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A null recurrent state is not a transient state, because the probability of recurrence is 1;
however, the expected recurrence time is infinite. We can view transient states and positive
recurrent states as two extremes: Transient states may never be revisited, whereas positive
recurrent states are definitely revisited with finite expected recurrence time. Null recurrent
states may be viewed as “weakly recurrent” states: They are definitely revisited, but the
expected recurrence time is infinite.

A result similar to Theorem 7.2 is the following (see also Chap. 2 of Hoel et al., 1972):

Theorem 7.4 If i is a positive recurrent state and j is reachable from i, then state j is
positive recurrent. �

By combining Theorems 7.2 and 7.4, we obtain a very useful fact pertaining to irreducible
closed sets, and hence also irreducible Markov chains:

Theorem 7.5 If S is a closed irreducible set of states, then every state in S is positive
recurrent or every state in S is null recurrent or every state in S is transient. �

We can also obtain a stronger version of Theorem 7.3:

Theorem 7.6 If S is a finite closed irreducible set of states, then every state in S is positive
recurrent. �

Example 7.10 (Discrete-time birth–death chain)
To illustrate the distinctions between transient, positive recurrent and null recurrent
states, let us take a close look at the Markov chain of Fig. 7.9. In this model, the
state increases by 1 with probability (1− p) or decreases by 1 with probability p from
every state i > 0. At i = 0, the state remains unchanged with probability p. We often
refer to a transition from i to (i + 1) as a “birth,” and from i to (i− 1) as a “death.”
This is a simple version of what is known as a discrete-time birth–death chain. We
will have the opportunity to explore its continuous-time version in some depth later
in this chapter.

Before doing any analysis, let us argue intuitively about the effect the value of p should
have on the nature of this chain. Suppose we start the chain at state 0. If p < 1/2,
the chain tends to drift towards larger and larger values of i, so we expect state 0
to be transient. If p > 1/2, on the other hand, then the chain always tends to drift
back towards 0, so we should expect state 0 to be recurrent. Moreover, the larger
the value of p, the faster we expect a return to state 0, on the average; conversely,
as p approaches 1/2, we expect the mean recurrence time for state 0 to increase. An
interesting case is that of p = 1/2. Here, we expect that a return to state 0 will
occur, but it may take a very long time. In fact, it turns out that the case p = 1/2
corresponds to state 0 being null recurrent, whereas if p > 1/2 it is positive recurrent.
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Figure 7.9: State transition diagram for Example 7.10.
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Let us now try to verify what intuition suggests. Recalling (7.30), observe that

ρ0 = P [T00 <∞] = p + (1− p) · P [T10 <∞] (7.32)

In words, starting at state 0, a return to this state can occur in one of two ways: in
a single step with probability p, or, with probability (1− p), in some finite number of
steps consisting of a one-step transition to state 1 and then a return to 0 in T10 steps.
Let us set

q1 = P [T10 <∞] (7.33)

In addition, let us fix some state m > 1, and define for any state i = 1, . . . , m− 1,

qi(m) = P [Ti0 < Tim] for some m > 1 (7.34)

Thus, qi(m) is the probability that the chain, starting at state i, visits state 0 before
it visits state m. We also set qm(m) = 0 and q0(m) = 1. We will now try to evaluate
qi(m) as a function of p, which we will assume to be 0 < p < 1. This will allow us to
obtain q1(m), from which we will finally obtain q1, and hence ρ0.

Taking a good look at the state transition diagram of Fig. 7.9, we observe that

qi(m) = p · qi−1(m) + (1− p) · qi+1(m) (7.35)

The way to see this is similar to the argument used in (7.32). Starting at state i,
a visit to state 0 before state m can occur in one of two ways: from state (i − 1)
which is entered next with probability p, or from state (i + 1) which is entered next
with probability (1− p). Then, adding and subtracting the term (1 − p)qi(m) to the
right-hand side of (7.35) above, we get

qi+1(m)− qi(m) =
p

1− p
[qi(m)− qi−1(m)]

For convenience, set
β =

p

1− p
(7.36)

We now see that

qi+1(m)− qi(m) = β · β[qi−1(m)− qi−2(m)]

= . . . = βi[q1(m)− q0(m)]
(7.37)

and by summing over i = 0, . . . , m− 1, we get

m−1∑
i=0

qi+1(m)−
m−1∑
i=0

qi(m) = [q1(m)− q0(m)]
m−1∑
i=0

βi

which reduces to

qm(m)− q0(m) = [q1(m)− q0(m)]
m−1∑
i=0

βi (7.38)

