ISyE7201: Production and Service System Engineering
Instructor: Spyros Reveliotis
Spring 2016

Homework #4
Due Date: March 28, 2016

A. Reading assignment: This homework focuses on the modeling and
analysis of single queueing stations, with most emphasis placed on Marko-
vian queues. Besides your class notes, supporting material for this home-
work is provided in Chapters 1 and 2 in your textbook, and also in Sections
8.1-8.6, 8.7.1 and 8.8.1 in the text by Cassandras and Lafortune. As I men-
tioned in class, both of these texts deal with a broader range of Markovian
queueing stations than those that we had the time to address in detail in
class, but the main lines of analysis and the underlying methodology are
similar for all these stations. Also, your textbook provides (i) an exposition
of some further computational tools and techniques that are available for
these systems, and (ii) the derivation of some further results characterizing
the steady-state operation of these environments. Some of these results are
addressed in this homework.

B. Problems:
a. Solve Problems 8.4 and 8.5 in the text by Cassandras and Lafortune.
(Hint: For Problem 8.5 refer to Section 8.6.6 of that textbook.)

b. Consider a taxi station where taxis and customers arrive in accordance
with Poisson processes with respective rates of one and two per minute.
A taxi will wait no matter how many other taxis are present. However,
an arriving customer who does not find a taxi waiting leaves. Answer the
following questions:

i. What is the average number of taxis waiting?
ii. What is the proportion of arriving customers that get taxis?

iii. Answer questions (i) and (ii) above for the case where an arriving
customer will leave only if the number of waiting customers exceeds
a certain number N > (0. For this case, also compute the average
waiting time in queue for those customers who join the waiting line.



iv. Answer question (iii) above in the case that the rate of the taxi arrivals
is increased to two taxis per minute.

Hint: Try to model the various cases discussed in the above problem by
a CTMC that has similar structure to the CTMC that models the operation
of an M/M/1 queue. Then, use the perspectives and the results from the
analysis of this last CTMC that was presented in class.

c. Consider a stable M/M/1 queueing station with arrival rate A\ and pro-
cessing rate i that is operated at steady state. Show that the time in system,
S, for a customer that is served by this station, follows an exponential dis-
tribution with rate p — A.

d. Read the material on time reversibility of CTMCs attached to this home-
work. Then do the following:

1. Provide a proof for Proposition 1.6 in that material.

2. Use the result of Proposition 1.6 to argue that, in their steady-state
regime, ergodic birth-death processes are time-reversible.

3. Use the result of part #2 above in order to provide an alternative proof
for Burke’s theorem. Also, show that this theorem generalizes to the
M/M/m queueing stations.

4. Consider a stable FCFS M/M/1 queueing station with arrival rate
A and service rate p. Use the results of parts #2 and #3 above in
order to show that, in steady state, the number of customers that are
encountered in this station by an arriving customer that eventually
spends t time units in it, is Poisson distributed with mean equal to At.

e. Consider a single-server station with an infinite capacity queue, where:

e the arrival process is characterized by a stochastic sequence {Y1, Y2, ...}
with r.v. Yj characterizing the time elapsed between the k£ —1 and the
k-th arrival;

e the service process is characterized by a stochastic sequence {71, Zs, . ..}
with r.v. Z; denoting the time required for the processing of the k-th
customer;

e the server is operated in a non-idling mode;



e the queueing discipline is preemptive Last-In-First-Out (preemptive
LIFO), i.e., a new arrival interrupts the processing of any job in the
server, which is resumed only when all later arrivals have been cleared.

Express the time in system, S, for the k-th arrival at this system, in
terms of the stochastic sequences {Y1,Ys,...} and {7, Zs,...}.

f. Consider a D/M /oo queue where jobs arrive with a deterministic pace of
one job every 7 time units, and they enter immediately for service at one
of the system servers. Processing times are exponentially distributed with
rate p. Answer the following:

i. Compute the expected number of jobs in service that are encountered
by a new arrival, as t — oo.

ii. Compute the average number of jobs in service, as t — oc.

iii. Which of the two quantities computed in parts (i) and (ii) above is
larger? Provide a formal proof for your answer (and also an intuitive
interpretation of your finding, if possible).

iv. Finally, compute also the expected number of jobs that are in service
upon the departure of some job, as ¢t — oco.
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whereas with probability 1 — p,. there is no transition, i.e., the process
will remain in state y, the same as at 7_;. Therefore, the sojourn time of
Y in state y is a random summation: Zi\; T,, where T;’s are i.i.d. expo-
nential variables with mean 1/7 (interevent times of the Poisson process
that generates the {r;} sequence), and N, independent of the T}, is a ge-
ometric random variable with success probability p,. It is easy to verify
that this random summation also follows an exponential distribution, with
rate np, = A(y) + p(y). Hence, this sojourn time distribution is exactly
the same as in the original birth-death process {Y(¢)}. From (1.5), it is
also clear that if a transition takes place in state y, it is an upward transi-

tion with probability A(y’\(”) 7. and a downward transition with probability

+uly
ﬁ%. These are also the same as in {Y'(¢)}. Hence, starting from the

same initial state, the two Markov chains {Y (t)} and {¥ (t)} must have the
same probability law.

1.2 Time Reversibility

Here we assume that the time index ¢ belongs to the entire real line (instead

of just the nonnegative half). Also, 2 denotes equal in distribution.

