that works on the broader problem of
liveness-enforcing supervision of complex resource allo-
cation systems (RAS) (Reveliotis (2017)); some indica-
tive examples coming from this line of work are those
presented in Reveliotis (2000), Wu & Zhou (2001), Fanti
(2002), Roszkowska & Reveliotis (2008), Reveliotis &
Roszkowska (2010).

But those past works and their results have appeared in
the corresponding literature in a fragmented and scat-
tered manner. More specifically, the first set of the afore-
mentioned works have used the problem of deadlock
avoidance in guidepath-based transport systems primar-
ily as an “application example” that demonstrates the
efficacy and the application potential of some more gen-

eral DES SC theory developed in those works. On the
other hand, the works that focus more explicitly on the
particular problems of liveness assessment and enforce-
ment for the considered transport systems, tend to tar-
get specific configurations of these systems, customiz-
ing their results to the particular features of these con-
figurations, and seeking to provide practical solutions
that are synthesized around these features rather than
a complete formal theory. Furthermore, while it is gen-
erally acknowledged that the resulting SC problems are
“hard”, there has been only limited effort to formally
characterize the complexity of these problems and the
factors that shape this complexity.

The intended contribution and the basic struc-
ture of this work: This work seeks to address the the-
oretical gaps that were described in the previous para-
graph by (i) providing a systematic investigation of the
aforementioned problems of assessing and enforcing live-
ness in the considered transport systems, in the least
restrictive manner, and (ii) characterizing the computa-
tional complexity of these problems. In some more spe-
cific terms, the developments that are presented in this
manuscript support the following triple role: (a) First,
they define a unifying framework for the investigation
of the targeted liveness-related problems across the var-
ious instantiations of the considered transport systems,
and use this framework as an instrument for the further
organization of the corresponding results that already
exist in the literature. (b) In addition, they complement
those past results with new results regarding the consid-
ered traffic-liveness problems and their computational
complexity that pertain to guidepath-based transport
systems not addressed by the past literature. (c) Finally,
they also identify a number of additional open problems
that should get the attention of the corresponding re-
search community.

As it will be revealed in the subsequent developments,
the presented results are strongly contingent upon cer-
tain structural and operational characteristics of the un-
derlying transport system. Among these characteristics,
some of the most prominent ones are: (i) the ability of
an agent to freely reverse its motion on any given edge of
the guidepath network; (ii) the availability of a “depot”
location where the agents retire upon the completion
of their mission trips; and (iii) the degree of prespeci-
ficity of the routes to be followed by the traveling agents
as they try to reach their target nodes. These three at-
tributes define the three “dimensions” of a taxonomy
that will be instrumental for the organization and expo-
sition of the presented material. We elaborate further on
these three attributes and the induced taxonomy in Sec-
tion 2, where we provide a more systematic description
of the guidepath-based transport systems considered in
this work.

Finally, in view of the above positioning of the paper
content and its intended contribution, the rest of it is or-
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ganized as follows: Section 2 introduces the guidepath-
based transport systems considered in this work in terms
of their structural and operational elements, formalizes
the taxonomy of these systems along the lines that were
discussed in the previous paragraph, and introduces the
basic notion of traffic liveness. Sections 3 and 4 provide
the main results of the paper on liveness assessment and
preservation, organizing them along the primary axes of
the aforementioned taxonomy. Section 5 concludes the
paper, and suggests some directions for future work. In
addition, the main results of the paper are summarized
in a structured manner in an appendix, for the readers’
convenience. On the other hand, due to the page limita-
tions that are imposed to this publication, some of the
proofs of the supported results are only sketched in the
manuscript, while the complete versions of these proofs
are provided in an electronic supplement that is acces-
sible through the author’s personal website. Finally, we
also notice, for completeness, that a preliminary, much
more concise version of this work, has appeared in Rev-
eliotis (2018).

2 The considered guidepath-based transport
systems, a useful taxonomy, and the funda-
mental notion of traffic liveness

The basic abstracting ingredients of the guide-
path-based transport systems considered in this
work: The basic structure of the guidepath-based trans-
port systems considered in this work is formally repre-
sented by a tuple 〈G,A〉, where:

(1) G = (V,E) is an undirected, connected graph 1

that represents the supporting “guidepath net-
work”. More specifically, each edge e ∈ E of graph
G represents a “zone” of the underlying guidepath
network that can be traversed by a traveling agent
in either direction, but it cannot be occupied by
more than one agent at any time. Hence, the guide-
path edges e ∈ E are “reusable resources” of the
considered traffic system, in the spirit of Reveliotis
(2017), and their allocation to the system agents is
dynamically controlled by a traffic coordinator.

(2) A = {a1, . . . , an} is the set of agents that circu-
late in this system. Agents execute “mission” trips
that are externally specified and are elaborated in a
later part of this section. Furthermore, these “mis-
sion” trips are continually updated as new “service
requirements” are dynamically posed to the under-
lying transport system.

1 We remind the reader that a graph G is undirected if each
of its edges does not have a sense of direction associated
with it, and that an undirected graph G is connected , if for
every pair of vertices v1, v2, there is a “path” of edges, π,
that connects these two vertices.

Example: As a concretizing example of the above ab-
straction, consider the familiar Automated Guided Ve-
hicle (AGV) systems that are used in various produc-
tion and distribution facilities (Heragu (2008)). In this
case, the traveling agents a ∈ A are the system AGVs,
which are used to transport materials among the vari-
ous locations of the facility. At any point in time, each
vehicle might be assigned a sequence of such transport
tasks that must be executed in the specified order by vis-
iting the corresponding pickup and delivery locations.
The transport-task sequences associated with each ve-
hicle are also dynamically updated as new transport re-
quirements arise in the underlying system.

The guidepath network for these AGV systems is defined
either physically (e.g., through some colorful duct tape
that is deployed on the shop-floor and must be traced
by the vehicle scanners), or virtually (e.g., through some
radio signals that must be traced and processed by the
vehicle sensors). The exact specification of the system
guidepath network, in any of the aforementioned man-
ners, intends to confine the AGV traffic in particular
corridors and, in this way, separate it from the remain-
ing activity that takes place in the surrounding environ-
ment, due to safety and other efficiency considerations.
Finally, in an effort to avoid collisions among the travel-
ing vehicles, the various corridors of the guidepath net-
work are split into “zones” that must be occupied by at
most one AGV at any point in time; these zones define
the edges e ∈ E of the abstracted guidepath network G.

A classification of the considered transport sys-
tems: Next, we introduce some additional attributes
that qualify further the operation of the considered
transport systems, and induce a taxonomy for these
systems that will help us structure the investigation of
the control problems that are considered in this work.

