A PROOF FOR THE QUEUING FORMULA: L=\W

John D. C. Little
Case Institute of Technology, Cleveland, Ohio*
(Received November 9, 1960)

In a queuing process, let 1/\ be the mean time between the arrivals of two
consecutive umts, L be the mean number of units in the system, and W be
the mean time spent by a umit 1n the system It 18 shown that, 1f the three
means are fimte and the corresponding stochastic processes strictly station-
ary, and, if the arrival process 18 metrically transitive with nonzero mean,

then L=\W

EURISTIC arguments are sometimes given to show that, in a steady-
state quewing process, the following formula holds

L=\W, (1)

where L =expected number of units 1n the system
W =expected time spent by a umt in the system
1/\ =expected time between two consecutive arnvals to the system

Expression (1) 1s of interest because 1t 1s sometimes easier to find L than
W (or vice versa) mm solving a quewing model

A bnef plausibiity argument for rather general vahdity of (1) 18 given
by MorsE (reference 1, p 22) He goes on to prove 1t 1 a number of spe-
cific models GALLIHER™ establishes 1t for the case of Poisson arnvals
which have a rate independent of queue length and which come to a mult-
ple channel facihty having a first-come, first-served disciphne We shall
prove 1t under assumptions considerably more general

By a gqueuing process will be meant a mathematically specified opeiation
m which umts arrive, wait, and then leave It 1s presumed that the opera-
tion thereby generates three well-defined stochastic processes

{ne, — o <t< o} =the number of units m the system at time ¢

{Wy, — w0 <r < =} =the time spent 1n the system by the rth arnving umt

{Try, — % <r< o} =the time between the arrivals of the th and (r +1)st umts
to the system

These processes are defined on some space Q and any point w€Q selects a
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function and two sequences,
nt(w)’ {wf(w)}’ {Tr(w)}v

which represent a specific realization of the queuing operation over all
time The random varables n,, w,, and 7, are nonnegative
The time of arrival of the rth umt will be denoted ¢, and 1s defined by

traa(w) =t(w) +7+(w)
For convemence we choose
t(w)20,  tol(w)<0
The following relation 1s taken to be part of the definition of a queuing

process Let
u(z) = 1 for z=20,
~ 10 for z<0,
then, for any w, ne= D _tau(t—t,) u(t,+w,—t) (2)

This relation says that the number in the system at ¢ 1s the number of
units whose time of arrival 1s before (or equal to) ¢ and time of departure
18 after (or equal to) ¢

TreeoreM 1 If, mn a queutng process, (1) each of the stochastic processes
ng, Wy, and 1, 18 sirictly stationary wth finite mean, and (1) the 7. process 1s
metrically transitwe with mean T=1/2>0, and, 1f we let

L(s)=hm tl n(w)ds, W(w)=hm }ﬁ 3 w,(w),
’ me (3)

1
T(w) =m1121° - > (),

1
then, with probability 1, the limats 1n (3) exist, are finute, and satisfy
W(w)=T(w) L(w) (4)

The existence and finiteness of the limits 1s an immediate consequence
of the ergodic theorems for strictly stationary stochastic processes (see
Doos, reference 3, pp 465 and 515).

Consider a specific pomnt w€Q  Let ¢, denote the length of the mter-
val [0, fn(w)) Define

L) = [m(@) s, Wal)=k 3 w(a),
" (5)

Z TJ(‘*’)

0

Tm(w) =

si=
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In order to take the hmts of (5) simultaneously, we first show that as
m=>o, iw—>© w p 1 (with probabiity one) By the ergodic theorem,
the metne transitivity of the 7, process, and 1ts nonzero mean, we have
/Tw(0)=™1/T(0)=1/T<» w p 1 Let a=r(w)—tH(w). We sce
that 0<a<w w p 1 Then 1/Tn(w)=m/(tm+a)~>hmm/t. w p 1,
lmm/tn<o© w p 1, so that m—> « mmphes tx—>© w p 1
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Fig 1. Part of a specific queuing realization w, showing the number in the sys-
tem at time 8, n,, the wait in the system for the rth arrival, w,, and the interarrival
time started by the rth arrival, 7, (The figure 18 drawn for the case of departure
1n order of arrival, but this 18 not required for the proofs 1n the text )