Definition 1.1 A stochastic process {X (t)} is time-reversible (or, reversible,
for short) if

(X(t1), -, X (t)) S (X (7 = t1),. ... X (7 — )
for all t,....t,, all n, and all 7.

Lemma 1.2 If {X(¢)} is reversible, then {X(¢)} is stationary. That is,

d
(X(t1+ 7)o X(tn + 7)) = (X(E1),-- -, X (En)),

for all t1,....t,, all n, and all 7.

Proof. Setting 7 = 0 in Definition 1.1, we have

d
(X(t1)1 o ~X(tn)) = (X(—ti)! CRE R 1-X(_tn))
Next, replacing t; by t; + 7 in Definition 1.1 for all ¢ = 1,...,n, we have
d
(X(t14+7), X (tn +7) = (X(—t1),. .-, X(~ta))

Stationarity then follows from equating the left-hand sides of the above two
equations. O
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1.2 Time Reversibility 5

Therefore, below we focus on stationary processes, in particular station-
ary Markov chains (or Markov chains in equilibrium, or in steady state).

Let {X(t)} be a stationary Markov chain, with state space S. For ease of
discussion, assume ergodicity, i.e., the (continuous-time) Markov chain is
irreducible and positive recurrent. Recall that {X(t)} is completely char-
acterized by its rate matrix (Q, whose entries are

Qij =q(i, 7). 1#].

~Qii = _qi,5) = qli),
J#i

where
ali.g) = Jim £PLX(0) = J1X(0) =il = m PuGi i)/ (16)

and we assume (i) < oo for all i. The stationary (or invariant) distribution,
m = (m(i))ies is a vector of positive numbers (that sum to unity) satisfying

(i) ) q(i,g) =w(i)g(i) = 3 7(j)a(j, i),

JFL J#i

or 7'Q = 0 in matrix form. Note that under ergodicity, not only 7 is the
limiting distribution of X (¢) as t — oo, 7(i) is also the long-run average
proportion of time that the Markov chain is in state i, for all 7.

Now, even if {X(t)} is not (necessarily) reversible, we can still define its
time-reversal, {X(t)}, by letting X (t) = X (7 —t) for all t and for some 7.
Since {X ()} is stationary, we can pick 7 = 0, for instance, without loss of
generality. Note that while { X (t)} evolves toward the right of the real line
(the time axis), its time-reversal {X(t)} evolves in the opposite direction.
toward the left of the time line. It is easy to verify the Markov property of
{X(t)}, as well as stationarity. It turns out that the Markov chain {X(t)}
and its time-reversal have some interesting relations.

Lemma 1.3 Let {X(t)} be a stationary Markov chain with state space
S, rate matrix @, and stationary distribution 7. Then, the time-reversal
{X(t)} is also a Markov chain, governed by a rate matrix ), which is
defined componentwise as follows:

m(9)(2, 5) = m(5)q(4,1), Vi.jeS, i# (1.7)
Proof. First, observe that 7 is also the stationary distribution of {X(t)}.

since

P[X(t) = i] = P|X (7 — t) = 4] = 7(i)
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for all t. where the second equality follows from the stationarity of { X (t)}.
For h > 0, letting 7 = h, we have

n(@)Pa(i.g) = PIX(0)=1i X(h) = j] )
= P[X(0) = j. X(h) =] = n(j)Pa(j. ),

I

for any ¢. j. Dividing both sides by h and letting h — 0 vields the desired
relation in (1.7) [ef. (1.6)]. O
_ The above lemma implies that should @ = Q, then the time reversal
X has the same probability law as the original process X: hence, X is
reversible. In fact. the converse is also true (by mimicking the proof of the
lemma); i.e.. if X is reversible, then (1.7) holds with ¢ = ¢.

Theorem 1.4 A stationary Markov chain {X(¢)} with state space S and
rate matrix () is reversible if and only if there exists a probability distribu-
tion on S satisfyving

m(i)q(i,j) = =(5)q(j.4). Vi.j€S, i #j (1.8)
in which case 7 is the invariant distribution of {X(t)}.

Remark 1.5 The equations in (1.8) are called detailed balance equations,
as opposed to the full balance equations that define the invariant distribu-

tion:
m(1) > qli.g) = ) w(i)ali.i), Vies.
J#i J#i
(Note that the above are simply a row-by-row display of 7Q = 0.) Obvi-
ously. detailed balance is stronger than full balance: Taking summation on
both sides of (1.8) over j # i vields the full balance equations.

Intuitively, full balance requires that the probability flow coming out
of any given state, say i. to all other states——the outflow—be equal to the
probability flow from all those other states going into the same state i the
inflow. In contrast, detailed balance insists that this balance be achieved at
a more microscopic level: Outflow equals inflow between each pair of states
i# ]

A (continuous-time) Markov chain (with rate matrix Q and state space
S) is known to have a graphical representation: Let each state i be a node,
and let the (directed) edge from 4 to j represent the transition rate g(i, j)
if it is positive. If the transition rate satisfies

g(i.j) > 0= q(j.i) >0, Vijes, (1.9)

then there is an (undirected) edge between i and j if and only if q(i, j) > 0.

Proposition 1.6 Suppose the stationary Markov chain {X(#)} has tran-
sition rates that satisfy (1.9). Then, it is reversible if the associated graph
is a tree,
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