
Homework 2 Solution 



 

Part A. 

Ch 2 – 12 
 

(a)  

 

b = 65 – 40 = 25 

  

  from normal distribution table 

  

Thus, order quantity is 58-12=46 

 

(b) 

Now b=5 

  

  from normal distribution table 

  

Thus, order quantity is 51-12=39 

 

 

Ch 2 – 13 
 

(a) Poisson Process, since this demand process accumulates the random demand 

generated by the 15 parallel stations in the assembly stage, and these stations are 



not synchronized in any way; in fact, each of them has a quite random / highly 

variable behavior (see also the discussion on the Poisson distribution provided in 

pgs 98 – 99 in your textbook, and revisit the material from the IE6650 class on the 

Poisson process and its properties). 

(b) Based on the provided information, each station in the assembly stage will 

produce 3 units per hour, on average, and therefore, it requires 3 chassis units. Since 

there are 15 such stations, the average hourly demand is 45 chassis units, and 

therefore, the average demand over the lead time period of 15 minutes is 45 / 4 = 

11.25 units. 

Since the demand distribution is Poisson, the above result also translates to a 

variance of 11.25 units and a standard deviation of 3.3541. 

(c) When viewed from the standpoint of the assembly stage, the considered system 

is essentially a basestock inventory model with its lead time demand distribution 

characterized in parts (a) and (b) above, and its basestock level R determined by the 

number of paper cards (essentially KANBANS) that control the material flow from the 

chassis stage to the assembly stage. Hence, our main problem here is the 

determination of the minimal basestock level that will guarantee the required service 

level (fill rate). We know that in the case of discrete distributions G(), the fill rate 

resulting from any given basestock level R is equal to G(R-1) = G(r), where r is the 

implied reorder point. Letting r = m, we are looking for the minimal m such that  

G(m) = Poisson (m; 11.25) ≥ 0.99 

 m=20 and the KANBAN level is R=m+1 = 21. 

Ch 2 – 17 

 

17. Formulae for some of the quantities: 

Dl       because demand is POISSON)




F = 
Q

D
     I(Q,r)*c = [(Q+1)/2 + r -  + B(Q,r)]*c 

Holding cost per year = 12*hI  Order cost per year = 12*FA 

 

The fill rates table is at the end of this problem’s solution. 

(a,b)  

 

 

 

As we observed in class, Type 1 service specifications are most stringent than the corresponding 

Type 2 ones. Therefore, when such a specification is used as an approximation for fill rate, 

which is another term for the Type 2 service level, it will underestimate its true value, leading to 

a much larger r and higher inventory. 

 

(c)  

 

 

 

This approximation is very accurate because it is based on the actual formula that characterizes 

fill rate, and when Q is this large, the dropped term B(r+Q) is negligible. 

 

 

 

 

Note that when Q is reduced, we get slightly higher service at a much smaller inventory 

investment. But of course, we order twice as often. If we neglect the cost or capacity 

considerations of placing orders, we can always minimize inventory costs y choosing Q=1. But if 

we consider either order frequency (capacity) or fixed order cost, then EOQ may give a perfectly 

reasonable Q. 

 

Formulae used in the fill rates table: 

 

p(r) = 
r
e

-
r!    (cdf of Poisson random variable) 

G(r) = 


r

k

kp
0

)(    (by def on pg. 69 of the textbook) 

B(r) = p(r) + {[r] [1-G(r)]}  (eqn 2.63 on pg. 100. This is the backorder level formula 

for the base stock model. The values of B(r) are 

computed because they are used in the following B(Q,r) 

formula, which is a (Q,r) model formula.) 

B(Q, r) = 

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Qr

rx

xB
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1

    (eqn 2.38 on pg. 78) 

Type 1 service = G (r)  (eqn 2.36 on pg. 78) 

Type 2 service = 
Q

rB )(
1    (eqn 2.37 on pg. 79) 

c Di li i i Qi ri Fi Type 1 S Si Bi Ii

i ($/unit) (units/mo) (mos) (units) (units) (units) (units) (order freq) (fill rate) (backorder level)(inventory invest)

approx 12 15 0.5 7.5 2.7 25 11 0.6 0.92 0.994 0.006 198.07

exact 12 15 0.5 7.5 2.7 25 6 0.6 0.378 0.922 0.133 139.6

c Di li i i Qi ri Fi Type 2 S Si Bi Ii

i ($/unit) (units/mo) (mos) (units) (units) (units) (units) (order freq) (fill rate) (backorder level)(inventory invest)

approx 12 15 0.5 7.5 2.7 25 6 0.6 0.922 0.922 0.133 139.6

exact 12 15 0.5 7.5 2.7 25 6 0.6 0.922 0.922 0.133 139.6

(d) c Di li i i Qi ri Fi Si Bi Ii

i ($/unit) (units/mo) (mos) (units) (units) (units) (units) (order freq) (fill rate) (backorder level)(inventory invest)

exact 12 15 0.5 7.5 2.7 13 8 1.2 0.934 0.087 91.05



Exact S(Q,r) = )]()([
1

1 QrBrB
Q

    (eqn 2.35 on pg. 78) 

