
ISyE 6650 Probabilistic Models Fall 2007

Homework 3 Solution

1. (Ross 3.5)
(a) P{X = i|Y = 3} = P{i white balls selected when choosing 3 balls
from 3 white and 6 red }

=

[

3
i

] [

6
3 − i

]

[

9
3

] , i = 0, 1, 2, 3.

(b) By same reasoning as in (a), if Y = 1, then X has the same distribution
as the number of white balls chosen when 5 balls are chosen from 3 white
and 6 red. Hence,

E[X|Y ] = 5
3

9
=

5

3
.

For a justification and a better understanding of the formula underlying
this last result, refer to Examples 2.34 and 3.2 in your textbook.

2. (Ross 3.7)
Given Y = 2, the conditional distribution of X and Z is

P{(X,Z) = (1, 1)|Y = 2} = P{X,Y,Z) = (1, 2, 1)}/P{Y = 2} = 1/16(1/16+1/4) =
1

5

In a similar manner, we get:

P{(1, 2)|Y = 2} = 0

P{(2, 1)|Y = 2} = 0

P{(2, 2)|Y = 2} =
4

5
.

Notice that, as expected,
∑

x

∑

z P{(X,Z)|Y = 2} = 1. We also have:

E[X|Y = 2] = 1 ·
1

5
+ 2 · (0 +

4

5
) =

9

5

Finally, working as above, we get

E[X|Y = 2, Z = 1] = 1.



3. (Ross 3.8)
(a)

E[X] = E[X|first roll is 6]
1

6
+E[X|first roll is not 6]

5

6
=

1

6
+(1+E[X])

5

6

implying that E[X] = 6 (which is also what you would get by noticing
that X follows a geometric distribution with success probability p = 1/6).

(b)
E[X|Y = 1] = 1 + E[X] = 7.

(c)

E[X|Y = 5] = E[X|Y = 5,X ≤ 4]P{X ≤ 4|Y = 5} +

E[X|Y = 5,X ≥ 6]P{X ≥ 6|Y = 5} (1)

But

P{X ≥ 6|Y = 5} =
P{X ≥ 6, Y = 5}

P{Y = 5}
=

P{The first four outcomes are different from 5 and 6, and the fifth is equal to 6}

P{The first four outcomes are different from 5, and the fifth is equal to 5}
=

(4/6)4(1/6)

(5/6)41/6
= (4/5)4 = 0.4096

Also,
E[X|Y = 5,X ≥ 6] = 5 + E[X] = 5 + 6 = 11

On the other hand,

E[X|Y = 5,X ≤ 4]P{X ≤ 4|Y = 5} = P{X ≤ 4|Y = 5}

4
∑

i=1

i · P{X = i|Y = 5,X ≤ 4} =

P{X ≤ 4|Y = 5}
4

∑

i=1

i ·
P{X = i,X ≤ 4|Y = 5}

P{X ≤ 4|Y = 5}
=

4
∑

i=1

i · P{X = i,X ≤ 4|Y = 5} =

1

[

1

5

]

+ 2

[

4

5

] [

1

5

]

+ 3

[

4

5

]2 [

1

5

]

+ 4

[

4

5

]3 [

1

5

]

= 1.3136

Plugging the above values in Eq. (1), we get

E[X|Y = 5] = 1.3136 + 11 · 0.4096 ≈ 5.8192
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4. (Ross 3.9)

E[X|Y = y] =
∑

x

xP{X = x|Y = y} =
∑

x

xP{X = x} = E[X].

The second equation above holds from the independence of X and Y .

5. (Ross 3.11)

E[X|Y = y] = C

∫ y

−y

x(y2 − x2)dx = 0.

where C = e−y/8.

6. (Ross 3.17)
Let K = 1/P{X = i}. Then, by recognizing that fY |X(y|i)dy = P{y ≤
Y ≤ y + dy|X = i} and fY (y)dy = P{y ≤ Y ≤ y + dy}, and applying the
basic definition of conditional probability, we get that

fY |X(y|i) = KP{X = i|Y = y}fY (y) = K1e
−yyie−αyys−1 = K1e

−(1+α)yys+i−1

where K1 = K · C/i! does not depend on y. But as the preceding is the
density function of a gamma random variable with parameters (s+i, 1+α)
the result follows.

