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Abstract

This electronic supplement provides the complete proofs for the results that are presented in the main manuscript.

1 Proof of Proposition 3

(Sufficiency) The sufficiency of the condition of Propo-
sition 3 for the liveness of the traffic of the underlying
transport system follows immediately from the content
of this condition, the controllability of the considered
dynamics, and Definition 2.

(Necessity) Next, let us assume that there is a state s
that violates the condition of Proposition 3; i.e., for every
strongly connected component Ψ ofR(s), there will exist
(at least) an agent–edge pair (a, e) such that ε(a; s′) 6=
e,∀s′ ∈ Ψ.

Consider the set of the maximal strongly connected com-
ponents of R(s). Since R(s) is a finite set, the set of its
maximal strongly connected components is well-defined
and finite; let us denote it byM = {Ψ1, . . . ,Ψl}.

The elements of M are partially ordered through the
“reachability” relation R where R(Ψi,Ψj) implies that
there exists a transition sequence leading from compo-
nent Ψi to component Ψj . Also, let Ψ(0) be the maximal
strongly connected component that contains state s, and
therefore, it constitutes the unique minimal element of
the considered partial order.

Let (a0, e0) be an agent-edge pair such that ε(a0; s′) 6=
e0,∀s′ ∈ Ψ(0). If ε(a0; s′) 6= e0,∀s′ ∈ R(s), then the
considered transport system is not live. If, on the other
hand, ε(a0; s′) = e0 for some state(s) s′ ∈ R(s), con-
sider the set M(1) of the maximal strongly connected
components Ψi, i = 1, . . . , l, that contain such a state s′

and constitute minimal elements in the aforementioned
partial order of the corresponding set M that is de-
fined by R. Clearly, the requirement to place agent a0
on edge e0 will bring the traffic state of the underly-
ing transport system to one of the strongly connected

components of set M(1). Let Ψ(1) be one of these com-
ponents, and (a1, e1) be an agent-edge pair such that
ε(a1; s′) 6= e1,∀s′ ∈ Ψ(1). Then, reasoning as above, we
can infer that either the underlying transport system is
not live (if ε(a1; s′′) 6= e1,∀s′′ ∈ R(s′)), or the only way
for satisfying the corresponding visitation requirement is
by transitioning to a maximal strongly connected com-
ponent Ψ(2) that is reachable from Ψ(1) (and therefore,
located higher than Ψ(1) in the underlying order). For
component Ψ(2), there will also exist a pair (a2, e2) such
that ε(a2; s′) 6= e2,∀s′ ∈ Ψ(2), which enables the repeti-
tion of the above argument with respect to this compo-
nent. But then, the non-liveness of the underlying trans-
port system can be concluded by the finiteness of the set
M and of all the chains of the elements of this set that
are defined by the partial order R.

2 Proof of Theorem 7

In the following, we prove the first part of Theorem 7.
The second part of the theorem can be proved in a simi-
lar manner, taking into further consideration the neces-
sity of Condition 1 for the liveness of irreversible, dy-
namically routed guidepath-based transport systems.

(Necessity) In order to establish the necessity of the co-
reachability condition of Theorem 7, let s denote a live
state of the considered transport system, and further
suppose, without loss of generality, that s 6= sh. Also, let
a1 denote an agent with ε(a1; s) 6= eh(a1). Then, there
must exist a feasible event sequence σ that takes agent
a1 to its “home” edge eh(a1).

Furthermore, the “home” structure that is defined by the
edges eh(a), a ∈ A, implies that we can obtain a subse-
quence σ′ of σ that transfers agent a1 to eh(a1) without
relocating the agents a′ ∈ A that are already in their
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“home” edges eh(a′) in state s. Let the resulting state
be denoted by s1. If s1 = sh, then, the co-reachability
condition of Theorem 7 has been met. Otherwise, select
an agent a2 with ε(a2; s) 6= eh(a2), and repeat the above
argument. Since every invocation of this argument in-
creases the number of agents a ∈ A that are located
in their “home” edges eh(a) by one, and the entire set
of agents A is finite, it follows that eventually we shall
reach a state where every agent a ∈ A is located in its
“home” edge eh(a), i.e., state sh.

(Sufficiency) For this part of the proof, we simply no-
tice that the presumed co-reachability of the considered
state s to the “home” state sh, when combined with the
liveness of state sh that is established by Proposition
6, further implies that satisfaction of the condition of
Proposition 3 by state s.