I. “Open” vs. “closed” guidepath-based trans-
port systems: In many practical instantiations of the
considered transport systems – including most of the
AGV systems that were described in the above example
– the guidepath network avails of a “depot” location
where the system agents can retire upon the completion
of their running missions, and possibly receive some
maintenance service, recharge their batteries, etc. For
the representational needs of this work, we shall model
this “depot” location by augmenting the zone-modeling
edge set E with a set of |A| self-loop edges, one for each
agent a ∈ A, all connected to the same vertex vh. Vertex
vh will be called the “home” vertex . Also, the self-loop
edge corresponding to agent a will be denoted by eh(a),
will be used exclusively by agent a, and it will referred
to as the “home” edge of agent a. 2

2 We want to emphasize that the modeling of the “depot”
location through the vertex vh and the edges eh(a), a ∈ A, as
described above, intends to capture the fact that the agents
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In the following, guidepath-based transport systems
that possess the “depot” location – or, equivalently, the
“home” structure – that was described in the previous
paragraph, will be characterized as “open”; the remain-
ing ones will be said to be “closed”. Furthermore, the
presence of a “home” structure introduces a “regenera-
tive” element in the dynamics of the underlying traffic,
which will further function as a decomposing mechanism
in the study of the corresponding “liveness”-related
problems that are considered in this work. Hence, the
above classification of the considered transport systems
into “open” and “closed” will play a significant role in
the developments of Sections 3 and 4.

II. “Reversible” vs. “irreversible” guidepath-
based transport systems: In some of the considered
transport systems, agents a ∈ A can reverse the direc-
tion of their motion in their currently allocated edge
e, while in the remaining ones such motion reversal
is not possible. For instance, in many of the typical
AGV systems that have been deployed in various in-
dustrial settings, vehicles are effectively moving only
in one direction of their longitudinal axis. And even
in those cases where the system vehicles have a sub-
stantial capability of “backing up”, such an operation
might be rendered cumbersome and unsafe due to the
spatial constraints that are imposed by the vehicle
loads, their sensing capabilities, etc. On the other hand,
there are also robotic applications where reversibility of
the agent motion is practically feasible. Furthermore,
such motion reversibility is naturally supported in the
guidepath-based transport systems that abstract the
qubit traffic in quantum computing (Daugherty et al.
(2019), Daugherty (2017)), and the various games that
have been studied in the CS context (Wilson (1974),
Kornhauser et al. (1984)).

In the following, we shall refer to the guidepath-based
transport systems that support reversibility of the agent
motion in their current zone as “reversible”, and to the
remaining ones as “irreversible”. For the purposes of the
“liveness”-related studies that are pursued in this work,
“irreversibility” is important because it introduces a po-
tential for the development of deadlocks and livelocks.
The simplest example of such a deadlock is that caused
by a number of traveling agents that converge to a sin-
gle junction from all possible directions. On the other
hand, “reversible” guidepath-based transport systems
can cope with such developing deadlocks by “backtrac-
ing” their moves that led to those formations. Hence,

retiring in this location do not interfere with the traffic that
takes place in the main guidepath network that is defined
by the edge set E of the graph G that was introduced at the
beginning of this section. The presented model is just one of
a number of models that can capture this effect, and for the
purposes of the subsequent analysis, all these models would
be equivalent.

the above classification of the considered transport sys-
tems into “reversible” and “irreversible” will also have
a prominent role in the subsequent developments.

III. “Statically” vs. “dynamically”-routed guide-
path-based transport systems: A natural, formal
characterization of the “mission” trip for any travel-
ing agent a ∈ A is through an edge sequence Σa =
〈e1, e2, . . . , ek〉; ei ∈ E, ∀i = 1, . . . , k, that constitutes
the set of zones that must be visited by agent a in the cor-
responding order. Furthermore, in open transport sys-
tems, it is implicitly assumed that the last edge to be
visited by agent a in its current mission trip, is the corre-
sponding “home” edge eh(a). And as already discussed,
agent “mission” trips can be extended dynamically, as
new service requirements arise in the underlying system.

When traveling from edge ei to edge ei+1, agent a will
follow a walk 3 between these two edges that is consis-
tent with the operational assumptions of the underly-
ing transport system. In many cases, the exact deter-
mination of the aforementioned walks will take place in
real-time, and it will be contingent upon the prevailing
traffic conditions. Guidepath-based transport systems
where the agent “mission” trips are fully defined and
maintained in this way, are characterized as “dynami-
cally routed”. Furthermore, it can be argued that dy-
namic routing is the most natural routing scheme for the
considered transport systems. But in order to provide a
comprehensive treatment of the notion of “liveness” and
its complexity in the considered transport systems, we
shall also consider an alternative routing scheme where
the agent routes are completely predetermined by an ex-
ternal entity. In this case, the “mission” trip of each trav-
eling agent a ∈ A is an externally specified walkWa that
defines completely the sequence of the edges e ∈ E that
this agent must traverse till the completion of its trip;
such a routing scheme will be characterized as “static”
in the following. Furthermore, in the following, we shall
restrict the study of “static” routing schemes into the
class of “open” transport systems only, and we shall
further assume that each of the aforementioned walks
Wa, a ∈ A, implicitly terminates at the corresponding
“home” edge eh(a). 4

The notion of “traffic liveness” in the consid-

3 We remind the reader that a walk in an undirected graph
G is a sequence 〈v0, e1, v1, . . . , vi−1, ei, vi, . . . , vk−1, ek, vk〉
where, for all i = 1, . . . , k, edge ei is incident upon the ver-
tices vi−1 and vi.
4 The notion of “static routing” is not easily defined in
closed guidepath-based transport systems, since agents will
still have to move around after the completion of their des-
ignated “mission” trips in order to permit the completion of
the “mission” trips of the other agents. Furthermore, static
routing might over-constrain the traffic dynamics in these
environments, to the point that it might not be possible to
generate feasible routing plans.
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ered transport systems and the role of the intro-
duced taxonomy: In the operational regimes for the
giuidepath-based transport systems that were outlined
in the previous parts of this section, traffic liveness can
be naturally defined as the preservation of the ability of
each traveling agent to complete its current “mission”
trip, and engage successfully in similar “mission” trips
in the future operation of the system.