Integrating (2) for fixed w gives
tm mn
f neds=_ w42 v(w,+,) ~ 2 v(w,+t,~tm), (6)
o 1 150 15m

where v(z) =z for £>0 and v(z) =0 for xt<0 The situation 1s illustrated
m Fig 1 The area under the curve n, from 0 to ¢, 18, except for certain
carry-over effects at the ends of the interval, the sum of the waiting times
of the units that arnved during the interval These carry-over effects are
mdicated by the areas 4 and B, which correspond to the last two sums on
the nght 1n (6)

Dividing by m and using (5) gives

Wm"" Tm Lm= (l/m) Z:ém v(w,+t,—t..,)
= (a/m) Ln—(1/m) Xs50v(w,+t,)

The last two terms on the nght can be shown to go to zerow p 1 as
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m~>c0  In the last term the sum consists of a finite number (n,) of fimite
terms except on the union of (no+1) w-sets of probability zero Thus the
sum 18 fimte w p 1, and, since 1t 1s independent of mpthe desired himit 1s
zerow p 1 In the next to last term, L,—>L(w) <® and ¢/m=0w p 1
Thus

W(w)—~T(w)L{w)=lm(1/m) Z:ng v(w,+t,—t,)=0w p 1

If now we consider the interval ({_,(w), 0] and define L_,,, W_,., and
T_.. analogously to their counterparts above, e g,

Lom=[1/(—t_w)] [ o_mm(w) ds,

then the symmetry of the ergodic theorems with respect to time and argu-
ments the same as used previously yield

W(w)—T(w)L(w)=—hm(1/m) >, < mv(w,+t,—t_n)SOW p 1
Therefore, W(w)=T(w)L(w) w p 1
as was to be shown
THEOREM 2 Let

L=E{n, W =E{w}, T=E{ry,
then, under the hypotheses of Theorem 1,
W=TL

The ergodic theorems state that for almost all w the mits (3) are the

conditional expectations
L(w)=E{nisa}, W(w)=E{wld}, T(w)=E{rds;}

where 9, 9;, and 4, are the Borel fields of invanant subsets for the corre-
sponding processes Since the 7, process 1s metrically transitive,

T(w)=T,
and (4) becomes W(w)=TL(w) w p 1
Integration over Q@ gives, by definition of conditional expectation,
W=TL
as was to be shown
DISCUSSION

TuroreM 2 15 the principal result for applications and shows that (1) 18 a
vald relation among phase averages Theorem 1, on the other hand, 1s
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perhaps more basic for 1t shows that an equivalent of (1) using time aver-
ages holds with probabihity one for any specific realization of the quewing
process

The results are remarkably free of specific assumptions about arrval
and service distributions, independence of interarrival times, number of
channels, queue disciphne, etc A requirement 1s made for strict station-
arity (although this 1s probably not the weakest requirement possible), but
the steady state in most current queuing models would appear to be strictly
stationary Simularly, in cases of practical interest, the arrival process 1s
likely to be metrically transitive

Notice that the defimition of what constitutes the ‘system’ 1s left flex-
thle  In conventional usage, the number of units in the system refers to
the number 1n queue plus those in service The theorem here, however,
only requires consistency of meaning in the phrases, ‘number of umts n
the system,’ ‘time spent 1n the system,” and ‘arrival to the system ’ Thus,
if we choose to label the queue as the system and let L, and W, refer to the
mean number and mean wait 1n queue, we obtan

L=)\W,

Similarly, if we have a model with prionty classes 1=1, 2, , P, and let
L, be the mean number of priority ¢ units present, W, the mean wait of a
priority 2 umt, and 1/\, the mean interarnval time for prionty » units,
then

L=\W,

Morse (reference 1, p 75) asks when (1) does not hold As an ex-
ample, we cite a type of model, used in his book and elsewhere, in which
arnvals come with rate A but not all arrivals join the system Then (1)
does not hold However, mspection of the theorem shows that (1) will
hold if A 1s redefined to nclude only those arrivals that join the system
Alternatively, we can say that the units that do not join have a zero wait-
mg time i the system and include them i the calculation of W This
too will make (1) hold

THE avutHOR thanks Dr H NEwrTon GARBER for several constructive
suggestions about the proof In particular, equation (2) and its expheit
definitional implications are his
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