Complexity of the Deadlock Avoidance Problem

Toshiro Araki
Yuji Sugiyama
Tadao Kasami
Department of Information & Computer Science
Osaka University |
Jun Okui
Department of Information Science

Nagoya Institute of Technology

229

Introduction

“ Deadlock avoidance is how to grant only "safe" request under the
condition that processes declare in advance their anticipated resource
requirements. No efficient algorithms for avioding deadlocks among
requestors in a general environment are known.

We condider the system which satisfies the following assumptions:

(:) There are T distinct resource types with a number of indistinguishable
and interchangeable units of each type in the system.
Qé) The system provides two systems macros, ALLOC for requesting resources
and DEALLOC for releasing resources. The set of resources allocated to a
process is held for exclusive use and they are not preempted by the system
until it is explicitly released by the process.
For each process, the flow-diagram, which represents the possible
sequences of ALLOC or DEALLOC macros depending upon the control flow of the
process, is available at the initialization of the process.
There are no loops in flow-diagrams, but there may be conditional
branches in them.

A state of a process p is defined as the flow-diagram of the process
p with the indication where the process p has been executed. A state of
the system (a state for short) is described by a pair <P, F>, where P is
a set of the states of all the processes in the system and F is a set of

all the unallocated resources. A state 5 is said to be safe if and only

if there exists a sequence of states starting with S that will be able to

fulfill 'worst case'! requests. By the deadlock avoidance problem, we mean

the following decision problem: "Given a state S, is S safe ?".

At first a polynomial-time-bounded algorithm is presented for the

¥

UNE SRR e

Sl S R

—

S

232

_deadlock avoidance problem under the following restrictions.
The pairs of ALLOC macros to request resources and their associated
DEALLOC macros to release bhe resources are Lo e wel l-noated.

‘\ Only one type of resources may be requested by an ALLOC macro.

The number of elementary operations required by the algorithm is
bounded by O(UWT + VT + E), where V and E are the total number of nodes
(i.e., macros) and that of edges in the flow-diagrams of all the processes
in the system, respectively, U is the number of processes in the system,
and W is the number of resources allocated.

The following three results are shown by reducing the 3-satisfiability
problem to the deadlock aviodance problem.

(1) The deadlock avoidance prdblem is NP-complete even if the follow-
ing restrictions are imposed:

(R3) The flow diagram of each process has no conditional branches.
\d?(Rh) There is only-one un1t of each resource type.
(2) The dec1slon problem: 'leen a state S, 15 S not safe ?" is NP-
i complete'gven if the following restictions are imposed:
(R1) The pairs of ALLOC macros and their associated DEALLOC macros are to
be well-nested.
(R2') At most two types of resources may be requested by an ALLOC macro.
(RU4') There are at most two units of each resource type.
(3) When the system provides a macro to request the generation of a

resource, the deadlock avoidance problem is NP-complete even if all the

restrictions above are imposed.

Gystem Model

The system model gonsidered here consibts of U sequential processes

and resources of T distinct types . 5 t2,..., tT with

Py Pprer s Py 1
a;s Bosents & units of the respective Lypes. Each resource unit of a

given type is indistinguishable from other units of the same type.

The system provides two systems macros, ALLOC for requesting
resources with exclusive control and DEALLOC for releasing resources.
An ALLOC macro has, &S actual parameters, the resource types and the
~umbers of units of the respective types to be requested. By parameters
of a DEALLOC macro, the names of individual resources are spec1f1ed
These parameters are not changed dynaﬁically.

A process 1is assumed to be in one of two possible states: (1) acﬁive;—
that is, executing or prepared to exeeute.‘ (2) waiting for the acquisition

i y
of res ources which 1t has requested put which have not as yet‘been allocaied
!'f

to it. When a process is in waltlng state, 1t 1ssues fio macro. An !
ALLOC macro which has been issued by a process P is said to be granted
when all the resources‘requested by the macro are allocated to p. DEALLOC
macros are analogous to ALLOC macros. The resources allocated to p are

not preempted until they are explicitly released by p- A resource 1is

snid to be free if it is not allocated to any process.

b

y

We will introduce a f{low-diagram of @ process tu represent Lhe sot

of possible sequences of macros issued by the process.

