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A null recurrent state is not a transient state, because the probability of recurrence is 1;
however, the expected recurrence time is infinite. We can view transient states and positive
recurrent states as two extremes: Transient states may never be revisited, whereas positive
recurrent states are definitely revisited with finite expected recurrence time. Null recurrent
states may be viewed as “weakly recurrent” states: They are definitely revisited, but the
expected recurrence time is infinite.

A result similar to Theorem 7.2 is the following (see also Chap. 2 of Hoel et al., 1972):

Theorem 7.4 If i is a positive recurrent state and j is reachable from 4, then state j is
positive recurrent. ¢

By combining Theorems 7.2 and 7.4, we obtain a very useful fact pertaining to irreducible
closed sets, and hence also irreducible Markov chains:

Theorem 7.5 If S is a closed irreducible set of states, then every state in S is positive
recurrent or every state in S is null recurrent or every state in S is transient. ¢

We can also obtain a stronger version of Theorem 7.3:

Theorem 7.6 If S is a finite closed irreducible set of states, then every state in S is positive
recurrent. ¢

Example 7.10 (Discrete-time birth—death chain)

To illustrate the distinctions between transient, positive recurrent and null recurrent
states, let us take a close look at the Markov chain of Fig.7.9. In this model, the
state increases by 1 with probability (1 — p) or decreases by 1 with probability p from
every state i > 0. At ¢ = 0, the state remains unchanged with probability p. We often
refer to a transition from ¢ to (i + 1) as a “birth,” and from i to (i — 1) as a “death.”
This is a simple version of what is known as a discrete-time birth—-death chain. We
will have the opportunity to explore its continuous-time version in some depth later
in this chapter.

Before doing any analysis, let us argue intuitively about the effect the value of p should
have on the nature of this chain. Suppose we start the chain at state 0. If p < 1/2,
the chain tends to drift towards larger and larger values of 7, so we expect state 0
to be transient. If p > 1/2, on the other hand, then the chain always tends to drift
back towards 0, so we should expect state 0 to be recurrent. Moreover, the larger
the value of p, the faster we expect a return to state 0, on the average; conversely,
as p approaches 1/2; we expect the mean recurrence time for state 0 to increase. An
interesting case is that of p = 1/2. Here, we expect that a return to state 0 will
occur, but it may take a very long time. In fact, it turns out that the case p = 1/2
corresponds to state 0 being null recurrent, whereas if p > 1/2 it is positive recurrent.
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Figure 7.9: State transition diagram for Example 7.10.
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Let us now try to verify what intuition suggests. Recalling (7.30), observe that
pQ:P[Too<OO]:p+(1—p)-P[T10<OO] (732)

In words, starting at state 0, a return to this state can occur in one of two ways: in
a single step with probability p, or, with probability (1 — p), in some finite number of
steps consisting of a one-step transition to state 1 and then a return to 0 in 77 steps.
Let us set

q1 = P[T1o < o] (7.33)
In addition, let us fix some state m > 1, and define for any state i =1,...,m — 1,
qi(m) = P[Tyo < Tim]  for some m > 1 (7.34)

Thus, ¢;(m) is the probability that the chain, starting at state 4, visits state 0 before
it visits state m. We also set g, (m) =0 and go(m) = 1. We will now try to evaluate
gi(m) as a function of p, which we will assume to be 0 < p < 1. This will allow us to
obtain ¢1(m), from which we will finally obtain ¢;, and hence py.

Taking a good look at the state transition diagram of Fig. 7.9, we observe that

gi(m) =p-qgi—1(m) + (1 —p) - git1(m) (7.35)

The way to see this is similar to the argument used in (7.32). Starting at state i,
a visit to state 0 before state m can occur in one of two ways: from state (i — 1)
which is entered next with probability p, or from state (¢ + 1) which is entered next
with probability (1 — p). Then, adding and subtracting the term (1 — p)g;(m) to the
right-hand side of (7.35) above, we get

Gi1(m) = gs(m) = 77— [gu(m) = i (m)]

For convenience, set

=L (7.36)