Recalling that qm(m) = 0 and q0(m) = 1, we immediately get

q1(m) = 1− 1∑m−1
i=0 βi

(7.39)
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We would now like to use this result in order to evaluate q1 in (7.33). The argument
we need requires a little thought. Let us compare the number of steps T12 in moving
from state 1 to state 2 to the number of steps T13. Note that to get from 1 to 3 we
must necessarily go through 2. This implies that T13 > T12. This observation extends
to any T1i, T1j with j > i. In addition, since to get from state 1 to 2 requires at least
one step, we have

1 ≤ T12 < T13 < · · · (7.40)

and it follows that T1m ≥ m− 1 for any m = 2, 3, . . . Therefore, as m → ∞ we have
T1m →∞. Then returning to the definition (7.34) for i = 1,

lim
m→∞ q1(m) = lim

m→∞P [T10 < T1m] = P [T10 <∞] (7.41)

The second equality above is justified by a basic theorem from probability theory (see
Appendix I), as long as the events [T10 < T1m] form an increasing sequence with
m = 2, 3, . . . , which in the limit gives the event [T10 < ∞]; this is indeed the case by
(7.40).

Combining the definition of q1 in (7.33) with (7.39) and (7.41), we get

q1 = P [T10 <∞] = lim
m→∞

[
1− 1∑m−1

i=0 βi

]
= 1− 1∑∞

i=0 βi

Let us now take a closer look at the infinite sum above. If β < 1, the sum converges
and we get

∞∑
i=0

βi =
1

1− β

which gives q1 = β. Recall from (7.36) that β = p/(1 − p). Therefore, this case
corresponds to the condition p < 1− p or p < 1/2. If, on the other hand, β ≥ 1, that
is, p ≥ 1/2, we have

∑∞
i=0 βi =∞, and obtain q1 = 1.

We can now finally put it all together by using these results in (7.32):

1. If p < 1/2, q1 = β = p/(1− p), and (7.32) gives

ρ0 = 2p < 1

which implies that state 0 is transient as we had originally guessed.

2. If p ≥ 1/2, q1 = 1, and (7.32) gives

ρ0 = 1

and state 0 is recurrent as expected. We will also later show (see Example 7.13)
that when p = 1/2 (the point at which ρ0 switches from 1 to a value less than 1)
state 0 is in fact null recurrent.

Observing that the chain of Fig. 7.9 is irreducible (as long as 0 < p < 1), we can also
apply Theorem 7.5 to conclude that in case 1 above all states are transient, and hence
the chain is said to be transient. Similarly, in case 2 we can conclude that all states
are recurrent, and, if state 0 is null recurrent, then all states are null recurrent.
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Remark. The fact that πj = 1/Mj in (7.43) has an appealing physical interpretation. The
probability πj represents the fraction of time spent by the chain at state j at steady state.
Thus, a short recurrence time for j ought to imply a high probability of finding the chain
at j. Conversely, a long recurrence time implies a small state probability. In fact, as Mj

increases one can see that πj approaches 0; in the limit, as Mj → ∞, we see that πj → 0,
that is, j behaves like a null recurrent state under Theorem 7.9.

Example 7.12
Let us consider the Markov chain of Example 7.3 shown in Fig. 7.4. Setting α = 0.5
and β = 0.7 we found the transition probability matrix for this chain to be:

P =

⎡
⎣ 0.5 0.5 0

0.35 0.5 0.15
0.245 0.455 0.3

⎤
⎦

This chain is clearly irreducible. It is also aperiodic, since pii > 0 for all states
i = 0, 1, 2 (as pointed out earlier, pii > 0 for at least one i is a sufficient condition
for aperiodicity). It is also easy to see that the chain contains no transient or null
recurrent states, so that Theorem 7.10 can be used to determine the unique stationary
state probability vector π = [π0, π1, π2]. The set of equations (7.44) in this case is the
following:

π0 = 0.5π0 + 0.35π1 + 0.245π2

π1 = 0.5π0 + 0.5π1 + 0.455π2

π2 = 0π0 + 0.15π1 + 0.3π2

These equations are not linearly independent: One can easily check that multiplying
the first and third equations by -1 and adding them gives the second equation. This
is always the case in (7.44), which makes the normalization condition (7.45) necessary
in order to solve for π. Keeping the second and third equation above, and combining
it with (7.45), we get

0.5π0 − 0.5π1 + 0.455π2 = 0
0.15π1 − 0.7π2 = 0

π0 + π1 + π2 = 1

The solution of this set of equations is:

π0 = 0.399, π1 = 0.495, π2 = 0.106

It is interesting to compare the stationary state probability vector π = [0.399, 0.495,
0.106] obtained above with the transient solution π(3) = [0.405875, 0.496625, 0.0975]
in (7.16), which was obtained in Example 7.5 with initial state probability vector
π(0) = [1, 0, 0]. We can see that π(3) is an approximation of π. This approximation
gets better as k increases, and, by Theorem 7.10, we expect π(k)→ π as k →∞.

