
ISyE7201: Production and Service System Engineering
Instructor: Spyros Reveliotis

Spring 2016

Homework #1

Due Date: February 8, 2016

Reading Guidelines
The introductory material on stochastic processes was (primarily) extracted
from Section 6.2 in the text on Discrete Event Systems by Cassandras and
Lafortune. Also, Discrete-Time Markov Chains (DTMCs) are treated in
the same text in Section 7.2. But some of the material presented in class
was also based on personal notes. Of course, a large part of the discussion
on DTMCs had a reviewing role of the material on DTMCs that you had
covered in Stoch I. Some of the problems assigned below have a similar
flavor.

You are also invited to read Sections 6.3–6.5 from the text by Cassandras
and Lafortune, but this will not be considered as part of the covered mate-
rial. Such reading will give you some further perspective on how stochastic
processes are used in broader systems theory and control. On the other
hand, it is also true that some of this material requires some familiarity
with automata concepts that are addressed in earlier chapters of that book,
and might not be in your current background.

Problem set
A. Solve problems 6.1, 7.3, 7.7, 7.11 and 7.12 from the text by Cassan-

dras and Lafortune, taking into consideration the following remark:

Remark For Problem 6.1 the correct recursion is:

Xk+1 = Xk + Sk+1, S0 = 0, X0 = 0

B. Consider a synchronous production line withN stations. At any oper-
ational cycle, the line has a failing probability pf . Each such failure is classi-
fied in one of K categories with corresponding probabilities qk, k = 1, . . . ,K
(obviously

∑K
k=1 qk = 1.0). These failing modes are non-destructive, i.e.,

when the line gets into any failing mode k ∈ K, it remains still for a se-
quence of operational cycles until it is repaired, at which point it resumes its
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advancement. A line failing in mode k has a probability of being repaired
in the current operational cycle equal to rk.

Model the operation of this line as a Discrete-Time Markov Chain (DTMC)
and use this model to compute the long-term throughput of the line.

C. Consider a DT-MC with finite state space S = {1, 2, . . . , N}. In class
we have provided a characterization of the recurrence or transience of any
state i of it, based on the value of the following probability:

ρi ≡
∞∑
k=1

P [Tii = k] = P [Tii <∞]

where Tii denotes the recurrence time for state i.
(i) Let p

(n)
ii denote the (i, i)-element of the n-th power of the one-step

transition probability matrix P of the chain, and show that a state i ∈ S of

this chain is recurrent if and only if
∑∞

n=0 p
(n)
ii =∞.

(ii) Use the result in part (i) in order to show that if states i and j com-
municate and i is recurrent, then j must be recurrent as well (this essentially
establishes the fact that recurrence is a class property).

(iii) Use the result in part (ii) to show that transience is also a class
property for this chain.

Remark: The above problem asks you to prove some of the structural
results for DT-MCs that we mentioned in class. You should have seen the
corresponding proofs in Stoch I, so, this problem is more of a revision of the
corresponding material.

D. Consider a finite-space DT-MC with a single absorbing state s0 (this
is, for instance, a structure that arises in “stochastic shortest path” prob-
lems, when the routing policy is fixed). Letting s1, . . . , sn denote the re-
maining transient states of the chain, the one-step transition probability of
this chain, P , can be expressed as:

P =

[
1 0T

Pa PT

]
(1)

In Equation 1: 0 is the n-dim(ensional) zero (column) vector and 0T

is its transpose; PT is an n-dim square matrix characterizing the one-step
transition probabilities of the chain among its transient states; Pa is an n-
dim vector characterizing the one-step absorption probabilities of the process
from the corresponding transient states; and 1 is a scalar quantity.

Let fi, i = 1, . . . , n denote the “expected absorption time” of the chain
when starting from transient state i, i.e., fi = E[Ti0], i = 1, . . . , n, where
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Ti0, i = 1, . . . , n, are the corresponding “first passage” or “hitting” times
defined in class. Also, let the (column) vector f collect all the fi’s.

(i) Show that
f = (I − PT )−11 (2)

where I is the n×n identity matrix and 1 is the n× 1 (column) vector with
all its components equal to 1.

(ii) Can you provide an intuitive interpretation for the result of Equa-
tion 2, based on an interpretation of the matrix (I − PT )−1?

E. Investigate what is the behavior of a picking line that is organized
according to the bucket brigade policy, if there are pairs of consecutive
pickers with equal velocities (i.e., there exist some i’s with vi = vi+1).

Hint: Consider how the above assumption impacts the structure of the
recursive equation that was used in class for describing the dynamics of
the bucket brigade policy; in particular investigate the implications of this
assumption for the structure of the non-negative square matrix that appears
in this equation. What is the significance of these structural changes for the
invocation of the Perron-Frobenius theorem in this new case?
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