Furthermore, as explained in the earlier parts of this sec-
tion, loss of liveness can result from an irreversible mo-
tion of the system agents within their allocated edges,
and the analysis of the corresponding traffic dynamics
can be affected by additional attributes of the under-
lying transport system like the “open” or the “closed”
structure of its guidepath network, and the dynamic or
static nature of the routing scheme that is supported by
it. In the rest of this paper, we provide a formal char-
acterization of the “liveness” concept as it materializes
in the various classes of the taxonomy of the considered
guidepath-based transport systems that is induced by
the aforementioned attributes, and we also investigate
the corresponding supervisory control (SC) problems of
liveness assessment and enforcement. We organize these
developments into two major sections, with the first sec-
tion focusing on dynamically routed guidepath-based
transport systems, and the second one dealing with their
statically routed counterparts.

3 Liveness characterizations and enforcement
for dynamically routed guidepath-based
transport systems

3.1 Preamble

An abstracting finite state automaton: We begin
the developments of this section, by formalizing fur-
ther the basic motion dynamics of dynamically routed
guidepath-based transport systems by means of a finite
state automaton (FSA) Φ = 〈S,Q, f, s0〉 (Cassandras &
Lafortune (2008)). A formal definition of the state s of
this automaton that serves the needs of the subsequent
analysis, is as follows:

Definition 1 At any point in time, the state s of the
automaton Φ that will represent the untimed dynamics
of the dynamically routed guidepath-based transport sys-
tems introduced in Section 2, is defined by the following
two elements:

(1) The placement of the system agents a ∈ A on the
edges of the guidepath network G.

(2) The direction of motion of each agent a ∈ A in its
allocated edge.

In the following, the distribution of the agents a ∈ A over
the edges of the guidepath network G, in any given state

s, will be formally represented by the function ε(·; s) :

A → Ê, where Ê = E, in the case of closed systems, and
Ê = E ∪ {eh(a) : a ∈ A}, in the case of open systems.
Also, the direction of motion of an agent a ∈ A with
ε(a; s) = {i, j} ∈ E, can be formally expressed by one of
the two ordered pairs (i, j) and (j, i) (i.e., by assigning
a sense of direction to the underlying undirected edge
{i, j}).

The event set Q that advances the state s of the consid-
ered automaton Φ, contains all those events q that ad-
vance a single agent a ∈ A from its current edge ε(a; s)
to a free neighboring edge e′, under the further condition
that this advancement is also compatible with the direc-
tion of motion of the corresponding agent a on its cur-
rent edge ε(a; s). Furthermore, in the case of reversible
systems, an event q ∈ Q might simply reverse the di-
rection of motion of an agent a ∈ A in its current edge
ε(a; s). Finally, all events q ∈ Q are supposed to be con-
trollable by the supervisory controller that coordinates
the traffic of the considered transport system.

The state transition function f : S ×Q→ S of the au-
tomaton Φ provides a formal representation of the tran-
sitional dynamics that are implied by the above defini-
tions of state s and the event set Q. Furthermore, fol-
lowing Cassandras & Lafortune (2008), we assume f to
be a partial function that is defined only for those (s, q)
pairs for which the corresponding state transition is fea-
sible under the operational assumptions that define the
complete dynamics of the underlying guidepath-based
transport system. We also extend f , in the standard
manner, to the set S×Q∗, where Q∗ denotes the Kleene
closure of Q (i.e., Q∗ consists of all the finite sequences
of elements of Q, including the empty sequence ε). And
we use the notation R(s) to denote the states s′ of Φ
that are reachable from a given state s through the dy-
namics that are defined by the extended function f ; i.e.,
∀s′ ∈ S, s′ ∈ R(s) ⇐⇒ ∃σ ∈ Q∗ : s′ = f(s, σ).

Finally, in the tuple that defines the considered FSA
Φ, s0 denotes a generic initial state; this state will be
given different interpretations in different parts of the
subsequent developments.

A formal characterization of liveness for dynami-
cally routed guidepath-based transport systems:
The operational definition of liveness that was provided
in the closing part of the previous section, when com-
bined with the arbitrary structure of the “mission” trips
that can be assigned to the system agents, motivate the
following characterization of “liveness” for the traffic dy-
namics that are modeled by automaton Φ:

Definition 2 Consider the automaton Φ abstracting the
unitmed dynamics of a dynamically routed guidepath-
based transport system, and let s0 ∈ S be an arbitrary
initial state for this automaton. Then, the traffic that is
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represented by automaton Φ is live, if and only if

∀s ∈ R(s0), ∀a ∈ A, ∀e ∈ E, ∃s′ ∈ R(s) : ε(a; s′) = e

State liveness and maximally permissive liveness-
enforcing supervision for the considered trans-
port systems: While Definition 2 is motivated natu-
rally from the operational dynamics of the considered
transport systems, it is not straightforwardly testable on
any given instantiation of these systems. A first step to
develop a more straightforward test is provided by the
following proposition.

Proposition 3 Consider the FSA Φ abstracting the dy-
namics of a dynamically routed guidepath-based transport
system, and let s0 ∈ S be an arbitrary initial state for
this automaton. Then, the resulting traffic that is repre-
sented by automaton Φ is live if and only if, for every state
s ∈ R(s0), the state transition diagram (STD) of the cor-
responding subspace R(s) contains a strongly connected
component Ψ(s) that satisfies the following condition:

∀(a, e) ∈ A× E, ∃s′ ∈ Ψ(s) : ε(a; s′) = e

A complete proof for this proposition can be found in
the electronic supplement for this paper. A brief expo-
sition of the basic logic of this proof is as follows: The
sufficiency of the condition of Proposition 3 for the live-
ness of the traffic of the underlying transport system fol-
lows immediately from the content of this condition, the
controllability of the considered dynamics, and Defini-
tion 2. On the other hand, in order to prove the necessity
part of Proposition 3, we consider the directed graph G
that is defined by the maximal strongly connected com-
ponents of the STD of the considered FSA Φ and their
connectivity. By its definition, the digraph G is acyclic.
Furthermore, if the condition of Proposition 3 does not
hold, then, at any node n of G (or, equivalently, maxi-
mal strongly component Ψ of the STD of Φ), we shall be
able to identify a pair (a, e) ∈ A × E such that there is
no state s in Ψ with ε(a; s) = e. Then, the only way that
we can possibly satisfy a request for placing the consid-
ered agent a on the corresponding edge e, is by moving
to some state s′ belonging to some node n1 of the sub-
graph of digraph G that emanates from node n. We can
repeat the above argument at the reached node n′, gen-
erally with a different pair (a′, e′), reaching a new node
n′′ in the subgraph of G that emanates from node n′. But
since digraph G is finite and acyclic, any such sequence
of advancements through it will be finite, and therefore,
eventually we shall reach a state s̃ and a pair (â, ê) that
will be unattainable from state s̃.