We now see that

giv1(m) —qi(m) = B - Blgi—1(m) — gi—2(m)]

i (7.37)
=...=B'la(m) — qo(m)]
and by summing over ¢ =0,...,m — 1, we get
m—1 m—1 m—1
D giva(m) = > ai(m) = [g1(m) —go(m)] > B
i=0 i=0 i=0
which reduces to .
gm(m) — qo(m) = [g1(m) — qo(m Z g (7.38)
Recalling that ¢,,(m) = 0 and go(m) = 1, we immediately get
1
a(m)=1- ——=— (7.39)
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We would now like to use this result in order to evaluate ¢; in (7.33). The argument
we need requires a little thought. Let us compare the number of steps 772 in moving
from state 1 to state 2 to the number of steps T75. Note that to get from 1 to 3 we
must necessarily go through 2. This implies that Ty3 > T12. This observation extends
to any Ti;,T1; with j > 4. In addition, since to get from state 1 to 2 requires at least
one step, we have

1<T s <Tiz<--- (740)

and it follows that Ty, > m — 1 for any m = 2,3, ... Therefore, as m — oo we have
Ty — oo. Then returning to the definition (7.34) for i =1,

lim ¢ (m) = lim P[Tm < Tlm] = P[Tm < OO] (741)

m—00

The second equality above is justified by a basic theorem from probability theory (see
Appendix TI), as long as the events [T19 < Ti,,] form an increasing sequence with

m = 2,3,..., which in the limit gives the event [T19 < oc]; this is indeed the case by
(7.40).
Combining the definition of ¢; in (7.33) with (7.39) and (7.41), we get
P[T1p < ] li 1 ! 1 !
q1 = 10 < o0] = lim v el e S T
meee iy B Yizo B
Let us now take a closer look at the infinite sum above. If g < 1, the sum converges
and we get
N 1
Zﬂz “1-3
i=0

which gives ¢1 = (. Recall from (7.36) that 8 = p/(1 — p). Therefore, this case
corresponds to the condition p < 1 —p or p < 1/2. If, on the other hand, 8 > 1, that
is, p > 1/2, we have Y ;= 3" = oo, and obtain ¢; = 1.

We can now finally put it all together by using these results in (7.32):
1. Ifp<1/2,q1 = B =p/(1 — p), and (7.32) gives
po=2p <1
which implies that state 0 is transient as we had originally guessed.
2. Ifp>1/2,q1 =1, and (7.32) gives
po =1

and state 0 is recurrent as expected. We will also later show (see Example 7.13)
that when p = 1/2 (the point at which py switches from 1 to a value less than 1)
state 0 is in fact null recurrent.

Observing that the chain of Fig. 7.9 is irreducible (as long as 0 < p < 1), we can also
apply Theorem 7.5 to conclude that in case 1 above all states are transient, and hence
the chain is said to be transient. Similarly, in case 2 we can conclude that all states
are recurrent, and, if state 0 is null recurrent, then all states are null recurrent.
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Remark. The fact that 7; = 1/M; in (7.43) has an appealing physical interpretation. The
probability m; represents the fraction of time spent by the chain at state j at steady state.
Thus, a short recurrence time for j ought to imply a high probability of finding the chain
at j. Conversely, a long recurrence time implies a small state probability. In fact, as M;
increases one can see that 7; approaches 0; in the limit, as M; — oo, we see that m; — 0,
that is, j behaves like a null recurrent state under Theorem 7.9.

Example 7.12
Let us consider the Markov chain of Example 7.3 shown in Fig.7.4. Setting a = 0.5
and 0 = 0.7 we found the transition probability matrix for this chain to be:

0.5 0.5 0
P=| 035 05 0.15
0.245 0.455 0.3

This chain is clearly irreducible. It is also aperiodic, since p;; > 0 for all states
1 = 0,1,2 (as pointed out earlier, p;; > 0 for at least one 7 is a sufficient condition
for aperiodicity). It is also easy to see that the chain contains no transient or null
recurrent states, so that Theorem 7.10 can be used to determine the unique stationary
state probability vector w = [mg, 71, m2]. The set of equations (7.44) in this case is the
following:

7o = 0.5 + 0.35m1 + 0.24579

T = 0.5’/T() + 0.5’/T1 + 0.455’/T2

7o = 0mg + 0.1571 + 0.37m2

These equations are not linearly independent: One can easily check that multiplying
the first and third equations by -1 and adding them gives the second equation. This
is always the case in (7.44), which makes the normalization condition (7.45) necessary
in order to solve for . Keeping the second and third equation above, and combining
it with (7.45), we get

0.5mg — 0.5m1 4+ 0.4557m5 =0

0.1571’1 — 0.77‘1’2 =0

mo+m +me=1

The solution of this set of equations is:
mo = 0.399, m =0.495, my =0.106

It is interesting to compare the stationary state probability vector = = [0.399,0.495,
0.106] obtained above with the transient solution 7 (3) = [0.405875,0.496625, 0.0975]
in (7.16), which was obtained in Example 7.5 with initial state probability vector
m(0) = [1,0,0]. We can see that 7 (3) is an approximation of 7. This approximation
gets better as k increases, and, by Theorem 7.10, we expect (k) — 7 as k — oo.