Definition 1. A flow-diagram of a procens p is a directed pgraph with

a node corresponding to each macro which is possibly issued by process P,
plus one extra node called the initial node. The macro corresponding
to node n will be abbreviated as macro n. There is a directed edge from
node n to node n' if and only if the macro n’is possibly issued by process
p immediately after the macro n (or is possibly the first one issued by
process p if n is the initial node). A node corresponding to a macro
which is possibly the last one issued by process p is called a final node.
We assume that the flow-diagram of any process p in the system satisfies
the ollowing condilion:s.
(l) There are no directed loops, but. there may be conditional branches
in a flow-diagram.

n be an arbitrary directed path from the initial

(2) Let v = Ry Byt O,

node to a final nodelin the flow-diagram of process p (y represents a
possible sequence of macros issued by process p, that is, a control flow

of process p). 1If the control of process p proceeds along Yy, resoureae
which has been allocated to process P by an ALLOC macro ni should be
released by a DEALLOC macro n 0 < i< i_m), and, conversly, @& resource

to be released by nj has been allocated by n,
The condition (2) implies that, for any macro n in process p, the

set of resources held by p at the granting time of n (held at n for short)

is independent of the previous control flow leading to n of p and, therefore,

is unique.

pefinition 2. Let T be a resource held by & process p. A scope of resource
‘___,_——-—

r in process p is & directed path n, n, ,-" n. in the flow-diagram Of
process p such that r is held (by p) at ny (1 < k < J-1) and is not at

n, nor at any immediate ancestor of n,. The nodes n, and n, above

[t

are called the request and release nodes of T respectively.

—————

e ——

Definition 3. A state of a process p is a triple <Gp, m, s >, where

p P
G is the flow-diagram of p, m is the node corresponding to the last
p P
macro that has been issued and sI is either '"active" or "waiting" '
]

corresponding to active or waiting state of process P, respectively.
A state of the system (a state for short) 8 is a pair <P, F>,‘where P

Cey FU) in which Pi represents a state of the process pi’

L]

and F is (Fl, Fg"“’ FT) ip which Fi represents the number of freé units

of type ti when the state of process pi‘ié Pi for 1 < i < U.

Nefinition 4. A state of a process <Gp, mp, sp> is said to be final if

and only if m is a final node and Sp = "getive". A state S = <P, F> is
)

said to be final if and only if all the components of P are final states.

EE;Y@HEJ:li@l,E_; A state § is safe if and only if, for any control flow

of each process, there is at least a sequence of allocations and

o

deallocations which leads the system from o to a final state.

By the deadlock avoidance problem, we mean the following problem:
"oiven a state 8, decide whether S is safe or not." We define the four

oslrictions on system models.

236

Restrictions.

(1) Single Unit: There is only one unit of each resource type in
-_'—d
the system.
(2) Single Parameter: Only one resource may be specified by a macro.
———————— e a—

(3) Straight Line: The flow diagram of each process hss no conditional

blanches.

(L) NEEE_EEflgﬂﬂiggi, For any pair of scopes which are defined on an

arbitrary path from the initial node to a final node in any flow-diagram,

either they are mutually disjoint or one of the pair includes another.

fiF=eeingel o

Let NP be the class of decision problems decidable by nondeterministic

polynomially time bounded Turing machines. Tt is known that the following

satisfiability problem with exactly three literals per clause (SAT3) is

NP-complete [3]. Let n be a positive integer and) = {xl,xl,xg,Qg,...,

X ’“r}' The elements of X(n) are called literals. The complement of
|

x, (or x.) is x. (or x.).
i . i

Problem SAT3, Let n and m be positive integers.
Given : Q = <n, Cl’ € genane 3 cm> where n < 3m and c, <€ X(n) and Ic_l =3
=

J
for 1 < j < m.

Question : Does there exist a set K = {z

]

z } such that =z
n i

1522:"':
either x; or ;i for 1 <i <nand Kne, # ¢ for 1 <Jj<m?

[t

I'f there is such a set K for a given Q, we say that Q is satisfiable.

The following theorem shows that the problem DA, which is the decision

problem whose answer is "yes" if and only if a given state is safe, is

NP-complete.

s _\..LV’\-

Theorem 2. The problem DA is NP-complete evi;\}f the "Straight Line",
.

"Single Unit" Jand

"Single Parameter'

' restrictions are imposed.

(Proof') It is easy to show that the problem DA under the "Straight Line"
restriction is in NP.

We will show that the problem SAT3 is reducible to the problem DA

above (for the definition of "reducible", refer to [3]). Given an instance

of SAT3 QO = <n, e [T
L m

» we construct a state of a system (Fig. 1)
consisting of 3m+2n+l processes and Tm+3n+l resource types which have only

- — ——————————
m

one unit Let eléments of c. be denoted by y.., v,, and y, . for 1 < j < m.
P J Jl° " Je J3 -
The resource types are denoted by .0, , ¥.5 Bow 84 F‘k' D and A where

i i i J J Jjk

1<i<n,l<j<mandl < k < 3. The processes are denoted by p
4 — — — — — X,

i
= X

and p_ where 1 <1 <nmand 1 < j <m. Ify .
Po AR EE S o Yok ~ i

D= Jea s Pynos -

iiiﬁfEj:_Eiff_zﬂﬁ—j—fi—ifi~fil;— Let S be defined as a state in which

each process issued only its first macro and the macro has been granted.