The result of Proposition 3 motivates naturally the fol-
lowing definition:

Definition 4 A state s ∈ S of the FSA Φ modeling
a dynamically routed guidepath-based transport system
〈G,A〉 will be characterized as live if and only if it satis-
fies the condition of Proposition 3. The set of live states
of FSA Φ will be denoted by Sl.

Furthermore, for any initial state s0 ∈ S, the maximally
permissive liveness-enforcing supervisor (LES) for this
transport system is the supervisor that admits any state
s ∈ R(s0) if and only if s ∈ Sl.

On the other hand, assessing state liveness for any given
traffic state s through the characterization of Proposi-
tion 3 requires a global view of the corresponding sub-
space R(s), and therefore, this test will not be easily
tractable for most practical instantiations of the consid-
ered transport systems. Hence, in the remaining parts
of this section, we investigate possible restatements of
the liveness condition of Proposition 3 that take into
consideration additional structural and operational at-
tributes of the underlying transport system, and, in this
way, they might end up being more easily testable than
the original condition of this proposition.

A necessary condition for the traffic liveness of ir-
reversible, dynamically routed guidepath-based
transport systems: We close this subsection by stat-
ing a structural condition that must be satisfied by
the guidepath graph G in order to be able to preserve
traffic liveness in any irreversible, dynamically routed
guidepath-based transport system. This condition is
formally stated as follows:

Condition 1 The guidepath graphG has a minimal ver-
tex degree of 2. 5

The necessity of this condition for the traffic liveness
of any irreversible, dynamically routed guidepath-based
transport system results from the fact that, under the
irreversibility assumption, any agent accessing a vertex
v of G of degree 1 would get deadlocked at this location.

3.2 An alternative characterization of state liveness for
open, dynamically routed guidepath-based transport
systems

Deriving an alternative characterization of state
liveness for open, dynamically routed guidepath-
based transport systems: In the case of open, dynam-
ically routed guidepath-based transport systems, we can
also define the notion of the “home” state sh in the se-
mantics of the underlying FSA Φ, as follows:

5 We remind the reader that the degree of a vertex v of an
undirected graph G is the number of edges that are incident
to vertex v.

6



Definition 5 The “home” state sh of an open, dynam-
ically routed giuidepath-based transport system 〈G,A〉 is
the state where ∀a ∈ A, ε(a; sh) = eh(a).

The “home” state sh plays a central role in the charac-
terization of state liveness in open, dynamically routed
giuidepath-based transport systems. We proceed to es-
tablish this result, starting with the following proposi-
tion:

Proposition 6 The “home” state sh of a reversible,
open, dynamically routed guidepath-based transport sys-
tem is live. Also, the “home” state sh of an irreversible,
open, dynamically routed guidepath-based transport sys-
tem that satisfies Condition 1 is live.

A formal proof for the results of Proposition 6 can be
provided by showing that, under the stated conditions,
any single agent a ∈ A can be taken to any edge e ∈
E of the underlying guidepath graph G and returned
successfully to its “home” edge eh(a). Then, state sh
satisfies the liveness condition of Proposition 3. Filling
in the details of this argument is quite straightforward,
and it is left to the reader.

Proposition 6 subsequently leads to the following the-
orem that provides an alternative, very practical char-
acterization of liveness in open, dynamically routed
guidepath-based transport systems

Theorem 7 A state s ∈ S of an open, dynamically
routed, reversible guidepath-based transport system is live
if and only if it is co-reachable to the home state sh (i.e.,
sh ∈ R(s)). Also, a state s ∈ S of an open, dynamically
routed, irreversible guidepath-based transport system is
live if and only if it is co-reachable to the home state sh
and the underlying guidepath graph G satisfies Condi-
tion 1.

A statement and proof of the result of Theorem 7 for
the case of open, dynamically routed and irreversible
guidepath-based transport systems appeared recently in
Reveliotis & Masopust (2019b). We also provide a com-
plete proof for Theorem 7 in the electronic supplement
for this paper. The necessity of the co-reachability con-
dition of Theorem 7 for the liveness of the considered
state s results from (i) the fact that, according to Def-
inition 2, any agent a with ε(a; s) 6= eh(a) must be
able to reach edge eh(a), and (ii) the further realization
that any such advancement of agent a to edge eh(a) can
take place without relocating any other agent a′ with
ε(a′; s) = eh(a′). The sufficiency of the co-reachability
condition of Theorem 7 for the liveness of the consid-
ered state s results from the liveness of state sh that was
established in Proposition 6.

Implications of Theorem 7 for the liveness and
the liveness-enforcing supervision of reversible,

open, dynamically routed guidepath-based trans-
port systems. The next corollary is a further impor-
tant implication of Theorem 7.

Corollary 8 In an open, dynamically routed, reversible
guidepath-based transport system, every state s ∈ S is
live.

To the best of our knowledge, a first explicit statement
and proof of the result of Corollary 8 appeared only re-
cently in Daugherty et al. (2017, 2019), and the proof is
reproduced in the electronic supplement of this paper.
The proof relies on the following two facts: (i) In open,
dynamically routed, reversible guidepath-based trans-
port systems, it is always possible to reach state sh from
any state s by routing agents a with ε(a; s) 6= eh(a) to
their corresponding edges eh(a) one at a time, giving
priority to those agents that are closer to vertex vh. (ii)
Also, in the considered class of transport systems, we
can always reach any valid traffic state s from state sh,
by routing agents a ∈ A to their corresponding destina-
tions one at a time, starting with those agents that are
heading to the furthest destinations.

From a more practical standpoint, Corollary 8 further
implies that in open, dynamically routed, reversible
guidepath-based transport systems, preservation of the
traffic liveness is immediately guaranteed by the system
structure and dynamics, and, therefore, there is no need
for any externally imposed LES.

Implications of Theorem 7 for the liveness and
the liveness-enforcing supervision of irreversible,
open, dynamically routed guidepath-based trans-
port systems. As already remarked in the earlier parts
of this paper, in this class of guidepath-based transport
systems, traffic liveness can be compromised by the for-
mation of deadlocks among the traveling agents. We for-
mally define this notion of “deadlock” as follows:

Definition 9 In the dynamics of the FSA Φ that models
a dynamically routed, irreversible guidepath-based trans-
port system, a setAD ⊆ A of the system agents is in dead-
lock if every possible advancement of each agent a ∈ AD

in the underlying guidepath graph G is blocked by the
presence of another agent a′ ∈ AD.

Figure 1(a) depicts such a deadlock formation. Further-
more, irreversible, open, dynamically routed guidepath-
based transport systems will also possess an additional
set of non-live traffic states that will not contain any
deadlocks, but deadlocks will be unavoidable from these
states. Figure 1(b) depicts such a deadlock-free but non-
live traffic state.