3 Proof of Corollary 8

In view of Proposition 6, it suffices to establish the above
result only for states s ∈ S with s 6= sh. Furthermore, in
view of Theorem 7, it suffices to show that the consid-
ered state s is co-reachable to the “home” state sh. For
this, we shall order the agents a ∈ A with ε(a; s) 6= eh(a)
in increasing distance of their currently held edge ε(a; s)
from the “home” vertex vh; in this ordering, distance is
measured by the number of edges of the corresponding
shortest paths, and any ties among two or more agents
can be handled arbitrarily. Then, for any agent a that is
among the closest to the “home” vertex vh according to
the above order, the shortest path(s) leading from edge
ε(a; s) to vertex vh are free in state s. Furthermore, the
reversibility of the considered system implies that agent
a can always take this shortest path to vertex vh, and
eventually to its “home” edge eh(a). And this advance-
ment will not relocate any agents a′ ∈ A that are already
in their “home” edges eh(a′) at state s; i.e., the state s′

that results from the aforementioned advancement has
a smaller number of agents a ∈ A with ε(a; s) 6= eh(a).
But then, repeating the above argument a finite number
of times, we shall be able to construct an event sequence
σ that will lead from state s to the “home” state sh.

4 Proof of Lemma 11

If edge e is a “hole” in state s, then we simply set s′ ≡ s.
Otherwise, let e′ denote an edge containing a “hole” in
state s that has the shortest possible distance from edge
e, in terms of the number of edges of the corresponding
shortest path, and let p = 〈e ≡ e0, e1, . . . , el ≡ e′〉 be
one of the shortest paths connecting e and e′. Then,
according to the working assumptions, each edge ei, i =
0, 1, . . . , l − 1, is occupied by an agent ai. Consider the
state s′ that is obtained from state s by advancing each
agent ai, i = 0, . . . , l−1, from its current edge ei to edge
ei+1, starting with agent al−1 and working in decreasing

Fig. 1. An example of the decomposing “tree”-like structure
that is used in the proof of Theorem12. The solid structure
in this figure is the original guidepath graph G, while the
subgraphs of G that are annotated in dashed circles, are the
nodes of the “tree”-like structure that is induced from G
according to the logic that is stated in the proof of Theorem
12.

order of index i. Then, it is not hard to see that the
“hole” at edge e′ in state s has moved to edge e in state
s′.

5 Proof of Theorem 12

Consider first the case where PS = ∅. Then, the condi-
tion of Theorem 12 becomes |A| ≤ |E|−1. Also, consider
a path p = 〈e ≡ e0, e1, . . . , el ≡ e′〉 from e to e′. Then,
the working assumption PS = ∅ implies that there is a
path from edge e1 to a “hole” that does not include edge
e0, and working as in the proof of Lemma 11, we can
move this “hole” to edge e1. Hence, agent a can advance
across path p by one edge, to edge e1. Furthermore, it-
erative invocation of the above argument implies that
there is a routing schedule that can take agent a all the
way to edge e′.

When singular paths are present, the entire graph G
can be uniquely decomposed to a “tree”-like structure
T as follows: (a) The nodes of T are (i) the maximal
connected subgraphsGk, k = 1, . . . ,K, ofG that contain
at least one edge and no singular paths, and also (ii) any
terminal vertices of the singular paths of G that do not
connect to any of the aforementioned subgraphs Gi. (b)
The edges of T correspond to the singular paths of G
that interconnect two nodes of T . A concrete example
of this graphical decomposition is depicted in Figure 1.

In the context of the “tree”-like structure that was de-
fined in the previous paragraph, ransferring a given agent
a from its current edge e to edge e′ will involve, in
general, the traversal of a “path” Q consisting of some
subgraphs Gk and the interconnecting singular paths.
Let G1 denote the maximal subgraph containing edge
e. Lemma 11 guarantees that we can move a “hole” to
subgraph G1, and, subsequently, an argument similar to
that provided in the first part of this proof further estab-
lishes that agent a can move between any pair of edges
of the considered subgraph G1. Also, let G2 denote the
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maximal subgraph that is second in the aforementioned
“path” Q. The condition |A| ≤ |E| − 1−maxp∈PS

{|p|}
guarantees that (i) it is always possible to empty the sin-
gular path p leading from G1 to G2 that is required by
the traveling agent a, while preserving the accessibility
of agent a to this path, and (ii) the agent ability to en-
ter the next required subgraph G2: all that needs to be
done is first to bring agent a to an edge e1 of G1 that is
adjacent to the singular path p, and subsequently empty
the path p of any other agents while ensuring the pres-
ence of a “hole” in subgraph G2. Working in this way,
agent a can advance through the entire “path” Q that
connects edges e and e′ in the aforementioned “tree”-like
structure.