LA]

(In figures, this is represented by the mark under a node.)

Since the size of state S is a linear function of that of given Q,

we can obtain Fig. 1 by some deterministic polynomially time bounded

Turing machine. Now we will show that & is safe if and only if Q is

satisfiable.

If Q is satisfiable, then there exists a set K = {21,22,..., z }
n

such that zj is either xi or ;i for 1 <i <n and Krﬁcj #¢ for 1 < j <m

Since Bj is free, if xi is in K, then we make the process p proceed
; X,
i
until a(A) macro is issued. Otherwise, we make the process p- proceed
. X.
i
until a(A) macro is issued. ThenXi or ii is free. Without loss of

generality, let yjl be in K since K(Wcj # ¢ for 1 < j < m. Then since

D C.and Y are free, we terminate the process P, . Next, we

D
j1’ g2’ g J

make the processes Pio and pj3 proceed until a(Cj) macro is issued.

Do the operations above for every] (1 < j €<m). Then since C, and C'k
- - J

v “

(L<j<m, 1<k 5.3) are all free, we terminate the process Py

Thus A becomes free. As a result, we terminate the process px. or pi
i i
that is, Xi and Xi (1 < i f_n} become free. Hence we terminate the

processes pJ2 and p33' Thus, we can terminate the all processes, that

is, S is safe.

Assume that Q is unsatisfiable. In the state S, Bi is requested by

—

Lhe processes p und p- onlty. Woe o mut al locate B Lo egither p o pz
X. X. i Ky %,
i i i i
50 that we terminate the processes p and p- . For each 1 (1 <1 < n),
X X, -
i al
allocate Bi to either pX or p- and consider the state in which either
i !
Xﬂ or Xi is released. Define set K as follows. For each i(1<1c< n),
if Xi (or Ki) is released, then let x_(or x.) belong to K. Since Q is
i i

unsatisfiable, there is cj such that cj(\K = ¢. If the process pO does

not terminate, then both pX and p; cannot terminate. For the sake of
i i
the termination of the process PO’ all Cj and Cjk (1 <J <m, 1<k 5_3)

must be free. Consider three processes pjl’ pj2 and pj3 which correspond

to ¢, such that ¢ NK = ¢. Since Y ., Y

. ., and Y are all non-free, if
J J J1’ je 33 ’

¢ is allocated, then Cj éannot be released. Without loss of generality, !

o

assume that C, js first released among c.., C,., and ¢. .. Then in the
jl 31y’ il 33

process Py D'l and Dj2 must be allocated, and if CJ is not allocated,

[

then D, . cannot be released. Thus C, cannot be released in P, .- .
J1 J3 , 33

Consequently, it is impossible that Cj , C., and Cj3ﬁare all free

0.
L T

at the same time, that is, S is not safe. (Q.E.D.)

The following theorem shows that the problem DN, which is the decision
problem whose answer is "yes" if and only if a given state is not safe,

is NP-complete.

Theorem 3. The problem DN is NP-complete even if the following restrictions

are imposed. (1) "Nest Structure". (2) At most two types of resources
JJ

can be requested by an ALLOC macro. (3) Each resource type has at most
—)

two units.
'_’—-———___-_

(proof) 1If a control flow of each process 1is chosen, then the question

to decide whether there exists a sequence of macros such that all the processes

250

|
T:I(Y.i) _gl_?_n(-l) (j)__".((_‘l”\ .LI)_:';'\L,]) Qate,)
‘i(—"-": D a(B,) it(ll) iw(bjl) ()v(l‘u) Q alD)
—_— 3)&(}(.) d(i)@) a(Djz) ~(133) O f J’)
= {a(}\) $n(1‘\)’ m(c”_) d((“w) AT) (e
ld(f\) id(/\) 53) d(DJ;}) dej)’“ 9 liiil) _@ ”
d(Bi) d(Bi) a(CJ} a(C,) yalc,) rued
L I S
(Ux) (
d(Djl) j(ng) lmaj%) Hy advers
/3 W W“"P
C mfjl).y,I ~(sz) .""(:\:) @ 'J
?Fo @J(g(}(yu) &l) é)-*.(':‘.__) fo
Qé(;\) (g:l(cj) d(Cj) &(cg

s<m,1<k<3}
@ a{cj,cjkllﬂﬁ“a <k< (b)

d[CJ ’Cjklliﬁlim,likrim

d(A)

' U
) ¢,
Fig.) — States of the processes in the proof * Llapupt)

of theorem 2.

) means ALLOC macro which requests one

In figures, a(Xl,Xg,...
) means DEALLOC

Remark.
unit of each resource type X . Similarly, d(Xl’XP""
macro. For simplicity, macros with two or more parameters are used,

but they can be rewritten by several macros with one parameter except

for a(X.,X.,) in Fig. 2.
1 1

- N -