Detection of deadlock in any given traffic state s is an
easy task. A simple algorithm for this task will start
with the given traffic state s, and it will iteratively scan
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Fig. 1. The left part of the figure depicts a traffic state of
an irreversible, open, dynamically routed guidepath-based
transport system that contains a deadlock. In the adopted
representation, the edge ε(a; s) of a traveling agent a ∈ A in
the depicted traffic state s, and the direction of its motion
in this edge, are jointly represented by a directed arc that
is labeled by agent a. The right part of the figure depicts
a state from the same class of systems that contains no
deadlocks but it is not live, since from the depicted state,
the formation of a deadlock is unavoidable. We also notice,
for completeness, that in both parts of this figure we have
depicted the “home” vertex vh, but we have omitted the
“home” edges eh(a), a ∈ A.

the considered traffic state in order to detect an agent
a ∈ A that can advance to a neighboring edge under the
applying zone-allocation protocol. Every time that such
an agent is detected, it will be removed from the sys-
tem, and its edge will be released for possible usage by
the remaining agents. If all agents a ∈ A are removed
through the aforementioned iterations, then the consid-
ered state s is deadlock-free. Otherwise, the set of agents
that were not removed by the algorithm, define one or
more deadlocks in s.

On the other hand, detecting a deadlock-free non-live
state might not be an easy task. In fact, to the best
of our knowledge, the computational complexity of the
decision problem of assessing the state liveness of any
given traffic state s of an irreversible, open, dynami-
cally routed guidepath-based transport system remains
an open problem. 6

“Ordered” states and Banker’s-type algorithms
for open, dynamically routed, irreversible guide-
path-based transport systems. The current lack of a
polynomial algorithm for assessing traffic-state liveness
for open, dynamically routed, irreversible guide-path-
based transport systems, has been addressed by the cor-
responding research community through the adaptation

6 Some recent partial results on this problem can be found
in Reveliotis & Masopust (2019b, 2020, 2019a). These works
have identified important special structure for the consid-
ered traffic states s that enables liveness assessment of poly-
nomial complexity with respect to the size of the underlying
transport system, and for the remaining cases, they also pro-
vide a liveness assessment algorithm with an empirical com-
putational complexity that is expected to be very benign.

to this problem of the notion of ”ordered state” and
Banker’s algorithm (Dijkstra (1965), Reveliotis (2000)).
These results enable computationally efficient liveness-
enforcing supervision for the considered transport sys-
tems, at the expense of non-maximal permissiveness.

In the considered transport systems, an “ordered” traffic
state is formally defined as follows:

Definition 10 A state s of an irreversible, open, dy-
namically routed guidepath-based transport system sat-
isfying Condition 1 is “ordered” if there exists an or-
dering [·] : {1, . . . , |A|} → A, of the agent set A, such
that each agent a[i], i = 1, . . . , |A|, can advance to its
“home” edge eh(a[i]) from its current edge ε(a[i]; s) while
agents a[j], j = i+1, . . . , |A|, maintain the original edges
ε(a[j]; s) that they held in state s.

For further reference, we shall denote the set of ordered
states by So. Establishing that any given state s ∈ S is
ordered, can be performed through the construction of
an ordering for the traveling agents in that state that
satisfies the conditions of Definition 10. The search for
such an ordering of the agent set A can be performed
in a “greedy” manner (i.e., without the need for any
backtracking) since the placement of any agent a ∈ A
at the “home” edge eh(a) increases the set of free edges
that can be used by the remaining agents a′ for reaching
their “home” edges eh(a′). The algorithmic details for
organizing such a search scheme can be found in Reve-
liotis (2000), and as already noticed, this algorithm can
be perceived as a (nontrivial) adaptation of Dijkstra’s
Banker’s algorithm to the considered problem context.

Furthermore, in Lawley et al. (1998) it is shown how the
set of ordered states that is admitted by any efficient
realization of Banker’s algorithm, can be effectively ex-
panded into the complement state set S \ So through
controlled partial search that will guarantee the return
to state set So within a bounded number of steps.

Finally, it is easy to see that the “home” state sh, and
also any state s that has only a single traveling agent
on some edge e ∈ E, are ordered. This remark further
implies that it is, indeed, possible to attain traffic live-
ness while operating within the set of ordered states, So.
More specifically, a traffic controller that will start the
underlying traffic system from its natural initial state sh,
and will use the algorithmic tools provided in Reveliotis
(2000) and Lawley et al. (1998) in order to resolve the
admissibility of any tentative transition to a new traffic
state, will be able to maintain the operation of the un-
derlying guidepath-based transport system in a subset
S′ of its state space S with the following properties: (a)
So ⊆ S′ ⊆ Sl; (b) S′ is efficiently recognizable; and (c)
the resulting supervision will ensure live operation for
the generated traffic.
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Fig. 2. A counter-example establishing that, for closed, dy-
namically routed, reversible guidepath-based transport sys-
tems, the condition |A| < |E| is not adequate for ensuring
the ability of an agent a ∈ A to advance from its current
edge e to any target edge e′.

3.3 An alternative characterization of state liveness for
closed, dynamically routed, reversible guidepath-
based transport systems

A structural condition necessary for the liveness
of this class of transport systems: We start our dis-
cussion for this class of guidepath-based transport sys-
tems by noticing that, for any meaningful realization of
these systems, we must have |A| < |E| since, otherwise,
no agent motion is possible. This inequality implies that
there is always a free edge in the guidepath network;
to facilitate the subsequent discussion, we shall refer to
such a free edge as a “hole”. Then, we have the following
lemma:

Lemma 11 Consider a traffic state s of a closed, re-
versible, dynamically routed guidepath-based transport
system with |A| < |E|, and an edge e ∈ E. Then, there
is a state s′ ∈ R(s) in which edge e is a “hole”.

The gist of the argument that establishes the result of
Lemma 11, is the observation that anyone of the nearest
“holes” to edge e in state s can be “transferred” to edge e
by advancing each agent on the path leading from edge e
to the considered “hole” by one edge; the detailed formal
proof is provided in the electronic supplement.

But while the condition |A| < |E| guarantees the ef-
fective move of a “hole” to any edge of graph G, it
is not sufficient to ensure that any agent a ∈ A can
move from its current location to a target destination.
A counter-example establishing the truth of this state-
ment is presented in Figure 2. In the depicted situation,
agent a1 wants to move to edge e2, and it also holds that
|A| = 4 < |E| = 5. But it is easy to check that the re-
quired transfer of agent a1 is not feasible.

