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Abstract— The main purpose of this correspondence is to demonstrate,
through a counter-example, that, contrary to what was published recently
in [1], the states belonging to the safe and unsafe subspaces of a single-
unit resource allocation system (SU-RAS) might not be linearly separable.
In addition, we identify a particular sub-class of SU-RAS for which the
aforementioned property is guaranteed.

I. INTRODUCTION

The problem of deadlock avoidance in sequential resource al-
location systems (RAS) is well-established in the current con-
trol literature [2], [3]. In its basic definition, a sequential RAS
Φ consists of a set of resource types, R = {R1, . . . ,Rm}, that
are shared by a set of concurrently executing process types,
J = {J1, . . . ,Jn}. Resources are reusable and each resource
type Ri, i = 1, . . . ,m, is available in Ci identical units that
define the resource capacity. On the other hand, each pro-
cess type J j, j = 1, . . . ,n, is further defined by a set of stages
S j = {Ξ j1, . . . ,Ξ j,l( j)}, and some (appropriately coded) sequen-
tial logic that describes all the possible ways that an instance j j
of process type J j can execute through the stages of S j. Fur-
thermore, the proper execution of any stage Ξ jk, j = 1, . . . ,n,
k = 1, . . . , l( j), by a process instance j j requires the exclusive
allocation to j j of a (non-empty) subset of resources A(Ξ jk);
this set is typically represented as an m-dimensional vector with
its i-th component indicating the stage requirement with re-
spect to (w.r.t.) resource type Ri. Finally, it is assumed that a
process instance j j seeking to advance from a stage Ξ jk to a
successor stage Ξ jk′ must first secure the resource differential
[A(Ξ jk′)−A(Ξ jk)]

+, and only then it will release any previ-
ously held resources that are not needed for the execution of the
new stage Ξ jk′ .1 This “hold-while-waiting” resource allocation
protocol, when combined with the arbitrary structure of the re-
source allocation sequences involved, can give rise to deadlock,
i.e., situations where a subset of the active process instances can-
not advance any further in their potential process routes because
each of them requests resources for its further advancement that
are held by some other process in the set.

The investigation of the resource allocation dynamics that
were described in the previous paragraph, and the correspond-
ing problem of deadlock formation and avoidance, can be fur-
ther formalized using concepts and results borrowed from qual-
itative Discrete Event Systems (DES) theory [4]. In particular,
both modeling frameworks of Finite State Automata (FSA) [4]
and Petri nets (PNs) [4] have been used extensively for the mod-
eling of sequential RAS and the study of the deadlock avoidance
problem [2]. In the FSA modeling framework, the RAS state is
modeled by a ξ-dimensional vector s, where ξ = ∑

n
j=1 |S j| and

the components of s are in one-to-one correspondence with the
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1We notice, for completeness, that this operational assumption is not restric-
tive in any sense, since pure resource releases can still be modeled through the
introduction of additional processing stages.

RAS processing stages; component s[k]≡ sk, k = 1, . . . ,ξ, corre-
sponds to the processing stage Ξ(sk), and its value indicates the
number of process instances that are executing this processing
stage in state s. The event set of this FSA is defined by the load-
ing and unloading of the various process instances, as well as
their advancement among their various processing stages. The
automaton is initiated at the state s0 = 0 that represents the sys-
tem empty state, and the same state is also the unique marked
state of this automaton, a fact the represents the requirement for
successful completion of each initiated process instance.

Let the reachable state space of a RAS Φ, when started from
its initial state s0, be denoted by Sr. Also, the subspace of Φ

consisting by states that are co-reachable to state s0 will be de-
noted by Ss and referred to as the set of “safe” states. Under
this FSA representation of the RAS dynamics, maximally per-
missive deadlock avoidance implies the confinement of RAS Φ

in its reachable and co-reachable subspace Srs ≡ Sr ∩ Ss. The
complement of Srs w.r.t. Sr is denoted by Srs̄ and it is referred to
as the (set of reachable and) “unsafe” states.