6 The polynomial reduction that establishes the
result of Theorem 16

The next definition is based on the coverage of the cor-
responding material in Reveliotis (2017).

Definition – State safety for L-SU-RAS with unit
resource capacities: Consider a set of m reusable re-
sources R = {R1, . . . , Rm} and another set of n process
instances Π = {J1, . . . , Jn} that need to utilize these re-
sources for their execution. More specifically, each pro-
cess instance Jj , j = 1, . . . , n, is defined by a resource
sequence Sj = 〈R[1; j], . . . , R[lj ; j]〉; R[k; j] ∈ R, ∀k ∈
{1, . . . , lj}, that constitutes the corresponding “process
plan” and must be interpreted according to the following
semantics: Process instance Jj , j = 1, . . . , n, currently
holds exclusively resource R[1; j] ∈ Sj and it further
needs the sequential and exclusive allocation of the re-
maining resources in Sj in order to advance to its comple-
tion. The allocation of the system resources to these pro-
cess instances is coordinated by a central controller, and
a requested resource allocation is feasible only if the con-
sidered resource is currently free. Furthermore, a process
instance Jj will release its currently allocated resource,
R[k; j], only after it has been granted the next required
resource, R[k + 1; j], in the corresponding process plan
Sj . Finally, the system controller will grant any resource
allocation requests that satisfy the aforestated condi-
tions one at a time (and will recheck the feasibility of
the remaining requests in the RAS state that will result
from the execution of the selected allocation). We need
to resolve whether there exists a resource allocation se-
quence for advancing process instances Jj , j = 1, . . . , n,
through their various processing stages that are defined
by the corresponding process plans Sj ; more specifically,
this resource allocation sequence must be feasible with
respect to the aforestated resource allocation protocol,
and it must allow each process instance Jj to complete
successfully the corresponding process plan Sj .

Next we use the above decision problem in order to es-
tablish the result of Theorem 16.

Fig. 2. The traffic state s′ that is constructed in the reduction
of the proof of Theorem 16.

Proof: First we show that the considered problem be-
longs in NP. Hence, consider a given traffic state s where
the traveling agents a ∈ Amust execute the walksWa(s)
that correspond to their remaining “mission” trips at
state s. Then, defining an event to be the advancement
of a single agent by one step through its corresponding
“mission” trip, any event sequence σ that leads to the
completion of the “mission” trips of all agents, will have
a fixed length equal to the sum of all the steps in the ran-
dom walks Wa, a ∈ A; this sum is polynomially related
to the problem data. Furthermore, the validity of such
a sequence σ can be assessed through simulation, and
this task is also of polynomial complexity with respect
to the size of the underlying traffic system. Therefore,
the considered problem is in NP.

In order to establish the NP-completeness of the consid-
ered problem, we shall reduce to it the L-SU-RAS state-
safety problem that was introduced in the previous def-
inition. So, consider an instance of this second problem,
and let s denote the corresponding RAS state. The traffic
state s′ that will be constructed by the proposed reduc-
tion is depicted in Figure 2. The corresponding guide-
path network possesses a central node Nc and m + 1
edges ei, i = 1, . . . ,m+ 1, that are incident to this node
in a “hub & spoke” sense. At the second node of each
edge ei, i = 1, . . . ,m, there is a “self-loop” edge that
corresponds to resource Ri. On the other hand, the sec-
ond node of edge em+1 is the “home” vertex vh (we have
not drawn explicitly the “home” edges eh(a), a ∈ A,
in the figure). Each process instance Jj , j = 1, . . . , n,
is represented in the constructed traffic state s′ by an
agent aj located at the “self-loop” edge that corresponds
to resource R[1; j]; this is indicated by representing this
“self-loop” edge as a directed edge. Finally, the agent
corresponding to process instance Jj must visit each of
the “self-loop” edges that correspond to the resources
R[k; j], k = 2, . . . , lj , according to the sequence that is
specified by the corresponding process plan Sj , and fur-
thermore, it cannot visit any other edge that is not abso-
lutely necessary for the realization of this process plan;
these requirements define completely the walk that must
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be executed be each agent a ∈ A in order to complete
its current “mission” trip and retire to its “home” edge
eh(a).

It is not difficult to see that, under the aforestated spec-
ification of the route to be followed by each traveling
agent, the construction of the previous paragraph de-
fines a bisimulation between the original RAS dynamics
and the dynamics of the induced traffic system. Hence,
the original RAS state s will be safe if and only if the
induced state s′ is live. Furthermore, it is clear that the
size of the employed representation of the constructed
state s′ is related polynomially to the size of the em-
ployed representation for the RAS state s. Hence, the
claim of Theorem 16 is true.
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