The problem in the example of Figure 2 arises from the
presence of the path e1e2. This path is characterized by
the fact that all of its edges do not belong on any cy-
cle 7 of the corresponding graph G, and in the following

7 Following standard terminology of graph theory, in this
work we define a cycle in an undirected graph as a simple

discussion, we shall characterize the maximal paths of
graph G that possess this property as “singular”. Also,
we shall denote the set of singular paths in graph G by
PS , and for any path p ∈ PS , |p| will denote the “length”
of p as defined by the number of its edges.

Then, our main result for the considered class of
guidepath-based transport systems can be stated as
follows.

Theorem 12 In the class of closed, reversible, dynam-
ically routed guide-path-based transport systems, a suffi-
cient condition guaranteeing that any agent a ∈ A can
move from its current edge e to any other edge e′ ∈ E
of the guidepath network G is that |A| ≤ |E| − 1 −
maxp∈PS

{|p|}.

The proof of Theorem 12 is by construction of an event
sequence that will effect the requested agent transfer;
the details of this construction are rather technical, and
they are provided in the electronic supplement of this
paper. Furthermore, in the case where PS = ∅, the re-
sulting condition of Theorem 12 is also necessary for en-
suring the ability of any agent a ∈ A to move from its
current edge e to any other edge e′ ∈ E of the guidepath
network G. On the other hand, when PS 6= ∅, the condi-
tion of Theorem 12 is only sufficient; characteristically,
the reader can check that in the example of Figure 2,
the circulating agents can reach any edge of the depicted
guidepath graph as long as |A| ≤ |E| − maxp∈PS

{|p|}.
Finally, the perusal of the proof of Theorem 12 further
implies that the condition |A| ≤ |E|−1−maxp∈PS

{|p|}
is also necessary as long as there exists a maximal-length
singular path p that connects two cyclical components,
Gi and Gj , of graph G.

The implications of Theorem 12 for the liveness-
enforcing supervision of the corresponding class
of transport systems: The condition of Theorem 12
is a structural condition for the underlying guidepath-
based transport system that can be validated off-line.
Furthermore, once this condition is established, the con-
struction of the event sequence that is sought in the proof
of Theorem 12 also provides the necessary mechanism
for transferring any agent a ∈ A from its current edge
ε(a; s) to a target edge e′. Furthermore, this mechanism
involves only the identification of (shortest) paths for
the necessary transfers of agent a and of the “holes” that
facilitate the agent motion during the various legs of its
trip, and therefore, it is also computationally efficient.

We close this subsection by noticing that the result of
Theorem 12 resembles, in its basic structure, the result

path with coinciding starting and ending nodes. Further-
more, a path is simple if it does not revisit any of its vertices
(except possibly the first and the last ones, in the case of a
cycle).
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of Corollary 8 for the open, dynamically routed and re-
versible subclass of the considered transport systems: in
both cases, once some structural condition for the un-
derlying guidepath-based transport system has been es-
tablished, the liveness of the generated traffic is imme-
diately guaranteed.

3.4 An alternative characterization of state liveness for
closed, dynamically routed, irreversible guidepath-
based transport systems

As in the case of open and irreversible, dynamically
routed guidepath-based transport systems, closed and
irreversible, dynamically routed guidepath-based trans-
port systems need more active real-time supervision for
ensuring the liveness of the underlying traffic. A set of re-
sults concerning the structural characterization of state
liveness in this class of transport systems was originally
developed in Roszkowska & Reveliotis (2008). In this
section, we overview the main points of these past devel-
opments, and we also discuss their implications for the
liveness-enforcing supervision of the corresponding class
of transport systems.

The PDG-based representation of the traffic
state and the induced notion of a “chained” traf-
fic state: Central in the developments of Roszkowska &
Reveliotis (2008) is a convenient representation of the
traffic state s through a partially directed graph (PDG)
G′(s) that is defined as follows: 8

Definition 13 Given a state s of the considered class
of guidepath-based transport systems, the corresponding
PDG G′(s) is induced from state s and the guidepath
graph G, by substituting the edge ε(a; s) of G, for each
agent a ∈ A, with a directed edge that indicates the ori-
entation / direction of motion of agent a on this edge.

Next, we introduce a series of concepts that are defined
on the PDG G′(s) and are instrumental for communi-
cating the main results of this section; the reader is re-
ferred to Figure 3 for a more concrete demonstration of
the most involved of these concepts and their accompa-
nying definitions.

A (simple) path p in PDG G′(s) is defined as any (sim-
ple) path p in the original graph G where, however, all
the directed edges introduced in the definition of G′(s)
have the same sense of direction. Furthermore, a cycle
c in G′(s) is a simple path with coinciding initial and
terminal nodes. A joint between two cycles c and c′ is
a simple path that is a sub-path for both c and c′. On
the other hand, a pass between two cycles c and c′ is a
path of the PDG G′(s) with its first node lying on c, its

8 In fact, the notion of PDG G′(s) that is introduced in
Definition 13 was already used in the representation of the
two states that are depicted in Figure 1.
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(b) The condensation C(G(s)) of the above

(a)  A PDG G(s) and the "chain" structure 

Fig. 3. The content of this figure is adapted from Roszkowska
& Reveliotis (2008), and it exemplifies the PDG-related con-
cepts and definitions that are provided in Section 3.4. We
also notice, for completeness, that the concept of a “u-con-
nected component” of the condensation graph C(s) is defined
by a chain of this graph together with all the paths of free
edges that are incident upon this chain; but this concept is
not explicitly necessary for the statement of the key result
of Section 3.4.

last node lying on c′, all of its edges being undirected,
and with none of its edges belonging on any cycle of
G′(s). Finally, the next set of concepts are at the core of
the sought characterization of liveness for the considered
class of guidepath-based transport systems:

Definition 14 A chain in PDG G′(s) is the subgraph
defined by a sequence ch = 〈c1, p2, c2, p3, . . . , pn, cn〉,
n ≥ 1, such that (i) ci, i = 1, . . . , n, are cycles, (ii)
pi, i = 2, . . . , n, are simple paths, and (iii) each path
pi is a joint or a pass between cycles ci−1 and ci. Two
edges e, e′ ∈ E are chain-connected – or, simply, chained
– if there exists a chain that contains, both, e and e′.
Furthermore, PDG G′(s) and the corresponding state s
are said to be “chained” if every two edges e, e′ ∈ E are
chained.

Chain connectivity defines a relationship in the edge set
E that is symmetric and transitive, and the subgraphs
of G′(s) that are induced by the maximal chains of E
are the chained components of G′(s). Also, the PDG
C(s) that is obtained from G′(s) by replacing each of
its chained components by a simple node, is called the
condensation of G′(s). Obviously, chained PDGs G′(s)
have condensations that correspond to a single node.
Finally, Roszkowska & Reveliotis (2008) also provides an
efficient algorithm for obtaining the condensation C(s)
for any given PDG G′(s).