7. (Ross 3.24)
In all parts, let X denote the random variable whose expectation is desired,
and start by conditioning on the result of the first flip. Also, h stands for
heads and t for tails.
(a)

E[X] = E[X|h]p+E[X|t](1−p) = (1+
1

1 − p
)p+(1+

1

p
)(1−p) = 1+

p

1 − p
+

1 − p

p

(b)

E[X] = (1+E[number of heads before first tail])p+1(1−p) = 1+p(
1

1 − p
−1) = 1−p+

p

1 − p

(c)
Interchanging p and 1 − p in (b) gives:

E[X] = 1 − (1 − p) +
1 − p

p

(d)

E[X] = (1+answer from (a))p+(1+
2

p
)(1−p) = (2+

p

1 − p
+

1 − p

p
)p+(1+

2

p
)(1−p)
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8. (Ross 3.26)
Let NA and NB denote the number of games needed given that you started
with A and given that you started with B. Conditioning on the outcome
of the first games gives

E[NA] = E[NA|ω]pA + E[NA|l](1 − pA)

Conditioning on the outcome of the next game gives

E[NA|ω] = E[NA|ωω]pB+E[NA|ωl](1−pB) = 2pB+(2+E[NA])(1−pB) = 2+(1−pB)E[NA]

As, E[NA|l] = 1 + E[NB ], we obtain that

E[NA] = (2+(1−pB)E[NA])pA+(1+E[NB ])(1−pA) = 1+pA+pA(1−pB)E[NA]+(1−pA)E[NB ]

By symmetry, we have

E[NB ] = 1 + pB + pB(1 − pA)E[NB ] + (1 − pB)E[NA]

Subtracting gives

E[NA]−E[NB ] = pA−pB +(pA−1)(1−pB)E[NA]+(1−pB)(1−pA)E[NB ]

or equivalently

[1 + (1 − pA)(1 − pB)](E[NA] − E[NB ]) = pA − pB

Since 1 + (1 − pA)(1 − pB) > 0, pB > pA implies that E[NA] < E[NB ],
i.e., playing A first is better.

9. (Ross 3.30)

E[N ] = Σm
j=1E[N |X0 = j]p(j) = Σm

j=1

1

p(j)
p(j) = m

10. (Ross 3.31)
Let Li denote the length of run i. Conditioning on X, the initial value
gives

E[L1] = E[L1|X = 1]p+E[L1|X = 0](1−p) =
1

1 − p
p+

1

p
(1−p) =

p

1 − p
+

1 − p

p

and

E[L2] = E[L2|X = 1]p+E[L2|X = 0](1−p) = (
1

p
−1)p+(

1

1 − p
−1)(1−p) = 1
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11. (Ross 3.32)
Let T be the number of trials needed for both at least n successes and m
failures. Conditioning on N , the number of successes in the first n + m
trials, we obtain that

E[T ] = Σn+m
i=0 E[T |N = i]

(

n + m
i

)

pi(1 − p)n+m−i

But for i ≤ n

E[T |N = i] = n + m +
n − i

p

since it will take, on average, n−i
p to obtain the remaining n− i successes.

Similarly, for i > n,

E[T |N = i] = n + m +
i − n

1 − p

Plugging the last two expressions in the first one, gives the result for part
(a).

For part (b), let S be the number of trials needed for n successes, and let
F be the number needed for m failures. Then the random variable con-
sidered in this part is expressed as min{S, F}, while the random variable
T addressed in part (a) is expressed as max(S, F ). It also holds that

min(S, F ) + max(S, F ) = S + F

Rearranging the terms in the above identity and taking expectations on
both sides, yields:

E[min(S, F )] =
n

p
+

m

1 − p
− E[T ]

and the result can be obtained by combining the above equation with the
result of part (a).

12. (Ross 3.35)

np1 = E[X1] = E[X1|X2 = 0](1 − p2)
n + E[X1|X2 > 0][1 − (1 − p2)

n]

= n
p1

1 − p2
(1 − p2)

n + E[X1|X2 > 0][1 − (1 − p2)
n]

yielding the result

E[X1|X2 > 0] =
np1(1 − (1 − p2)

n−1)

1 − (1 − p2)n
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13. (Ross 3.38)
Let X be the number of successes in the n trials. Now, given that U = u,
X is binomial with parameters (n, u). As a result,

E[X|U ] = nU

E[X2|U ] = n2U2 + nU(1 − U) = nU + (n2 − n)U2

Hence
E[X] = nE[U ] = n/2

and

E[X2] = E[nU+(n2−n)U2] = nE[U ]+(n2−n)E[U2] = n/2+(n2−n)[(1/2)2+1/12] = n/6+n2/3

Hence,
V ar(X) = E[X2] − (E[X])2 = n/6 + n2/12

14. (Ross 3.39)
Let N denote the number of cycles, and let X be the position of card 1.
(a)

mn =
1

n

n
∑

i=1

E[N |X = i] =
1

n

n
∑

i=1

(1 + mn−i) = 1 +
1

n

n−1
∑

j=1

mj

where in the last expression we have recognized that m0 = 0.
(b)