The cardinality of set Sr and its two subsets Srs and Srs̄ is, in
general, a super-polynomial function of the size of any parsimo-
nious description of the structure of RAS Φ (where the latter is
defined by the items that were listed in the opening paragraph)
[2]. Hence, the implementation of the maximally permissive
deadlock avoidance policy (DAP) through one-step-lookahead
schemes that are based on the explicit enumeration and stor-
age of the sets Srs and Srs̄ is practically intractable. However,
a recent line of research has established that the aforementioned
one-step look-ahead schemes can be pertinently implemented
by perceiving the corresponding supervisory control problem as
a classification problem concerning the dichotomy of the state
(vector) set Sr to its safe and unsafe subsets Srs and Srs̄; in this
way, the relevant control-synthesis problem boils down to the
design of the necessary classifier that will provide an efficient
representation of the sought dichotomy [5], [6], [7]. Among
the classes of the pursued classifiers, the most conspicuous one
is the class of linear classifiers, which represents the sought di-
chotomy through a set of linear inequalities in the RAS state [5],
[7]. The popularity of this class is due to (i) the conceptual and
computational simplicity of the synthesis of the target classifiers
compared to the classifiers with a non-linear structure, and (ii)
the possibility of representing the obtained classifiers in the PN
modeling framework in a simple and efficient manner, using the
theory of “monitor” places of [8], [9]. However, it has also been
established that the class of linear classifiers is not a complete
representation for the maximally permissive DAP of the consid-
ered RAS; i.e., there are RAS Φ for which the sets Srs and Srs̄
are not separable through a set of linear inequalities [6]. De-
tailed analytical conditions that must be satisfied by the sets Srs
and Srs̄ in order to be linearly separable are provided in [10],
[11].

The above discussion raises naturally the additional question
of what type of conditions can be imposed on the RAS structure
itself so that the maximally permissive DAP for the resulting
RAS sub-class is representable as a linear classifier. Along these
lines, the work of [5] has established that this property is pos-
sessed by RAS where every processing stage involves at least
one resource type Ri of unit capacity (i.e., with Ci = 1), since,



2

TABLE I
THE CONSIDERED SU-RAS

R = {R1,R2,R3,R4,R5.R6}
C1 =C2 =C5 =C6 = 1 ; C3 =C4 = 2
J = {J1,J2,J3,J4}
J1 : R1→ R2→ R3→ R4→ R5→ R6
J2 : R6→ R5→ R4→ R3→ R2→ R1
J3 : R3→ R4→ R5→ R6
J4 : R4→ R3→ R2→ R1

in that case, the reachable state space Sr can be represented by
binary vectors only, and any set of binary vectors can be di-
chotomized, in any way, by a set of linear inequalities. More re-
cently, the work of [1] has claimed a similar result for the RAS
sub-class where (i) process instances execute as atomic entities
(i.e., there are no process merging and splitting operations in
the relevant sequential logic), (ii) there is potential routing flex-
ibility but no looping in the corresponding execution paths, and
finally, (iii) the vectors that define the resource allocation func-
tion A(·) are m-dimensional unit vectors (i.e., every processing
stage requires only a single unit from a single resource type).
Because of trait (iii), this RAS sub-class has been characterized
as the “Single-Unit” (SU-)RAS in the relevant literature [2]. In
the PN modeling framework, SU-RAS are modeled by a par-
ticular PN sub-class that is known as the S3PR nets, and it is
the actual representation used in [1]. The main purpose of this
article is to show that, contrary to the claims of [1], there are
SU-RAS (or, equivalently, S3PR nets) for which the maximally
permissive DAP is not representable by a set of linear inequal-
ities. We establish this result in the next section by detailing
and analyzing such an SU-RAS. Also, in Section III we provide
some further discussion that elucidates some misconceptions in
the developments of [1] that led to the erroneous result. This dis-
cussion also reveals a particular subclass of SU-RAS, of prac-
tical interest, for which the claimed result in [1] actually holds
true. Finally, Section IV concludes the paper.

II. THE PROVIDED COUNTER-EXAMPLE

Consider the SU-RAS depicted in Table I. This RAS consists
of six resource types with the corresponding capacities anno-
tated in the table, and four process types. Each process type
constitutes a linear sequence of processing stages, and since the
considered RAS is of the single-unit type, in Table I we char-
acterize the corresponding resource allocation function A(Ξ jk)
by simply providing the single resource type that is requested
by each processing stage. The reader should also notice that
the considered RAS has 20 processing stages in total, and there-
fore, the corresponding state vector s is a 20-dimensional vec-
tor. However, for reasons of representational economy, in the
following we shall adopt a symbolic representation that repre-
sents any state s = {s1, . . . ,s20} by ∑

20
i=1 si ·Ξ(si); under this new

representation, only components with non-zero coefficients will
appear in the provided sum.