A structural characterization of state liveness for
the considered transport systems: In view of the
above definition of chain connectivity and of chained
states, and considering also the notion of the singular
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paths p ∈ PS of the guidepath graph G that was in-
troduced in Section 3.3, we can state the main result of
Roszkowska & Reveliotis (2008) that is of interest to this
work, as follows:

Theorem 15 In a closed, dynamically routed and ir-
reversible guidepath-based transport system with |A| ≤
|E| −

∑
p∈PS

|p| − 2, a given state s is live if and only if

the corresponding set R(s) contains a chained state s′.

In Roszkowska & Reveliotis (2008) it is also argued
that the condition |A| ≤ |E| −

∑
p∈PS

|p| − 1 is nec-
essary for being able to establish traffic liveness for
closed, dynamically routed and irreversible guidepath-
based transport systems, and furthermore, the case
of |A| = |E| −

∑
p∈PS

|p| − 1 can give rise to certain
configurations with unavoidable livelocks. Hence, the
condition |A| ≤ |E| −

∑
p∈PS

|p| − 2 that is eventually
used in the statement of Theorem 15, can be perceived
as practically necessary for being able to establish live
traffic in the considered class of transport systems.

The computational complexity of the state-
liveness characterization of Theorem 15 and its
implications for the liveness-enforcing supervi-
sion of the considered class of transport systems:
Currently we do not avail of an efficient test to check
the reachability of a chained state s′ from any given
state s that might arise in the considered class of trans-
port systems. In fact, to the best of our knowledge, the
characterization of the computational complexity of
this particular decision problem remains an open prob-
lem. In view of this limitation, Roszkowska & Reveliotis
(2008) proposes to establish the liveness of the consid-
ered class of transport systems by confining their oper-
ation in states that are either chained or semi-chained ;
the latter are obtained from chained states by transfer-
ring a single agent between two cycles c and c′ over a
pass p that connects these cycles. The developments of
Roszkowska & Reveliotis (2008) for the proof of The-
orem 15 guarantee that the aforementioned restriction
will maintain the liveness of the underlying traffic. Of
course, the resulting LES is not maximally permissive
anymore, but such a restriction is similar, in spirit, to
the restriction that is imposed by the concept of the
“ordered” state in the case of open, dynamically routed,
irreversible guidepath-based transport systems. 9

9 Also, the techniques that have been developed in Reve-
liotis & Masopust (2019b, 2020, 2019a) for assessing state
liveness in open, dynamically routed, irreversible guidepath-
based transport system might be adaptable to the corre-
sponding problem of state-liveness assessment in their closed
counterparts; this is another issue currently open to further
investigation.

4 Liveness characterizations and enforcement
for statically routed, open guidepath-based
transport systems

Characterizing liveness in statically routed, open
guidepath-based transport systems: In this section,
we provide a brief coverage of the notion of “traffic live-
ness” and its enforcement in the context of statically
routed, open guidepath-based transport systems. We
start by reminding the reader that, in these systems,
a “mission” trip for any traveling agent a ∈ A is de-
fined as a walk Wa on the guidepath graph G that starts
from the current position of agent a in G and ends at its
“home” edge eh(a). In particular, a complete “mission”
trip for any agent a ∈ A is a walk that originates and
ends at the corresponding “home” edge eh(a). In this op-
erational regime, liveness implies the preservation of the
ability of each agent a ∈ A to execute successfully each
walk Wa that is assigned to it, (starting from its “home”
edge eh(a) and ending up at the same edge).

Furthermore, as in the case of open, dynamically routed
guidepath-based transport systems, we shall define the
“home” traffic state sh of a statically routed guidepath-
based transport system as the state where all agents
a ∈ A are in their “home” edges eh(a).

Then, we can easily see that when the system is started at
state sh, any set of walks {Wa, a ∈ A} that are compat-
ible with the topology of the underlying guidepath net-
work G and the motion dynamics of the system agents,
will be executable by having the agents performing their
corresponding walks one at a time. Hence, as in the case
of open, dynamically routed guidepath-based transport
systems, preservation of traffic liveness is tantamount
to preservation of reachability of the “home” state sh in
the underlying traffic dynamics (c.f. Theorem 7 in Sec-
tion 3.2); traffic states that satisfy this reachability prop-
erty, (once again) will be characterized as “live”.

However, in the case of statically routed, open guidepath-
based transport systems, the reachability of the “home”
state sh that characterizes any live traffic state s, must
be attained under the more restricted dynamics that
result from the confinement of each agent a ∈ A on a
specific walk Wa of the underlying guidepath graph G.
As we shall see in the rest of this section, this confine-
ment has some very strong implications for the supervi-
sory control problems of assessing and enforcing traffic
liveness in this particular class of transport systems.

The computational complexity of assessing
traffic-state liveness in statically routed trans-
port systems: For statically routed guidepath-based
transport systems, the following result was recently
established in Reveliotis & Masopust (2019b).

Theorem 16 The problem of assessing the liveness
of any given traffic state s of a statically routed, open
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guidepath-based transport system is NP-complete in the
strong sense.

The above result was established in Reveliotis & Ma-
sopust (2019b) through a polynomial reduction (Garey
& Johnson (1979)) from the decision problem of “as-
sessing the state safety in a linear, single-unit resource
allocation system (L-SU-RAS)”, which has been shown
to be NP-complete in the strong sense in Reveliotis &
Roszkowska (2010). In order to maintain the complete-
ness of this work, we replicate the corresponding results
of Reveliotis & Masopust (2019b) in the electronic sup-
plement.

The reader should also notice that the above state-
ment of Theorem 16 does not differentiate between
reversible and irreversible guidepath-based transport
systems, and therefore, the result of Theorem 16 ap-
plies to both cases. This finding further implies that
the super-polynomial complexity of state liveness in the
statically routed, open guidepath-based transport sys-
tems that are considered by Theorem 16, is the result of
the complete pre-specification of the agent routes that
is enforced by this class of transport systems, and not
an implication of the irreversibility of the agent motion,
which was found to be the primary source of complexity
in the case of dynamically routed, open guidepath-based
transport systems. Finally, the detailed development of
the result of Theorem 16 that is provided in the elec-
tronic supplement also highlights the fact that, in the
context of statically routed guidepath-based transport
systems, the notion of “state” that must be employed in
any formal reasoning regarding the liveness characteri-
zation and assessment in these environments, must also
contain the walks Wa on the guidepath graph G that
represent the remaining “mission” trips for each agent
a ∈ A, since these walks determine the advancing path
of each agent a towards its final destination eh(a).

