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Perron-KFrobenius theorem

From Wikipedia, the free encyclopedia

In mathematics, the Perron—-Frobenius theorem, named after Oskar Perron and Ferdinand Georg Frobenius,
is a theorem in matrix theory about the eigenvalues and eigenvectors of a real positive nxn matrix:

Let A = (a;;) be a real nxn matrix with positive entries a;; > 0. Then the following statements hold:

I. there is a positive real eigenvalue r of A such that any other eigenvalue A satisfies | A | < r.

2. the eigenvalue r is simple: r is a simple root of the characteristic polynomial of A. In particular both the
right and left eigenspace associated to r are [-dimensional.

3. there is a left (respectively right) eigenvector associated with » having positive entries. This means that
there exists a row-vector pp — (Ul, 555 5 Un )and a column-vector 3y — (wyq,..., W, ‘)f with positive

entries ¢; > 0, wy > Osuchthat ¢4 = re',  Aw = rw. The vector v (resp. w) is then called a

left (resp. right) eigenvector associated with r. In particular there exist two uniquely determined left
(resp. right) positive eigenvectors associated with r (sometimes also called "stochastic" eigenvectors)

Vnorm and W such that Z Ui = Z w; =1, ("
i i T
4. one has the eigenvalue estimate m}n Z i <r< 111}1)( Z Aij 6
J J

The first statement says that the spectral radius of the matrix A coincides with r. The theorem applies in
particular to a positive stochastic matrix. A right (respectively Teft) stochastic matrix A is a non-negative real
matrix such that its row sums (respectively column sums) are all equal to 1. In this case the Perron-Frobenius
theorem asserts that (provided all entries are strictly positive) the eigenvalue A = | is simple and all other
eigenvalues \ 7é 1 of A satisfy | Al < 1. Also, in this case there exists a vector having positive entries,

summing to 1, which is a right (resp. left) positive eigenvector associated to the eigenvalue A = 1. Both

properties can then be used in combination to show that the limit 4,00 = Jllm A" exists and is a positive
k—00
stochastic matrix of matrix rank one. If A is left (resp. right) stochastic then Ax is again left (resp. right)

stochastic. Its entries are determined by the stochastic left resp. right eigenvectors v, i and wy o Introduced

above. If A is right (resp. left) stochastic then the entry a;; of 4 __is equal to the jth entry of vy, (resp. the
/

/
/

ith entry of wom)-

This result has a natural interpretation in the theory of finite Markov chains (where it is the matrix-theoretic
equivalent of the convergence of a finite Markov chain, formulated in terms of the transition matrix of the
chain; see, for example, the article on the subshift of finite type). More generally, it is frequently applied in the
theory of transfer operators, where it is commonly known as the Ruelle-Perron-Frobenius theorem (name
after David Ruelle). In this case, the leading eigenvalue corresponds to the thermodynamic equilibrium of a

dynamical system, and the lesser eigenvalues to the decay modes of a system that is not in equilibrium.
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I]'ldtl'lCCS (called "irreducible” in reference |l | below also called regular in the Stochastlc case) ln partlcular it

also holds if some positive power rB= A% k> 0 of f the non- negative matrix A has positive entries.

This generalization of the Perron-Frobenius theorem has particular use in algebraic graph theory. The
"underlying graph" of a nonnegative real 5, x p; matrix is the graph with vertices |, . . .  n and arc ij if and
only if Ai;’ ?é 0. If the underlying graph of such a matrix is strongly connected, then the matrix is

irreducible, and thus the generalized Perron-Frobenius theorem applies. In particular, the adjacency matrix of a
connected graph is irreducible.

Perron-Frobenius theorem for non-negative matrices

Let A= ajj be a real ; % 7 matrix with non-negative entries @;; = (). Then the following statements hold:

I. there is a real eigenvalue r of A such that any other eigenvalue A satisfies | ,\[ <_ p. This property may

also be stated more concisely by saying that the spectral radius of A is an eigenvalue.
2. there is a left (respectively right) eigenvector associated with » having non-negative entries.

3. one has the eigenvalue estimate m'_m Z @i <r< me\ Z adij &
, J

With respect to the theorem above related to positive matrices, the left and right eigenvectors associated with
the Perron root r are no longer guaranteed to be positive; but remain non-negative. Furthermore, the Perron
root is no longer necessarily simple. If one requires the matrix A to be irreducible (its associated graph 1s

connected) as well as non- negatrve thEETgEnvector has (strictly) positive entries. Note that a positive matrix is
irreducible (as its associated graph is fully connected) but the converse is not necessarily true. And if A i is

prlmmve (AK> 0 for some k) then all the results above given tor the case of a posrtlve matrix apply
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