Fill rates table for Problem 2.17:  
 7.5

r p(r) G(r) B(r) Q= 25 Q= 13

Type 1 S B(Q,r) Type 2 S Exact S B(Q,r) Exact S

0 0.001 0.001 7.500 1.125 0.700 0.700 2.161 0.426

1 0.004 0.005 6.501 0.865 0.740 0.740 1.662 0.501

2 0.016 0.020 5.505 0.645 0.780 0.780 1.240 0.577

3 0.039 0.059 4.526 0.464 0.819 0.819 0.892 0.652

4 0.073 0.132 3.585 0.320 0.857 0.857 0.616 0.724

5 0.109 0.241 2.717 0.212 0.891 0.891 0.407 0.791

6 0.137 0.378 1.958 0.133 0.922 0.922 0.256 0.849

7 0.146 0.525 1.336 0.080 0.947 0.947 0.154 0.897

8 0.137 0.662 0.861 0.045 0.966 0.966 0.087 0.934

9 0.114 0.776 0.523 0.025 0.979 0.979 0.047 0.960

10 0.086 0.862 0.299 0.013 0.988 0.988 0.024 0.977

11 0.059 0.921 0.162 0.006 0.994 0.994 0.012 0.988

12 0.037 0.957 0.082 0.003 0.997 0.997 0.005 0.994

13 0.021 0.978 0.040 0.001 0.998 0.998 0.002 0.997

14 0.011 0.990 0.018 0.001 0.999 0.999 0.001 0.999

15 0.006 0.995 0.008 0.000 1.000 1.000 0.000 0.999

16 0.003 0.998 0.003 0.000 1.000 1.000 0.000 1.000

17 0.001 0.999 0.001 0.000 1.000 1.000 0.000 1.000

18 0.000 1.000 0.000 0.000 1.000 1.000 0.000 1.000

19 0.000 1.000 0.000 0.000 1.000 1.000 0.000 1.000

20 0.000 1.000 0.000 0.000 1.000 1.000 0.000 1.000

21 0.000 1.000 0.000 0.000 1.000 1.000 0.000 1.000

22 0.000 1.000 0.000 0.000 1.000 1.000 0.000 1.000

23 0.000 1.000 0.000 0.000 1.000 1.000 0.000 1.000

24 0.000 1.000 0.000 0.000 1.000 1.000 0.000 1.000

25 0.000 1.000 0.000 0.000 1.000 1.000 0.000 1.000

26 0.000 1.000 0.000 0.000 1.000 1.000 0.000 1.000

27 0.000 1.000 0.000 0.000 1.000 1.000 0.000 1.000

28 0.000 1.000 0.000 0.000 1.000 1.000 0.000 1.000

29 0.000 1.000 0.000 0.000 1.000 1.000 0.000 1.000

30 0.000 1.000 0.000 0.000 1.000 1.000 0.000 1.000

31 0.000 1.000 0.000 0.000 1.000 1.000 0.000 1.000

32 0.000 1.000 0.000 0.000 1.000 1.000 0.000 1.000

33 0.000 1.000 0.000 0.000 1.000 1.000 0.000 1.000

34 0.000 1.000 0.000 0.000 1.000 1.000 0.000 1.000

35 0.000 1.000 0.000 0.000 1.000 1.000 0.000 1.000  

 



 

Part B. 

Problem 1 

 

i. Solution Methodology 

 

In this multi-product newsboy problem, the objective is to find order quantities Qi for newspaper 

i, i=1,…,N, such that the daily profit is maximized while the total weight of newspapers 

 

N

i ii wQ
1

 is less than or equal to W. 

 

Maximizing the profit is equivalent to minimizing the total cost, which consists of the underage 

and overage costs. Let ui = pi - ci be the unit underage cost and oi = ci - si be the unit overage cost 

for newspaper i. Then the cost contributed by product i is  

Ci (Qi, Xi) = oi max{0, Qi - Xi} +  ui max{0, Xi - Qi} 

 

Taking the expected value of the cost with respect to the demand Xi and summing up for the N 

products, the optimization problem (P) can be formulated as 
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where gi(x) is the probability density function of the demand Xi. 