Efficient LES for statically routed guidepath-
based transport systems: The developments on
the complexity of state liveness for statically routed
guidepath-based transport systems that are described
in the previous part of this section, also reveal the strong
affinity that exists between the qualitative dynamics of
the statically routed guidepath-based transport systems
that are considered in this work, and the corresponding
dynamics of the L-SU-RAS class of Reveliotis (2017). In
fact, the supervisory control problems of traffic(-state)
liveness assessment and enforcement in statically routed
transport systems can be effectively addressed through a
straightforward adaptation of the corresponding results
in the current L-SU-RAS theory. In particular, in view
of the result of Theorem 16, the notion of “ordered”
(traffic) state and the related Banker’s algorithm can be
applied to the liveness enforcement of statically routed
guidepath-based transport systems in exactly the same
way that these two concepts have been applied to the

preservation of liveness in L-SU-RAS. The reader is
referred to Reveliotis (2017) for all the relevant details.

5 Conclusion

This paper has provided a comprehensive treatment of
the notion of “liveness” and its enforcement for the traffic
generated by a set of agents that circulate over the edges
of a supporting guidepath network. It was shown that,
both, the operational and the computational complexity
of this concept depends, in a strong manner, on certain
structural and operational attributes of the underlying
transport system. The paper characterized clearly these
dependencies, and it also provided practical efficient so-
lutions to the problem of liveness enforcement for the
cases that the corresponding maximally permissive su-
pervisor might not be computationally tractable.

The presented results can also define a starting base
for a systematic resolution of the complementary prob-
lem of performance-oriented control of the considered
transport systems. In the non-stationary settings that
frequently characterize the operation of these environ-
ments, the system performance can be optimized by
means of a pertinently defined Model Predictive Control
(MPC) scheme (Kouvaritakis & Cannon (2015)), where
the notion of “liveness” plays a role similar to that of
the notion of “stability” in more classical control appli-
cations of the MPC framework. An implementation of
this idea for the case of dynamically routed, open, re-
versible guidepath-based transport systems can be found
in Daugherty et al. (2019), while a first attempt to extend
the MPC framework of Daugherty et al. (2019) to dy-
namically routed, open but irreversible guidepath-based
transport systems can be found in Reveliotis (2019).

Furthermore, the presented framework can be expanded
to include additional features, constraints and require-
ments regarding the behavior of the underlying trans-
port systems, like the synchronized advancement of the
traveling agents that is considered in Yu & Rus (2015),
or the collaborating behavior that is investigated in
Ma et al. (2016). When moving in this direction, it is
also possible to consider the sequential satisfaction of
a series of “formation” requirements that stipulate the
placement of the system agents on specific edges of the
underlying guidepath network, possibly with specific
orientations, as well; in fact, the investigation of such
“formation”-related problems for the particular class of
closed, dynamically routed and reversible guidepath-
based transport systems, was the content of the works
of Wilson (1974), Kornhauser et al. (1984), that were
among the very first to formulate and study reachabil-
ity problems in the traffic of guidepath-based transport
systems of the type that are considered in this work.

Concluding this paper, and on the basis of all the above,
we can say that the class of guidepath-based transport

12



systems considered in it is very rich in terms of, both, ap-
plication potential but also open problems and research
challenges. By taking a comprehensive and systematic
view of these systems and their behavioral dynamics, the
paper has tried to further define and articulate all this
potential.

A Appendix: A summary of the main results of
Sections 3 and 4

All the following statements presume that the under-
lying guidepath graph G is undirected and connected.
Furthermore, for dynamically routed traffic systems, the
employed notion of traffic liveness is that provided in
Definition 2. On the other hand, for statically routed
traffic systems, the employed notion of traffic liveness is
that introduced in the opening part of Section 4.

Open, dynamically routed, reversible: State live-
ness is equivalent to co-reachability of the “home”
state sh. Every traffic state s ∈ S is live. No need for
an externally imposed LES.

Open, dynamically routed, irreversible: A neces-
sary structural condition for traffic liveness is that
the guidepath graph G has a minimal vertex degree of
2. Then, state liveness is equivalent to co-reachability
of the “home” state sh. The characterization of the
(worst-case) computational complexity of this co-
reachability problem for any given state s ∈ S is
an open problem, but there is a recently developed
set of results that can resolve this co-reachability
problem with polynomial worst-case computational
complexity for certain classes of state s, and with low
empirical computational complexity for the remain-
ing cases. Also, the notion of “ordered” state can
function as a substitute of state liveness in order to
obtain a correct but non-maximally permissive LES
of polynomial complexity with respect to the size of
the underlying traffic system.

Open, statically routed, reversible: State liveness
is equivalent to co-reachability of the “home” state sh.
The corresponding decision problem is NP-complete
in the strong sense. The notion of “ordered” state can
function as a substitute of state liveness in order to
obtain a correct but non-maximally permissive LES
of polynomial complexity with respect to the size of
the underlying traffic system.

Open, statically routed, irreversible: A necessary
structural condition for traffic liveness is that the
guidepath graph G has a minimal vertex degree of
2. Then, the rest of the results are similar to those
stated above for the class of open, statically routed,
reversible guidepath-based transport systems.

Closed, dynamically routed, reversible: A suffi-
cient structural condition for traffic liveness is that
|A| ≤ |E| − 1−maxp∈PS

{|p|}, where PS is the set of
the singular paths of the guidepath graph G and |p|
denotes the number edges in such a path. This condi-

tion is also necessary if there are no singular paths in
guidepath graph G, or there exists a maximal-length
singular path p connecting two cyclical components,
Gi and Gj , of graph G. When the aforestated condi-
tion is satisfied, every state s ∈ S is live. Hence, there
is no need for an externally imposed LES.

Closed, dynamically routed, irreversible: For
transport systems from this class, |A| ≤ |E| −∑

p∈PS
|p| − 2 is a practically required condition for

being able to establish traffic liveness. Under this
condition, a state s ∈ S is live if and only if its
reachability space R(s) contains a “chained” state.
Testing whether a given state s ∈ S is chained, is
a task of polynomial worst-case complexity with re-
spect to the size of the underlying transport system.
But the worst-case computational complexity of the
decision problem: “∃s′ ∈ R(s) : s′ is chained”, that is
defined by any traffic state s ∈ S, is an open prob-
lem. A correct, computationally efficient but non-
maximally permissive LES for this class of systems
can be obtained by admitting only “chained” and
“semi-chained” states.
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