Consider the state s1 = 1 ·Ξ11 + 1 ·Ξ12 + 1 ·Ξ21 + 1 ·Ξ22 +
2 ·Ξ31, and name the process instances encountered when pars-

ing the above sum from left to right by j1 to j6; i.e., j1 is the
process instance executing processing stage Ξ11, j2 is the pro-
cess instance executing processing stage Ξ12, j3 is the process
instance executing processing stage Ξ21, j4 is the process in-
stance executing processing stage Ξ22, and eventually, j5 and
j6 are the two process instances executing processing stage Ξ31.
State s1 is clearly in the reachable state space Sr of the consid-
ered RAS. Next, we shall show that s1 is also in the safe sub-
space Srs. For this, it suffices to provide an event sequence that
completes successfully all the active process instances. Such an
event sequence can be constructed as follows: First, advance
one of the process instances executing stage Ξ31, let’s say j5,
to its next processing stage, Ξ32; this advancement is possible
since resource R4 has no processes allocated to it in state s1.
Let the resulting state be denoted by s1

1. In state s1
1, each of the

multi-capacity resources R3 and R4 has only one of its two units
allocated. This enables the advancement of process instances j3
and j4 respectively to their processing stages Ξ23 and Ξ24, and
the release of the unit-capacity resources R5 and R6; let the cor-
responding state be denoted by s2

1. Since resources R5 and R6 are
free in state s2

1, process instances j5 and j6 can advance to their
completion, one at a time; let the resulting state be denoted by
s3

1. In state s3
1, each of the resources R3 to R6 has at least one unit

of free capacity; hence, process instances j2 and j1 can advance
to their completion, one at a time. Let the resulting state be de-
noted by s4

1. In state s4
1, resources R1 and R2 have been released,

and therefore, process instances j3 and j4 can also advance to
completion.

Using the symmetries of the considered RAS, it is also easy
to see that state s2 = 1 ·Ξ11 +1 ·Ξ12 +1 ·Ξ21 +1 ·Ξ22 +2 ·Ξ41
belongs in Srs. On the other hand, state s3 = 1 ·Ξ11 + 1 ·Ξ12 +
1 ·Ξ21 + 1 ·Ξ22 + 1 ·Ξ31 + 1 ·Ξ41 is in Srs̄. This result can be
verified, for instance, through an exhaustive search over the set
of event sequences that originate from state s3 and they do not
involve the initiation of any new process instances.2 But from
the standpoint of the standard vector-based state representation,
s3 = 1

2 s1 +
1
2 s2. Hence, state s3 belongs to the convex hull of

the states in Srs, and it is not linearly separable from them [10],
[11].

III. DISCUSSION

The counter-example of Section II establishes the fallacy of
the results that are claimed in [1]. On the other hand, the dis-
cussion that is provided in this section has as a first objective to
provide a brief explanation of the erroneous logic in the develop-
ments of [1] that has led to the aforementioned problem. But the
following arguments will also reveal an entire sub-class of SU-
RAS that is guaranteed, indeed, to admit linear separability of
the corresponding sets Srs and Srs̄, and thus, a representation of
the corresponding maximally permissive DAP by a linear clas-
sifier.

Instrumental for the following arguments is the realization
that the set of unsafe states in sequential RAS, including the SU-