Example 7.13 (Steady-state solution of birth—death chain)
Let us come back to the birth—death chain of Example 7.10. By looking at Fig. 7.9,
we can see that the transition probability matrix is

p l1—p 0 0 0

P 0 1—p 0 0
P-|0 P 0 1—p 0 0

0

0 P 0 1—-p O
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Assuming 0 < p < 1, this chain is irreducible and aperiodic (note that pgg = p > 0).
The system of equations w = wP in (7.44) gives

T = TP + TP

szﬁjfl(lfp)+7rj+1pa ]:LQ?

From the first equation, we get
I—p

T = o
From the second set of equations, for j = 1 we get
71 = mo(l — p) + map

and substituting for m; from above we obtain m in terms of mq:

(59
T = | —— 0
p
Proceeding in similar fashion, we have
1 J
= <_p> To, j=1,2,... (7.46)
p

Summing over j = 0,1,... and making use of the normalization condition (7.45), we

obtain _
7T()+Z7Tj7To+7TOZ(T> =1
=1 i=1

from which we can solve for mq:

1
00 1— g
Zi:() (_pp')

where we have replaced the summation index j by i so that there is no confusion in
the following expression which we can now obtain from (7.46):

Ty =

J
™= ﬂ ji=1,2,... (7.47)
>0 (52)

Now let us take a closer look at the infinite sum above. If (1—p)/p < 1, or equivalently

p > 1/2, the sum converges,
p 2p—1

=0

and we have the final result

2p—1/1-p\’
p p

Now let us relate these results to our findings in Example 7.10:
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1. Under the condition p < 1/2 we had found the chain to be transient. Under
this condition, the sum in (7.47) does not converge, and we get m; = 0; this is
consistent with Theorem 7.9 for transient states.

2. Under the condition p > 1/2 we had found the chain to be recurrent. This is
consistent with the condition p > 1/2 above, which, by (7.48), yields stationary
state probabilities such that 0 < m; < 1.

3. Finally, note in (7.48) that as p — 1/2,m; — 0. By (7.43), this implies that
M; — oo. Thus, we see that state 0 is null recurrent for p = 1/2. This was
precisely our original conjecture in Example 7.10.

From a practical standpoint, Theorem 7.10 allows us to characterize the steady state
behavior of many DES modeled as discrete-time Markov chains. The requirements of ir-
reducibility and aperiodicity are not overly restrictive. Most commonly designed systems
have these properties. For instance, one would seldom want to design a reducible resource-
providing system which inevitably gets trapped into some closed sets of states.! Another
practical implication of Theorem 7.10 is the following. Suppose that certain states in a DES
are designated as “more desirable” than others. Since 7; is the fraction of time spent at j
in the long run, it gives us a measure of system performance: Larger values of m; for more
desirable states j imply better performance. In some cases, maximizing (or minimizing) a
particular 7; represents an actual design objective for such systems.

Example 7.14

Consider a machine which alternates between an UP and a DOWN state, denoted by 1
and 0 respectively. We would like the machine to spend as little time as possible in the
DOWN state, and we can control a single parameter 3 which affects the probability
of making a transition from DOWN to UP. We model this system through a Markov
chain as shown in Fig. 7.14, where 8 (0 < 8 < 2 so that the transition probability 0.5/
is in [0, 1]) is the design parameter we can select. Our design objective is expressed
in terms of the stationary state probability my as follows:

my < 0.4
The transition probability matrix for this chain is

[1-058 053
P = 0.5 0.5

Using (7.44) and (7.45) to obtain the stationary state probabilities, we have

Ty = (1 — 0.55)7’(0 + 0.5’/T1
m = 0.58my + 0.5m;
mo+m =1

Once again, the first two equations are linearly dependent. Solving the second and
third equations for my, ™ we get

1 B
[ T = ——
1+ 144
LA supervisory controller S of the type considered in Chap. 3 could be synthesized, if necessary, to ensure

that the controlled DES S/G (now modeled as a Markov chain) satisfies these requirements. One would rely
upon the notions of marked states and nonblocking supervisor for this purpose.
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