Example 7.13 (Steady-state solution of birth–death chain)
Let us come back to the birth–death chain of Example 7.10. By looking at Fig. 7.9,
we can see that the transition probability matrix is

P =

⎡
⎢⎢⎢⎢⎢⎣

p 1− p 0 0 0 . . .
p 0 1− p 0 0 . . .
0 p 0 1− p 0 0
0 0 p 0 1− p 0
...

...
...

...
...

...

⎤
⎥⎥⎥⎥⎥⎦
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Assuming 0 < p < 1, this chain is irreducible and aperiodic (note that p00 = p > 0).
The system of equations π = πP in (7.44) gives

π0 = π0p + π1p

πj = πj−1(1− p) + πj+1p, j = 1, 2, . . .

From the first equation, we get

π1 =
1− p

p
π0

From the second set of equations, for j = 1 we get

π1 = π0(1− p) + π2p

and substituting for π1 from above we obtain π2 in terms of π0:

π2 =
(

1− p

p

)2

π0

Proceeding in similar fashion, we have

πj =
(

1− p

p

)j

π0, j = 1, 2, . . . (7.46)

Summing over j = 0, 1, . . . and making use of the normalization condition (7.45), we
obtain

π0 +
∞∑

j=1

πj = π0 + π0

∞∑
j=1

(
1− p

p

)j

= 1

from which we can solve for π0:

π0 =
1∑∞

i=0

(
1−p

p

)i

where we have replaced the summation index j by i so that there is no confusion in
the following expression which we can now obtain from (7.46):

πj =

(
1−p

p

)j

∑∞
i=0

(
1−p

p

)i , j = 1, 2, . . . (7.47)

Now let us take a closer look at the infinite sum above. If (1−p)/p < 1, or equivalently
p > 1/2, the sum converges,

∞∑
i=0

(
1− p

p

)i

=
p

2p− 1

and we have the final result

πj =
2p− 1

p

(
1− p

p

)j

, j = 0, 1, 2, . . . (7.48)

Now let us relate these results to our findings in Example 7.10:
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1. Under the condition p < 1/2 we had found the chain to be transient. Under
this condition, the sum in (7.47) does not converge, and we get πj = 0; this is
consistent with Theorem 7.9 for transient states.

2. Under the condition p ≥ 1/2 we had found the chain to be recurrent. This is
consistent with the condition p > 1/2 above, which, by (7.48), yields stationary
state probabilities such that 0 < πj < 1.

3. Finally, note in (7.48) that as p → 1/2, πj → 0. By (7.43), this implies that
Mj → ∞. Thus, we see that state 0 is null recurrent for p = 1/2. This was
precisely our original conjecture in Example 7.10.

From a practical standpoint, Theorem 7.10 allows us to characterize the steady state
behavior of many DES modeled as discrete-time Markov chains. The requirements of ir-
reducibility and aperiodicity are not overly restrictive. Most commonly designed systems
have these properties. For instance, one would seldom want to design a reducible resource-
providing system which inevitably gets trapped into some closed sets of states.1 Another
practical implication of Theorem 7.10 is the following. Suppose that certain states in a DES
are designated as “more desirable” than others. Since πj is the fraction of time spent at j
in the long run, it gives us a measure of system performance: Larger values of πj for more
desirable states j imply better performance. In some cases, maximizing (or minimizing) a
particular πj represents an actual design objective for such systems.

Example 7.14
Consider a machine which alternates between an UP and a DOWN state, denoted by 1
and 0 respectively. We would like the machine to spend as little time as possible in the
DOWN state, and we can control a single parameter β which affects the probability
of making a transition from DOWN to UP. We model this system through a Markov
chain as shown in Fig. 7.14, where β (0 ≤ β ≤ 2 so that the transition probability 0.5β
is in [0, 1]) is the design parameter we can select. Our design objective is expressed
in terms of the stationary state probability π0 as follows:

π0 < 0.4

The transition probability matrix for this chain is

P =
[

1− 0.5β 0.5β
0.5 0.5

]

Using (7.44) and (7.45) to obtain the stationary state probabilities, we have

π0 = (1− 0.5β)π0 + 0.5π1

π1 = 0.5βπ0 + 0.5π1

π0 + π1 = 1

Once again, the first two equations are linearly dependent. Solving the second and
third equations for π0, π1 we get

π0 =
1

1 + β
, π1 =

β

1 + β

1A supervisory controller S of the type considered in Chap. 3 could be synthesized, if necessary, to ensure
that the controlled DES S/G (now modeled as a Markov chain) satisfies these requirements. One would rely
upon the notions of marked states and nonblocking supervisor for this purpose.
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