2A more intuitive explanation for the unsafety of state s3 is provided by the
observation that, in this state, there are three process instances moving in each
direction that is defined by the natural ordering of the system resources, while
there are only two resources of double capacity. Hence, it is not possible to
construct the clearing “passes” that were utilized in the case of states s1 and s2.
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RAS class, can be separated into deadlock states and deadlock-
free unsafe states. This last class of states are states that do not
contain any already deadlocked processes but lead unavoidably
to deadlock states; state s3 in the example of Section II is such
a deadlock-free unsafe state. In [2] it is shown that, in the con-
sidered RAS class, the recognition of a deadlock state is a task
of polynomial complexity with respect to the size of the under-
lying RAS. On the other hand, the recognition of deadlock-free
unsafe states can be a much more complex task, to the point that
the safety assessment of any given RAS state is eventually an
NP-complete problem [2], [12]. Some additional results that are
of relevance to this discussion are as follows:
Result 1: The single-unit allocation that is associated with

each processing stage of an SU-RAS implies that any deadlock
state of this RAS class must have all the involved resources al-
located to capacity to the deadlocked processes. Hence, to pre-
vent the formation of such a deadlock in a maximally permissive
manner, it suffices to request that the total number of the pro-
cess instances executing simultaneously the processing stages
Ξ jk that are involved in the deadlock, must remain (strictly) be-
low the total capacity of the corresponding resource types that
are associated with these stages through the allocation function
A(Ξ jk). Bu this last requirement can be expressed straightfor-
wardly by a linear inequality.
Result 2: For any given deadlock-free unsafe state s, a control

policy that prevents the accessibility of its successor (unsafe)
states in a maximally permissive manner, will expose the un-
safety of s by rendering it a (policy-)induced deadlock.

In the analysis of [1], the aforestated capability to prevent the
formation of a potential deadlock in any SU-RAS, in a maxi-
mally permissive manner, by a single linear inequality, is the
essence of Theorem 5.1. From a more technical standpoint, the
proof of Theorem 5.1 in [1] establishes the aforementioned re-
sult by leveraging an established connection of deadlock forma-
tion in SU-RAS and the PN structural object of empty siphon
[13].3 On the other hand, Theorem 5.2 tries to leverage the
combination of Results 1 and 2, in order to argue that Result
1 essentially extends to the maximally permissive control of all
the unsafe states of an SU-RAS. But the authors failed to real-
ize that the augmentation of the original nets with the necessary
“monitor” places that enforce any linear inequalities on the un-
derlying RAS state, leads to PN structures that do not belong to
the class of the SU-RAS-modeling PNs (i.e., these new nets are
not S3PR). Hence, the scheme of incremental control synthesis
that is implied by the proof of Theorem 5.2 in [1] will not work,
since Result 1 will not apply to the sequence of the “monitor”-
augmented nets that will be generated by this process.

In fact, these augmented nets can be shown to belong in the
broader class of S3PGR2 nets of [14]. As it is also remarked
in [1], S3PGR2 nets model RAS classes with more arbitrary re-
source requests for each processing stage than the requests al-
lowed by SU-RAS, and for these nets, deadlock can be inter-
preted by siphons that are insufficiently marked to enable the

3We remind the reader that, in PN theory, a siphon S is a set of places such
that the set of transitions that deposit tokens in some place(s) of S (known as
the “input” transitions of S) is a subset of the set of transitions that need some
tokens from some place(s) in S for their firing (known as the “output” transitions
of S). Hence, once a siphon gets empty of tokens, none of its output transitions
can fire anymore.

firing of their output transitions, but not necessarily empty.4 A
more intuitive interpretation of this last result is that, due to the
presence of requests for more than one resource units by a single
process instance, a process can be in deadlock even though some
of the requested resources have free capacity (but not sufficient
to meet the process needs). Unfortunately, the formation of this
new type of partial deadlock is not necessarily controllable, in a
maximally permissive manner, by a set of linear inequalities on
the RAS state.

While explaining the source of the error in the developments
of [1], the above remarks also imply that for SU-RAS with no
deadlock-free unsafe states, the corresponding sets Srs and Srs̄
are indeed linearly separable (due to Result 1 above and/or the
corresponding arguments of Theorem 5.1 in [1]).5 An extensive
discussion on the sub-class of SU-RAS with no deadlock-free
unsafe states, that also provides structural characterizations for
the elements of this class, can be found in Chapter 3 of [2].

IV. CONCLUSION

This technical note has demonstrated by means of a counter-
example that a result recently claimed in [1] is not true. Further-
more, the accompanying discussion of Section III has identified
the misconceptions in the developments of [1] that led to the er-
roneous claim, and it has also revealed some further conditions
that, when imposed on the considered RAS class (essentially
defining a more restricted RAS class), will render the result that
is pursued in [1] actually true.
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