Note that in the basic newsboy model, where there is no weight constraint, 
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gives separate optimal ordering quantity for newspaper i. So if the combination of these 

quantities does not violate the weight constraint, i.e. Ww
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the weight constraint as equality. The reason is that the expected cost of each newspaper,    
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0 , E[Ci (Qi, Xi)] is decreasing in Qi. For any solution that gives a total 

weight strictly less than W, the objective function can be improved by increasing some of the 

Qi’s until the weight constraint is satisfied at equality. 
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, we can replace the inequality sign with equality in the 

constraint in (P) and obtain the same optimal solutions. In this case we may introduce a Lagrange 

multiplier  and find the optimal solution to (P) by solving the unconstrained problem: 

 

Minimize  
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The optimality conditions are: 
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From (1), we have 
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Then the problem becomes finding a value of such that Qi
*
() satisfies (2).  can be solved 

using bisection search over the interval between a lower bound and upper bound for . Note that 

can be interpreted as the penalty cost of violating the weight constraint by one unit, so a lower 

bound for is 0. Also, since Gi is a cumulative distribution function, has to satisfy 
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ii. Application (Remark: Notice that in the following calculations, the notation N(a,b) employed 

in the problem data, has been interpreted as a normal distribution with mean equal to a and st. 

deviation equal to b.) 

 

i ui oi critical ratio = ui/(ui+oi) 

1 0.75 0.15 0.83 

2 1.00 0.40 0.71 

3 1.30 0.60 0.68 

 

Iteration Lower Upper  Q1 Q2 Q3 Total Weight 

0   0 119.35 80.66 54.80 174.96 

1 0 1.3 0.65 98.61 71.58 45.93 148.92 

2 0 0.65 0.325 107.86 76.01 50.33 161.26 

3 0.325 0.65 0.4875 103.15 73.82 48.18 155.12 

4 0.4875 0.65 0.56875 100.87 72.71 47.07 152.04 

5 0.56875 0.65 0.609375 99.74 72.15 46.51 150.49 

6 0.609375 0.65 0.629688 99.17 71.87 46.22 149.71 

 

At Iteration 6, the difference between the total weight and the allowable weight is 0.29 l

b, less than the weight of the lightest paper (paper 1, 0.5 lb), so we stop there. Roundin

g down Qi’s to integers, we get Q1 = 99, Q2 = 71 and Q3 = 46. That frees up 1.25 lbs 

and allows the newsboy to carry an additional copy of Paper 1 and 2 each.  The final 

answer is Q1 = 100, Q2 = 72 and Q3 = 46. 

 

Problem 2 

b=100 $/pound. 

h=200 $/pound 

G(Q*)=  

Z0.33 =-0.44 from normal distribution table 

Q*=100,000-0.44*5000=97,800 pounds per month. 

Therefore the optimal selection of the plant capacity equals 97,800 pounds per 

month. 

 



 

 

Extra Credit 

Problem 1 

 

  
 



 

Problem 2 

 

2. Show that ][][][][][ 2 LVarDEDVarLEXVar  
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Therefore, we get ][][][][][ 2 LVarDEDVarLEXVar  . 



 

Problem 3 

 

Let g(x) be the distribution function of the random demand X in the newvendor problem. Then 

 



(c  s)E[max{Q X,0}] (p  c)E[max{ X Q,0}]
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 cQ  cE[X] sE[max{Q X,0}] pE[X] pE[min{Q,X}]

 {pE[min{Q,X}] sE[max{Q X,0}] cQ} (p  c)E[X]      (Equation 1)

 

 

Therefore,  

}]0,[max{)(}]0,[max{)(min QXEcpXQEsc   

  min ][)(}}]0,[max{}],[min{{ XEcpcQXQsEXQpE   

  



max  pE[min{Q,X}] sE[max{Q X,0}]cQ (pc)E[X] 

 

Note that the last term ][)( XEcp   can be dropped from the objective function because it is 

independent of Q.  Therefore, the two objectives are equivalent. 

 

Remark: Maybe a better way to understand the result of Eq. 1, is by re-writing it as: 

 



pE[min{Q,X}] sE[max{Q X,0}] cQ 

(p c)E[X] (p c)E[max{X Q,0}] (c  s)E[max{Q X,0}]
 

 

 

 

 

 

 