m1 = 1

m2 = 1 + 1/2 = 3/2

m3 = 1 +
1

3
(1 + 3/2) = 1 + 1/2 + 1/3 = 11/6

m4 = 1 +
1

4
(1 + 3/2 + 11/6) = 25/12

(c) Looking at the above expressions for m1, m2 and m3, we are prone to
conjecture

mn = 1 + 1/2 + 1/3 + · · · + 1/n

This conjecture is also supported by the derived value for m4, since

1 + 1/2 + 1/3 + 1/4 = 25/12

(d)
Obviously, our conjecture holds for n = 1. Let us assume that it holds for
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all integers up to n− 1. Then, using the recursion derived in part (a) and
the induction hypothesis, we get that

mn = 1+
1

n

n−1
∑

j=1

(1+· · ·+1/j) = 1+
1

n
[n−1+(n−2)/2+(n−3)/3+· · ·+1/(n−1)]

But in the above expression, each of the terms (n−i)/i, for i = 1, . . . , n−1,
can be rewritten as n

i − 1, and therefore, we get:

mn = 1 +
1

n
[n +

n

2
+ · · · +

n

n − 1
− (n − 1)] = 1 + 1/2 + · · · + 1/n

(e)

N =

n
∑

i=1

Xi

(f)

mn =

n
∑

i=1

E[Xi] =

n
∑

i=1

P{i is last of 1,...,i} =

n
∑

i=1

1/i

(g) Yes, knowing for instance that i+1 is the last of all the cards 1, . . . , i+1
to be seen, tells us nothing about whether i is the last of 1, . . . , i.
(h)

V ar(N) =
n

∑

i=1

V ar(Xi) =
n

∑

i=1

(1/i)(1 − 1/i)

where we have used the result that the variance of an indicator variable
IE for some event E is equal to P (E)(1−P (E)) (this can be easily shown
by noticing that: V ar(IE) = E[I2

E ] − (E[IE ])2 = P (E) − (P (E))2).

Remark: A simpler way to derive the results for parts (b)–(d) is by using
the following, alternative recursion for part (a):

Instead of conditioning on the position of card 1, we condition on the
position of card n. Then, letting N denote the number of cycles and X ′

denote the position of card n, we get

mn = E[N |X ′ 6= n]P{X ′ 6= n}+E[N |X ′ = n]P{X ′ = n} = mn−1
n − 1

n
+(1+mn−1)

1

n
= mn−1+

1

n

Then all the above results follow very naturally when recognizing that
m0 = 0.

15. (Ross 3.42)
Let X be the number of people who arrive before you. Because you are
equally likely to be the first, or second, or third, ..., or eleventh arrival

P{X = i} =
1

11
, i = 0, . . . 10
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Therefore,

E[X] =
1

11

10
∑

i=1

i =
1

11

10 · 11

2
= 5

and

E[X2] =
1

11

10
∑

i=1

i2 =
1

11

10(11)(21)

6
=

5 · 21

3

giving that

V ar(X) =
5 · 21

3
− 52 = 5(

21

3
− 5) = 10

Another way to derive the above results is as follows:

Let Ii be the indicator variable corresponding to the event that the i-th of
the remaining 10 guests arrived before you. Then, the number of guests
arriving before you can be expressed as

X =

10
∑

i=1

Ii

and therefore,

E[X] =

10
∑

i=1

E[Ii] =

10
∑

i=1

P{i-th customer arrived before you} = 10
1

2
= 5

Similarly,

V ar[X] =

10
∑

i=1

V ar[Ii] +

10
∑

i=1

∑

j 6=i

Cov[Ii, Ij ]

But from the above discussion on Problem 3.39(h), we have that:

V ar[Ii] = E[Ii](1 − E[Ii]) =
1

2
(1 −

1

2
) =

1

4

Also, for i 6= j, we have that

Cov[Ii, Ij ] = E[IiIj ] − E[Ii]E[Ij ] = P{Ii = 1, Ij = 1} − (1/2)2

To compute P{Ii = 1, Ij = 1}, let Xi, Xj and X0 respectively denote the
arrival times for guests i, j and yourself. Then,

P{Ii = 1, Ij = 1} = P{Xi < X0∧Xj < X0} =

∫ 1

0

P{Xi < y}P{Xj < y}fX0
(y)dy =

∫ 1

0

y2dy = 1/3

where in the previous calculations we have used the independence of the
arrival times and their uniform distribution over the interval (0, 1). The
last result implies that

Cov[Ii, Ij ] = 1/3 − 1/4 = 1/12
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and plugging the values derived above in the expression for Var[X], we
get:

V ar[X] = 10 ·
1

4
+ 10 · 9 ·

1

12
= 10

16. (Ross 3.92)
Let N denote the number of coins encountered by Josh on his way to work,
and denote by Xi the value of the i-th coin, as perceived by Josh (i.e., a
penny has zero value). Then, the total value collected by Josh on his way
to work is expressed as

V =
N

∑

i=1

Xi

which is a compound Poisson r.v. Hence,

E[V ] = E[N ] · E[X1] = 6
0 + 5 + 10 + 25

4
= 60

and

V ar[V ] = E[N ] · E[X2
1 ] = 6

25 + 100 + 625

4
= 1125

For part (c), observe that a value V = 25 can be obtained by encountering
an arbitrary number of pennies plus: (i) a quarter; (ii) one nickel and
two dimes; (iii) three nickels and one dime; (iv) five nickels. Then, the
probability of the considered event can be obtained by characterizing and
summing the probabilities of the four events enumerated above. Letting
N1, N5, N10 and N25 respectively denote the number of pennies, nickels,
dimes and quarters encountered by Josh, we can write the probability of
the first of the above events as

∞
∑

n=1

P{N1 = n−1, N5 = 0, N10 = 0, N25 = 1|N = n}P{N = n} =

∞
∑

n=1

n(
1

4
)n e−66n

n!

Similarly,

∞
∑

n=3

P{N1 = n−3, N5 = 1, N10 = 2, N25 = 0|N = n}P{N = n} =

∞
∑

n=3

n(n − 1)(n − 2)

2
(
1

4
)n e−66n

n!

∞
∑

n=4

P{N1 = n − 4, N5 = 3, N10 = 1, N25 = 0|N = n}P{N = n} =

∞
∑

n=4

n(n − 1)(n − 2)(n − 3)

3!
(
1

4
)n e−66n

n!
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and
∞
∑

n=5

P{N1 = n − 5, N5 = 5, N10 = 0, N25 = 0|N = n}P{N = n} =

∞
∑

n=5

n(n − 1)(n − 2)(n − 3)(n − 4)

5!
(
1

4
)n e−66n

n!
=

∞
∑

n=5

(

n
5

)

(
1

4
)n e−66n

n!

Finally, we demonstrate how to calculate the above infinite sums by work-
ing with the first of them. The other three can be priced in the same
manner. We have:
∞
∑

n=1

n(
1

4
)n e−66n

n!
=

6e−9/2

4

∞
∑

n=1

e−6/4(6/4)n−1

(n − 1)!
=

6e−9/2

4

∞
∑

n=0

e−6/4(6/4)n

n!
=

6e−9/2

4

since the last sum is the sum of the pmf of a Poisson random variable with
rate λ1 = 6/4.

17. (Ross 3.28)

Let Yi be the indicator variable indicating that the i-th selection is red.
Then

E[Xk] =
k

∑

i=1

E[Yi]

and
E[Y1] = E[X1] =

r

r + b

Also,

E[Y2] = E[E[Y2|X1]] = E[
r + mX1

r + b + m
] =

r

r + b + m
+

m

r + b + m
E[X1] =

r

r + b + m
+ +

m

r + b + m

r

r + b
=

r

r + b

and therefore,

E[X2] = 2
r

r + b

To prove by induction that E[Yk] = r
r+b , assume that it holds for all i < k,

and then, we have that:

E[Yk] = E[Yk|Xk−1]] = E[
r + mXk−1

r + b + (k − 1)m
] =

r

r + b + (k − 1)m
+

m

r + b + (k − 1)m
E[

k−1
∑

i=1

Yi] =

=
r

r + b + (k − 1)m
+

m

r + b + (k − 1)m
(k − 1)

r

r + b
=

r

r + b
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18. (Ross 3.63)

(a) Letting Si denote the event that there is only one type i coupon in
our final collection, and following the hint provided in your textbook, we
have

P{Si} =
n−1
∑

j=0

P{Si|T = j}P{T = j} =
1

n

n−1
∑

j=0

P{Si|T = j} =
1

n

n−1
∑

j=0

1

n − j

The final equality above implies that P{Si|T = j} = 1/(n − j), and it
can be justified as follows: Given that we have collected j types before
collecting type i, after collecting this type there are n − j − 1 additional
types to be collected. Type i will appear only once in our final collection
if and only if in the subsequent activity it will (re-)appear only after the
missing n − j − 1 types have been collected. And the probability of this
event is 1/(n − j − 1).

(b) For this part, just notice that if we let Ii be the indicator variable for
event Si, then, the requested expectation is

E[
n

∑

i=1

Ii] = n
1

n

n−1
∑

j=0

1

n − j
=

n
∑

k=1

1

k
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